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Abstract technology to benefit software developers. The Pan sys- 

Powerful editing systems for developing complex software 

documents are difficult to engineer. Besides requiring effi- 

cient incremental algorithms and complex data structures, 
such editors must integrate smoothly with the other tools 
in the environment, maintain a sharable database of infor- 

mation concerning the documents being edited, accommo- 

date flexible editing styles, provide a consistent, coherent, 
and empowering user interface, and support individual vari- 
ations and project-wide configurations. Pun is a language- 
based editing and browsing system that exhibits these char- 
acteristics. This paper surveys the design and engineering of 

Pan, paying particular attention to a number of issues that 
pervade the system: incremental checking and analysis, in- 
formation retention in the presence of change, tolerance for 

errors and anomalies, and extension facilities. 

tem 

1. 

rests on three fundamental assumptions. 

Software is composed of textual documents hav- 
ing many structures that can be derived using 
language-based analysis. “Syntax” is just one such 
derived structure. 

2. 

3. 

Developers are proficient with tools and languages; 
their ability to read and comprehend documents is 
the serious bottleneck. 

The bridge between developers and their software 
will be intelligent editing interfaces. 

1 Introduction 

The Pan’ editing and browsing system originated from 
an investigation into ways to exploit language-based 
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Pan operates on documents-objects with both tex- 
tual and structural aspects, such as formal designs and 
program components, as well as unstructured texts. To 
its users it appears as a fast, convenient, full-functioned 

text editor that happens to be extremely knowledge- 
able about the local working environment: the many 
languages in use, local conventions, and perhaps the 
user’s own personal working habits. One might use Pan 
for editing text without ever giving a thought to its 
other capabilities. But at any time one might choose 
to broaden the dialogue with Pan to draw on many 
kinds of information (maintained by Pan) about the 
document. In particular, Pan can help reveal the mul- 
tiplicity of structures, some user-defined, inherent in 
and among documents. Pan can be directed to use this 
information to guide editing actions, to configure and 
selectively highlight the textual display, to present an- 
swers to queries, and more. 

1 Why “Pan”? In the Greek pantheon, Pan is the god of trees 
and forests. Also, the prefix “pan-” connotes “applying to all”- 
in this instance referring to the multilingual text- and structure- 
oriented approach adopted for this system. Finally, since an edi- 
tor is one of the most frequently used tools in a programmer’s tool 
box, the allusion to the lowly, ubiquitous kitchen utensil is apt. 
Pan is one of the PIPER projects at the University of California, 
Berkeley. 

0 

The current implementation, Pan I [9], is a fully func- 
tional prototype. It supports ongoing research in lan- 
guage description, language-based analysis techniques, 
user interface design, advanced program viewing meth- 
ods, and related areas. The functional characteristics 
of this prototype were chosen for maximum leverage as 
a usable tool and its a platform for continuing research. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
@ 1990 ACM O-89791-41 8-X190/001 Z-0077...$1.50 

l Pan I is a multi-window, multiple-font, mouse- 
based editing system that is fully customizable and 
extensible in the spirit of Emacs [49]. 

l Pan I incrementally builds and maintains a collec- 
tion of information about documents that can be 
shared with other tools. 
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Pan I users can freely mix text- and la,nguage- 
oriented manipulations in the same visual editing 
field; text editing is completely unrestricte’d. 

A single Pan I session may involve multiple lan- 
guages. 

Adding new languages by writing language descrip- 
tions is just one of Pan I’s extension mech.anisms. 

New language description techniques were developed 
for Pan. Grammatical abstraction establishes formal 
correspondence between the concrete (parsing) syntax 
and the abstract syntax for each language [6, 131. This 
correspondence permits a decorated abstract syntax 
tree, P~n’s primary structural representation, to be 
used directly for incremental LR parsing. A second 
technique, logical constraint grammars, adapts logic 
programming and consistency maintenance to the speci- 
fication and enforcement of contextual constraints [5,?]. 
Such constraints usually include the static semantic 
rules of a language, but can also include site-specific or 
project-specific restrictions such as naming conventions. 
Information gathered during constraint enforcement is 
retained in a logic database (available to other tools) 
and revised incrementally as documents change. 

As part of our emphasis on coherent user inter- 
faces [58], Pun language descriptions also include spec- 
ifications that configure user interaction. For exam- 
ple, operand classes hide Pan’s internal tree represen- 
tation behind a user-oriented conceptual model of doc- 
ument structure that can be tuned for each 1a:nguage. 
These specifications shield the user from Pan’s underly- 
ing technology, presenting instead a user interface that 
is designed to make the system’s services as convenient 
and productive as possible. 

Making Pan’s many mechanisms work togeth.er use- 
fully demanded a number of system-wide design strate- 
gies. For example, it is axiomatic that documents being 
modified textually contain language errors more often 
than not. Every part of the system cooperates in sup- 
port of Pan’s techniques for maximizing user service 
and minimizing information loss in the presence of er- 
rors. 

This paper reviews the goals and early desig:n deci- 
sions for Pan and surveys the implementation of the 
Pan I prototype. The discussion emphasizes the in- 
teractions of the technologies and components, and in 
particular how seemingly simple design strategies per- 
vade the system. Detailed discussions of Pan’s compo- 
nents and underlying technology have been presented 
elsewhere. 

2 Design Rationale 

The Pun project was motivated by a particular vision 
of the role to be played by language-based browsing and 
editing systems. This section describes that vision and 
shows how it defines the fundamental requirements for 
Pan’s design. 

Throughout, the term language-based indicates that 
one or more of the facilities provided by the system 
makes use of language-specific information derived from 
the documents known to the system. In the context of 
this paper, the term system (or editing/browsing sys- 
tem) encompasses the entire collection of services that 
are used to browse, manipulate, and modify one or 
more documents interactively. The term editing inter- 
face refers to the fact that those services are provided 
to the user through a generalization of the services of a 
traditional interactive editor. 

2.1 The Working Environment 

Pan is intended to support experienced professionals 
who manage large collections of interrelated documents. 
Many common assumptions about language-based ed- 
itors, traditionally oriented toward novice authors, do 
not hold in this domain. 

Understanding is the primary activity. Editors 
tuned for authoring fail to address today’s problems. 
Software systems have become so large and complex 
that developers spend far more time trying to read, un- 
derstand, modify, and adapt documents than they do 
creating them in the first place 123, 601. A success- 
ful interactive development environment must support 
understanding by recognizing, exploiting, and making 
visible complex relationships within and among doc- 
uments [56]. Related, but different support must be 
available for authoring and modifying documents. 

There are many languages. Software developers 
use many formal languages: design languages, specifi- 
cation languages, structured-documentation languages, 
programming languages, and numerous small languages 
for scripts, schemas, and mail messages. Furthermore, 
programs often contain embedded “little languages” 
that impose their own conventions. For example, many 
subroutine libraries define mini-languages for long and 
complex argument sequences2. 

Languages and usage change. New languages 
arise, as do extensions and modifications to existing 
ones. Further, the way people use languages evolve, 
as community wide, personal, and project-specific con- 
ventions come and go. Finally, the services provided by 

2Libraries for window systems often have these kinds of 
interfaces. 
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Figure 1: Editing interface and system services in rela- 
tion to the environment 

a language-based system, each of which relies on par- 
ticular aspects of supported languages, grow with time. 

An effective language-based system must provide a 
language description mechanism that defines how the 
system handles each language. This mechanism must 
support basic language definition, and must extend in 
many ways. It must be made as accessible and conve- 
nient to use as possible, preferably with natural, declar- 
ative specifications. 

Users are fluent. Users know their primary lan- 
guages and tools well. An editing interface must de- 
liver services that augment productivity; it must not 
sacrifice flexibility or power in the name of safety or 
learnability. For example, experienced developers will 
not trade away the flexibility of unlimited text editing 
for the safety of enforced syntactic correctness. 

On the other hand, all users sometimes need extra 
support, for example when confronted with unfamiliar 
languages. We believe that support for experienced 
users can be specialized to handle these cases. The 
converse-supporting the experienced practitioner with 
tools tuned to the novice-is far more difficult. 

2.2 The Role of the System 

A language-based editing/browsing system provides the 
primary interface between people and integrated envi- 
ronments containing the documents they manage. Po- 
sitioned this way, between users, tools, and documents 
(Figure l), the system is uniquely situated to gather and 
present information about documents. In this model, 
users interact with documents through the editing in- 
terface; tools interact with documents through the sys- 
tem services; they communicate with one another via 
an active data repository. The editing interface and the 
system services provide alternate projections (views) of 
the document as well as analysis for the user. 

Gathering and presenting information. Software 
developers acquire and exploit many kinds of infor- 
mation as they examine and modify complex docu- 
ments [27, 371. The system can support these activities 
by gathering and presenting information suitable for the 
particular task at hand. 

For example, language-based systems can check that 
a document is well-formed. Information derived dur- 
ing these checks can be used to support language-based 
editing as well as to enable a user to locate and doc- 
ument components that violate constraints of the un- 
derlying language. More advanced interaction requires 
more elaborate analysis. For example, language-based 
formatting (prettyprinting), traditionally based only on 
surface syntax, should be sensitive to scopes, types, and 
def-use relationships, as well as to local conventions and 
even distinctions such as “mainline” vs. “error han- 
dling” code. These kinds of analysis move far beyond 
simple error checking: they involve knowledge of partic- 
ular organizations, techniques, and systems. Although 
this kind of information must be broad in subject do- 
main, it need not be deep (in the sense that program 
plans 138, 481 and clich6s [461 are deep) to be useful. 

When a system derives a considerable amount of in- 
formation about the document being edited, care has 
been taken that the system not “do too much” [42]. 
Often information is most useful if it is not forced on 
the user but is presented only upon request. An ex- 
ample is the information that a structured document is 
incomplete. 

Maintaining and sharing information. Complex, 
expensive analyses in such a system are economic only 
when many tools share the resulting information. The 
computation that verifies a document’s type correct- 
ness can also provide information useful to a compiler, 
a global interface checker, or an auditing tool. Con- 
versely, information produced by other tools should also 
be made visible through an editing interface. For ex- 
ample, helpful views of programs might exploit perfor- 
mance results and version history. 

2.3 The Structure of Documents 

Documents represent richly connected, overlapping 
webs of information having many structural aspects. 
Each aspect is more relevant for some kinds of users 
than for others and for some tasks more than for oth- 
ers. A system in the role we envision must support 
many kinds of users, many tasks, many structural as- 
pects. 

Text. Despite arguments to the contrary [59, 611 
many language-based editors restrict how and t~‘lien 
users may manipulate documents as text. Experienced 
professionals, however, will generally not tolerate re- 
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strictions on this natural and convenient mode of in- 
teraction. At the same time, the full visual power of 
the textual medium is seldom realized in editing inter- 
faces. The value of high quality typography for natural 
language documents is well established. Recent studies 
suggest the same potential benefits for programs [3,44]. 

Language-Based Structures. Many relationships 
among document components (and among documents) 
can be derived from documents by using des8criptions 
of their underlying formal languages. Examples include 
the connection between a figure and referenceis to it in 
a book, the relationships between declarations, defini- 
tions, and uses of variables in a computer program, the 
call graph of a program, and the relationships among 
grammatical units defined by a formal syntax. Al- 
though formal syntax has often been taken to be the 
primary (and most interesting) decomposition, others 
are at least as important to users. 

Other Structures. But not all structures ca.n be de- 
rived using a language description. For instance users of 
editors like ED3 [52] and the Cedar editor (Tioga) [55] 
may explicitly specify for each document a hierarchi- 
cal decomposition that may or may not correlate with 
structures in the underlying formal language. Outline 
processors are editors for precisely this kind of Eitructure 
where the underlying language is simple text. 

In some cases a single document may be encoded in 
more than one language. In this case, the relationships 
across languages and their appearances within the doc- 
ument become interesting. The programming environ- 
ment Mentor [20] supports such nesting of languages. 

Hyperlinks within and among documents are a third 
example of document structure that are neither textual 
nor language-based. 

2.4 Project Focus 

The design and implementation of Pan I addressed 
three general problems: 

l To efficiently provide combined text-oriented and 
language-oriented editing within a coherent user 
interface, 

l To exploit the assumption of a persistent database 
in which documents will ultimately reside, and 

4 To develop language description techniques that 
support incremental analysis, that are relatively 
accessible and simple to use, and that can be ex- 
tended well beyond simple language definition. 

Combined solutions to these three problems give the 
prototype considerable leverage as a research platform 
for developing more advanced document editing and 
viewing capabilities, capabilities that are ultimately 

aimed at enhancing document comprehension and ma- 
nipulation by users. 

Related issues, including support for novice program- 
mers and learning environments, support for program 
execution, graphical display and editing, and the ac- 
tual design and implementation of a persistent program 
database were deferred. 

2.5 Design Strategies 

The above observations and goals led to the adoption of 
a small number of pervasive, interdependent strategies 
for the design of Pan I. The realization of these strate- 
gies will be treated in more detail in following sections. 

Syntax Recognition. To present the appearance of 
a “smart text editor,” one that also supports language- 
based interaction, Pan I is syntax-recognizing, as are 
Babel [28], the Saga editor [34], and SRE [12]. A 
syntax-recognizing system is one in which the user pro- 

vides text and the system infers the syntactic structure 
by analysis. In contrast, we call systems like the Cornell 
Program Synthesizer [53], Mentor [20], and Gandalf [24] 
syn tax-directed3, As a byproduct of syntax recogni- 
tion, all language-oriented information, including the 
primary internal tree representation shared with other 
analyses, is derived originally from a textual represen- 
tation. 

Incrementality. Maintaining full service during doc- 
ument editing demands that derived information be 
kept current. Many of the analyses envisioned for Pun 
are computationally expensive, so incremental methods 
are necessary to provide adequate performance during 
the foreseeable future. Furthermore, non-recoverable 
information associated with document components (for 
example direct annotations by users and information 
imported from other tools) can only be preserved by 
incremental methods. 

Tolerance for Variance. During the unrestricted 
text-oriented editing permitted by syntax recognition, 
documents are most often ill-formed with respect to the 
underlying language definition. Maintaining full service 
demands that no more restrictions be placed on the user 
in this situation than a standard text editor does in the 
presence of spelling errors, To emphasize the distinc- 
tion between this approach and those adopted by many 
language-based editors, we refer to variances rather 
than the traditional term “language errors.” This ap- 
proach acknowledges that experienced users often in- 
troduce variances deliberately while working toward a 

3The syntax-recognizing approach does not preclude a user 
interface that simulates syntax-directed editing. A simple proto- 
type has convinced us that syntax-directed editing can be pro- 
vided easily in a syntax-recognizing editor. 
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desired result; users should not be penalized by the sys- 
tem’s failure to understand the process [39]. 

Coherent User Interface. The shift of emphasis 
from the preemptive “language error” to the informa, 
tive “variance” is only one example of ways in which 
the details of language-based technology and implemen- 
tation should be concealed. Following the view that 
Pan is an interface between user and document, rather 
than an interface between user and internal represen- 
tation, language-oriented operations in Pan are orga- 
nized around a conceptual model of document struc- 
ture, tuned for each language to be convenient and nat- 
ural. Users are offered a variety of services that exploit 
rich internal data while hiding associated complexity. 

Extensibility and Customization. Flexibility at 
many levels is important for Pan’s combined role as 
tool and research platform. It must adapt conveniently 
to enormous variations among individual users, among 
projects (group behavior), and among sites. For use as 
a research platform the system must be built on a flexi- 
ble framework designed to accommodate many kinds of 
variation and evolution [36]. Adding languages by de- 
scription is one such mechanism, but many others are 
important too. 

Pragmatics. Two final issues can be crucial to the 
success of a system like Pan. Experience shows that 
it must be acceptably fast; users are seldom willing to 
compromise on this, even in the name of additional or 
improved functionality. It must also integrate smoothly 
into existing, well established working environments. 
This is an issue both for the user interface, where being 
perceived as excessively different is a handicap, and for 
data interchange. 

3 System Infrastructure 

All services in Pan depend on a rich and flexible in- 
frastructure, designed to support experimentation with 
document analysis techniques and the design of edit- 
ing interfaces. This section describes a few important 
aspects of that infrastructure. 

The language-based mechanisms described in Sec- 
tion 4 use this infrastructure, as do a few simple services 
that are not language-based at present: a browsing in- 
terface to the file system; a hypertext-like browser for 
UNIX4; and an elaborate internal help and documen- 
tation system that is configurable for both developers 
and end users. 

3.1 Basic Editor Services 

Pan is, before anything else, a high quality text ed- 
itor. It supports bit-mapped, multiple-font, mouse- 

‘UNIX is a trademark of AT&T Bell Laboratories. 

based text editing in windows, in the spirit of Bravo [35] 
and its many successors. Extension and customization 
facilities are fully integrated with undo facilities and the 
help subsystem. 

Editing in Pan is fundamentally textual. The same 
editing services are provided in every buffer, whether 
or not the document being edited in that buffer is writ- 
ten in a language that the editor is prepared (by prior 
language description) to analyze. Pan’s user interface 
does not isolate it from other tools in the environment, 
in contrast to many syntax-directed editors. Users fa 
miliar with Emacs [49] find the transition between the 
two editors smoothed by compatible key bindings [a]. 

3.2 Viewing 

A buffer’s conceptual text presentation may appear in 
any number of windows, each updated incrementally as 
text changes. All windows on a buffer share a single, 
visible selection that appears as underscored text in any 
window in which it happens to be visible. The selection 
persists independently of cursor movement. Each win- 
dow has its own scroll position and cursor that persist, 
even when the window is not visible. 

Each Pan window has an associated panel that con- 
tains an identifying title, an annunciator for messages, 
and various mouse-activated controls. The panel also 
displays a configurable collection of panel Aags, single- 
character glyphs that appear and disappear to re- 
veal important internal state to the user (for example, 
whether the contents of the buffer have been modified). 

Each character in a buffer has an associated font code, 
an index into a user-configurable font map that may 
contain fonts of differing heights and widths. Additional 
facilities are available for superimposing more informa- 
tion upon the textual display: underlining, stipple pat- 
terns, colored inks, and color background shading (in 
the manner of “highlighter” pens). Background shad- 
ing may be selected independently to ink color. 

3.3 Extension Language 

Although some of these Pan’s customization and exten- 
sion facilities are declarative, others require program- 
ming. Unlike Emacs, we chose to provide access to 
Pan’s implementation language (COMMON LISP) and 
its run-time system, rather than inventing a special ex- 
tension language. Although that access can be abused, 
it has not proven to be a problem in practice. 

Variables. Variables are scoped dynamically by 
buffer instance, buffer class, and a global scope. Scop- 
ing is used for implementing buffer-specific services, for 
organizing buffer class services such as the command 
bindings common to all documents sharing a common 
base language, and so on. Many other facilities in the 
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infrastructure are built upon Pan variables, including 
user-settable options, keyboard bindings, panel flags 
and font maps. Pun variables may be made “active” 
by the dynamic addition of notifiers to be catlled when 
values change. 

Function and Macro Definition. A general func- 
tion and macro definition facility provides automatic 
integration with the internal documentation system, 
apropos keywords for the help system, and generic 
undo. Functions can be called from other functions or 
can be bound to keystroke sequences or menu selec- 
tions. Arguments for bindable commands are collected 
automatically from the user by type-specific prompters. 

Generic Exception Handling. Pun dis,tinguishes 
three categories of internal exceptions: announcements, 
warnings, and errors. Each corresponds to a different 
policy for displaying information to the user and un- 
winding (resetting) the run-time command dispatcher. 
To provide context-sensitive behavior [57], the excep- 
tion handlers may be rebound dynamically. Authors of 
simple extension code may ignore exception handling 
without fear of serious system breakage, greatly simpli- 
fying the construction of new services. 

4 Document Analysis 

Document analysis in Pun relies on two components: 
L&/e5 [13], and Colander6 [5]. Ladle manages incre- 
mental lexical and syntactic analysis; it includes both 
an offline preprocessor that generates language-specific 
tables and a run-time analyzer that revises Pun’s inter- 
nal document representation to reflect textual changes. 
Colander manages the specification and incremental 
checking of contextual constraints. Like Ladle, Colan- 
der includes both an offline preprocessor and ZL run-time 
component. The editing interface [s] coordinates anal- 
ysis and makes derived information accessible to users 
and client programs. 

This section describes each of Ladle and Colander 
in a bit more detail, discusses how the two cooperate, 
and finally examines some important design issues that 
cross all component boundaries. 

4.1 Language Descriptions 

A Pan language description contains declarative infor- 
mation for use by each of Pun’s three components7. 

l Lexical and syntactic information, used by La- 
dle, describes the syntax of the language and 

5 Language Description Language 
6Constraint Language and Interpreter 
‘In the current implementation, each document must be a 

composed using a single language. Our architecture and algo- 
rithms support documents composed from multiple languages, 
but the current implementation does not. 
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Figure 2: Language Description Processing 

defines an internal tree-structured representation 
(Section 4.2). 

a The Colander portion specifies context-sensitive 
constraints, including, but not limited to, the static 
semantics of the language (Sections 4.3 and 5). 
This specification may also direct that certain data 
derived during contextual-constraint checking be 
stored and made available for general use. 

l User interface specifications configure the editing 
interface for the language (Section 6.1). 

Figure 2 illustrates the flow of information from a lan- 
guage description to the run-time Pun system, for either 
preloading or dynamic loading at run time. 

Pan’s distinction between syntax and contextual con- 
straints (or static semantics) reflects a division common 
to almost all language description techniques. It creates 
problems in practice for languages in which parsing and 
semantic analysis must be intertwined [22], for example 
the well known “typedef” problem in C. Research into 
general solutions to these problems within Pun is cur- 
rently underway at UC, Berkeley. 

Multiple Pun language descriptions can be written for 
a single language, suited for different users and different 
tasks. One language description might reveal to the user 
only a single derived structure of a document, for ex- 
ample the call graph of a program, and hide the rest. A 
second language description for the same base language 
might perform full contextual-constraint checking and 
permit full access to the internal tree. When there is 
no sharing of internal structures, alternate descriptions 
can be independent; otherwise the Ladle portion of the 
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descriptions must, be shared as well. A second area of 
active research concerns the layering of language de- 
scriptions so that multiple views of a single abstract 
syntax can be managed effectively. 

4.2 Ladle 

An abstract syntax is described to Ladle by an aug- 
mented context-free grammar, which also specifies the 
tree-structured representation. By defining the seman- 
tically relevant structures of the language, the gram- 
mar implicitly defines terms in which the rest of Pun 
accesses and manipulates document components. 

When text-oriented editing of syntactic structures is 
to be supported, additional information enables La- 
dle to convert textual representations to tree-structured 
representations and vice versa: 

The lexical description may include regular expres- 
sions as well as bracketed regular expressions, that 
is, expressions with paired delimiters such & quote 
marks. Bracketing can be either nested or simple. 

The grammar for the abstract syntax is augmented 
by specifying those productions necessary to dis- 
ambiguate the original (abstract) grammar or to 
incorporate additional keywords and punctuation. 
Ladle constructs a full parsing grammar from the 
additional productions and the grammar for the 
abstract syntax. 

l Optional directives tune Ladle’s syntactic error re- 
covery mechanisms (invoked during parsing), with 
important implications for the editing interface 
(Section 6.1). 

Internally, Ladle manipulates two context-free gram- 
mars: one describing the abstract syntax and the other 
used to construct parse tables. The two must be re- 
lated by grammatical abstraction’ [6], a relation ensur- 
ing that: 

1. The abstract syntax represents a less complex ver- 
sion of the concrete syntax, but structures of the 
abstract syntax correspond to structures of the 
concrete syntax in a well-defined way. Both gram- 
mars describe “almost” the same formal language, 
subject to the renaming or erasing of symbols. 

2. Efficient incremental transformations from con- 
crete to abstract and from abstract to concrete can 
be be generated automatically-no action routines 
or special procedures are necessary. The transfor- 
mation from concrete to abstract is triggered di- 
rectly by actions of the parser. 

sButcher has recently recast this work in terms of grammatical 

expansion [13]; Ladle will be updated accordingly. 

3. The transformation from concrete to abstract is re- 
versible, so that relevant information about a con- 
crete derivation can be recovered from its abstract 
representation. This property allows the system 
to parse modifications to documents incrementally 
without having to maintain the entire parse tree. 

4. The relationship between the two descriptions is 
declarative and statically verifiable, so that devel- 
opers can modify either syntax description inde- 
pendently. This approach allows a high degree of 
control over both the structure of an internal rep- 
resentation and the behavior of the system during 
parsing. 

Grammatical abstraction is structural; it does not use 
semantic information to identify corresponding struc- 
tures. 

The Ladle preprocessor generates the tables needed 
to describe the internal tree representation as well aux- 
iliary tables needed during incremental parsing and er- 
ror recovery. Standard lexical analyzer generators and 
LALR(l) parser generators are also invoked, as shown 
in Figure 2. 

To date, syntactic descriptions have been written for 
Modula-2, Pascal, Ada, Colander, and for Ladle’s own 
language description language. Descriptions are being 
developed for a variety of other languages, including C, 
C++, and FIDIL [26]. 

4.3 Colander 

Colander supports the description and incremental 
checking of contextual constraints. Constraints include 
non-structural aspects of a language definition such as 
name binding rules and type consistency rules, as well 
as extralingual structure. Examples of the latter in- 
clude site or project-specific naming conventions, design 
constraints, and complex, non-local linkages within or 
among documents. 

Each of the well known specification formalisms for 
contextual constraints has drawbacks. Attribute gram- 
mars [19, 451 usually specify only attributes and their 
interrelationships; a separate formalism-usually a gen- 
eral purpose programming language-must be used to 
specify semantic functions and data types. In prac- 
tice much of the interesting information in an attribute 
grammar resides in auxiliary code. Moreover, there is 
no easy way to make information in the attribute val- 
ues available to other tools [29]. Action routines [33,41] 
require one to deal with all aspects of incrementality ex- 
plicitly. Context relations [4], like attribute gramma.rs, 
relegate many of their description details, such as name 
resolution rules, to a separate formalism. 

Our approach is based on the notion of logical con- 
straint grammars. Like the other approaches, a context- 
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free grammar used as a base. Contextual constraints are 
expressed using a logic programming languageg. An in- 
cremental evaluator monitors changes to the document 
and the derived information in order to maintain con- 
sistency between them. 

To date, logical constraint grammars have be.en used 
to define the static semantics of programming lan- 
guages, including Modula2, to express some aspects 
of design semantics, and to describe and maintain pret- 
typrinting information. Other problems that can be 
expressed using LCGs include the kinds of analysis per- 
formed by tools such as Masterscope [40] or Micro- 
scope [2]. 

Colander itself has three subcomponents: a clompiler, 
a consistency manager, and an evaluator. The Colan- 
der compiler generates the code used by the evaluatorlo 
as well as the run-time tables required for consistency 
maintenance. The consistency manager, a simple rea 
son maintenance system [21, 471, invokes the evaluator 
to (re)attempt a goal. The evaluator, in turn, collects 
the information maintained by the consistency man- 
ager. 

4.4 Document Processing 

Textual changes are incorporated into an internal tree 
in two phases: lexical and parsing. Ladle’s incremental 
lexical analyzer synchronizes a stream of lexemes with 
an underlying text stream, updating only the <changed 
portions of the lexical stream. The lexical analyzer 
maintains a summary of changes for use by the incre- 
mental parser. 

LadZe’s incremental LALR( 1) parser revises the tree- 
structured representation in response to lexical changes. 
This parser can create a tree from scratch, but in re- 
sponse to lexical changes it need only modify affected 
areas of the tree. It uses a variant of an algorithm by 
Jalili and Gallier [30]. 

The incremental parser maintains a sumlmary of 
changes for use by Colander’s incremental constraint 
checker (Section 5.5), as well as by any other services 
that must track document changes. 

4.5 Information Retention 

Since subtrees may be heavily annotated (both inter- 
nally and by users), actual changes to the internal tree 
must be minimized to avoid needless information loss. 
A simplistic implementation of the incremental pars- 
ing algorithm would destroy and then recreate every 

gLogical constraint grammars should not be confused with 
constraint logic programming [16] a generalization of logic 
programming. 

loThe compiler actually uses Pan to parse language descrip 
tions. This involution is one example of how Pan is used to 
support itself. 

subtree between each changed area and the tree root. 
Widely-shared data often appears closer to the root of 
the tree. The loss of semantic annotations on those 
nodes would cost lengthy and often unnecessary recom- 
putation, so efficient incremental constraint checking by 
Colander depends on Ladle’s reuse (either physical or 
virtual) of these nodes. 

Ladle uses an effective heuristic for node reuse. The 
parser keeps a stack of “divided” tree nodes and when 
new nodes are needed they are taken from this stack 

if possible. A node can be reused when it represents 
the same production in the abstract syntax as in its 
previous use and when its leftmost child is unchanged 
between parses. 

For the benefit of Colander and other clients, Ladle 
classifies tree nodes after each parse: newly created, 
deleted from tree, reused, and unchanged. Semantic 
values associated with reused nodes are retained, even 
though some values may require updating. 

4.6 Tolerance, Recovery, and Variances 

Documents are most often incomplete and ill-formed 
during editing sessions. To maintain full service to the 
user, Pan’s analysis mechanisms treats such problems 
as “variances,” not as errors, and make every effort to 
treat them as relatively normal occurrences. In par- 
ticular, the editing interface imposes no special restric- 
tion on users in the presence of variances, but makes 
the diagnostics available upon request. Pan’s internal 
document representations are automatically extended 
to admit variances and to retain as much information 
as possible in their presence. 

Whenever lexical analysis fails, a lexical variance is 
signaled. For instance, an unterminated comment may 
lead to a lexical variance. A variance detected during 
lexical analysis inhibits both parsing and contextual- 
constraint checking, and all information that existed 
prior to the attempt to reanalyze the document is pre- 
served. This is the only case in which the analysis of a 
document can “fail”; in all other cases, recovery mech- 
anisms are automatically invoked. 

During parsing Pun uses a simple, effective, panic 
mode mechanism [18] f or syntactic error recovery. Di- 
rectives in the Ladle portion of language descriptions 
tune the recovery mechanism for each language. The 
presence of a syntactic variance is marked in the inter- 
nal tree by an error subtree annotated with an appro- 
priate error message. The children of an error subtree 
are the lexemes and subtrees that were skipped over 
during the recovery. This recovery strategy is similar 
to that used in the Saga editor [34]. Any extant an- 
notations on the subtrees within the error subtree are 
preserved, including annotations created by Colander. 
When the user corrects the variance, prior annotations 
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can immediately be reused. This is just a special case 
of the general information retention problem. 

Contextual-constraint checking can proceed in the 
presence of syntactic variances; any subtrees within er- 
ror subtrees are simply ignored. Unsatisfied contextual 
constraints are another kind of variance, resulting in an 
annotation on the offending node. 

5 Logical Constraint Grammars 

A great deal of Pan’s analytical power, as well as its per 
tential for future extension, derives from the adaptation 
of logic programming and consistency maintenance, as 
introduced in Section 4.3. This section reviews the theo- 
retical foundations of logical constraint grammars [5, 7] 
and describes Pan’s particular language and implemen- 
tation, Colander, in more detail. 

Logic programming is a natural paradigm for the 
specification, checking, and maintenance of contextual 
constraints. First, context-sensitive aspects of formal 
languages are often described informally using natural 
language that approximates logical structure. Translac 
tion of these descriptions into clausal logic is relatively 
straightforward. Second, the act of checking contex- 
tual constraints can be viewed as satisfying the con- 
straints relative to some collection of information. (In 
pass-oriented applications like compilers, this collection 
of information is represented by a symbol table.) Fi- 
nally, the presence of a logic programming language im- 
plies the existence of both an inference engine and logic 
database. This contrasts with the approach of Horwitz 
and Teitelbaum [29], in which the relational database 
model had to be greatly enriched in order to support a 
coupling with attribute grammars. 

The extensibility of this approach, above and beyond 
conventional constraint checking, derives from the pres- 
ence of the database as a shared repository and from the 
generality of the logic-based inference engine. 

5.1 Definitions 

A logical constraint grammar (LCG) is a context-free 
grammar G in which symbols and productions have 
been annotated with goals, expressed in a logic pro- 
gramming language, that specify constraints on the lan- 
guage generated by G. Goals are satisfied using back- 
tracking search based on unification as in Prolog. An 
evaluator for a LCG description begins by executing 
the goals that are independent of any syntactic struc- 
ture. These goals initialize the data shared by all of 
the documents written in a given language. The evalu- 
ator then attempts to satisfy all goals associated with 
syntactic structures present in the document. The eval- 
uator stops processing whenever all of the goals are suc- 
cessfully proved, or no further goals can be proved. A 

document is considered well-formed whenever all of its 
associated goals have succeeded. 

5.2 Incremental Evaluation 

Inconsistencies between documents and their derived in- 
formation arising from incremental changes are detected 
by a consistency manager, which is a simple form of 
reason maintenance system. When an inconsistency is 
detected, the consistency manager determines which de- 
rived data must be removed and which goals have to be 
reattempted. The process continues until consistency is 
restored. 

Careful selection of goals to be retried after database 
updates, either additions or deletions, is crucial to effi- 
cient incremental evaluation. Removal of data from the 
database, the simpler of the two cases, is handled using 
dependency-directed backtracking [50]. The evaluator 
records which data are used to satisfy each goal. When 
a datum is removed, the consistency manager retries all 
those goals whose satisfaction depended on it. 

Two different ways to handle additions to the 
database were developed. Holes provide a means for 
representing data whose absence from the database was 
used in satisfying a goal. When a hole is filled, the 
consistency manager reattempts all of the goals that 
depended upon the absence of that datum. Holes are 
computationally efficient, but memory intensive. The 
strategy of using holes does not scale well when many 
sparse collections are searched for a datum. Thus holes 
are best suited for situations in which the data whose 
absence they represent would normally be present. 

Shadowing rules are inference rules, computed by 
static analysis of a LCG description, that help to deter- 
mine which goals must be attempted again when a da- 
tum is added to the database. Shadowing rules require 
less storage but more computation than holes, making 
them better suited for situations in which data sparsely 
populate the database. The presence of a static ana- 
lyzer simplifies descriptions and relieves the authors of 
language descriptions from specifying many details. 

For a given LCG description, satisfying some goals 
requires satisfying other goals. For instance, one goal 
may assert a datum that will be used by another. Like 
unrestricted attribute grammars, circularities can arise. 
Many interactions between goals act through the logic 
database. In other cases, the flow of contexts or other 
data from one subtree to another can be locally de- 
termined. The LCG evaluator may use, but does not 
require, knowledge of dependencies between goals. Nat- 
urally, if the user of an LCG system takes advantage of 
the evaluation strategies employed by the system, the 
performance of the evaluator can be enhanced. 
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5.3 LCGs and Logic Programming 

Making LCGs practical required several modifications 
to the basic Prolog model of logic programming [51]. 

Partitioned Database. The logic database accessed 
and modified by the goals is explicitly structured into 
collections of tuples (data values). Both collections and 
tuples are first class objects: they can be created and 
destroyed dynamically. Collections are created and tu- 
ples are added to collections as a side effect of satisfying 
a goal. Tuples can contain references to collections, but 
cannot contain unbound variables. 

Partitioning the logic database into collections im- 
proves the performance of an incremental evaluator 
while allowing the author of a language description to 
express directly the partitionings often foun’d in lan- 
guages. For instance, collections can be used to repre- 
sent scopes in a programming language. 

Distinction Between Code and Data. Terms that 
can appear in the database must be distinct frcom terms 
that can appear as the heads of procedure clauses. This 
requirement simplifies the preprocessing needed by the 
consistency manager, and also improves run-time per- 
formance. 

Ownership. Every collection and tuple in the 
database is owned by one or more subtrees in. the doc- 
ument being edited. Collections are permanently asso- 
ciated with their owning subtree. The tuples in a col- 
lection may change repeatedly, but the collection itself 
retains its existence and identity until its owning sub- 
tree is destroyed. Ownership is used by the consistency 
manager to relate changes in the underlying document 
to changes in the information being maintained. 

Contexts. Each subtree in a document has zero or 
more associated collections of tuples called its con texts. 
All goals associated with that subtree are evaluated rel- 
ative to the subtree’s contexts. The contexts of a sub- 
tree are determined dynamically, 

Separating the context from the goals in a logical con- 
straint grammar helps the author of a language descrip- 
tion to focus on the essentials of each. Goals are defined 
relative to contexts; contexts must contain the informa- 
tion necessary to satisfy or disprove their goals. The 
primary use for a context is to provide access from the 
abstract syntax tree to other collections. A secondary 
use is to propagate information locally among subtrees 
of the abstract syntax tree, similar to the methods de- 
veloped for the Ergo system [43]. 

Ordering among Goals. The ordering among goals 
is not formally specified, so standard Prolog program- 
ming techniques that rely upon known orderings among 
tuples in the database may not apply. In particular, the 
use of assert and retract in a LCG differs from their 
use in Prolog. 

5.4 Example 

Figure 3 shows a very simple LCG for a language that 
requires that each name be defined before it is used. 
This notation resembles the Colander language. A 
name prefixed by “9 denotes a node in the abstract 
syntax tree; “$$” denotes the node associated with the 
goal currently being satisfied. The notation < ?Fonn, 
?collection > indicates that ?Form is to be evaluated 
with respect to the given collection of tuples. An “en- 
tity” is just a unique marker that can be used to rep- 
resent linguistic objects such as variables. The proce- 
dure “lookup” specifies how scopes (represented here 
using contexts directly) are searched when resolving a 
name. In this example, “lookup” implements nested 
block structure. The constraint associated with (use) 
will look for a binding created by a (def) or an (impod) . 
In a complete description, a goal associated with the 
definition of a procedure would create a new context to 
be inherited by its children; this context would include 
a new scope as accessed by “lookup.” 

5.5 An Implementation: Colander 

The Colander language, one of Pan’s formalisms for 
language description, embodies the LCG approach. The 
language and its run-time support extend the basic ap- 
proach in ways that improve either the efficiency of the 
description or the usability of the description language, 
or both. 

Pass-Structured Evaluation. Colander partitions 
the goals associated with each syntactic structure into 
two classes: those whose primary use is to establish the 
context used by that structure or by its substructures, 
and those goals whose primary use is to express a con- 
textual constraint. 

Multiple Kinds of Collections. Colander distin- 
guishes three kinds of collections, each holding its own 
kinds of data. Datapools are collections of facts, Dat- 
apools are used to aggregate facts that can or should 
be treated as a single unit. There can be multiple in- 
stances of the same fact. For example, each scope in 
a program might be represented using a separate dat- 
apool containing facts about the declarations appearing 
in that scope, together with data relating that scope to 
the other scopes in the program. 

An entity is a collection that can be used to repre- 
sent objects of the target language. Typically entities 
are used to hold the attributes of a particular object 
such as a variable, a procedure, or a paragraph. Infor- 
mation about entities is represented using entity prop- 
erties. A property is a named value associated with a 
collection. Properties are single-valued, so a collection 
may not contain more than one property value with a 
given property name. Distinguishing between facts and 
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Facts: 
declared(?name, Pentity) /* ?Name bound to ?entity */ 
imported(?name, ?entity) /e PName imported as PEntity */ 
enclosing-scope( Pscope) /* Fact representing the next outer scope */ 
type-of( ?entity, Ptype-marlc) /* Type of ?entity - either “id” or “proc” */ 

Primitive Procedures: 

assert( ?fact) /* add Pfact to global collection */ 

assert( Pfact, Xollection) /* add Pfact to Pcollection */ 
context( ?Ioc, PScope) /* bind PScope to single context of ?loc */ 

new-entity( Pentity) /* bind ?entity to unique marker */ 

string-nsme( Plot, Pname) /* bind lname to string name of PLoc */ 

User-Defined Procedures: 
C visible( ?name, IEntity), ?Scope > :- < declared( ?name, Pentity), PScope >. 
< visible( Pname, PEntity), PScope > :- < importsd( ?name, ?entity), ?Scope >. 

< loolsup( ?Form), ?Scope > :- < ?Form, PScope >. 
< lookup(?Form), ?Scope> :- < enclosing-scope( Pscope 1), ?scope >, < lookup(?Form), ?scope 1 >. 

Grammar: 
(document) + (def)’ (use)* 

(def) + “DEF” id 

:- context($$, ?Scope), string-nsme($id, Pname), 
not (< visible( ?name, ?Dtemp), ?Scope >), new-entity( ?entity), 
assert(<declsred(?name, Pentity), ?Scope>), assert(type-of( Pentity, “id”)). 

:ze;; 

-+ “IMPORT” id . . . /* Similar to a DEF =+/ 

(tie) 

+ “PROC” id (def)’ (use)* . . . /=+ Create new context to be inherited by children */ 

+ “USE” id 

(use) 

:- context($$, ?Scope), string-name($id, ?name), 
< lookup(visible( ?name, Pentity)), ?Scope>, type-of( ?entity, “is’). 

+ “CALL” id . . . /* Check that id is declared as a procedure */ 

Figure 3: Fragment of Simple Logical Constraint Grammar 

properties can improve the performance of the incre- 
mental evaluator. 

Subtrees can also be considered as collections holding 
subtree properties. A subtree property is a named value 
associated with a subtree. Structural information about 
the internal tree is represented using subtree properties 
maintained by the system. Subtrees are created and 
destroyed by Ladle during syntactic analysis. 

Maintained Subtree Properties. The value of a 
maintained subtree property is defined by a local pro- 
cedure associated with that subtree. Maintained prop- 
erties are evaluated on a demand basis. Colander mem- 
oizes the values computed by maintained properties in 
order to minimize recomputation. 

Maintained properties are similar to attributes in 
an attribute grammar, and the procedures that define 
the values of maintained properties play a role simi- 
lar to attribute functions. The flow of property values 
in Colander trees is usually much simpler than in at- 
tribute grammars. Inherited values typically propagate 
via the context datapool, and most values will reside 
in the database. While it is possible to emulate an at- 

tribute grammar directly, it is far more efficient to use 
the database and the context for moving values through 

the tree. 

This restriction is not as severe as it might appear. 
In most attribute grammar descriptions, inherited at- 
tributes either summarize relatively local structural in- 
formation about the internal tree or else they con- 
sist of a “symbol table” containing non-local informa- 
tion. Colander subsumes the “symbol table” into the 
database along with other information about the ex- 
pression. Local structural information can be passed 
like inherited attributes by creating and propagating 
new context datapools containing that information. 
Synthesized values propagate from leaves towards the 
root as in attribute grammars; these appear frequently 
in Colander descriptions. 

Client Properties. A client property is a subtree 
property that is neither a structural property nor a 
maintained property. Client properties are usually ma 
nipulated by programs or components via a client in- 
terface, although they can appear in a Colander de- 
scription. Client properties are not under consistency 
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maintenance unless they are declared and used within 
the language description. 

Database Triggers. Colander provides triggers that 
are activated when data are added or removed from the 
database. Triggers provide a uniform mech,anism for 
implementing notifier functions used by clients. They 
are used internally as well, for example to implement 
shadowing rules. 

Messages to the User. Any term appearing in a 
goal or a procedure body can be suffixed wi,th a mes- 
sage. When a goal fails during evaluation, the message 
associated with the most recent term to fail is captured 
and retained for possible display to the user. 

Special Primitives. The internal tree used in Pan 
allows subtrees with an arbitrary number of children 
called sequence nodes. Colander provides several func- 
tions for mapping goals over the children of a sequence 
subtree. Colander also provides two special functions 
that interact with the consistency manager. ‘The func- 
tion all-solutions can be used to calculate all solutions 
to a goal. It is reevaluated whenever the set, of solu- 
tions might have changed. The function notever is a 
form of negation that is monitored by the consistency 
manager. The results of the notever primitive are under 
consistency maintenance. If a new solution arises that 
would cause the not to fail, then the goal containing the 
notever will be retried. 

6 User Services 

The ultimate purpose of Pan is to assist its intended 
users. This section discusses some of the technical 
problems associated with providing user services. A 
more thorough treatment of Pan’s approach to deliv- 
ering language-based technology to users appears else- 
where [58]. 

6.1 Document Models 

User and system must communicate about what is be- 
ing edited. Language-based editors often present a doc- 
ument model based implicitly on internal representa- 
tions, and the abstract syntax tree is sometimes pro- 
posed as a “natural” model for user interaction. In 
practice, however, the design of a tree representations 
is driven primarily by implementation issues associated 
with clients of the data. Experience with Pan reveals a 
strong influence on the abstract grammar by the Colan- 
der specification. These influences are unrelated to the 
way users understand document structure. 

Pan decouples internal representation from what the 
user sees. The language description mechanism pro- 
vides a loose framework in which the author of each 
language description is expected to design a model. 

This framework is based on two assumptions about how 
people understand syntactic structure: they think in 
terms of structural components instead of trees, and 
they think of those components in the specific termi- 
nology of particular languages. To most users, a “state- 
ment” is just a “statement”; it is neither an “operator” 
nor a “subtree.” 

Operand Classes. Pan’s primary mechanism for 
hiding internal document representation is the operand 
class, the basis for structure-oriented selection, navi- 
gation, highlighting, and editing. Operand classes are 
arbitrary, possibly overlappingll collections of docu- 
ment components. Operand class membership is de- 
rived dynamically, being the results of a query against 
the database of derived information. 

Pan supports several varieties of operand classes: 

l Operand classes “Character”, “Word”, and “Line” 

are defined for all textual documents. 

l Operand classes defined in each language descrip- 
tion specify the structural components of the lan- 
guage that will be revealed to the user. For ex- 
ample, our standard Modula-2 description includes 
classes named “Expression”, “Statement”, “Declara- 
tion”, and “Procedure”. 

l Operand classes “Lexeme”, “Syntactic Error” and 
“Unsatisfied Constraint” are available for all doc- 
uments having an underlying language descrip- 
tion. The classes “Syntactic Error”12 and “Un- 
satisfied Constraint” denote the sets of syntactic 
and contextual-constraint variances, respectively. 
Overlapping classes are put to good use here, al- 
lowing the user to treat such a component in either 
of two ways; for example the structure represent- 
ing a malformed statement might be in both the 
“Statement” and “Syntax Error” classes. 

l The operand class “Query Result” allows a user to 
identify structures baaed on his or her own query. 

Diagnostics. Parts of each language description 
specify diagnostic messages that are to be generated 
when document analysis reveals particular variances. 
The presence of variances precipitates no special action, 
other than the appearance of designated panel flags. At 
any time, however, the the user may invoke one of the 
many services that helps make diagnostics visible. 

I’The relationship between tree operators and operand classes 
is -y-to-many, in contrast to the related notion of operator- 
phyla [32]. The operand classes for a language need not be com- 
plete; structures not in any class are essentially invisible to the 
user. 

12Although “syntax errors” are just one kind of variance in the 
Pan system, to users they go by their traditional name. 
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Pun’s other services take no particular notice of vari- 
ances. Malformed statements, statements with unsatis- 
fied constraints, and sometimes even statements within 
malformed blocks can still be treated as statements. All 
this reinforces the illusion that an ill-formed document 
is not much different than a well-formed document. 

6.2 Using Derived Information 

Text editing is so fundamental in Pan that it might 
not be apparent at all when language-based informa 
tion has been derived for a particular document. Rather 
than hide the fact completely, Pan’s default configura 
tion adds a special panel flag that appears when this 
is the case. Derived information is exploited and pas- 
sibly made visible only through a number of specific 
services, all optional and under user control. This sec- 
tion describes the implementation of a few such ser- 
vices, deferring discussion of language-based editing to 
Section 6.4. 

Presentation Enhancements. Several visual en- 
hancements help draw attention to particular document 
components. Font shifts reveal the lexical category of 
text, for example language keywords, identifiers, and 
comments. In our experience font shifts contribute sig- 
nificantly to program readability, but only when tuned 
for each language using Pan’s font maps, 

Prettyprinting reindents documents to reveal syntac- 
tic structure. More advanced forms of prettyprinting 
for program documents, including semantically-driven 
elision, are under development [lo]. 

Structural highlighting allows text associated with 
specified operand classes to be rendered with one of sev- 
eral (generally independent) special effects: background 
color, stipple patterns, and ink color. For example, all of 
the structures designated by a particular query might be 
rendered using blue ink, or a user may request continual 
highlighting of all text associated with variances. Al- 
though simply highlighting variances doesn’t reveal as 
much information as diagnostic messages, experienced 
programmers can often diagnose simple variances at a 
glance, once attention is drawn to them. 

The Operand Level. Each Pun window has a cur- 
rent operand level, which the user selects from a 
language-specific menu of operand classes. The operand 
level is a very weak input mode that modulates the op- 
eration of five generic commands: Next, Previous, Se- 

lect, Extend Selection, and Delete. The operand level 
affects no other commands, and a user may choose not 
to use the level-sensitive versions at all. In particular, 
the operand level neither inhibits nor modulates text- 
oriented editing at any time. 

Structural Navigation. The operand level en- 
ables specialized, language-specific forms of navigation. 

When the operand level is “Statement”, for example, the 
user may press the left mouse button anywhere to select 
the “nearest” (based on a heuristic) syntactic compo 
nent that meets the definition of that operand class. 
Commands Next and Previous perform a tree walk, se- 
lecting only subtrees of the appropriate operand class. 

Structural navigation also enables examination of di- 
agnostic messages. Any structural selection that occurs 
at one of the special operand classes “Syntax Error” or 
“Unsatisfied Constraint” causes a diagnostic message as- 
sociated with the variance to appear in the window’s 
annunciator. A user who sees the flag indicating the 
presence of variances can simply walk through all of 
them, viewing the location and diagnostic of each one 
in turn. 

6.3 Inconsistency and Reanalysis 

Any situation where one kind of information is de- 
rived from another invites inconsistency between the 
two. The syntax-recognizing approach, where language- 
based information may be derived from text, is no ex- 
ception. During text-oriented editing derived informa- 
tion maintained by the system will sometimes disagree 
with what the user sees. For example lexical font shifts 
would be incorrect immediately after the textual trans- 
formation of a statement into a comment. 

A special panel flag appears when text and derived 
data are inconsistent. Continuously visible enhance- 
ments like font shifts usually remain almost correct in 
ways easily understood by experienced users. 

To avoid more serious confusion, Pan’s automatic re- 
analysis policy ensures that language-based interaction 
takes place only when text and derived information are 
consistent. Should the user invoke such a command 
during periods of inconsistency, Pan triggers reanaly- 
sis before attempting it. Since analysis (almost) always 
succeeds, this policy does not restrict the user, although 
it may cause delay. 

Pan’s reanalysis policy is a lazy one, based upon the 
assumption that the user understands the general state 
of the document and can judge the tradeoffs involved. 
Incremental analysis is only performed when requested 
by the user, either implicitly by invoking an operation 
that triggers automatic reanalysis or explicitly by in- 
voking the command Analyze-Changes. Nothing pre- 
vents a Pan user from typing an entire document with- 
out once invoking analysis. The Pan approach is to 
encourage frequent analysis by making it cost-effective 
to the user. 

6.4 Mixed-Mode Editing 

Pun’s fundamental approach to language-based editing 
is to broaden the user’s options, not narrow them. The 
user should be able edit textually any time, any place in 



the document presentation; it should be equally possible 
to edit in terms of derived information any time, any 
place. 

A Dual Aspect Cursor. Any Pun editing com- 
mand, text- or structure-oriented, may be invoked with- 
out prerequisite. Two mechanisms make this work. The 
first, automatic reanalysis, ensures that derived infor- 
mation is consistent with the text before performing 
any operations that require it. The second mechanism 
is Pun’s dual aspect edit cursor. 

Pan’s edit cursor always has a textual location, dis- 
played as an inverted box. It may also have a loca- 
tion corresponding to some structural component. At 
present,, the cursor’s structural location is revealed by 
turning the component’s textual presentation into the 
current, text selection (displayed by underlining). Any 
operation that sets the structural cursor also positions 
the text cursor at the first character in the structure’s 
textual presentation. 

Any editing operation that requires a cursor location 
simply uses the appropriate aspect: text or structure. 
If the cursor has no structural aspect, then one is in- 
ferred from the text cursor’s location by the same mech- 
anism used when the user selects a structural compo- 
nent by pointing with the mouse. This design resolves 
the “point vs. extended cursor” problem [54] by pro- 
viding both behaviors simultaneously. 

Simple Editing. The prototype implementation sup- 
ports no user commands that modify internsal docu- 
ment structure directly, The Delete command invoked 
with a structural selection, for example at operand level 
“Statement”, achieves the same effect by removing the 
text associated with the statement. The internal repre- 
sentation of the deleted component remains in the tree 
until the next reanalysis, but it is invisible to the user 
because automatic reanalysis will delete it before any 
commands can use it. The Cut command simply places 
text in the clipboard. 

The command Paste simply inserts text from the clip- 
board. If the context is appropriate, subsequent incre- 
mental analysis derives the equivalent structural infor- 
mation quickly. 

This implementation costs a small amount of anal- 
ysis time by discarding derived information when the 
user moves structural components. On the other hand, 
it guarantees the integrity and well-formedne,ss of the 
document’s internal representation, since the language 
definition is already built into Pun’s parser. 

Complex mechanisms for direct structural editing can 
be a source of confusion to the user, since those editing 
operations may fail. Worse, they may fail for the kinds 
of reasons we attempt to hide. For example, it seems 
reasonable to copy the list of identifiers appearing in 
the formal parameter list of a procedure definition and 

paste it, into a call to that procedure. Although the two 
lists of identifiers might appear identical and be closely 
related conceptually, there may be sound implements 
tion reasons for different internal representations in the 
two contexts. We prefer to avoid strategies that involve 
guessing the user’s intent,. 

When a structurally inspired Cut and Paste sequence 
in Pun violates the underlying language definition, the 
operations succeed anyway and the problem is diag- 
nosed by precisely the same mechanisms that handles 
other variances. 

The cost at, present of this text-based implementa- 
tion is the loss of any non-derivable annotations on 
document components during Cut and Paste sequences. 
We have developed, but not yet added, a strategy that 
avoids this information loss and provides functionality 
that is equivalent to direct structural operations. 

Other Language-Based Operations. The ulti- 
mate advantage of language-oriented editing lies in an 
open-ended collection of “services” that draw upon a 
rich repository of information to assist users in com- 
monly performed tasks. The best developed collection 
of these services in Pun at present deals with the lo- 
cation and diagnosis of variances, as described above. 
This section describes a few other examples that either 
have been prototyped or will be soon. 

One of the few forms of query supported by ordi- 
nary text editors is textual search. Searching in Pan 
can draw on any information in the repository, as ex- 
emplified by the structural query mechanism described 
earlier. For example, one query-based command allows 
the user to point at a variable name and then ask to see 
the declaration and all uses of that variable. A closely 
related command allows the user to point at a variable 
and move the cursor to the corresponding declaration; 
this is only one example of a command that follows 
hypertext-like links defined by the underlying language. 

Like all full-functioned text editors, Pan also sup- 
ports textual replacement based on regular expression 
matching. However, one often intends that the replace- 
ment depend on the language structure, not on the 
textual structure, even when the two are similar. For 
example, word replacement in natural language docu- 
ments is tricky using regular expressions. One wants to 
avoid replacing occurrences embedded in other words, 
SO a simple specification of the search string does not 
suffice; at the same time, it is difficult to describe all 
characters (including beginning and end of line) that 
might mark word boundaries. The answer involves spe- 
cific commands that use Pan’s derived information to 
replace only whole components. Even more powerful 
versions replace only those occurrences of a name that 
are related according to the rules of the language, for 
example when renaming a variable in a program. 
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7 Retrospective 

Pan I has limitations with respect to our long range 
vision: current description techniques are aimed at a 
particular class of formal languages; the implementa- 
tion supports only one language per document; a single 
analysis may span multiple documents, but only within 
one language; the system provides only part of the de- 
sired flexibility in generating visual presentations. Re- 
lated issues, including support for novice programmers 
and learning environments, support for program execu- 
tion, graphical display and editing, and the actual de- 
sign and implementation of a persistent software devel- 
opment database, were deferred. The Ensemble project, 
which will create a successor to Pun I, is addressing 
some of them. 

Ongoing research projects are using the leverage 
gained from Pan I. Projects near completion include 
a study of prettyprinting using Pan and Colander [lo]; 
the development of advanced document analysis tech- 
niques using Colander to specify and control user cen- 
tered program viewing [56]; the development of new 
language descriptions; and investigations into ways to 
strengthen Pan’s language description techniques [22]. 

With the exception of a simple non-editable tree dis- 
play, the presentations in Pun are all textual, and are 
all closely coupled to the concrete syntax descriptions 
of the documents. The Ensemble project is generalizing 
Pan’s approach in three ways: 

1. Much richer mappings among document struc- 
ture, presentations, and specification of appear- 
ance, building heavily on the experience gained 
from the VO@)$ document system [14, 151. 

2. The extension of editing and viewing to a wide 
range of media-text, graphics, sound, and video. 

3. Integrated support for compound documents. 

The notation of logical constraint grammars, being 
based on clausal logic, has proved to be quite effec- 
tive for expressing queries against the database. How- 
ever, complete descriptions of programming languages 
rapidly become verbose. One approach to remedying 
this situation is to use the LCG mechanism as an im- 
plementation vehicle for higher level semantic descrip- 
tions, such as those based on Natural Semantics [31] as 
used in Centaur13 [ll]. 
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