
An Overview of PCTE and PCTE+.

Gerard Boudier. FeraInando Gallo*, Regis Minot. Ian Thomas

G.I.E. Emeraude, Bull, PC 58F25,68 Route de Versailles, 78430 Louveciennes. France.

ABSTRACT

The PCTE project has defined a Public Tool Interface on which Software Engineering Environments
can be constructed. The interface definition was put into the public domain in September 1986 and several
implementations on several machines now exist. The PCTE+ project was set up to define a Public Tool
Interface, based on the PCTE work, that could also serve for the development of defence and other high-
security applications. This paper summa&es the current status of PCTE activity, presents the principal
concepts of PCTE and the evolutions that are being proposed in the PCTE+ project

1. Introduction.

The PCI’E (Portable Common Tool Environment)
interface specification defines a Public Tool Interface to be
used as the basis for the construction of Software Engineer-
ing Environments (SEES). The construction of a SEE con-
taining a rich set of tools is an expensive undertaking
requiring considerable effort Since this effort is beyond the
means of most organisations, it is desirable to find a way of
enabling different tool producers and vendors to contribute
tools to the environment. One part of the solution to this
problem is the definition of a Public Tool Interface. The
interface is Public to make it independent of a particular
vendor and hardware, a Tool Interface as it provides all of
the facilities required by writers of software tools.

The PCIE (Portable Common Tool Environment)
interfaces were developed in the PCTE project which was
a pan-European project to specify, design and prototype a
Public Tool Interface. The project began in October 1983,
completing its lirst phase in September 1986 with the pub-
lication of the C language definitions of the interface. The
interface is programmatic, defined as a set of primitives
that may be caBed by programmers of tools. The second
phase of the project, whose topics included the examina-
tion of a number of proposed evolutions of the interface
and the adaptation of the user interface definition in the
light of the growing importance of X-Windows
[xWIN87], ended in June 1988.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

01988 ACM O-8979 1-290-X/88/001 l/O248 $1 SO

The Current Status of PCTE activity.

The C language specifbzations were placed in the
public domain in September 1986 CPCTE86]. They are in
two volumes, Volume 1 covers the Basic Mechanisms
and Volume 2 the User Interface Primitives. Ada
language specifications for Volume 1 became available
in May 1987. Work is in progress to define the Ada
specifications for Volume 2 and this work will take into
account the proposals for interface evolution developed in
the second phase of the PCIE project

Change requests to the interface detinition are
managed by the PClE Interface Management Board
PIMN, a multinational committee consisting of
representatives of the original partners of the PCIE pro-
ject, other interested companies, representatives of the
software industries of all of the member countries of the
European Community, computer manufacturers as well as
NATO and the European Space Agency. A Technical
Committee (TC33) of the European Computer Manufactur-
ers Association (ECMA) is currently examining the
interface definition with a view to European and sub-
sequent international standardisation.

At least two implementations of the interface
definition are currently running, One was developed by
Olivetti within the PCTE project, as part of the proto-
typing activity. The other, industrial-quality, implementa-
tion was developed in parallel with the interface
definition by the Emeraude consortium [CAMP88]. The
Ada bindings for Volume 1 have been implemented on
the Emeraude implementation and an Ada compiler has
been validated on Emeraude running on Sun 3 and Bull
SPS7 machines.

Unix and System V a~ trademarks of AT&T Bell Laboratories.
* Author’s pmutt address: Intms. Via Fratti 4. 56100 &a. Italy.

248

More information on some of the activities surround-
ing FCTE is given in l’THOM881.

The Objectives for the PCTE Interface Definition.
The PC’TE interface definition had a number of

goals and design constraints. Some of these were:

(9

(ii)

(iii)

(iv)

the definition of a “complete” interface, sufficient for
all of the needs of tool writers.

support for tools written in a variety of languages by
the provision of bindings for several languages.

a well-defined migration path for existing tools. This
has been achieved by ensuring that the PCTE primi-
tives are upwardly compatible with Unix System V
primitives in the X/OPEN standard. The Emeraude
implementation of the PCTE interfaces will run Unix
System V executable programs without change. For
example, it is possible to start a transaction, run the
unchanged executable of a standard Unix editor such
as vi on an object of type file or one of its subtypes,
and then abort the transaction with roll-back effects on
the edited objects of the object base.
rapid availability of implementations of the inter-
face.

The Contents of the PCTE Interface Definition.
The PCTE Interface Definition is divided into two

volumes. Volume 1 contains a description of the Basic
Mechanisms, Volume 2 contains a description of the User
Interface primitives.

Volume 1 (Basic Mechanisms) is divided into six
chapters:

OMS (Object Management System); the OMS is the
data repository of PCTE. This chapter also contains
descriptions of the schema management and a proposal
for a Data Definition Language (DDL).
EXE (Execution); the facilities provided for process
management

IPC (Inter-Process Communication); the facilities
provided for exchange of data between processes.

ACT (Activities); the concurrency control and
integrity management facilities.

COM (Communication); the facilities equivalent to
classical file input/output,

DIS (Distribution); PCTE provides transparent dishibu-
tion of the data management and process execution
facilities. This chapter describes the facilities neces-
sary for the configuration and management of the dis-
tributed PCTE environment.
Volume 2 (User Interface) is divided into a number

of chapters, with the majority of chapters corresponding to
entities manipulable by the too1 writer.

These chapters deal with cursors, fonts, icons, menus,
screens, scrollbars, viewports and windows.

Additional chapters describe frames. A frame is a
data structure into which a tool can write graphical or text
information. The frame records the logical description and
presentation of the tool’s information. The PCTE UI pro-
vides text and graphic frames as well as general frame
management operations.

Input is dealt with in the selection and input chapters.
Finally, end-user characteristics are discussed in chapters on
the user and the end-user image.

PCTE+: The Definition Phase.

IEPG (Independent European Programme Group) is
a grouping of European members of NATO. In 1987,
aware of the growing importance of PCTE and the possi-
ble benefits of its dissemination and use amongst its
members, IEPG decided to finance the PCTE+ project to
examine how to build on the experience of the PCTE inter-
face definition to define the basis for environments suit-
able for miltary as well as civil applications. The project
is divided into two phases; a definition phase and an
evaluation phase. The definition phase began in 1987 and
will last until 1990.

The terms of reference of the definition phase
specified a number of areas where interface evolutions
should be studied:

- security
- Unix (and other operating system) independence

but particularly required that the resulting proposed stan-
dard tool interface be multi-language and suitable for civil
and defence purposes.

The project began by producing a requirements docu-
ment for the interface definition (the EURAC lEURA871)
which was a revision of the RAC for CAB-A [RAC86].
The EURAC took account of a number of requirements
whose importance had been established by projects
building environments on the PCTE interfaces (e.g. Pact
lJ’HOM881 and Eclipse [CART87l) in addition to other
Propo=JS-

There are obvious advantages to both communities of
a common standard for civil and defence work. There is
close contact between the PCTE+ designers and the techni-
cal group that advises the PCTE Interface Management
Board on proposed modifications to the PCTE interfaces.
The PCTE+ project has already decided to align itself with
the PCTE interfaces for the user interface part of its inter-
face definition.

Both C and Ada specifications are being developed
simultaneously within the project. Two editions of the
proposed interface definition have been produced and sub-
jected to international review and comment iPCl’E88]. The
final edition is scheduled to appear in October 1988 to be
used as the basis for the PCTE+ evaluation phase.

249

Structure of this Daper. on an object with contents depend on the type of the

For reasons of space, this paper does not describe the
User Interface primitives of PCTE/PCTE+. Further
details of these, including the complete specifications,
may be obtained from the authors.

Chapter 2 of this paper is divided into sections fol-
lowing the division of Volume 1 of the PCTE C interface
specifications. Each of the sections tirst describes the
features of PCTE, then the additions/changes pro-
posed in the PCTE+ interface definition with a brief
rationale for the changes. Three new sections are added that
are not present in the RCTE specifications: SEC (Seeu-
rity), NTF (Notify) and ACC (Accounting).

The paper ends with some brief conclusions about the
PCTE interfaces.

2. The PCTE and PCTE+ Basic Mechanisms Interface
Definitions.

This chapter presents the features of the PCTE
mechanisms followed by a brief presentation of the princi-
pal PCTE+ proposals for changes/extensions.

2.1. OMS (Object Management System).

The Object Management System is the information
repository of RCTE. It is based on the Binary Entity-
Relationship model [CHEN76]. The object base is tran-
sparently distributed over a local area network.

This section describes the principal characteristics of
PCTE’s OMS. We describe objects, links and relationships,
and attributes. The schema management possibilities of
PCTE are then described and this is followed by a dis-
cussion of the proposed FCTE+ extensions to the OMS.

2.1.1. Objects, Links, Relationships and Attributes.

This section describes the basic characteristics of
the OMS data model. A discussion of how this model
meets the requirements for data repositories in SEES can
be found in [GALLS6].

2.1.1.1. Object Types and Objects.

Objects in the OMS are typed. Au object type is
defined by a name (which is not globally unique - see
the later section on schemas), a parent type, a set of attri-
bute types, a set of Iink types for which the object type
may serve as an origin and a set of link types for which
the object type may serve as a destination.

Object types form a type hierarchy with a subtype
inheriting the attributes and links that are defined for its
ancestor types. The root of the hierarchy is a predefined
type called “object” with a number of predefined attributes.
There are several predefined subtypes of the object type.
Some of these, for example, file, pipe and message queue
have a special predefined property called the contents.
The internal structure of the contents is not managed by
the OMS and the semantics of some operations performed

object. For example, the Unix operation open pefiormed on
an object of type file (or one of its subtypes) opens its
contents.

The contents is inherited by subtypes in the normal
way. Only an object type that has one of the file, pipe or
message queue object types as an ancestor type has con-
tents. The OMS therefore general&es the notion of a file
system - the Unix tile system can be emulated as a
specialisation of the OMS but the OMS offers much
richer data modelling facilities than those provided by a
file system. The unstructured byte stream that is provided
by file systems is only a small part of the data modelling
possibilities of the OMS.

2.1.1.2. Relationship and Link Types and their
instances.

Relationships can be established between objects. A
relationship is a bidirectional association between two
objects; it can also be seen as a pair of mutually inverse
links.

Links are typed A link type is defined mainly by a
name (again, not globally unique), a cardinality defining
whether one or many links of this type may start from
the same origin object, a set of origin object types, a set
of destination object types, a set of attribute types some
of which may play the role of key attributes if the link type
has cardinality many.

A relationship type is a pair of link types, its proper-
ties being defined by the properties of each of them.

There are two other properties of a link type that are
significant for the discussion of PCTE+ extensions. Each
liuk type has a category and may also have the stability
property-

Link Type Category.

PCTE defines three categories of link: composition,
reference and implicit.

Composition links (or, more precisely, instances of
link types that have the category composition) have
semantics that are closely related to the existence of
objects. An object is created with a composition link point-
ing to it and ceases to exist when the last composition link
to it is deleted (a precondition for the success of the opera-
tion being the absence of any other link to the object).
There can be more than one composition link leading to
au object - the graph of composition links can thus form
a DAG @lrected Acyclic Graph) or may even contain
cycles. The graph of composition links in the object
base is certainly not constrained to be a hierarchy.

Reference links are used to represent the many asso-
ciations that exist between objects in the data repository of
a SEE. They do not have the same existence semantics
as composition links except that the existence of a
reference link to an object will prevent the deletion of the
last composition link to it and thus its deletion from the

250

base (as mentioned above). The rationale for this is that
one should not be able to delete an object from the
base if some other object is referring to it.

Implicit links have limited expressiveness. They
may not have any attributes. If the implicit link type has
cardinality many then an integer key is generated by the
PCTE system.

AlI PCTE associations are bidirectional, each is a
pair of mutually inverse links. A relationship defines a
b&directional association between two objects and is used
when the data modeller wishes a certain facility of naviga-
tion from either one of the objects to the other. To model
a functionally one-directional connection between two
objects, since PCTE only has bidirectional associations,
a link type is used in one direction and an unnamed
implicit link type (the system reverse link) in the other.

Link Type Stability.

The second property of link types that is relevant for
the discussion of FU’E+ extensions is the stability pro-
perty. When a stable link, i.e. one whose type has this
property, is created to an object, the object becomes
stable and may not be written to until the link is
removed. The stable link effectively prevents the
modiication of attribute values, the contents if the object
has contents, and the creation of links (except implicit
links) leaving the object.

2.1.1.3. Attribute Types and Attributes.
Attribute types are defined by a name (again not glo-

bally unique) and an initial value. The permissible value
types are integer, date, boolean and string.

2.1.2. Schema Management.

The OMS has a schema mechanism. Schema infor-
mation can be divided into three classes:

Object, attribute and link type definitions;

Information on which attributes are “applied” to
which object types and which link types.

Information on the source and destination object types
for link types, that is, to which object types the
link types are applied.
We will refer to the two last classes of information

application information. There is no need to provide
this information for relationship types as it is deduced
from the the link types that form the relationship type.

The above schema information is not cenualised in
a global schema definition for the whole environment. It
is distributed over Schema Definition Sets (SDSs), each of
which contains a subset of the schema information. The
SDSs do not partition, in the mathematical sense, the
schema information. For example, application information
for a single object type can appear in several SDSs. A
SDS is a predefined subtype of the file object type.

The names of types are local to a SDS. The same
name may therefore be used in several SDSs without name
clashing.

Each process has a working schema that defines its
visibility of the object base. The working schema defines
the types of object, link and attribute that can be accessed
and also defines which applications of attributes to objects
and to links, and which applications of links to objects are
visible.

A working schema is a well-formed union of SDSs,
created for a process by the set-schema primitive. A pro-
cess may also change its working schema by caIling the
set-schema primitive. The set-schema primitive defines
the visibility for names in the SDSs to be formed into
the working schema.

Since it is rare for the definitions of types of
objects, or other schema information, found in a SEE to
remain static, PCTE provides a mechanism for the evolu-
tion of SDSs without “dump and reload” of the object
base. For example, if a new attribute is applied to an exist-
ing object type definition, ail instances of the object
type, both existing and newly created, will have a value
for the attribute.

2.13. The PCTE+ proposals.

A number of extensions have been proposed to the
OMS definition in the PCTE+ project. They include: com-
posite entities, version support based on the composite
entity proposals, a self-referential model, multiple rather
than simple type inheritance, secondary links that do not
enforce referential integrity, usage modes for type
definitions in a SDS. new properties for composition link
types and two new value types for attributes.

2.1.3.1. Composite Entities.

There are occasions in the design of a data model for
a SEE, or during manipulation of the objects iu a SEE
object base, when one wishes to treat a number of indivi-
dual objects as one whole. For example, a document’s
logical structure may be represented as different objects in
the OMS with links relating them. One might wish to move
the entire document from one volume to another (or make
a new version of the entire document - see below).

PCTE+ defines the notion of a composite entity,
new predefined amibutes on objects that are particularly
useful when the object is the root component of a compo-
site entity, and primitives that apply to composite entities.

In PCI’E+, a composite entity, designated by X, con-
sists of:

- an object X, called the root component of the compo-
site entity;

- the set of objects which are in the transitive closure of
the composition links starting from X, called its com-
ponents;

251

- the links starting from X and the set of objects defined
above.
The semantic of the composition category has been

extended to include is-part-of as well as the exists seman-
tic of PC-l-E.

New predefined attributes are used to indicate the
latest access, modification and change dates of a composite
entity, defined as the latest access, modification or change
date of one of its components.

New operations that manipulate composite entities
include: composite-list-links, composite-delete,
composite-copy, composite-move.

2.1.3.2. Version Support.

The PCTE OMS provides general data modelling
facilities. These may be used to model particular version
schemas. For example, an environment designer might
choose to define a single object in the base to represent all
versions of a system. (Such an object acts as a “directory”
of versions, in some sense). This object is then linked to
each version via links whose keys are used to distinguish
between versions (a number to give version number, a
string key to give the name of a variant etc).

The PCTE+ version management support uses the
idea of composite entities. New interface primitives (
revise and snapshot) are added to allow the creation of
new versions of composite entities (with a single object of
the object base as a simple, special case) from an origin
version.

Relations between versions are expressed by special
predecessor C-B successor relationships, managed by the
system. These are created between all of the component
objects of the new version and the equivalent com-
ponent objects of the origin version by the interface prim-
itives. These relations therefore constitute the version
graph. The predecessor <-> successor relationship
guarantees that the origin version is stable, that is, the
predecessor link has the stability property. The conse-
quence of this is that the origin version cannot subse-
quently be written to, though it is still possible to create
new versions from it. The version graph is not constrained
to be a tree. A facility is provided to add predecessor links
so that the version graph can represent merging of versions
in the form of a directed acyclic graph (DAG).

Some of the links that enter or leave a composite
entity “track” the versioning, the precise behaviour being
defined by the category and cardinality of the links.

To illustrate the effect of these mechanisms, con-
sider a document organ&d as a composite entity. One
of its chapters refers to a separate software specification
document (using a reference link inversed by an implicit
link of cardinality many). If we create a new version of
the document, we would like the new version also to refer,
in the same way, to the software specification document,
It is not because we have created a new, identical version
of a document that it ceases to refer to the software

specification. The relationship between the document and
the software specification is maintained over the revision
primitive.

2.133. A self-referential model - the metabase.

Types in PCTE are not represented as objects in the
object base. PCTE+ proposes a change in the definition of
the SDS management primitives so that they manage a
metabase structure in which type and application informa-
tion is represented. This metabase structure would supple-
ment but not replace the existing SDS objects.

Such a metabase structure has a number of advan-
tages. Firstly, it makes the querying and interrogation of
schema information uniform with the querying of other
parts of the object base - a single mechanism can be
used for both. Secondly, it provides a convenient structure
for the association of additional information on the
schemas, such as documentation, user interface menus
associated with object types, libraries of access routines
for the manipulation of objects of a certain type, etc.

2.1.3.4. Multiple Inheritance for Object Types.

Object types in PCTE are organised into a hierarchy.
In PCTE+ this is generalised into a DAG (Directed Acy-
clic Graph) of types (multiple inheritance). An object
type may therefore have more than one parent and inherit
attributes and link/relationships from all of its parents. In
some systems this leads to naming conflicts where two
ancestors have the same name for different attributes, for
example. The SDS mechanism and, in particular, its
name scope rules, ensure that this problem does not arise
for PCTE+.

2.135 Secondary Links.
In PCTE+, processes are represented as objects (see

Section 2.2.2.1) as are activities (see Section 2.4.2). Several
of the PCTE concepts, such as the locks that an activity has
on objects, are now represented as links between these
objects and other objects in the object base. These links do
not have the same characteristics as links of the three
categories (composition, reference and implicit) defined in
PCTE. This observation led to the definition of a new
category for link types, the secondary category.

The properties of the secondary category of link type
are:

(i) it is a truly unidirectional association between two
objects. (Section 2.1.1.2 discussed links and relation-
ships and explained that in PCIE all associations are
bidirectional).

(ii) referential integrity is not enforced. Deletion of the
destination object of a link of a type with the category
secondary is not affected by the existence of the
secondary link. The link remains in existence but can-
not be navigated. The link is deleted when its origin
is deleted.

(iii) it may have cardinality one or many, and may have
attributes.
Several PCTE concepts are now modelled differently,

using secondary links. A PCTE process has a number of
reference objects that designate objects in the object base.
The designation of these objects in PCTF+ is modelled by
the presence of -ndary IinkS (of type
referenced-object) from the object representing the pro-
cess to the objects in the object base, the name of the refer-
ence object in PCTE being the key of the secondary link.

2.1.3.6. Usage modes.

The SDS mechanism in PCTE can be used to control
the visibility of type definitions and application informa-
tion. This is achieved by using the fact that SDSs are
objects in the object base and therefore subject to access
control mechanisms. The drawback with this approach is
that, while it controls visibility of a type, there is no way of
specifying the operations that processes that have visibility
of the type may perform on instances of the type. It is not
possible to make a type available to a process for reading
.only, for example.

PCTE+ has proposed an extension to the SDS
mechanism in this direction. For each type in the SDS, one
can define a usage-mode that controls the permitted opera-
tions on the type by processes that incorporate the SDS into
their working schema, an export-mode that controls the
transmission of rights when the type definition is imported
into another SDS, and a maximum-usage-mode that is
used to limit the range of changes that can be made to
usage-mode and export-mode.

The usage mode mechanism can be used in conjunc-
tion with the discretionary access control mechanisms of
PCTE+ to provide an “object-oriented” interface to types
(where “object-oriented” in this case means associating a
set of operations with a type). The discretionary access con-
trol mechanisms allow access to a SDS to be limited to cer-
tain programs. Putting a type definition in SDSs with
different exploit-schema access rights and different usage
modes in each allows, for example, some programs to have
write or create access via one SDS while other programs
using another SDS have read access.

2.1.3.7. Exclusiveness for Composition Links.

In PCTE+, a new optional property, called exclusive-
ness, has also been defined for link types with category
composition. An object may only have one composition
link pointing to it if this link has the exclusiveness pro-
perty. It can be used to enforce a tree structure on the
graph of composition links.

2.1.3.8. Additional Attribute Types.
Two new value types for attributes have been added

to the PCTE set of integer, boolean, string and date. They
are real numbers and enumeration types.

2.2. EXE (Execution).
The execution primitives of PCTE provide facilities

to create and subsequently manage processes, representing
the execution of programs.

2.2.1. PCTE Execution Management.

There is a predefined type of object called a static
context that is used to model a program. Programs. are
therefore modelled as objects in the object base.

A static context may be directly executable, in which
case it may have an associated execution class. The execu-
tion class is an object linked to some of the objects in the
object base that represent stations known to the
environment (see 2.5 below on Distribution). The exe-
cution class is used to model the subset of stations in
the environment on which the executable can execute.

A static context may also be interpretable, for exam-
ple, a script to be interpreted by a command line inter-
preter. In this case, the static context is linked to another
static context that is its interpreter.

Primitives are provided to start the execution (both
synchronously and asynchronously) of static contexts as
processes, to terminate (normally and abnormally) a
process, and to interrupt (suspend and resume) a process.

2.2.2. The PCTE+ proposals.
There has been a major change in the presentation of

these facilities in the PCTlZ+ proposals. In PCTE, processes
are not considered within the object model of the OMS. In
PCTE+, there is a unification of the descriptive model for
processes and the OMS.

Execution is also a difficult area for operating system
independence so PCiE+ makes proposals in the area of
foreign systems and processes to deal with the problems of
use of existing tools in PCTE+ environments.

2.2.2.1. Processes as objects.

In FCIE+, processes and activities (see Section 2.4)
are modelled as objects in the object base. Properties of the
process can then be modelled as attributes of the process
object or links emanating from or leading to the process
objects. The advantage of this approach is two-fold: first, a
single model is used for the explanation of the concepts,
and secondly, access to the information about a process can
use the same model and mechanisms as access to the infor-
mation about any other object in the object base.

A PCIE+ process is character&d by a number of
properties that together constitute its dynamic context.
When a process starts another process, some of these pro-
perties are inherited by the called process Tom the calling
process, some of the properties are not inherited but are ini-
tialised when the object that represents the called process is
created and some whose inheritance can be controlled by
the setting of attributes on the properties of the calling pro-
cess. Examples of some of the properties of a process, with

253

an indication of whether the property is automatically
inherited, not inherited or whether the inheritance is user-
defined are:
- current state of the process - not inherited.

- mandatory security context of the process - automati-
cally inherited.

- set of reference objects currently defined - user-defined
inheritance.

2.2.2.2. Foreign Systems and Foreign Processes.

One of the objectives of the PCTE project was to
ensure an easy migration path for existing tools running
on Unix System V. The interface definition therefore
contains some primitives for which the principal motive
for inclusion. is compatibility with Unix System V.

Since PCTE+ has the express objective of operating
system (and hence Unix) independence, we are immediately
faced with the problem of the use of existing tools and
environments written on interfaces other than PCTE+,
including proprietary operating system interfaces. The
solution that has been adopted in PCTE+ is to define the
notions of a foreign system and a foreign process.

A foreign system is a system providing inter-
faces for program execution other than those provided
by PCTE or a PCTE station belonging to another
PCTE environment Examples of foreign systems might
include a bare target machine, a host system connected to
the network but running only a proprietary operating sys-
tem, a PCTE host running an implementation of the
PCTE interfaces on top of an operating system inter-
face that still alIows other programs to run using the
underlying operating system interface etc. Foreign systems
are modelled as objects in the object base.

Four types of facility are provided in PCTE+ to sup-
port connection to foreign systems.

- modelling of foreign execution sites and static contexts
for execution on foreign sites;

- routines to transfer data from between the contents of
PCTE objects of type file (or one of its subtypes) and
foreign files in the foreign environment

- the possibility of mapping between PCTE objects of
type message-queue (and possibly pipe) to appropriate
facilities in the foreign system. Such a mechanism
could be used to create a communication channnel
between PCTE+ tools and those running on the foreign
environment;

- a common monitoring protocol for debugger communi-
cation with a foreign target.

2.3. IPC (Inter-Process Communication).

An integrated SEE will be characterised by a high
degree of data exchange between the tools that constitute it.
The Public Tool Interface must therefore provide mechan-
isms that facilitate this communication in an efficient way
even in the context of a distributed environment.

2.3.1. The PCTE Inter-process Communication
Mechanisms.

Three mechanisms are provided in PCTF for inter-
process communication: signals, pipes and messages. The
lirst two of these are essential for compatibility with Unix.
The third is defined in a similar way to the System V Inter-
face Definition Kernel Extension’s definition of messages.

A message queue is used to send and receive mes-
sages, a message being an arbitrary block of data, charac-
terised by a user-defined message type. Message queues
have identifiers that are system-wide unique so that mes-
sages can be sent to message queues on any connected sta-
tion. Message queues can also be named objects in the
object base. This facility can be used to avoid two
processes that wish to communicate via a message queue
needing prior knowledge of the message queue identifier.

Send operations on a message queue are normally
non-blocking but facilities are provided that can be used to
increase the level of synchronisation of the communicating
processes. A rich set of message queue interrogation and
selection facilities is provided for receiving processes.

2.3.2. The PCTE+ proposals.
Inter-process communication is another area that is

highly operating system specific. PCTE+ has consequently
removed the management of signals from the interface
definition. Pipes remain as a useful means of transfer of
information and coordination between processes that were
written without the knowledge that they were to cooperate
in this way.

The relationship between a process and the message
queues it has reserved is represented by a link (of type
reserved-message-queue and category secondary) from
the process to the message queue.

2.4. ACT (Activities).

A Public Tool Interface must provide facilities to
support concurrent working and to guarantee the integrity
of the information in the data repository. PCTE introduces
the concept of an activity to meet these requirements.

2.4.1. PCTE Activity Management,

An activity is a framework in which a set of
related operations takes place. It may be in one of three
classes:

unprotected activities are those that do not
require their data accesses to be protected I+om other con-
current activities;

protected activities require protection from con-
current access for the data they access but do not require
atomicity of effect of data modifications:

transactions are protected activities whose effects on
the database are atomic.

Each PCTE process executes in the context of an
activity. A process may only have one activity that it has

254

started in progress at any one time.
The execution mechanisms of PCTE allow tools to be

built by composing individual elementary tools. A child
process may, of course, start its own activity (with the
restriction stated above) and this allows the possibility
of nested activities (and therefore nested transac-
tions).

OMS activities feature a recovery mechanism to
support transactions and a locking mechanism that is nor-
mally implicit (automatic according to the object base
accesses made by a process) but can be used explicitly
in some situations, for example, to prevent some of the
modifications made during a transaction being rolled back
in the event of a transaction abort.

Clearly, all of the above mechanisms work tran-
sparently in the normal case of a distributed object base
and execution of different processes on different machines
of the network.

2.4.2. The PCTE+ proposals.

PCTE+ has proposed a change to the way that these
facilitites are modelled. Activities are now modelled as
objects in the object base. An activity may have locks on
objects and these locks are modelled as links (of type lock
and category secondary) from the activity object to the
locked object. There is also a link (of type locked-by and
category secondary) from the locked object to the activities
that have a lock on it

2.5. DIS (Distribution).

One of the original design criteria of the PCTE
project was the definition of an interface that could be
implemented on a distributed system subject to partition-
ing, for example a local area network, in such a way that
useful work could still be done in each of the partitions
(the availability criterion). The distribution of both data
and program execution was to be transparent. Both of
these objectives have been met.

The object base is partitioned into volumes, each
containing some of the objects of the base. There is no
difference between the creation or manipulation of links
between objects on the same volume and the creation or
manipulation of links between objects residing on different
volumes. The positioning of objects in volumes, and the
positioning of volumes on workstations is transparent to the
user unless he/she wishes to find out. Volumes are
represented as objects in the object base. There are two
stages to the use of voIumes. initialisation and mounting.

Workstations are also represented as objects. As for
volumes, there are two stages: firstly, the declaration of a
station to the PCTE environment and its creation as
an object, and secondly, the connection of a station to
the environment.

There are certain system objects in the object base
thar are necessary for the operation of the basic mechan-
isms. Examples of these objects include the system SDS

sys, the directories of volumes and of stations, SDSs etc.
In order to meet the availability criterion, these objects
must be available even when the network is partitioned.
This is achieved by replicating these objects. PCTE pro-
vides mechanisms for managing replicated objects includ-
ing, but not limited to, the system objects, and mechanisms
to manage the deferred update of copies of replicated
objects.

2.6. SEC (Security).

PCTE’s access control mechanism resembles that of
Unix. The user, group, world paradigm is used.

PCTE+ makes significant proposals in the area of
access control and security. It adopts a distinction
between discretionary and mandatory access control
pOD83].

Discretionary access control is defined as “A means
of restricting access to objects based on the identity of
subjects and/or groups to which they belong. The controls
are discretionary in the sense that a subject with a cer-
tain permission is capable of passing that permission
on to any other subject.”

Mandatory access control is defined as ” A means of
restricting access to objects based on the sensitivity of the
information contained in the objects and the formal
author&ion of subjects to access information of such
sensitivity.”

PCTE+ supports both discretionary and mandatory
access controls and auditing, though auditing is not
described here for space reasons.

2.6.1. Discretionary Access Control.
Discretionary access control in PCTE+ operates by

comparing the access rights of a process with the access
rights necessary to perform the intended operation on
objects. A key concept in model is that of the discretionary
group.

We first begin by describing the static organ&&on of
the object base data that is used by the discretionary access
control. This is followed by a brief description of the
dynamic aspects of how this information is used.

Static Information for Discretionary Access Control.

The object base of PCTE+ contains the basic infor-
mation on which the discretionary access control is based.
There are structures representing the organisation of users
and programs in the environment, and information on each
object.

Users are represented as objects in the object base.
In addition to this representation of users, discretionary
groups are also represented as objects. There are two types
of discretionary groups, discretionary user groups (DUGs)
and discretionary program groups (DPGs). Each of the
former contains only users (who may belong to more than
one DUG). DPGs contain only static contexts (see section

255

2.2).

DUGs allow a project organisation to be modelled in
terms of roles with associated permissions. An example
application might be the construction of a Configuration
Management policy. DF’Gs might be used to associate pro-
grams with object types as described in section 2.1.3.6 on
usage modes.

DUGs and DPGs are organised into lattices, one for
DUGs and the other for DPGs. Each arc in the lattices
represents the user-subgroup-of (Of
program-subgroup-of) relation. Some parts of these lat-
tices are predefined, to reflect that certain PCTE+ interface
primitives require special privileges. The supergroups of a
discretionary group are those in the transitive closure of the
user-subgroup-of (or program-subgroup-of) relationship.

Each object in the object base has an access control
list. Each entry in this list contains the name of a discre-
tionary group (program or user) and the elementary access
rights that are granted, denied or undefined for that group
on that object. The elementary access rights arc : navigate,
read, append, write, execute, exploit-device,
exploit-schema, control-discretionary, control-object,
control-mandatory.

Dynamic Aspects of Discretionary Access Control.

Each process has a discretionary context composed of
a set of discretionary groups and a set of boolean proper-
ties, called its adopt mode, associated with each group. The
discretionary context contains one and only one discretion-
ary group of type user; one and only one discretionary
group of type usergroup, though when a usergroup is
adopted, all of its supergroups are also adopted; and one
and only one discretionary group of type program-group,
though when a program-group is adopted, all of its super-
groups are also adopted.

The access rule is simply expressed: a process has a
permission on an object if and only if the corresponding
access rights are explicitly granted to at least one of the
adopted groups in the discretionary context of the process
and are not denied to any of the adopted groups of the pro-
cess.

2.6.2. Mandatory Access Control.

As for discretionary access control, the description of
these facilities can be divided into static and dynamic
aspects-

Static Information for Mandatory Security Control.

PCTE+ distinguishes between confidentiality and
integrity. Confidentiality classes and integrity classes are
modelled as objects in the object base, linked to objects
representing users cleared to those confidentiality and
integrity levels.

Confidentiality cIasses are Iinked via a relationship
(of type dominates-in-confidentiality) that indicates that
all users cleared to a class are also cleared to all classes

that it dominates. The same applies to integrity.
Each object has confidentiality and integrity labels.

The label is a restricted form of expression on the names of
the confidentiality (or integrity) classes defined in the
environment.

Dynamic Aspects of Mandatory Security Control.

A process is character&d by a confidentiality context
and an integrity context, Information flow between objects
via a process is such that a process may only:

read from an object provided that its confidentiality
context dominates the confidentiality label of the object;

write to an object provided that its confidentiality con-
text is dominated by the confidentiality label of the
object;

write to an object provided that its integrity context
dominates the integrity label of the object;

read from an object provided that its integrity context is
dominated by the integrity label of the object.

Finally, a process may communicate information to
another process if and only if the confidentiality context of
the second dominates that of the first and the integrity con-
text of the first dominates that of the second.

2.7. NTF (Notify).

The notify mechanism is an extension of PCTE pro-
posed in File+. To illustrate its utility, consider the
following example. In a distributed environment, two
workstations are both displaying information on the
same object of the object base. If one of the stations
modifies the object, it would be useful to notify the other
that some change has been made to the object. This
notification could then be used to indicate to the user
of the second station that the information on the screen
is no longer up-to-date. A similar mechanism (the notify
lock) has been proposed in CSKAR863.

The notify mechanism permits the designation of
a single object, access events, a message queue and
notilier messages. Typically a process will connect itself to
a message queue to receive the notifier messages, enable a
notifier specifying the object to be monitored and the mes-
sage queue that is to receive the notitier messages, and
switch on the access events that are to be monitored by the
notier.

More than one process can monitor an object and a
process can monitor more than one object,

As is frequently the case in the design of a Public
Tool Interface, a mechanism designed to resolve a particu-
lar problem interacts with other facilities of the interface. In
the case of the notify mechanism, the most interesting
interaction is with the transaction mechanism, particularly
in the case of nested transactions. The problem arises in
specifying the moment at which the notifier messages are
sent to the message queue if the access events occur in a
nested transaction (which could be aborted by the roll-back

256

of one of the enclosing transactions). The PCTE+ solution
is to say that the message is sent when the locks guarantee-
ing protection against concurrent access are removed from
the object and is sent only to processes within the enclosing
transaction.

2.8. ACC (Accounting).
PCTE provides only very limited facilities for

accounting for the resource usage of processes in the
environment These facilities are greatly enhanced in
PcTE+.

PCTE+ defines the notion of an accountable resource
as a selected object in the object base. The objects might
be static contexts, pipes, files, stations, SDSs etc. When a
PCTE+ process accesses an accountable resource, account-
ing information is appended to an accounting log object
when the access operation terminates. The accounting log
objects can subsequently be visited by a person with
appropriate privileges (such as an accounting supervisor).

Note that there is also an interaction here with the
transaction mechanism. Accounting log information on
object base accesses that occur within a transaction is not
rolled-back if the transaction is aborted.

3. Conclusions.
The definition of the PCTE interfaces bcnefitted horn

the parallel activities of prototyping within the PCTE pro
ject and the development of an industrial-quality implemen-
tation. Input from the construction of real environments on
the PCTE interfaces, and the increased understanding of
Public Tool Interface issues mean that PClE+ has been
defined to meet real needs of SEE designers. The first gen-
eration of environments using this technology is appearing -
it’s time to remember that Public Tool Interfaces are only a
means to an end. Our real goal is the provision of
Integrated Project Support Environments to improve
software productivity.

AcknowIedgements.

The PCTE and Pact projects were partially funded by
the Commission of the European Community’s Esprit
Research Programme. The partners in PCTE were Bull,
GEC, ICL, Niidorf, Olivetti, and Siemens. The partners in
Pact are Bull, Eurosoft, GEC, ICL, Olivetti, Siemens,
Syseca and Systems and Management.

The PCTE+ project is being carried out by a consor-
tium of companies: GIE Emeraude, Software Sciences Lim-
ited and Selenia. The PCTE+ specifications are principally
the work of the PCTE+ Specification Group that includes:
Gerard Boudier, Christian Bremeau, John Cartmell, Claudio
Costa, Ferdinand0 Gallo, Jean-Claude Grosselin, Mel Jack-
son, Tim Lyons, Regis Minot, Flavio Oquendo, Tony Rid-
diough.

References.

CAMP88Campbell I., “Emeraude Portable Common Tool
Environment”, Information and Software Technol-
ogy, Vol. 30, No. 4, May 1988.

CART87 Cartmell J. and Alderson A., “The Eclipse Two-
Tier Database Interface”, Proceedings of the 1st
European Software Engineering Conference,
Strasbourg, Sept 1987.

CHEN76 Chen PP., “The Entity-Relationship Model:
towards a unified view of data”, ACM Transac-
tions on Database Systems, Vol 1, No 1, March
1976.

DOD83 Department of Defense Document CSC-STD-
001-83, “Department of Defense Trusted Com-
puter System Evaluation Criteria”, 15 Aug. 1983.

EURA87 “Requirements and Design Criteria for Tool Sup-
port Interfaces (EURAC).“, GTE Emeraude,
Selenia, Software Sciences Ltd., 17 July 1987.

GALL86 Gallo F., Minot R. and Thomas M.I., “The Object
Management System of PClE as a Software
Engineering Database Management System”,
Proc. Second ACM Symposium on Practical
Software Development Environments, ACM Sig-
plan Notices, V22, No.1, January 1987.

PCTE88 “PCTE+ Ada and C Functional Specifications”,
Issue 2, July 8, 1988. GIE Emeraude, Selenia,
Software Sciences Limited.

PClE86 “PCTE Functional Specilications 1.4”, Bull, GEC,
ICL, Olivetti, Nixdorf, Siemens, Sept 1986.

RAC86 “Requirements and Design Criteria for the Com-
mon APSE Interface Set (CAIS)“, DoD Ada Joint
Program Office, 4 Oct. 1986.

SKAR86 Skarra A.H., Zdonik S.B. and Reiss S.P., “An
Object Server for an Object-oriented Database
System”, in hoc. of the IEEE International
Workshop on Object-oriented Database Systems,
1986.

THOM88Thomas M-1. “The PCTE Initiative and the Pact
project”, to appear in ACM Software Engineering
Notes.

XWIN87 XLib - C Language X Interface, Protocol Version
11, M.I.T., June 19, 1987.

257

