CatchUp!
Capturing and Replaying Refactorings to Support API
Evolution

Johannes Henkel*
henkel@cs.colorado.edu

ABSTRACT

Library developers who have to evolve a library to accom-
modate changing requirements often face a dilemma: Either
they implement a clean, efficient solution but risk breaking
client code, or they maintain compatibility with client code,
but pay with increased design complexity and thus higher
maintenance costs over time.

We address this dilemma by presenting a lightweight
approach for evolving application programming interfaces
(APIs), which does not depend on version control or con-
figuration management systems. Instead, we capture API
refactoring actions as a developer evolves an API. Users of
the API can then replay the refactorings to bring their client
software components up to date.

We present CATCHUP!, an implementation of our ap-
proach that captures and replays refactoring actions within
an integrated development environment semi-automatically.
Our experiments suggest that our approach could be valu-
able in practice.

Categories and Subject Descriptors

D.2 [Software Engineering]: Coding Tools and Tech-
niques

General Terms
Design

Keywords

Software evolution, refactoring, application programming
interfaces

*This work is supported by NSF grants CCR-0085792, CCR-
0133457, CCR-~0086255. Any opinions, findings and conclu-
sions or recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’05, May 15-21, 2005, St. Louis, Missouri, USA.

Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

Amer Diwan*
diwan@cs.colorado.edu

Table 1: The # jar files roughly indicates the number of
components.
| # jar files | # classes

Apache Tomcat 5.0.27 | 55 4,070
Eclipse 3.0-M7 147 21,753
JBoss 4.0.0RC1 205 20,643

1. INTRODUCTION

Developing and maintaining software remains a difficult
problem. A promising technique is to keep design and im-
plementation clean by restructuring them whenever com-
plexity increases. The idea of such restructurings is to im-
prove internal properties of the software, such as a partic-
ular kind of extensibility, without changing what the soft-
ware does. Many development environments provide semi-
automatic support for refactoring [8, 7, 2], which is the
object-oriented variant of software restructuring. For exam-
ple, modern integrated development environments (IDFEs)
such as Eclipse! support the ”encapsulate field” refactoring,
which replaces read- and write-accesses to a field with calls
to automatically generated get- and set-methods. Refac-
toring support within IDEs has made it less cumbersome
and expensive to improve code quality.

However, refactoring and other techniques cannot unleash
their full potential when reusable software components (li-
braries) are being developed and used. If a library devel-
oper wants to refactor his code, he has to limit himself to
changing the internal implementation or to expanding the
application programming interface (API), but he cannot re-
move or change existing parts of the API without break-
ing client code. Breaking client code comes at a high cost,
which is why library developers often have to refrain from
making changes that could reduce the complexity of the
API or improve efficiency. As large software projects are
increasingly built from reusable components, this inflexibil-
ity becomes more significant. Fowler acknowledges this cost
in his book; he advocates not to publish the interfaces of
reusable components unless absolutely necessary [2, pages
64, 65]. Table 1 shows how many components some popu-
lar open source projects contain; most of these components
have published interfaces, and evolving them is a daunting
problem.

We present a new approach to address this problem: Our
idea is to record how the library developer changes the
API. As the library developer invokes refactoring actions
within an IDE, we record them. Then, we play back the

'Eclipse is available at http://www.eclipse.org/.

classes methods fields

Java 1.4.2 runtime library 52 365 76
Apache Tomcat 5.0.27 89 339 71
Eclipse 3.0 plugins 177 729 306
JBoss 4.0.0RC1 131 587 99

Table 2: Number of deprecated classes, methods and fields
for Java programs.

recorded refactoring actions to update client code automat-
ically. Therefore, with our approach, recording and replay-
ing many API changes comes at a low cost for both the
library developer and the developers of client applications.
Our approach is light-weight: It does not require a central-
ized infrastructure such as version control or configuration
management systems, and it integrates well with modern
development environments.

While not all possible changes to an API can be captured
as refactorings supported by current IDEs; our experiments
indicate that even with the current IDE support for refactor-
ings, our approach is worthwhile and cost-effective. We also
suggest new refactorings which would be particularly help-
ful for our scenario. Based on our experiments, we believe
that a realization of our approach in large-scale industrial
projects could lead to more flexibility in developing reusable
software components, in particular more flexibility in dealing
with changing requirements. For example, when we studied
the current use of deprecation, we found that there is a need
for better tools to support API evolution: Java methods
become deprecated but are rarely eliminated due to com-
patibility requirements and the high cost of updating client
code. With our approach, developers can eliminate most of
them with little cost.

Section 2 motivates and describes our approach using
an example. Section 3 describes how two users, a library
developer and a client developer experience our prototype
CatcHUP!, which implements the concepts described in this
paper. Section 4 describes how we implemented CATCHUP!
within the Eclipse development environment. Section 5 sum-
marizes the progress of our implementations and outlines
future work, Section 6 discusses related work, and Section 7
concludes.

2. MOTIVATION AND OVERVIEW

The need for deprecation comes about because
as a class evolves, its API changes. Methods are
renamed for consistency. New and better meth-
ods are added. Attributes change. But making
such changes introduces a problem: You need to
keep the old API around until people make the
transition to the new one, but you don’t want
developers to continue programming to the old
API. The ability to mark a class or method as
”deprecated” solves the problem...

“The Java Tutorial”, Sun Microsystems, 1995-2004

Table 2 shows that large Java programs contain many
deprecated classes, methods, and fields. The quote from the
Java tutorial above promises that deprecation can be used to
evolve an API; however, we found that at least for the Java
runtime library, deprecated entities which are part of the

refactoring to apply # deprecated methods
rename method 85
delete method and replace with Java expression 64
delete method and replace with Java statements 27

reason for not refactoring

no obvious replacement 75
design changes too radical 31
erroneously public or not well defined originally 18
total 300

Table 3: Deprecation in the Java core libraries (Sun JDK
1.4.2) and how to eliminate it.

published interfaces are almost never removed, which means
that the number of deprecated entities keeps going up. In
some instances, Sun developers even resurrected methods by
removing the deprecation tags in later versions, apparently
giving up on transitioning to a cleaner API.

A preliminary study suggests that in some open source
projects, deprecation is more common than in the Java stan-
dard libraries, and library developers sometimes remove dep-
recated methods for major releases. As an example, the
HttpClient class from the Jakarta HttpClient library? had
12 deprecated methods (out of 26 public methods) in version
2.0.2. In version 3.0-betal, the library developers removed
10 deprecated methods, and deprecated 5 additional meth-
ods, which means that version 3.0-betal has 7 deprecated
methods (out of 18 public methods). When library devel-
opers deprecate and remove as aggressively as in this case,
client applications may choose to rely on the old version of
the library for an extended period. The library developers
now have to maintain two libraries, and applications that
use many components can suffer from libraries with incom-
patible dependencies. For example, consider an application
that needs to use libraries A and B, where A depends on
HttpClient 3.X and B depends on HttpClient 2.X.

The use of deprecation points out serious problems with
library development: once an API is published, developers
are forced to maintain it. Whether or not developers choose
to deprecate and later remove unwanted methods and types
largely depends on the amount of client code that needs to
be fixed in order to migrate to the new API. Our approach
lowers this “deprecation/migration tax”, since many depre-
cated entities can be removed by employing a refactoring
that transforms client code automatically. In Table 3 we
estimate how many of the deprecated documented methods
and constructors shipping with the Sun Java Delevelopment
Kit 1.4.2 could be refactored, and which kind of refactor-
ing would be applicable. Many of the deprecated methods
could be eliminated with the “rename method” refactoring
(surprisingly many of these were deprecated due to typos
in the method name). 64 methods could be eliminated by
replacing each call with a Java expression, e.g. enable() —
setEnabled(true), and 27 could be eliminated by replac-
ing each call with a list of Java statements; they are thus
slightly harder to refactor due to the stronger static analy-
ses required. In total, we estimate that about 59% of the
deprecated methods could be eliminated by refactorings.

However, deprecation in current use is just the tip of the
iceberg, since it assumes the high costs of updating clients

*http://jakarta.apache.org/commons/httpclient/

Library
Method.java
Field.java
JavaClass.java

/

execute and record

Library Developer

package and ship
library (bcel-5.1.jar)

LSS s s

lient Devel oper 7
g

NN

Client Application
using the packaged library

ListSgnaturesjava
bcel-5.1.jar

implementation

NN\

changes refactorings Recor ded Refactorings 4/
\ [bcel-refactorings.rrf] replay
Updated Library FEfBC/t?rlngs
BCELMethod.java Updated Client
BCELField.java . i Application
; package and ship
BCEL Classjava library (bcel-5.1-Ljar)

ListSgnaturesjava
bcel-5.1-1.jar

Figure 1: One step in the evolution of a library.

and maintaining old versions of libraries. We speculate that
lower costs for updating client code may lead to greater flex-
ibility to API design, ultimately making API evolution more
practical.

Fig. 1 describes our approach for recording and replaying
refactorings. We consider a scenario in which one party
develops a library, which is then used by many other parties
to build client applications. For clarity, we present only the
activities carried out by one representative library developer,
and the activities carried out by one representative client
developer, who writes code which uses the library. The client
application has to be updated to accommodate the evolving
library. We record and replay refactorings to reduce the cost
of these updates. The figure shows how the development
process moves from one release of the library to the next
release.

The upper left box in Fig. 1 depicts Version 5.1 of the
BCEL library, which we use as our running example. BCEL
(bytecode engineering library)3 helps developers to write
programs that manipulate Java bytecode. The box contains
three representative classes which model Java bytecode en-
tities that can be manipulated using the library: Method,
Field, and JavaClass. As the library developer evolves the
library from Version 5.1 to Version 5.1-1, he renames the
three classes into BCELMethod, BCELField, and BCELClass.
Adding BCEL prefixes to these classes makes writing pro-
grams that use both BCEL and the Java reflection API
more convenient by avoiding name clashes, but names in
programs are a matter of taste and our approach does not
depend on any particular taste.

Library developer and client developer do not share a com-
mon repository for source code. Instead, the library devel-
oper packages up the library from time to time and delivers
it to the client developer as a JAR file, which is a com-
pressed archive containing the Java bytecode; this happens
twice in Fig. 1. Our approach does not assume that the
library is being shipped with source code—binary-only re-
leases are sufficient. The relatively loose coupling between
the library developer and the client developer is typical for
open-source projects. In Fig. 1, the upper right box depicts

SBCEL is available at http://jakarta.apache.org/bcel/.

ListSignatures. This is a small application which uses Ver-
sion 5.1 of the BCEL library to print the signatures of fields
and methods contained within a Java bytecode file.

Figure 1 shows that while the library developer refactors
his code, the integrated development environment (IDE)
collects a trace (bcel-refactorings.rrf), which the li-
brary developer ships to the client developer, along with
the new release of the library (bcel-5.1-1.jar). The li-
brary developer invokes refactorings supported by the IDE
explicitly through a menu within the IDE; some refactor-
ings require further information, which is collected in di-
alogs. We record all this information in our trace file
(bcel-refactorings.rrf), since it is needed to later replay
the refactorings. Relying on the IDE to collect the refactor-
ing trace has the advantage that the information we record
is correct, unambiguous, and complete. Beyond changing
the API by invoking supported refactorings, the library de-
veloper is free to change the implementation of the library
with or without using refactorings supported by the IDE, as
long as these changes do not impact the APIL.

The client developer can update his code
(ListSignatures.java) to use the new version of the
BCEL library by replaying the recorded refactorings
shipped with the library (bcel-refactorings.rrf). Thus,
in this way the client developer is able to migrate his code
to the new version of BCEL without manually updating
his code. Note that since the client code is updated
automatically, the library writer does not have to maintain
deprecated methods. An updated version of the client
application is shown in the lower right of Fig. 1.

In principle, any change to a software program that pre-
serves behavior can be understood as a refactoring. To pro-
vide as much benefit to their users as possible, modern IDEs
focus on the most commonly used, low-level refactorings
(e.g. Move Method), which are described in Martin Fowler’s
book [2]. As Joshua Kerievsky’s book demonstrates [5], IDE
support for the low-level refactorings is very useful even for
programmers who want to incorporate larger refactorings,
such as introducing a design pattern. While our approach is
not limited to low-level refactorings, this paper focuses on
the basic refactorings that are supported by current devel-
opment environments.

3. USER EXPERIENCE

This section describes how two users, a library developer
and a client developer, experience CATCHUP!, our proto-
type implementation of the idea described in Section 2. Our
prototype is implemented as a plugin for the Eclipse IDE,
which is an open-source Java IDE. For illustration, we use
our running example introduced in Section 2, Fig. 1.

3.1 Evolving the BCEL Library

Let’s assume the library developer has just shipped BCEL
version 5.1, as shown in Figure 1. Before he continues with
evolving the library, he downloads and installs CATCHUP!,
our Eclipse plugin. To activate the CATCHUP! plugin, he
invokes the “start refactoring session” menu entry within
the Eclipse IDE. This initializes CATCHUP! with an empty
recorded refactoring trace and also opens a view in the IDE
which continuously displays the trace. As discussed in Sec-
tion 2, the library developer renames some of the classes
within BCEL (Method +— BCELMethod, Field +— BCELField,
JavaClass — BCELClass) by invoking the “RenameType”
refactoring within Eclipse. The only difference to a regu-
lar Eclipse installation is that refactorings are now recorded
and added to the refactoring trace.

Fig. 2 shows a screenshot of the recorded refactorings view
in Eclipse, which displays the three “RenameType” refac-
toring events carried out by the library developer. For each
of these refactoring events, CATCHUP! has recorded the
type to be renamed and the new name. Additionally, the
“recorded refactorings” view allows the library developer to
annotate a refactoring event with a comment. By annotat-
ing the refactoring events with comments, the library de-
veloper can explain why he is making particular changes,
for example “Renaming to avoid name clashes”. The com-
ments are displayed when the client developer replays the
refactorings.

After renaming the classes, the library developer uses a
refactoring to introduce a factory. BCEL contains a class
Type and several subclasses to model types such as prim-
itive types, array types, and object types. 0ObjectType
is a subclass modeling types introduced by classes, e.g.
java.util.LinkedList. The constructor of ObjectType is
used by other classes within BCEL itself, but it is also used
by many client applications. It looks as follows:

1 public ObjectType(String class_name) {

2 super(Constants.T_REFERENCE, "L" +
class_name.replace(’.’, */’) + ";");

this.class_name=class_name.replace(’/’,’.’);

}

The library developer sees an opportunity to improve the
performance of BCEL itself and other applications using the
ObjectType class; he wants to introduce a factory, which
allows him to cache instances of ObjectType. Therefore,
he applies Eclipse’s “Introduce Factory” refactoring to the
constructor. A dialog asks for the name of the new factory
method, in which class it should be created, and whether
or not the visibility of the constructor should be protected.
Eclipse transforms the above snippet into:

(SIS

1 protected ObjectType(String class_name) {

super (Constants.T_REFERENCE, "L" +
class_name.replace(’.’, ’/’) + ";");
this.class_name=class_name.replace(’/’, ’.’);

}

o oA W N

7 public static getObjectType (String class_name){
s return new ObjectType(class_name);

o }

Additionally, Eclipse replaces all new ObjectType(...) in-
vocations with calls to getObjectType(...). The library
developer can now reimplement the body of getObjectType
so that it caches ObjectType instances. CATCHUP! records
the refactoring, which means that client applications will
also enjoy the benefit of this optimization without having to
be patched manually.

public class ClassParser {
private static final int BUFSIZE = 8192;

1
2
3 “ee
4+ public ClassParser (InputStream file,
5 String file_name) {
6 this.file_name = file_name;

7

8

9

this.file = new DataInputStream(
new BufferedInputStream(file, BUFSIZE));
10 }
11

Hy

Figure 3: ClassParser class from the BCEL library (sim-
plified).

Next, the library developer tackles another problem: The
ClassParser class (Fig. 3) uses a hard-coded buffer size for
loading bytecode files. The library developer would like to
give the control over the buffer size to the client application.
One way to accommodate this need without sacrificing client
compatibility is to add a parameter int bufferSize to all
constructors of ClassParser and to then create a conve-
nience constructor for each constructor. The convenience
constructor does not have the additional parameter but just
delegates using the default buffer size. Sometimes, this op-
tion is adequate; however, each time such a change is made,
the library developer has to double the number of construc-
tors. Furthermore, the signature of a convenience construc-
tor might conflict with another constructor already in the
class. Our approach provides a more flexible solution: The
library developer developer can introduce a new parameter
and use the default buffer size as a default parameter, which
will be added at all existing call sites. This works as follows.

First, the library developer changes the visibility of
the BUFSIZE field to public by editing the source code.
Then, he uses the “Rename Field” refactoring supported by
Eclipse to change the name of BUFSIZE to DEFAULT_BUFSIZE.
This generates a refactoring event which is shown in the
recorded refactorings view. The library developer then
applies the “Change Signature” refactoring to the con-
structor shown in Fig. 3. “Change Signature” is a pow-
erful refactoring which allows the developer to add and
delete parameters, and to modify the return type. In
this case, the library developer adds the parameter int
bufferSize and sets its default value to the Java ex-
pression ClassParser .DEFAULT_BUFSIZE. Eclipse will insert
the default value of the added parameter at all call-sites.
CatcHUP! records the “Change Signature” event in the
refactoring trace, including the default parameter value. Af-
ter introducing the parameter, the library developer edits
the code in the body of the constructor to replace the use
of the DEFAULT_BUFSIZE constant (alias BUFSIZE in Fig. 3,
1. 9) with a use of the parameter bufSize. Fig. 4 shows the

= lib =rpublic class BCELClass extends AccessFlags implements Cloneable. Hode |

i . - i o repository @ org.apat

iJ LICENSE txt pr1.xale Slr1.ng File_name; P f g.ap

L private String package_name; QCBCELCIESS(int int &t
private 5tring source_file_name = "<Unknown>"; o

£ o
private int class_name_index; @ ~BCELClass(int, int, 5t

private int superclass_name_index;

i s @ . accept{Visitor)
private String class_name; Rl

; LR R
4| r (4] 0
Recorded Refadorings 83 L:J €T %} g s w58
b ERename Type [Double dick to add comment.]
i new name = BCELMethod
i type = org.apache.bcel.classfile. Method
e @Rename Type [Double cick to add comment.]
i new name = BCELField
i type = org.apache.beel.classfile Field
& [Rename Type [Double dick to add comment.]

i new name = BCELClass

i type = org.apache.bcel.classfile JavaClass

LILn_l Save
Delete Refactoring
Add Comment to Refactoring
‘f% Go Home
% Go Back
» Go Into

Figure 2: Eclipse view for recorded refactorings.

1 public class ClassParser {

2 public static final int DEFAULT_BUFSIZE = 8192;
3 “ee

4 public ClassParser (InputStream file,

5 String file_name,

6 int bufSize) {

7 this.file_name = file_name;

8 “ e

9 this.file = new DatalnputStream(

10 new BufferedInputStream(file, bufSize));
11 }

12 .

13 }

Figure 4: ClassParser after refactorings.

resulting version of the ClassParser class.

The recorded refactorings view also allows users to remove
refactoring events from the trace (Fig. 2). Sometimes, the
library developer knows for sure that a refactoring will not
affect client code. Such refactoring events are not harmful,
but they clutter the refactoring trace, which also serves as
a changelog of the API (Section 3.3). The library developer
therefore uses his judgment to remove unnecessary events
from the trace. In our example, the “Rename Field” event
discussed in the previous paragraph can be removed from
the refactoring trace: Since it was private in the previ-
ous version of the library, and no reference from the client
application could be introduced by the refactorings before
the rename event, the library developer is certain that client
code cannot reference BUFSIZE at the point when the rename
event happens. Notice that this is true even though BUFSIZE
is a public field when it gets renamed.

Now the library developer is ready to release a Version 5.1-
1 of the BCEL library (Fig. 1). He saves the refactoring trace
as a text file by clicking the “Save” button of the recorded
refactoring view (Fig. 2), and uses Eclipse’s “Export JAR”
functionality to generate a new JAR file. He ships both the

CatchUp! Plug-in

JAR file to replace:
| /beel-client/lib/Regex.jar

Jbcel-client/libfbeel-5.1 jar

Please note: The old version of the JAR file will be overwritten.

Replacement JAR file:

levolution/&67_apievolution/casestudy/ 2/bcel-5.1-1.jar Browse:

Recorded Refactoring Trace:

:ion,."6?_apiev0Iutionfcasestudyf2jbca|—refactorings.rrf Browse;

Figure 5: Eclipse wizard for replaying refactorings.

< Back | Hext =

JAR file and the refactoring trace to the client developer.

3.2 Replaying the refactorings

The client developer currently uses Version 5.1 of the
BCEL library, but he would like to move to Version 5.1-
1 (Figure 1). Within the Eclipse IDE, he invokes our plugin
by selecting “Update Library” from the main menu. This
brings up our replaying wizard (Fig. 5). At the top of the di-
alog, the replaying wizard lists the JAR files that the current
project is using; the library developer selects which JAR file
he wants to update, bcel-5.1.jar. Below, the library de-
veloper selects the replacement JAR file, bcel-5.1-1. jar,

and the refactoring trace bcel-refactorings.rrf. After
having provided all necessary information, the library de-
veloper clicks the “Next” button.

This brings up a detailed preview of the changes shown
in Fig. 6. This screen has three segments. At the top, the
refactorings are listed, with the same view that we use for
displaying recorded refactorings (Fig. 2). When the client
developer clicks on one of these refactorings, the replay wiz-
ard displays annotations in the comment field (upper right),
and also populates the lower two segments of the dialog. In
the middle segment, the client developer can view a hierar-
chical change set that shows which resources will be changed,
and in which way. In our example, the client developer is
exploring how ListSignatures. java changes, which is the
code of the client application (see Fig. 1). When the client
developer clicks on the “update type reference” detail in the
middle view, the affected source code is highlighted in the
lower section of the screen. Note that the steps shown by
this preview are incremental; they show how the original
version of the client code is transformed step-wise into the
final version. For example, the version shown in the lower
left corner of Fig. 6 is the version just before applying the
“Rename Type” refactoring to rename Field into BCELField
(notice that BCELMethod has already been renamed in this
version), and the version shown in the lower right corner is
the version just after applying this refactoring. Since subse-
quent refactorings can destroy the results produced by pre-
vious refactorings, we feel that such a step-wise view is less
confusing than an aggregate view of the changes, in partic-
ular when the client developer wants to exclude particular
refactorings or changes from execution. We plan to add an
aggregate view in a future version of our tool.

After reviewing and excluding particular changes, the
client developer can commit the proposed changes or cancel
the dialog.

3.3 Manually replaying refactorings

There are reasons that could prevent developers from us-
ing CATCHUP! to replay the refactorings. For example,
the client application might be written in a language exten-
sion that is incompatible with Eclipse, such as an embedded
SQL dialect, or the developer is reluctant to use any tool
that transforms his code automatically.

Even though this situation is not optimal, our refactoring
trace file is in a simple, human-readable XML format, which
can be used as a precise documentation for the API changes.
To further improve the human readability of the trace, one
can write a style sheet that formats the refactoring trace as
a HTML document. Again, notice that the option to anno-
tate the refactoring trace with comments while it is being
recorded can add real value. As our tool matures, we also
envision CATCHUP! support for development environments
other than Eclipse.

4. IMPLEMENTATION

This section describes how we implement our prototype
CaTcHUP!, which incorporates the ideas described in Sec-
tion 2. We implement CATCHUP! as a plug-in for the Eclipse
IDE; however, many of the problems and solutions we de-
scribe in this section should apply to other development en-
vironments as well. We chose Eclipse because it is open-
source, which gave us great flexibility for our implementa-
tion.

4.1 Refactoring Support in Eclipse

Eclipse models refactorings as classes. The lifecycle of
a refactoring object involves these steps: (i) Instantiating
the appropriate refactoring class with parameters indicating
which entities should be refactored; (ii) Checking whether
the refactoring is applicable; (iii) Collecting all remaining
information necessary to execute the refactoring; (iv) Com-
puting a change object which models the changes to source
code and filesystem; and (v) Committing the change.

As an example for step (i), to instantiate a
MoveStaticMembers refactoring, one has to provide
the abstract syntax tree (AST) nodes modeling the set of
members that one wants to move. For example, suppose
methodF and methodG are two AST nodes modeling two
Java methods f and g. The following code creates a
refactoring object ref0bj, which will help us to move £ and
g into a Java class C. 4

MoveStaticMembersRefactoring refObj = (step (1))

new MoveStaticMembersRefactoring (
new IMember []{methodF ,methodG});

The refactoring object then provides a method that can be
used to test whether or not the refactoring is applicable
(step (ii)); for example, MoveStaticMembers requires that
the AST nodes provided as parameters are static members
belonging to the same class. E.g.

if (ref0bj.checkInitialConditions ().
hasFatalError())
throw new Exception(
¢ ‘Refactoring not applicable.’’);

(step (ii))

A wizard dialog tailored to the refactoring collects the the
remaining information (step (iii)). Handler routines for the
wizard dialog pass the user input to the refactoring object
and use the validation services provided by the refactoring
object. These can include program analyses which check for
problems with the user-supplied input. A simple example is
to detect name clashes: Moving a static method into a class
that already has a static method with the same name and
parameter types will be detected and reported to the user by
the wizard dialog. Once the user inputs validate successfully,
the refactoring object computes a change object (iv), which
is a recipe for modifying the source code.

refObj.setDestinationType (‘‘C’’); (step (iii))

if (ref0bj.checkFinalConditions ().
hasFatalError())
throw new Exception(
‘‘There is still a problem.’’);

Change change = refObj.createChange(); (step (iv))

The change object consists of editing deltas which describe
exactly how the source code needs to change. The wizard di-
alog presents a graphical view of the change to the user, and
the user can commit the changes or cancel the refactoring
dialog.

change . perform() ; (step (v))

4.2 Recording Refactorings

Our strategy is to extract enough information from the
refactoring objects so that we can later recreate them to re-
play the refactoring (Section 4.3). Furthermore, we want to

4The example code provided in this section is greatly sim-
plified.

Preview and select the changes made by the recorded refactorings.

Recorded Refactorings
[+ ERename Trpe
I [ARename Type

[+ ERename Trpe

Changes to be performed
~ m gHlistSignatures java - beel-client/sre/test
[B “=import declarations
< 8 G ListSignatures
= B & main(String[])

O 2 update type reference;
\1[ListSignatures.java

Original Source
public static void main(String[]l args) {
try {
ClassParser p = new ClassParser(nex FileInputStrean(|
lavaClass clazz = p parss(};
BCELMethod methods[] = clazz getHethodsi);
For (int 1 = 0, i < methods.length; i++) {
System. out println(” +methods[i] getMamei)+" “+m

}

Field fields[] = clazz. getFields(y; [N,
For (int i=0;i<fields. length;1++){
System out printlng""+Fields[i] getHame()),

}

} catch (Exception e) |
e printStackTrace(};
}
1

Comment

- Rename to avoid name clashes with java.lang.reflect Field. [

b [l channe Sianature b

Refaclored Source
public static void main(String[] args) | -
hds 1

ClassParser p = new ClassParserines FilelnputSt

JavaClass clazz = p parse(};

BCELMethod methods[] = clazz getMethods();

for tint i = 0; i < methods.length: i++) {
Systemout.printlni”"+methods[1] getHame()+

x|

1

BCELField fields[] = clazz.getFieldsi): [N
for (int i=0;1<fields. length, 1++){
System out printing""+Fields[i]. getHame());

}

} catch (Exception e) {
e printStackTrace();
H
}

< Back Next= | Cancel

Figure 6: Eclipse preview for replaying refactorings.

only record refactoring events that the user commits. Unfor-
tunately, Eclipse provides no hooks for observing refactoring
activities. This means that we had to add instrumentation
to one of the plugins provided with Eclipse. The constraints
for where to insert the instrumentation are: (i) Since com-
mitting refactorings by executing the edits modeled within
the change object causes destructive updates and thereby
invalidates some of the information collected by the refac-
toring object, we need to extract the information from the
refactoring object before the changes become effective. (ii)
We have to wait until all information has been accumulated
within the refactoring object.

It would seem sufficient to insert instrumentation triggers
whenever a user clicks the “Finish” button of the refactor-
ing dialog. Unfortunately, there are many implementations
of this dialog (one for each refactoring); we want to make
it easy to add support for new refactorings. Capturing an
event whenever a refactoring dialog has been closed does
not work either, since Eclipse creates a new thread which
executes the changes in the background to increase the per-
ceived responsiveness of the development environment. This
means that if we try to extract the information from the
refactoring object right after the refactoring dialog has been
closed, Eclipse’s internal representation may or may not be
valid, depending on when the thread executing the changes
is scheduled by the Java Virtual Machine.

To avoid these problems, we inserted code that passes
the refactoring object to our own plugin in two places: (a)
just after a change object has been created (after step (iv) in
Section 4.1), and (b) just after the refactoring has been com-
mitted (after step (v) in Section 4.1). After a change object

has been created (a), we collect all necessary information
from the refactoring object and store it in a corresponding
trace object. We maintain a mapping from refactoring ob-
jects to trace objects. If the user commits the refactoring
(b), we add the corresponding trace object to our refactoring
trace. The mapping is implemented using a WeakHashMap to
prevent memory leaks. We store the refactoring trace in a
simple, human readable XML format.

4.3 Replaying Refactorings

To replay refactorings, we recreate Eclipse’s refactoring
objects according to the specifications given in the refactor-
ing trace, and apply the changes they compute to the client
application. More precisely, this works as follows.

We start in the upper left of Fig. 7 with the client appli-
cation (ListSignatures.java) and the library packaged as
a JAR file (bcel-5.1.jar). To instantiate the refactoring
classes provided by Eclipse, we need to provide references to
the source code of the entities to be refactored. For exam-
ple, to rename Method to BCELMethod, we need to create an
instance of the “Rename Type” refactoring, which requires
a reference to the AST (abstract syntax tree) node modeling
Method.

CATCcHUP! generates Java source code stubs from the
bytecode for all classes contained in the library (Fig. 7, first
transition). The source code stubs only need to provide
the declarations for the classes, methods, and fields that are
part of the API (e.g., no private methods); this is sufficient
to create Eclipse’s refactoring objects. Since method bod-
ies are not important, we generate trivial bodies such as
return null;. We implemented our stub-generator using

client application
with library

bcel-5.1.jar

generate library stubs

updated client
application
with updated
library stubs

dropin ListSgnaturesjava

from beel-5.1 jar becel-5.1-1.jar bcel-5.1-1 jar
client application client application
with library stubs client application with library stubs
ndo ith i
ListSgnatures.java . with library stubs undo ListSgnatures.java
Method.java ListSgnatures.java BCELMethod.java
Field.java BCELMethod.java BCELField.java
JavaClassjava llf\jgtat:n?j Fieldjava execute BCEL Classjava
0d — -
JavaClassjava other
BCELMethod refactorings

Figure 7: Implementation of replaying refactorings.

the bytecode engineering library BCEL®. Generating stubs
for the BCEL library (370 bytecode files) takes about 20
seconds on a Pentium M laptop (1.3 Ghz). While this is
reasonable for a prototype, a production version of our tool
could be optimized by pruning many of the stubs. In par-
ticular, only the following stubs are needed: (i) stubs which
are referenced by the client application, (ii) stubs which are
referenced by a refactoring, (iii) the transitive closure of (i)
and (ii), i.e., stubs which are referenced by (i), (ii), or (iii).
Note that many methods and fields, even public ones, can
be pruned as well.

After generating the stubs, we remove the JAR file con-
taining the original library from the classpath of the client
application. At this point, we can use the refactoring
objects provided by Eclipse to execute the changes. In
Fig. 7, we first apply the refactoring that renames Method
to BCELMethod (second transition). Similarly, we apply all
remaining refactorings: Each refactoring object computes a
change object, which we apply to move to the next version
of the code. Moving from the lower left to the lower right
in Fig. 7 corresponds to moving from the unpatched ver-
sion of the client application to the updated version. This
is almost everything we need for visualizing the refactoring
steps in the preview dialog (Fig. 6): As the user clicks to
the next refactoring in Fig. 6, we move one step to the right
in Fig. 7. Fortunately, executing a change object results in
an undo object being computed, since change objects im-
plement the command pattern as described in the “gang of
four” book [3]. Therefore, when we move right in Fig. 7, we
store the undo objects. This allows us to move back and
forth between refactorings, providing the “preview” experi-
ence to the user.

Once the user clicks the “Finish” button of the refactoring
wizard (Fig. 6), we execute all outstanding refactorings to
arrive in the lower right of Fig. 7. Then, we remove the stubs
and drop the new version of the library (bcel-5.1-1.jar)
into the classpath of the client application.

5Yes, the very same library that we also use as a running
example.

5. IMPLEMENTATION STATUS AND FU-
TURE WORK

Our future work will focus on improving the usefulness of
CaTcHUP! as a software development tool.

First, we currently only support a subset of the refactor-
ings supported by Eclipse. Table 4 gives a description of the
current implementation status. The names of the refactor-
ings in the table correspond to refactoring classes provided
by Eclipse; between some refactorings, there is an overlap
in functionality. The most flexible refactoring is the change
method signature refactoring, which we support. Adding
support for all refactorings is tedious but not difficult. It
involves adding code for capturing and replaying, which are
both around 30 lines of code for most refactorings, and some-
times even less. Recently, the Eclipse project has added sup-
port for participant-based refactorings®, which allows par-
ticipant objects to observe some refactorings; participants
can then update update references to source code in text-
files and other non-Java code files such as Enterprise Java
Beans. With more refactorings supporting participants, the
code for recording refactorings could be further simplified.

A second improvement that would make it more conve-
nient to use the tool would be to embed the refactoring trace
within the JAR files. This means that only one download
will be necessary to update a library. When embedding the
refactoring trace within a JAR file, we will store all refac-
toring events since the beginning of the project within the
trace. This will allow us to update to the new library from
any previous version, by only executing the refactorings that
are new. This is significantly more convenient than our cur-
rent tool, which can only move from one library version to
the next.

We hope to improve the XML format for storing the refac-
toring trace. Currently, the names of the refactorings in the
trace are Eclipse-specific; we have engineered the format to
make it easy to implement within Eclipse. A more general
format will allow for easier collaboration between develop-
ment environments.

http://dev.eclipse.org/viewcvs/index.cgi/
“checkout”/jdt-ui-home/r3_0/proposals/
refactoring/participants.html

Table 4: Refactorings currently supported by our prototype implementation. For more details

please visit http://www-plan.cs.colorado.edu/henkel/catchup/.

Refactoring name

Description

and updated information,

Support

Rename Type

Rename a class or an interface

Full support

Moving Java Elements

Move a Java type from a package
to another package or into a class

Full support

Move static member

Move type, method, or field from one type to another

Untested

Change Method Signature

Change method name, return type, visibility
Add, remove, rename parameters

Set default value for added paramters

Add / remove exception types

Full support

Rename non-virtual method

Rename a non-virtual method

Recording only

Rename virtual method

Rename a virtual method

Recording only

Change Type

Generalize the type of a field, a paramter, or a return type

Recording only

Rename Field

Rename a field and optionally rename getters and setters

Replay untested

Use super-type where possible

Replace all occurrences of a type with a particular super-type

Recording only

Introduce Factory Add a factory method

We have seen some cases in which we would like to add
refactorings to Eclipse. For example, we have come across
situations in which we would like to replace all calls to
method £() with calls to method g() (before deleting f).
This is especially useful to clean redundant methods out
of libraries which are using the Java deprecation language
feature. Currently, a way to achieve this using Eclipse’s
refactorings is to rewrite £(){...} into £O){g();} and to
then use the “inline method” refactoring to inline £ at all
call sites, thereby eliminating £ and replacing all calls to £
with calls to g. This is is rather involved and unintuitive,
and it also exposes the implementation of the library and
therefore only works if the source code of this method ships
to the client developer. It would be nice to have a “Remove
Method” refactoring instead, which allows users to replace
all calls with a Java expression.

More generally, we believe that there are refactorings that
are particularly useful for refactoring APIs; as we gain more
experience from our prototype, we want to identify and sup-
port these refactorings particularly well. We believe that
API refactorings should also take advantage of formal spec-
ifications that describe the “protocols” used by client ap-
plications. For example, one way to evolve a class might
be to add a method £ which has to always be called before
another method g can be called; this could be expressed as
a refactoring which also captures the temporal constraint £
before g, and updates client code accordingly.

6. RELATED WORK

Refactoring is a well studied area.
the term in his PhD dissertation [8]. A recent survey by
Mens and Tourwe covers refactoring research [7]. A book
by Fowler explains many refactorings in great detail and
motivates their usefulness in practice [2].

Chow and Notkin present a system for semi-automatically
updating applications in response to library changes [1]. Our
work shares the same intention, which is to reduce the cost of
changing client applications. However, our use of integrated
development environments to record refactorings alleviates
the library programmer from writing a library change spec-
ification by hand. Also, while replaying change specifica-

Opdyke introduced

Optionally make the constructor private
Update clients to use factory method

Recording only

tions, the programmer of the client application can study
in detail the effect of each refactoring step on the client
application, along with annotations added by the library
developer. Furthermore, by reusing the implementations of
refactorings within an IDE, our implementation delegates
the tricky work of transforming and validating abstract syn-
tax trees to well-tested, industrial implementations.

Much work that has been done in database schema evolu-
tion and persistent type evolution (e.g., [6]) is complemen-
tary to our work. These threads of research analyze changes
in source code, in particular type declarations, to infer in
which way the types or schemas evolve. Even though auto-
mated inference of change operations or, in our case, detec-
tion of refactorings could be used as a basis for our system,
we leverage the rich information available in modern de-
velopment environments instead, which is available anyhow
and very accurate.

Keller and Holzle [4] present a method for patching soft-
ware components for binary compatibility. Their idea would
be a useful addition for our system: Instead of replaying
the refactorings to source code, we would generate speci-
fications for the binary component adaptation system and
modify bytecode when it is loaded into the JVM. While this
feature would be useful for dealing with legacy software com-
ponents, most refactorings are unsafe due to Java language
features such as reflection and native methods. In practice,
this is not problematic if the source code is reviewed and
the application is retested as advocated by Fowler [2], but
it would become an issue if we were to refactor binaries.

Concurrently to us, Borland, a commercial IDE vendor,
presented a set of new products at the JavaOne conference,
which allow teams of developers to share refactorings.” A
similar approach, based on Eclipse, is being implemented at
Lund University®. However, both solutions are centralized
and integrated within a configuration management server.
Therefore, they only scale to projects which share a common
infrastructure, such as a central repository. In contrast, our
solution is much more light-weight and also accommodates
loosely coupled projects which distribute their changes by

"June 29th, 2004, http://java.sun.com/javaone/borland2.html
Shttp://www.lucas.lth.se/cm/cmeclipse.shtml

posting new JAR files on websites, a technique typical for
open-source projects.

7. CONCLUSION

We described a novel approach to deal with changing re-
quirements for software components. Our idea is to extend
development environments to record and replay refactoring
events. This allows library developers more flexibility in
evolving APIs, and client developers more convenience by
automatically porting their application to a new version of
a library.

We implemented our idea as an Eclipse plugin called
CarcHUP!. We described how users experience CATCHUP!,
and how it is implemented. While we have some anecdotal
evidence that the tool is usable, we hope to collect more
case studies to guide the future development of CATCHUP!.
We will make CATCHUP! available for download in the near
future® and are interested in your feedback.

8. ACKNOWLEDGEMENTS

We thank Christoph Reichenbach, Martin Hirzel, Marco
Gruteser, and the anonymous referees for their insightful
and valuable feedback on this paper.

9. REFERENCES

[1] K. Chow and D. Notkin. Semi-automatic update of
applications in response to library changes. In ICSM,
pages 359—. IEEE Computer Society, 1996.

[2] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999. ISBN
0-201-48567-2.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patters. Addison-Wesley, 1995.

[4] R. Keller and U. Hoélzle. Binary component adaptation.
In ECOOP’98 - Object-Oriented Programming: 12th
FEuropean Conference, Brussels, Belgium, July 1998.

[5] J. Kerievsky. Refactoring to Patterns. Addison-Wesley,
2004.

[6] B. S. Lerner. A model for compound type changes
encountered in schema evolution. ACM Trans.
Database Syst., 25(1):83-127, 2000.

[7] T. Mens and T. Tourwe. A survey of software
refactoring. IEEE Transactions on Software
Engineering, 30(2):126-139, Feb. 2004.

[8] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

http://www-plan.cs.colorado.edu/henkel /catchup/

