
72 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 73 more queue: www.acmqueue.com

ALEX E. BELL, THE BOEING COMPANY

UML
Death by

72 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 73 more queue: www.acmqueue.com

Self-diagnosis and early

treatment are crucial in the

fight against UML Fever.

A potentially deadly illness, clinically referred to
as UML (Unified Modeling Language) fever, is
plaguing many software-engineering efforts today.

This fever has many different strains that vary in levels
of lethality and contagion. A number of these strains are
symptomatically related, however. Rigorous laboratory
analysis has revealed that each is unique in origin and
makeup. A particularly insidious characteristic of UML
fever, common to most of its assorted strains, is the dif-
ficulty individuals and organizations have in self-diagnos-
ing the affliction. A consequence is that many cases of the
fever go untreated and often evolve into more complex
and lethal strains.

Death by

Fever

74 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 75 more queue: www.acmqueue.com

Little has been published in medical annals on UML
fever because it has only recently emerged as an afflic-
tion. The New England Journal of Medicine has been silent
on the disease, as has research produced by the world’s
most prestigious medical institutions. The content of
this article represents many years of on-the-job research
and characterizes all known strains of UML fever, as well
as many of the known relationships recognized to exist
between them. The article will conclude with disclosure
of the only known antidote for the many and varied
strains of UML fever.

Before commencing with the characterization of UML
fever and its associated symptoms, it is important to
emphasize that UML itself is not the direct cause of any
maladies described herein. Instead, UML is largely an
innocent victim caught in the midst of poor process, no
process, or sheer incompetence of its users. Through no
fault of its own, however, UML sometimes does amplify
the symptoms of some fevers as the result of the often
divine-like aura attached to it. For example, it is not
uncommon for people to believe that no matter what task
they may be engaged in, mere usage of UML somehow
legitimizes their efforts or guarantees the value of the
artifacts produced.

This article exploits the fact that the presence and
associated severity of many software-related maladies on
a program can often be observed and measured in terms
of UML: too much, too detailed, and too functional,
for example. Some readers may be quick to suggest that
the same exploitation could be made regardless of a
program’s selected modeling approach. There may be
some truth here, but no other technology has so quickly
and deeply permeated the software-engineering life cycle
quite like UML.

THE METAFEVERS
Extensive research has shown that UML fever can be cat-
egorized into four well-defined groups, known as metafe-
vers. Their common laboratory names are delusional,
emotional, Pollyanna (a person regarded as being foolishly
or blindly optimistic), and procedural (see figure 1). Each

of these metafevers is described in the following sections,
as are the strains associated with them. Although much
more is known about each of the strains than written, the
objective of this particular article is to describe them to
the extent that they are characterized and distinguishable
from the others.
Delusional Metafever. The delusional metafever com-
prises UML fever strains that are considered by many to
be among the most deadly. This metafever is best known
by its devastating effects on the thought and judgment
processes of otherwise healthy managers and engineers. It
is very common for the fevers in the delusional category
to damage the human immune system to such an extent
that the body becomes susceptible to many other UML
fever strains (see figure 2).
Utopia fever. Subjects afflicted with utopia fever typi-
cally believe that UML is a radical new technology with
almost divine origins. Mutterings such as, “How did we
get where we are today without UML?” and “Just think
how much more advanced our technological revolution
would be if we only had UML 20 years ago?” are com-
mon among those afflicted. Other symptoms of this fever
include an amnesia-like condition causing people to
forget that many complex software-based systems have
been successfully built over the years without the benefits
of UML.

This fever’s direct symptoms are relatively benign on
their own, but contracting utopia fever will most cer-
tainly result in affliction of more dangerous strains, par-
ticularly 42 fever (described later) where UML is believed
to be the answer to all problems. A good litmus test for
probing suspected carriers of utopia fever is to ask if they
know of UML’s origins or what methodologies engineers
were using before UML to design complex software-inten-
sive systems.

Reality is that which, when you stop believing
in it, doesn’t go away.—Philip K. Dick

Blind adopter fever. This strain is recognized in those
afflicted by a loss of judgment when it comes to assessing
appropriate usage of available technologies and processes
for their own programs. As opposed to tailoring or reject-
ing, victims of blind adopter fever tend to accept what
other people have done on other programs even though
it may not be applicable to their own.

Engineers afflicted with blind adopter fever have been
observed to blindly force state machine semantics into all
of their classes just so they can take advantage of forward
engineering technologies that convert UML diagrams into
code. Another observed symptom of this fever includes

UML
Death by

Fever

74 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 75 more queue: www.acmqueue.com

usage of software development processes or process
frameworks right out of the box as opposed to tailoring
them to fit the needs of their own programs. A side effect
of using such processes is wasting time and money on
producing many unnecessary artifacts.

With most men, unbelief in one thing springs from blind
belief in another.—Georg Christoph Lichtenberg

Abracadabra fever. The most frequently observed symptom
of those afflicted with abracadabra fever is an impaired
sense of reality. Managers afflicted with this fever have
been observed salivating profusely when told of technolo-
gies that automatically develop software from UML dia-
grams. Thoughts of improving code productivity metrics,
previously dragged down by having to develop extremely
complex business logic, also produce symptoms that
include wide eyes and mutterings of large Christmas
bonuses. One can only imagine the future symptoms of
abracadabra fever when managers postulate automatic
development of entire systems using MDA (Model-driven
Architecture).

While managers are the primary demographic afflicted
by abracadabra fever, engineers have also been known
to be susceptible. A common symptom of this fever on
the engineering level is the expectation of almost surreal
information being derived from gargantuan UML models.
Insights into throughput, fault tolerance, latency, and sys-
tem safety, for example, are
just a few that are expected
solely from UML mod-
els without having to be
bothered with writing code
or doing engineering work
to characterize comprehen-
sive component behaviors.
Abracadabra fever appears
to be very infectious
among engineers who have
little practical experience
using UML.

The truly educated man is
that rare individual who can

separate reality from illu-
sion.—Author Unknown

42 fever. As opposed to the
celebrated “42” being the
answer to any question
about life or the universe,
as suggested in Doug-

las Adams’s The Hitchhiker’s Guide to the Galaxy,1 those
afflicted with 42 fever argue that “UML” is actually the
correct answer. The classical symptom of those afflicted
with 42 fever in the sphere of software engineering is to
have an a priori delusion that UML is the solution for all
software-engineering problems. Research has shown that
the delusion in victims of 42 fever can be significantly
reduced by secretly playing subliminal messages in their
work areas emphasizing that UML’s creators did not
intend for it to be the answer to all of software engineer-
ing’s dilemmas.2

Although 42 and abracadabra fevers are similar and
often afflict their victims simultaneously, some subtle
differences are worthy of note. Those afflicted with 42
fever believe that UML is the correct answer to all ques-
tions, period. Those suffering from abracadabra fever, on
the other hand, are not deluded that UML is necessarily
the answer to everything, only the problems where they
believe it to be the magical answer.

 If the only tool you have is a hammer, you tend to see
every problem as a nail.—Abraham Maslow

Curator fever. Much as a museum curator has a fascination
and passion for paintings, those in the software engi-
neering realm afflicted with curator fever have a similar
absorption in UML diagrams. This absorption is fueled by
curator fever’s propensity to delude its victims into believ-

◊

t

◊

<<metametafever>>
UML fever

<<metafever>>af
delusional

<<metafever>>af
emotional

<<metafever>>af
Pollyanna

<<metafever>>af
procedural

FIG 1

<<metafever>>
delusional

<<fever>>
blind

adopter

<<fever>>
abraca-
dabra

<<fever>>
42

<<fever>>
curator

<<fever>>v
gravita-
tional

<<fever>>v
utopia

FIG 2

76 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 77 more queue: www.acmqueue.com

ing that production of UML diagrams, as opposed to the
engineering content behind them, is the single most
important activity in the software-development life cycle.

A commonly observed behavior by those in the grips
of curator fever occurs when domain analysts create
volumes of use-case diagrams but remain oblivious to the
fact that the most important artifact of use-case model-
ing is developing the supporting text.3 UML interaction
diagrams with messages analogous to “solve world hun-
ger” between objects are of little value to any stakehold-
ers. Use-case modelers afflicted with curator fever often
declare software designers incompetent if they are unable
to produce software designs based on extremely high-
level diagrams. The only place a software designer would
typically prefer a picture over a thousand words is in a
museum.

A painting in a museum hears more ridiculous opinions
than anything else in the world.—Edmond de Goncourt

Gravitational fever. This fever causes delusions in those
afflicted to believe that gravitational acceleration enables
their UML artifact mass to have value. For those unfamil-
iar with Newton’s second law of motion, those suffer-
ing with gravitational fever believe that the progress of
software-engineering effort is directly proportional to the
weight of the project’s UML artifacts.

Research has shown that software managers are the
demographic most susceptible to gravitational fever.
A commonly observed symptom of this fever is for
managers overseeing a
code-hacking frenzy to
direct development staff
to reverse engineer their
code into voluminous
UML diagrams. These UML
diagrams are subsequently
passed off as design
models, as opposed to the
implementation models
they really are.

Gravitational fever is

often misdiagnosed as curator fever because of the simi-
larity of the two afflictions. The subtle difference between
these fevers, however, is that those afflicted by curator
fever are very interested in the quality of UML diagrams,
whereas those afflicted by gravitational fever care only
about their weight.

Those who speak most of progress measure it
by quantity and not by quality.—George Santayana

Emotional Metafever. The strains composing the emo-
tional metafever group tend to attack and take advantage
of the human body’s emotional system. They include the
fingerpointing, comfort zone, desperation, and sacred
cow fevers described in this section (see figure 3).
Fingerpointing fever. This fever coincidentally strikes those
who are in the final stages of recovering from more
serious fevers previously contracted. The severity of
fingerpointing fever appears to be directly related to the
amount of time and money previously wasted developing
unnecessary UML artifacts while being ravaged by other
fevers. A frequent symptom of fingerpointing fever is for
its afflictees to unjustifiably blame a software-develop-
ment process or framework for advocating the develop-
ment of too many UML artifacts. Another common
symptom of this fever is to blame UML itself for being too
expressive and encouraging design artifacts to be modeled
to unnecessarily low levels of detail.

It is no use to blame the looking glass if
your face is awry.—Nikolai Gogol

Comfort zone fever. Victims of comfort zone fever typi-
cally enjoy a hypnotic sense of tranquility while they are
engaged in activities focused on creating UML artifacts.
Clinical analysis has shown that any attempt by its afflict-
ees to migrate from creating UML diagrams onto software
development activities later in the life cycle causes this
tranquility to abruptly and traumatically cease. As a
result, the victim’s UML diagrams become large in num-

UML
Death by

Fever

<<metafever>>
emotional

<<fever>>
comfort zone

<<fever>>
desperation

<<fever>>v
fingerpointing

<<fever>>v
sacred cow

FIG 3

76 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 77 more queue: www.acmqueue.com

ber and extremely detailed (much to the delight of those
suffering from gravitational fever).

Comfort zone fever is recognized by resistance in its
victims to depart from the comforts of UML diagram
creation. Program risk is often amplified in the presence
of comfort zone fever since the proposed designs are
not validated as early as they should be in the form of
implementation.

The scholar who cherishes the love of comfort
is not fit to be deemed a scholar.—Confucius

Desperation fever. Extensive clinical research has identi-
fied a correlation between the occurrence of desperation
fever and the existence of project traumas such as slipped
schedules, low productivity, and poor product quality. A
symptom of those plagued with desperation fever is flat-
tened ears that result from spending inordinate amounts
of time on the telephone speaking with vendors in search
of products that will solve all known project woes.

Victims of desperation fever often purchase expensive
UML-centric products only to discover later that correct
usage of those products does not align with their absent
or broken software-development processes, often the
root of their problems in the first place. The severity of
desperation fever typically escalates as the result of highly
paid consultants telling afflictees that newly purchased
products will not bring benefits without major overhauls
to existing software-development practices.

It is characteristic of wisdom not to do
desperate things.—Henry David Thoreau

Sacred cow fever. Those afflicted with sacred cow fever
develop intense emotional attachments to UML diagrams
and refuse to allow any that have outlived their useful-
ness to die with the dignity they may deserve. Sacred cow
fever results in many costs to a program including the
cost of maintaining obsolete artifacts, misinformation
propagation, and unnecessary consumption of stor-

age resources. Clinical research suggests that this fever
causes its victims to believe that by throwing away UML
diagrams they are somehow negatively impacting the
forward progress of the program (much to the delight of
gravitational fever afflictees).

Treatment for victims of sacred cow fever should
include a counseling regimen reinforcing that the value of
UML diagrams is often transient and discarding those that
are no longer of value is encouraged.4

It is a very sad thing that nowadays there is
so little useless information.—Oscar Wilde

Procedural Metafever. The UML fever strains belonging
to the procedural metafever (see figure 4) tend to impair
their victims from recognizing that they are not following
a development process or that they may be following a
very bad one. The procedural metafever strains are known
as open loop, circled wagons, gnat’s eyebrow, kitchen
sink, and round trip.
Open loop fever. The effects of open loop fever stimulate
the urge for rampant creation of UML diagrams with no
traceable objective or having no obvious stakeholder.
Victims of open loop fever believe that the act of creating
UML diagrams alone is a guarantee of value-added activ-
ity. Clinical research has suggested that individuals most
susceptible to open loop fever are those who have never
been end users of UML diagrams and those whose ride on
the software life cycle has been very limited.

Hypnotism has proven effective in easing the symp-
toms of open loop fever. Victims are programmed to
tie creation of diagrams to program objectives5 and to
engage with diagram clients to ensure that their needs are
addressed. Post-hypnotic interviews with victims of this
fever have resulted in the discovery that UML diagrams
are not always the preferred artifacts of those downstream
in the life cycle.

Furious activity is no substitute for understanding.
—H. H. Williams

Circled wagons fever. Exten-
sive clinical research6 has
led to the discovery of
circled wagons fever. Its
primary symptom is its
victim’s tendency to use
UML use-case diagrams
to capture fine-grained
functional decompositions
of their domain space. This
fever’s name is derived

<<metafever>>
procedural

<<fever>>v
open loop

<<fever>>
circled wagons

<<fever>>v
gnat’s eyebrow

<<fever>>
kitchen sink

<<fever>>v
round trip

FIG 4

78 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 79 more queue: www.acmqueue.com

from observations that its victims have a propensity to
create use-case diagrams in the dreaded wagon train for-
mation, as illustrated in figure 5.

Despite the noble intentions of its victims to conduct
object-oriented domain analysis, research has shown
that circled wagons fever amplifies its victim’s natural
tendency of breaking a problem down into smaller and

smaller chunks to the extent of becoming a compulsive
behavior. As opposed to simplifying the use-case mod-
eling activity, victims of circled wagons fever actually
complicate it by making the use-case model much more
difficult to understand.

Circled wagons fever is often observed in victims
having functional decomposition backgrounds. This
fever knows no boundaries, however; even people with
object-oriented experience sometimes fall victim. This is a
very common fever, and its symptoms should be carefully
monitored within the engineering staff, particularly in
the early stages of a program life cycle.

Wisdom is knowing what to do next;
virtue is doing it.—David Starr Jordan

Gnat’s eyebrow fever is recognized in its victims by a very
strong desire to create UML diagrams that are extremely
detailed. Not to be confused with comfort zone fever,
where detailed modeling is a side effect of emotional
factors, afflictees of gnat’s eyebrow fever emphatically
believe that it is important to model to very low levels of
detail because doing so increases the probability that the
resulting code will be more correct. Because of variables
such as flux in system requirements and dependent
design activities occurring in parallel, for example, the
time spent on low-level modeling is often better applied
to actual implementation.

Clinical research has shown a high affliction rate of
gnat’s eyebrow fever in those modelers who have not
actually participated in coding activities. A theory sup-
porting the research findings suggests that the coding
experience is very important to developing a sense of
value that provides modelers with insight into what is and
what is not valuable to downstream clients of the model.

Good judgment comes from experience. Experience
comes from bad judgment.—Jim Horning

Kitchen sink fever. Victims of kitchen sink fever crave the
idea of building gargantuan UML models that include all
fine-grained design elements in their detailed splendor.
Kitchen sink fever is often accompanied by abracadabra
fever in victims who believe that in the absence of code,
information can be derived by describing the low-level
behaviors of interactions spanning the model’s repre-
sented subsystems. Victims of kitchen sink fever typically
spend significant amounts of time recovering from the
effects of crashes of their modeling tools.

Clinical research has shown that one reason victims
of kitchen sink fever desire all possible artifacts in their
models is that they have a poor understanding of the

UML
Death by

Fever

<<metafever>>
Pollyanna

<<metafever>>af
shape shifter

<<metafever>>f
square peg

<<metafever>>af
one-eyed man

FIG 6

add
order change

order

delete
order

approve
order

order
inquiry

FI
G

 5

78 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 79 more queue: www.acmqueue.com

information that can be realistically derived from them.
Research has also shown that those infected with this
fever have typically never used a gargantuan model.

Men have become fools with their tools.
—Thomas Elisha Stewart

Round trip fever. The primary symptom has a very serious
effect on those afflicted: a complete loss of the ability to
use abstraction as a means of managing the complexities
of software design. Victims of round trip fever often fail to
recognize the difference between a UML design model and
an implementation model that they reverse engineer from
detailed code. Software architects responsible for conduct-
ing design reviews typically give failing grades if they are
given implementation models in review packages.

The origins of round trip fever appear to be rooted
in technology. Its victims typically start the traditional
design cycle by creating very low-level implementation
models so they can take advantage of reverse engineering
toolsets. The demographic that round trip fever primarily
targets is new graduates who are technologically-centric
rather than architecturally-centric. Further research is
required, but the downstream impact of what appears

to be a serious deficiency of abstraction capability in our
young engineers is a serious concern.

Our life is frittered away by detail.
Simplify, simplify.—Henry David Thoreau

Pollyanna Metafever. The strains associated with the
Pollyanna metafever (see figure 6) are typically observed
in managers and characterized as being the result of fool-
ish or blind optimism. The Pollyanna metafever includes
square peg, one-eyed man, and shape shifter fevers.
Square peg fever. This strain causes its victims to believe
that all project staff members are interchangeable regard-
less of experience, background, or education. Symptoms
include placing requirements personnel into the roles
of software designers and assigning anyone capable of
using a UML modeling tool into the domain analyst role.
Square peg fever has the propensity to cause rampant
UML fever of all strains when methodologists are put into
the roles of technologists and practitioners.

Research has shown that some cases of square peg
fever are triggered by the ability of most anyone to create
UML diagrams that resemble artifacts of value to desper-
ate observers. Square peg fever is particularly prevalent in
the face of staffing shortages or skill-set imbalances.

No amount of artificial reinforcement can offset the natu-
ral inequalities of human individuals.—Henry P. Fairchild

One-eyed man fever. We have long heard the adage that
“the one-eyed man is king in the land of the blind.” This
adage is embodied in the realm of software engineering
as one-eyed man fever and usually afflicts managers who
place in positions people who do not have nearly the
expertise required to perform in those positions. Victims
of one-eyed man fever may be recognized by their selec-
tion of the project’s UML visionary based solely on the
number of half-day syntax classes previously attended.

This fever appears to have a high incidence rate in
managers who don’t understand the technologies under
their jurisdiction to the extent required for making deci-
sions about them. A very undesired side effect of one-
eyed man fever is that the blind in the organization often
mistake the one-eyed man’s practices as best practices and
adopt them.

A painting in a museum hears more ridiculous opinions
than anything else in the world.—Edmond de Goncourt

Shape shifter fever. Victims of shape shifter fever demon-
strate raging affliction by sending people to brief design
tool and language syntax classes with the expectation
that they return as experts in best practice. Afflictees mis-

Life with UML: It’s Still Work
PHILIPPE KRUCHTEN,
SOFTWARE ARCHITECT

Many of the fevers identified in Alex’s “Death by
UML Fever” are related to the software process,
absence of a software process, or to fundamental
misunderstanding of what a process is for. I hear
comments such as: “Oh, we ran all the activities
described by RUP (Rational Unified Process) and
created all the UML (Unified Modeling Language)
diagrams it prescribes...” or “There is this widget
in UML, and I can’t find how RUP says to use it.”
UML is a notation that should be used in most cases
simply to illustrate your design and to serve as a
general roadmap for the corresponding implemen-
tation. Unfortunately, some users of UML leave
their brains in the lobby, get settled behind their
keyboards, and get busy drawing UML diagrams
because doing so is a much easier alternative than
doing difficult software engineering work.

80 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 81 more queue: www.acmqueue.com

take the ability to navigate “File � New � Class Diagram”
dropdowns as the signature quality of a software designer.
The symptoms of shape shifter fever are particularly
exacerbated when classes on tool and language usage are
taught out of context from how they will actually be used
on a program. As some believe “clothes make the man,”
afflictees of this fever believe “UML makes the designer.”

Much like the other strains in the Pollyanna metafever
category, shape shifter fever is most prevalent in times of
budget constraints and staffing shortages.

Education is like a double-edged sword. It may be
turned to dangerous uses if it is not properly handled.

—Wu Ting-Fang

THE BATTLE
The diverse strains of UML fever described are based on
first-hand pain and observation as opposed to simply
being the musings of a fiction writer. The lighthearted
manner in which the fevers are described should in no
way placate the reader into believing that they are not real
or that their symptoms are not potentially having serious
impacts on the success of their own software programs.

At the root of most UML fevers is a lack of practical
experience in those individuals responsible for selecting
and applying the technologies and processes underlying
a program’s software-development efforts. This lack of
experience translates into both unrealistic expectation
and misapplication of technology, often aggravated by
nonexistent or bad software-development processes, a
perfect breeding ground for UML fever. If a software orga-
nization’s battle against UML fever is to be successful, it
is absolutely critical that people with practical experience
are in place driving the selection of technologies, as well
as developing the processes for their associated usage.

The battle against UML fever is even further compli-
cated by the difficulties some software organizations have
in self-diagnosing their affliction. As previously suggested
in the characterization of the delusional metafevers, some
organizations can become so completely absorbed with
UML that they lose sight of their primary objective, devel-
oping software, in favor of building gigantic models. In

such cases, independent and expert help from outside of
the organization may be the only option for initiating the
UML fever recovery process. Program management must
regularly evaluate staff in influential positions for UML
fever because its onset is sometimes gradual. Failure to
promptly diagnose UML fever may result in its spread at
epidemic proportion with devastating impact.

Systematic diagnosis of UML fever is possible only if its
symptoms are catalogued, characterized, and publicized—
three explicit objectives of this article. Diagnosis, how-
ever, is only the first step in the recovery process. Afflicted
software organizations must also identify and diligently
follow appropriate treatment regimens if they are to rid
themselves of UML fever’s debilitating effects. The road
to recovery is not always easy. Well-intended individuals
attempting to launch diagnosis and treatment programs
for their afflicted organizations may have to endure the
unpleasantries of denial, groundless rationalization, and
anger, often with intensities directly related to how high
in the organization’s leadership hierarchy UML fever has
stricken. The battle against UML fever can be won, but
not until it is recognized as a genuine malady, and those
who are afflicted with it get on the road to recovery. Q

REFERENCES
1. Adams, D. The Hitchhiker’s Guide to the Galaxy. Crown

Publishing Group, New York: NY, 1980.
2. Rumbaugh, J., Jacobson, I., and Booch, G. The Unified

Modeling Language Reference Manual. Addison-Wesley,
Boston: MA, 1998.

3. Larman, C. Applying UML and Patterns. Prentice Hall
PTR, Upper Saddle River: NJ, 2001.

4. Ambler, S. The Practices of Agile Modeling; http:
//www.agilemodeling.com/practices.htm.

5. Ambler, S. The Principles of Agile Modeling; http:
//www.agilemodeling.com/principles.htm.

6. Bittner, K. Why Use Cases are not “Functions.”
The Rational Edge. (December 2000); http:
//www.therationaledge.com/content/dec_00/t_
ucnotfunctions.html.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ALEX E. BELL (alex.e.bell@boeing.com) is a software
architect with The Boeing Company. He has more than
22 years of software experience in a variety of domains
that include command and control, air traffic control,
and telecommunications.
© 2004 ACM 1542-7730/04/0200 $5.00

UML
Death by

Fever

80 March 2004 QUEUE rants: feedback@acmqueue.com QUEUE March 2004 81 more queue: www.acmqueue.com

The late ‘80s and early ‘90s saw the proliferation of many
competing software design methodologies, each with
unique concepts, notations, terminologies, processes, and
cultures associated with them. While some of these method-
ologies introduced new and innovative ideas, most aspired
to very similar objectives although used dissimilar geometri-
cal figures, colors, and vocabularies to achieve them.

The emerging methodological stew brought with it con-
sequences that included an increasing number of software
engineers with nonportable skills, a bane of toolsets that
were not interoperable, and an inability to characterize soft-
ware design in a commonly understandable form. Because
none of the methodologies was emerging as a frontrunner,
the software engineering industry was desperate for stan-
dardization to drive badly needed unification.

The UML (Unified Modeling Language) was specifically
created to serve as this unifying force and was unanimously
adopted as a standard by the OMG (Object Management
Group) in November 1997. The UML introduced a standard
notation and underlying semantics with which its users
could describe and communicate software design as never
before. Its notation was designed to transcend programming
languages, operating systems, application domains, and
software life-cycle phases to meet the needs of an industry
hungry for order. The dawn of a new age in software engi-
neering was poised to emerge.

And emerge it did. Six years since its adoption by the
OMG, the UML continues to be widely embraced by the
software engineering community. Software development
organizations continue to invest in UML training, UML-
enabling toolsets, and integration of the UML into their
development processes. Many organizations across the globe
have successfully used the UML in innova-
tive ways to improve how they design and
develop software.

Many other organizations, however, have
not enjoyed the successes they assumed
to be implicit by merely using the UML.
Success with the UML requires thought and
planning accompanied by an understanding
of its purpose, limitations, and strengths-
much like the usage of any technology.
It is only through such awareness that an
organization is most capable of applying
the UML to address its unique needs, in its
own context, and in a value-added manner.
Blind adoption and usage of technology for

technology’s sake is a recipe for disaster for any technology.
The maladies described in Alex’s “Death by UML Fever”

are often indicative of an organization’s misunderstanding of
the UML, but more so, a systemically troubled development
process in whose context it is used. For example, the UML
was not intended to model every single line of an organiza-
tion’s software to pristine detail. It was not intended to be
a front-end syntax to define the context for comprehensive
simulations. It was not intended for drawing diagrams that
have no value or do not tie back to a software development
process. And finally, the UML was certainly not intended to
supplant the software development process itself. On the
contrary, the UML was and is meant to be an important
element of a software development process whose objec-
tives include prescribing value-conscious usage of applicable
technologies.

The next significant evolutionary milestone for the UML
is the release of version 2.0, scheduled for 2004. Six years of
industry experience with UML 1.x have exposed several areas
worthy of upgrade and include improvement for behavioral
specification, as well as user extensibility. The eagerly awaited
improvements of UML 2.0, however, do not eradicate UML
fever, nor do they minimize susceptibility to it. Intelligent
usage of technology, observing a good software develop-
ment process, and having experienced people with the
proper skill mix are as critical to success now as in the days
before the UML.

The entertaining tenor of “Death by UML Fever” should
not be inferred to suggest that UML fever is an imaginary
ailment. It is genuinely real, it is thriving, and its presence
is causing cost and schedule trauma on many software
programs right now. Furthermore, the root causes of this
fever, in general, have nothing to do with the UML itself:
Rather, this fever and its various manifestations are largely
symptoms of deeper ills in an organization’s software devel-

opment practices. Software organizations
should consider launching self-diagnosis
campaigns to assess the presence or extent
of UML fever on their programs and plan
rehabilitation strategies as necessary. Devel-
oping good software is a difficult enough
task without having to endure the prevent-
able and often painful complications of the
dreaded UML fever.

GRADY BOOCH is one of the original
developers of UML and is recognized
for his innovative work on software
architecture, modeling, and software
engineering processes.

The Fever is Real
GRADY BOOCH, IBM FELLOW

The software
engineering industry
was desperate
for standardization
to drive badly
needed
unification.

