Ed Seidewitz, In:eliData Technologies

model-driven development.................................

f today’s software developers use models at all, they use them

mostly as simple sketches of design ideas, often discarding them

once they’ve written the code. This is sufficient for traditional

code-centric development. With a model-driven approach, how-

ever, the models themselves become the primary artifacts in the devel-

opment of software. In this case, a clear, common understanding of the

semantics of our modeling languages is at least as important as a clear,

common understanding of the semantics of
our programming languages.

There has been, and continues to be, a
great deal of discussion within the software
community on modeling and metamodeling
and the relationships between modeling lan-
guages and metamodeling languages. Such re-
lationships’ circular nature makes them partic-
ularly hard to discuss clearly, often hiding
many important but subtle issues at the foun-
dation of what we do when we model.

To address these issues as clearly as possi-
ble, I examine a set of questions whose an-
swers, taken together, will help us understand
the fundamental question, “What do models
mean?” The result is a set of careful defini-

tions for key terms that will let us cut through
some of this topic’s more confusing aspects.
To understand the intent behind these defi-
nitions, we must also look at how other disci-
plines use models. After all, we should realize
that, with a true model-driven approach to
software development, we are using models in
much the same way that other scientific and
engineering disciplines use them. So, I’ve illus-
trated the definitions with simple (nontechni-
cal) discussions of modeling in Newtonian
physics and its application to engineering.
The article’s primary goal is, however, to
discuss the modeling of software. Since the
Object Management Group first specified the
Unified Modeling Language in 1997, UML
has become the common modeling language
of the software development community.

(UMLs current version is 1.5;! the draft spec-
ifications for Version 2.0 are entering the
OMG “finalization” process.>3) Thus, any
discussion of software models must employ
UML terms, as I do in this article.
Nevertheless, we begin first not with an in-

A model's meaning has two aspects: the model’s relationship to
what’s being modeled and to other models derivable from it.

Garefully considering both aspects can help us understand how to
use models to reason about the systems we build and how to use
metamodels to specify languages for expressing models.

26 IEEE SOFTWARE Published by the IEEE Computer Society 0740-7459/03/$17.00 © 2003 IEEE

quiry into the modeling language but with an
even more basic question.

What is a model?

A model is a set of statements about some
system under study. Here, statement means
some expression about the SUS that can be
considered true or false (although no truth
value has to necessarily be assigned at any par-
ticular point in time).

We can use a model to describe an SUS. In
this case, we consider the model correct if all
its statements are true for the SUS.

Models are usually descriptive in tradi-
tional scientific disciplines. A common kind of
model in Newtonian physics might describe a
set of physical objects—say the planets in the
solar system, which would be the SUS in this
case. Such a model makes statements on the
positions, velocities, and masses of the planets
at some point in time as they orbit the sun.
The model is correct if those statements corre-
spond to observations of the actual planets.

We can similarly use a UML model to de-
scribe an existing software system’s structure
and operation. Suppose that the SUS is an ob-
ject-oriented software system. We could use a
UML class model to make statements about
the system’s classes and how they’re related.
Additional models could make statements on
how we expect instances of those classes to in-
teract, resulting in state changes over some pe-
riod. These models would be correct if the ac-
tual system’s structure and behavior are
consistent with those described in the models.

Alternatively, we can use a model as a spec-
ification for an SUS or a class of SUS. In this
case, we consider a specific SUS valid relative
to this specification if no statement in the
model is false for the SUS.

Models usually serve as specifications in
traditional engineering disciplines. For exam-
ple, the physical objects in a Newtonian model
could be spacecraft rather than planets. In this
case, the model might specify beforehand
what trajectories the spacecraft should take,
rather than describe their trajectories after the
fact. If the spacecraft deviate from the in-
tended trajectories, the spacecrafts’ design and
operation, not the model, are likely invalid.

When we construct software, we also gen-
erally use models as specifications. So, the
same UML models we used descriptively might
also serve as a design specification for the OO

software system. In this case, if the as-built
software’s structure or behavior deviates from
the design specification, it’s the software that’s
invalid (at least relative to this specification).

How is a model interpreted?

An interpretation of a model is a mapping
of the model’s elements to elements of the SUS
such that we can determine the truth value of
statements in the model from the SUS, to some
level of accuracy. Colloquially, an interpreta-
tion of a model gives the model meaning rela-
tive to the SUS. If this mapping is invertible, so
that we can map the SUS elements to model el-
ements, then we can also construct a model as
a representation of an SUS, such that all the
statements in the representation are true for
the SUS under the interpretation mapping.

Newtonian physics represents a particle’s
position and velocity in 3D space as vectors of
three numbers. The interpretation of, say, the
position vector, is that some element of the
universe identified as a particle will be found
at the x, y, z Cartesian coordinates given by
the vector’s three numbers, relative to some
origin point. Such an interpretation is a com-
mon, generally accepted convention among
scientists and engineers who use Newtonian
models (although it is not the only conven-
tion—you could instead use r, 6, ¢ polar co-
ordinates, for example).

The interpretation of, say, a UML class
model is not as conventionally fixed as in the
case of Newtonian models. Instead, the inter-
pretation might be given by an accepted com-
munity profile for using UML, or it might be
simply the consequence of (perhaps implicit)
local design conventions. For example, a
UML profile for Java might interpret a UML
class model as specifying that there are Java
classes corresponding to the UML classes and
that references between instances of those
Java classes implement associations in the
class model. On the other hand, a UML pro-
file for business modeling would have a very
different interpretation of a class model, in
terms of business entities such as workers and
resources.

How is a model used?

A theory is a way to deduce new statements
about an SUS from the statements already in
some model of the SUS. We can consider this
as a way to extend the original model or as a

September/October 2003

Interpretation

IEEE SOFTWARE

27

_ way to determine whether the model conforms

Given a model
that conforms

28

to a theory,

IEEE SOFTWARE

to the theory. In the latter case, any statements
deduced from some subset of the model must
be consistent with any other statements in the
model. Two statements in a model are consis-
tent if they can both be true for the SUS (that
is, the truth of one statement does not neces-
sarily imply the falsity of the other).

Given a model that conforms to a theory,
we can use an interpretation of the model to
make deductions about an SUS by making de-
ductions within the model using the theory. If
we’re modeling descriptively, we consider a
theory correct if deductions made about the
SUS using the theory correspond to what is ac-
tually observed of the SUS (to some level of ac-
curacy). On the other hand, for a specification
model, we assume that the theory is correct, so
that all statements deducible from the specifi-
cation also effectively become part of the spec-
ification. That is, not only can no statement in
the specification model itself be false for a
valid SUS, but also no statements deducible
from the specification can be false.

For example, given the positions, velocities,
and masses of two particles at a particular
point in time, we can use Newton’s theory of
gravity to deduce the particles’ trajectories
over time under the influence of their mutual
gravitational attraction. Alternatively, given a
model of the two particles’ trajectories, we can
determine whether the trajectories are consis-
tent with the Newtonian theory of gravity.
These models predict how actual particles will
move. Newtonian theory is correct up to the
level of accuracy at which relativistic effects
become significant.

Similarly, given a UML class model of an
OO system and the system’s initial state, the
“theory of UML class modeling,” such as it is
given by UML semantics, lets us deduce how
instances of those classes will interact and
how their states will evolve under a given set
of external stimuli. Also given a UML interac-
tion model for the system, such a theory lets us
deduce whether this model is consistent with
the class model. We could use these models to
predict the operation of the software system
(objects as instances of classes). For descrip-
tive models, UML semantics are correct to the
extent that, for example, hardware limitations
and failures can be ignored. For specification
models, the software system is valid if it doesn’t
violate any prediction.

http://computer.org/software

How is a model expressed?

A modeling language lets us express the
statements in models of some class of SUS.

Because computer science has traditionally
focused so much on languages, the concept of
a modeling language sometimes receives more
prominence than the concept of a model itself.
This is not usually so in other scientific and
engineering disciplines. Nevertheless, the lan-
guages used for modeling in those disciplines
are just as important as the languages used in
software modeling.

In Newtonian physics, vector calculus is the
primary modeling language. Although you don’t
find books on “Newton’s Modeling Language,”
you can certainly find textbooks on vector cal-
culus, even ones targeted at practicing scientists
and engineers rather than mathematicians. In-
deed, Newton more or less had to invent differ-
ential calculus to first present his theory.

For software modeling, UML has become
the de facto modeling language. In fact, the
class of SUS covered by UML has grown be-
yond just software systems. UML now covers
any SUS for which it’s useful to make state-
ments about the data maintained or the be-
havior the system exhibits relative to its envi-
ronment—including such things as businesses
and even hardware.

What is a metamodel?

A metamodel is a specification model for a
class of SUS where each SUS in the class is it-
self a valid model expressed in a certain mod-
eling language. That is, a metamodel makes
statements about what can be expressed in the
valid models of a certain modeling language.

Computer science’s language focus leads to
the concept of a metamodel being much more
prominent in software modeling than in other
modeling disciplines. It does, however, appear
in other disciplines, implicitly or explicitly (al-
though the term metalanguage is more com-
mon than metamodel in, say, mathematical
logic). For example, mathematics provides the
metamodel for vector calculus, and hence for
Newtonian physics, usually as expressed in
various mathematical textbooks.

The metamodel concept for software mod-
eling is also particularly important because it
forms the basis for the UML definition. The
UML specification document is indeed a meta-
model for UML. That is, it includes a set of
statements that must not be false for any valid

UML model. (This metamodel, in its entirety,
includes all the concrete graphical notation,
abstract syntax, and semantics for UML.)

How is a metamodel interpreted?

Because a metamodel is a model of a mod-
eling language, an interpretation of a meta-
model is a mapping of the metamodel’s ele-
ments to the modeling language’s elements,
such that we can determine the truth value of
statements in the metamodel for any model
expressed in the modeling language. Because a
metamodel is a specification, a model in the
modeling language is valid only if none of
these statements are false.

If the interpretation mapping for a meta-
model is invertible, we can also uniquely map
elements of the modeling language back to el-
ements of the metamodeling language. In this
case, given any model, we can invert the inter-
pretation mapping to create a metamodel rep-
resentation of the model—that is, a set of true
statements about the model in the metamodel-
ing language.

To continue the example of mathematics as
the metamodel for vector calculus, textbook
definitions provide the mapping of general
mathematical concepts to the elements of vec-
tor calculus. A statement in vector calculus is
valid if it is well formed relative to these defi-
nitions. (Interestingly enough, the more formal
these definitions, the less meaning they actually
impart—indeed, the term formal indicates the
importance of form over meaning.)

The abstract syntax metamodel for UML is
basically a data model of how to store or in-
terchange data on a UML model’s syntactic
structure. We interpret this metamodel by
mapping instances of the metaclasses in the
metamodel (where both the metaclasses and
their instances are expressed in the metamod-
eling language) to the syntactic elements of the
UML graphical notation (that is, elements of
the modeling language). This is an invertible
mapping, so that we can also map syntactic el-
ements of the UML graphical notation back to
their representations as instances of meta-
classes (which is indeed how the mapping is
usually specified).

How is a metamodel used?

A theory of a metamodel is a way to deduce
new statements about a modeling language
from the statements already in the modeling

language’s metamodel. Because a metamodel
is a specification, a valid model in the model-
ing language must not violate any statement
deducible using the theory from the explicit
metamodel statements.

One way to look at this is to consider the
metamodel’s statements as postulates about
the modeling language. Then, given the meta-
model representation of a model, we can de-
termine, using the theory, whether the model’s
representation is consistent with the meta-
model (in the sense defined in the earlier dis-
cussion of theory). If it’s consistent, the model
is valid; otherwise, the model isn’t.

For example, mathematical theories are rig-
orous systems for making deductions about
mathematical statements. In formal mathe-
matics, the deduction system is actually more
important than any meaning the statements
might have.

In the UML metamodel, the abstract syntax
constrains the allowable structure of and rela-
tionships between model elements represented
as instances of metaclasses. This is the theory
of the syntactic metamodel. If the instances in
the metamodel representation of a UML
model meet these constraints, the UML model
is well formed; otherwise it isn’t.

It’s common mental shorthand to identify a
UML model element directly with its abstract-
syntax metamodel representation (for example,
the class X with its representation as an instance
of the metaclass Class) and to loosely refer to
the model element as being directly “an instance
of” the metaclass (for example, class X “is an in-
stance of” the metaclass Class). However,
strictly speaking, the concept of “instance of”
has meaning only within the theory of the meta-
modeling language, not between a metamodel-
ing-language element (the metaclass Class) and
a modeling-language element (the class x).

How is a metamodel expressed?

Because a metamodel is a model, we ex-
press it in some modeling language. A single
modeling language might have more than one
metamodel, with each expressed in a different
modeling language.

Of particular interest for our purposes is
when a modeling language’s metamodel uses
that same modeling language. That is, the
statements in the metamodel are expressed in
the same language the metamodel is describ-
ing. We call this a reflexive metamodel.

September/October 2003

representation,

we can
determine
whether a

IEEE SOFTWARE

29

Interpretation

30

Crosses
metalayers;
d theory
resides in
a single
metalayer.

IEEE SOFTWARE

A minimal reflexive metamodel uses the
minimum number of elements of the modeling
language (for the purposes of that metamodel).
That is, every statement about the modeling
language that must be stated in the metamodel
(for its purpose) can be expressed using this
minimal set of modeling elements. But, if any
element were removed from the set, some es-
sential statements couldn’t be expressed.

As Kurt Godel showed, we can use state-
ments of number theory to make statements
about number theory itself (for example, “This
proof is false”), given an appropriate encoding
of number-theoretic statements as numbers.*
This allows number theory to express a reflex-
ive metamodel for itself. Because, in principle,
we can reduce all mathematical statements to
set theory, and mathematical statements can
themselves be expressed using mathematics, set
theory (in principle) provides a minimal reflex-
ive metamodel for all of mathematics.

In a similar vein, we can use UML’s object-
modeling features to make statements about
its abstract syntax, given an appropriate rep-
resentation of UMD’s surface notation as ob-
ject structures. This abstract-syntax represen-
tation is, essentially, the abstract parse tree for
any concrete surface notation. The abstract
syntax’s metamodel elements are then classes,
and the interpretation mapping identifies
model elements with instances of those classes.
We can express the entire UML abstract syn-
tax using a minimal subset of UML’s static-
structure modeling constructs (for UML 1.5,
this subset includes classes, packages, associa-
tions, generalizations, and dependencies).
Other metamodeling languages used in the
UML specification are the Object Constraint
Language and English.

OMG has defined metamodels for lan-
guages other than UML, such as its Common
Warehouse Metamodel,” used for modeling
data warehouses. The common basis for all
OMG metamodels is the OMG Meta-Object
Facility. As the framework used for defining
specific modeling languages, the MOF spec-
ification adopts a four-layer metamodeling
architecture:®

B MO—What is to be modeled

B M1—Models (for example, a UML model)

B M2—Metamodels (for example, an abstract-
syntax model in the UML specification)

B M3—The meta-metamodel

http://computer.org/software

Layer M3 is a specification of the modeling
language used to express metamodels in M2. In
OMG, this is always the MOF metamodeling
language. This metamodeling language is reflex-
ively specified, so no higher layers are needed.

In terms of the OMG metamodeling layers,
interpretation crosses metalayers. For exam-
ple, the interpretation mapping for UML maps
from the model elements, which are in M1, to
the SUS elements, which are in MO. Similarly,
there are interpretation mappings from meta-
model elements in M2 to model elements in
M1 and from meta-metamodel elements in
M3 to metamodel elements in M2.

On the other hand, a theory resides in a sin-
gle metalayer. For example, a theory of UML
allows some models to be deduced from other
models (for example, instance models from
class models), entirely in M1. Similarly, a the-
ory of the UML abstract syntax allows a UML
model’s validity to be determined entirely in
M2, after the model is mapped to its meta-
model representation.

How is a reflexive metamodel
interpreted?

Because a reflexive metamodel is expressed
in the same modeling language it describes, its
interpretation provides a mapping of the model-
ing language onto itself. Generally, this mapping
will be from the entire modeling language to a
subset. We can then iterate this mapping, each
time producing a smaller subset, until we reach
the minimal reflexive metamodel that maps
completely onto itself rather than a subset.

An interpretation of a minimal reflexive
metamodel maps the metamodel onto itself.
This means that any statement in the minimal
reflexive metamodel can be represented in
terms of elements of the minimal reflexive
metamodel. However, the interpretation of
this representation is itself expressed reflex-
ively as a mapping to yet another representa-
tion in terms of the minimal reflexive meta-
model. This circularity means that, for a
minimal reflexive metamodel, the interpreta-
tion mapping really provides no useful expres-
sion of the metamodel’s meaning.

The problem here is that, even though the
interpretation mapping maps the set of model-
ing elements in a minimal reflexive metamodel
into that same set, it does not map any given
model into itself. Instead, on each iteration of
the mapping, it generates increasingly compli-

cated representations of the original model. As
I noted earlier, the fundamental thing we need
is a theory that lets us use the metamodel rep-
resentation of a model to determine whether
the model is well formed. To break the circu-
larity, however, this theory cannot depend on
any reflexive interpretation mapping of the
metamodel. Instead, it ultimately must be pro-
vided in terms of more basic concepts (per-
haps via a formal mathematic semantics or an
explicit set of axioms and deduction rules).

So, what do models mean?

A model’s meaning has two aspects. The
first is the model’s relationship to the thing be-
ing modeled. This is meaning in the sense of
“This class model means that the Java pro-
gram must contain these classes.” Ive called
this an interpretation of the model. Multiple
interpretations of the same model can exist—
for example, you could interpret a certain log-
ical class model as the design for either a Java
program or for a C++ program.

The second aspect is the model’s relationship
to other models derivable from it. This is mean-
ing in the sense of “This class model means that
instances of these classes are related in this
way.” I've called this a theory of the modeling
language; this is often called the modeling lan-
guage’s “semantics” (although the definition of
interpretation in this article is closer to how the
term semantics is used in the study of natural
languages). Once again, multiple theories for a
single modeling language can exist—for exam-
ple, one theory might provide the “standard ex-
ecution semantics” for UML, while another is
tailored to mirror Java semantics.

Both these aspects of meaning are impor-
tant for the very reasons we do modeling.

If we’re modeling descriptively, we’ll gener-
ally create a model representation from a given
SUS. The resulting model’s interpretation is
then exactly a description of the SUS. We create
such a model so that we can analyze the SUS by
reasoning about the model. To reason about the
model, we need a theory; to relate the results of
this reasoning back to the SUS, we need to use
the interpretation mapping again.

If we’re modeling as a specification, then
we’ll generally create one or more SUS intended
to meet that specification. The specification’s
interpretation determines the constraints on
how we may construct a valid SUS. We then
want to be able to deduce from the specification

the SUS’s observable properties. This lets us test
that the SUS is correctly built by observing
whether it has these properties. To make these
deductions, we need a theory; to relate the de-
duced properties back to the as-built SUS, we
need to use the interpretation mapping again.

When we’re metamodeling, the metamodel
is a specification and the SUS is a modeling
language. In the case of UML, we gain con-
ceptual economy by using UML reflexively as
the metamodeling language for its own ab-
stract syntax. However, this reflexivity tends
to lead, in many discussions, to a conflation of
the two aspects of meaning, which should
strictly be understood as distinct, even in re-
flexive use.

For example, the “instance of” relationship,
which is formally defined only within the the-
ory of the UML modeling language, tends to
get identified with the interpretation mapping
from metaclass instances to UML model ele-
ments. But simply providing the interpretation
mapping (meaning in the first sense) doesn’t
provide a formal definition of what “instance
of” means in the metamodel (meaning in the
second sense). To provide an appropriate
grounding for any deductions based on our
metamodel, we must understand the meaning
of “instance of” within the theory of our meta-
modeling language, independently of the inter-
pretation mapping we happen to use between
the metamodel and modeling elements.

This is, admittedly, a somewhat subtle, eso-
teric point. However, it’s an example of the
care we must take when discussing our model-
ing languages’ underpinnings. Understanding
the interplay between model and metamodel,
and between theory and interpretation, is cru-
cial as we create the foundations on which to
build widespread model-driven development.

Such concerns are certainly not unique to
our discipline, as I've tried to show. But they
are, perhaps, even more important to us than
to other communities, with the peculiar com-
bination of mathematics, logic, and engineer-
ing that provides material for our field. And,
of course, they remain for us areas of active
research and inquiry, not yet resolved into
commonly accepted tenets.

This article has attempted to take another
step toward such a common foundational un-
derstanding. For, in the end, models are really
just tools, and they mean what we need them
to mean to build successful systems. @

September/October 2003

Understanding
the interplay
between model

and between
theory and

Interpretation,

IS crucial.

IEEE SOFTWARE

31

About the Author References o
1. OMG Unified Modeling Language Specification, ver.

1.5, OMG document formal/03-03-01, Object Manage-

Ed Seidewitz is the chief architect at InteliData Technologies Corporation, where he's ment Group, Mar. 2003; www.omg.org/technology/
responsible for the model-driven approach being used to architect and develop the company’s documents/formal/uml.htm.

In!eIiWorks line of banking software. He fi[sl be(gme invplved with d,evelopmem of ob]e.ct- 2. Unified Modeling Language: Infrastructure, ver. 2.0,
oriented software systems and methodologies while working at NASA's Goddard Space Flight OMG document ad/03-03-01, Object Management
Center. He has used UML since the prestandardized 0.9 version and has been heavily involved Group, 2003.

in the OMG process subsequent to UMLs adoption. He has a BS in aeronautics and astronautics 3. Unified Modeling Language: Superstructure, ver. 2.0,
and in computer science and engineering from the Massachusetts Institute of Technology. He's OMG document ad/03-04-01, Object Management

a member of the ACM. Contact him at InteliData Technologies, 11600 Sunrise Valley Dr., Res- Group, 2003.

fon, VA 20191; eseidewitz@intelidata.com. 4. K. Godel, On Formally Undecidable Propositions of Prin-

cipia Mathematica and Related Systems, Dover, 1962.

5. Common Warehouse Metamodel (CWM) Specification,
ver. 1.1, OMG document ptc/02-01-07, Object Manage-
ment Group, 4 Feb. 2002; www.omg.org/technology/

AcknOWIedgmenls documents/formal/cwm.htm.

I conceived this article while reflecting on UML 2.0 6. Meta Object Facility (MOF) Specification, ver. 1.4,
proposals and ongoing threads on OMG mailing lists. A OMG document formal/02-04-03, Object Management
particular inspiration was the “3C” proposal.” I greatly Group, Apr. 2002, Section 2.2; www.omg.org/technol-
thank Ed Barkmeyer, Steve Cook, Andy Evans, William ogy/documents/formal/mof.htm.

Frank, Dave Frankel, Steve Mellor, Joaquin Miller, Jim 7. OMG Unified Modeling Language Specification (re-

vised submission), 3C: Clear, Clean, Concise, ver.
2.0.13, OMG document ad/02-09-15, Object Manage-
ment Group, 9 Sept. 2002.

8. E. Seidewitz, “What Do Models Mean?” OMG document
ad/03-03-31, Object Management Group, Mar. 2003.

Rumbaugh, and Bran Selic for reviewing earlier versions
and participating in lively email discussions of the arti-
cle’s topics. This enjoyable interaction culminated in the
informal paper “What Do Models Mean?” made avail-
able to the OMG community.® Steve Mellor suggested 1
write a new version of the paper for this special issue. I
thank Steve for his vote of confidence and for working For more information on this or any other computing topic, please visit our
with me to adapt the paper to a wider audience. digital library at hitp://computer.org/publications/dlib.

Reuer

Our tools help developers
understand, document, and
maintain impossibly large or
complex amounts of source
code

se Engineering Tools

D |

“EEE Key Features:

Fast on big projects ’

Quick and easy to use—no complicated or fussy
setuf |mmed|ate1¥ usefu L
PERL,/C/C+-+ API for custom reports/documentation
Automatic creation of graphics and documentation
Export to common graphics formats and Visio

Cross reference everything in source

Variet¥ of hierarchical an Fraphical views (including
With Trees, Call Trees, Include Trees, Extended-By
Trees, Ada Structure Graj ohs, and many others)
Code colorizing source editor and printing

Rapid code navigation and editing

They parse Ada 83, Ada 95,
FORTRAN 77, FORTRAN
90, FORTRAN 95, K&R C,
ANSI C and C++, and Java
source code to reverse
engineer, automatically
document, calculate code
metrics, and help your
engineers understand,
navigate and maintain source

.

Supported Languages:

» Ada 83 and Ada 95

e Java

e ANSIC, K&R C, and C++
.

.

FORTRAN 77, 90, 95
Can create custom languages on request

Supported Languages:

« Windows 95, 98, NT 4.0, 2000, XP
code that has grown too large + Linux (Inted
for one person (or even a : aOI_a";

o SGI Irix
group) to know o Alpha (OSF)

Big projects aren’t a problem. The tools can parse
and later manipulate very large amounts of code.
1,000,000 SLOC projects (and larger) are

common among our customers. Dowiibadiupdipfophiodt.code;

Scientific Toolworks, Inc.
info @scitools.com
(802) 763-2995

http://www.scitools.com/

We also focus on exceptional customer support
based on rapid response from a real engineer

All downloads are fully functional, just time limited.

32 IEEE SOFTWARE http://computer.org/software

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

