

An Experimental, Pluggable Infrastructure for
Modular Configuration Management Policy Composition

Ronald van der Lingen and André van der Hoek
Department of Informatics

School of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA
{vdlingen,andre}@ics.uci.edu

Abstract

Building a configuration management (CM) system is
a difficult endeavor that regularly requires tens of thou-
sands of lines of code to be written. To reduce this effort,
several experimental infrastructures have been developed
that provide reusable repositories upon which to build a
CM system. In this paper, we push the idea of reusability
even further. Whereas existing infrastructures only reuse
a generic CM model (i.e., the data structures used to cap-
ture the evolution of artifacts), we have developed a novel
experimental infrastructure, called MCCM, that addition-
ally allows reuse of CM policies (i.e., the rules by which a
user evolves artifacts stored in a CM system). The key
contribution underlying MCCM is that a CM policy is not
a monolithic entity; instead, it can be composed from
small modules that each address a unique dimension of
concern. Using the pluggable architecture and base set of
modules of MCCM, then, the core of a desired new CM
system can be rapidly composed by choosing appropriate
existing modules and implementing any remaining mod-
ules only as needed. We demonstrate our approach by
showing how the use of MCCM significantly reduces the
effort involved in creating several representative CM sys-
tems.

1. Introduction

Despite the availability of many different CM systems
that range in functionality from relatively simple version
archives to advanced process-based environments, new
CM systems continue to be developed on a regular basis.
Some of these systems enter the marketplace, either com-
mercially [11,15,22] or as free alternatives [6,8,26]. Oth-
ers are developed primarily for in-house use [1,18]. Yet
others are academic in nature and explore the boundaries
of CM [4,5,8,9].

Unfortunately, designing and implementing a new CM
system is difficult [7]. Anecdotal evidence indicates that it
regularly takes a minimum of several years and tens of
thousands of lines of code to create a fully-functional new
CM system. Consider, for instance, the Subversion project
[26]. Initiated in May 2000, Subversion now consists of
over 100,000 lines of code and has iterated through more
than 25 (alpha) releases. It still has a number of issues to
be addressed and completion of the project is not expected
soon. This is surprising given the modest goal of Subver-
sion: to provide a better implementation of CVS that re-
solves certain functional deficiencies [27].

Various factors contribute to needing this kind of effort
when building a new CM system. Some factors are inher-
ent to the CM system being built and cannot be avoided,
for instance when a CM system is to contain novel func-
tionality. That functionality has to be created from scratch
(e.g., one goal of Subversion is to operate securely in dis-
tributed settings; goals of other new CM systems include a
unique graphical user interface; etc.). Other factors, how-
ever, are fundamental to the field at large. In this paper,
we focus on one of those fundamental factors: the lack of
an effective platform with which CM policies can be com-
pactly expressed and (at least partially) reused in the im-
plementation of new CM systems. CM policies constitute
the rules by which a user evolves the artifacts stored in a
CM system. Most CM policies share similar concerns and
their implementations are often similar in nature. In Sub-
version, for instance, a non-trivial part of its code base
reimplements significant parts of the CM policy of CVS.
If such common code could be factored out and reused
across multiple CM systems, significant savings in terms
of time and effort could be achieved.

In this paper, we describe MCCM, a new experimental
infrastructure that we specifically designed to address this
problem. Compared to existing infrastructures [29,32,34],
which only support reuse of a generic CM model (i.e., the
data structures used to capture the evolution of artifacts),
MCCM pushes the idea of reusability further—from just

reusing a generic CM model to additionally allowing re-
use of critical parts of CM policies. MCCM is based on
the key observation that a CM policy is not monolithic;
rather, it can be composed from small, reusable modules
that each address a unique dimension of concern. Using
these modules, the core of a desired new CM system can
be rapidly assembled by first choosing an appropriate set
of existing modules, then implementing any additional
modules as needed, and finally plugging the resulting set
of modules into the generic, pluggable, and distributed
architecture provided by MCCM.

MCCM explicitly distinguishes constraint modules and
action modules. Constraint modules plug into the MCCM
server (repository) side to maintain, as prescribed by a
desired CM policy, the consistency of the CM model. For
example, constraint modules may be used to prevent
branching or disallow replication of artifacts over multiple
repositories. Action modules plug into the MCCM client
(workspace) side to, also per the desired policy, enact the
rules of that policy. For example, action modules may
lock necessary artifacts, or determine whether particular
actions should operate hierarchically (e.g., a commit of a
collection leads to a commit of its constituent artifacts).

To demonstrate the use of MCCM, we performed two
experiments. In our first experiment, we built approxima-
tions of RCS [25], CVS [3], and Subversion [26], as well
as a prototype CM system based on change sets. Although
none of these systems are as fully functional as their real-
world counterparts, they illustrate reuse of modules across
a variety of CM policies. Our second experiment com-
pares an existing CM system, DVS [4], as it was originally
implemented using NUCM [29] and now re-implemented
using MCCM. This experiment shows the key benefit of
our approach: a significant reduction in effort.

The contributions of this work are two-fold. Theoreti-
cally, we show that CM policies can be broken down into
individual modules that each address a unique dimension
of concern. Practically, we contribute the pluggable archi-
tecture and base set of modules that constitute the MCCM
infrastructure. Combined, these lay the basis for an effec-
tive new approach to CM system building—one based on
extensive reuse.

The remainder of this paper is structured as follows. In
Section 2, we discuss relevant background material within
the field of CM. We introduce our high-level approach in
Section 3, and discuss the implementation of MCCM in
Section 4. We present our experience in using MCCM in
Section 5, discuss related work in Section 6, and conclude
in Section 7 with an outlook at our future work.

2. Background

While a few CM systems have the exact same CM pol-

icy (e.g., RCS and its clones), most CM systems differ in

their policies in one way or another. Some differ in rela-
tively minor (but still important) ways, such as whether a
version number is reserved immediately when an artifact
is checked out [12] or assigned only after a new version of
the artifact is checked in [25]. Others differ in more dra-
matic ways, such as whether or not they support branching
[31] or whether or not they the support change sets [33].

Of interest to this paper is the evolving relationship be-
tween CM models, or the way artifacts are structured and
stored in CM systems, and the CM policies used to govern
changes to these artifacts. Early CM systems, such as RCS
[25], SCCS [21], and Sablime [2], were created from the
ground up. It was therefore possible to design and imple-
ment the CM models of these systems to precisely support
their associated policies. Consequently, the data structures
used by these CM systems to capture the evolution of arti-
facts are finely tuned and highly specialized to their re-
spective CM policies.

Recognizing that it is inefficient to build each new CM
system from scratch, architects of CM systems in the late
80’s and early 90’s searched for ways to reduce this effort.
The reuse of existing CM systems and database systems in
their entirety as storage facilities proved to be a good ini-
tial solution. For instance, CVS [3] and several other CM
systems were built by wrapping RCS with additional func-
tionality, and ClearCase [13] (then DSSE) was built upon
a commercial database system (Raima).

Unfortunately, while advantageous from a reuse point
of view, this approach also has its drawbacks. In particu-
lar, it creates a serious disconnect between the CM model
as provided by the underlying technology and the needs of
the CM policy as implemented by the new CM system. As
an example, the CM model of RCS does not support the
storage and management of collections of artifacts, some-
thing that is needed by the CM policy of CVS. As another
example, generic database systems rarely provide version-
ing facilities, something that is needed by all CM systems.
This disconnect must be addressed, and generally requires
the implementation of mappings from an ideal CM model
(as supported internally by the code implementing the new
CM system) to an actual CM model (as supported by the
reused database or CM system). Unfortunately, in the case
of advanced CM policies these mappings become so com-
plex that the approach of reuse is often deemed not prag-
matic. Many new CM systems therefore are still imple-
mented from the ground up.

Several experimental infrastructures have been created
in response to this problem (e.g., EPOS [32], NUCM [29],
ICE [34]). These infrastructures blend the aforementioned
approaches of reusing an entire CM system and reusing a
generic database. In particular, they each provide a reus-
able repository that is specifically designed to support the
building of new CM systems. The repository intrinsically
supports the storage of versioned artifacts, exposes a pro-
grammatic interface specifically designed for manipulat-

ing those artifacts, and internally leverages a generic CM
model that can be used to support a broad variety of CM
policies. A new CM system, then, is implemented by util-
izing the functions in the programmatic interface to cus-
tomize the generic repository to the needs of the desired
CM policy, and building the rest of the CM system (in-
cluding CM policy) on top of the customized repository.

These infrastructures have undergone some preliminary
evaluations by their designers in terms of building proto-
type CM systems. Although these prototypes are largely
experimental in nature, they demonstrate that it is possible
to implement a broad variety of CM policies, and show a
varying, but sizeable reduction in the effort it takes to im-
plement new CM systems (sometimes reaching a ten-fold
reduction).

Summarizing the discussion, Figure 1 depicts the archi-
tecture of CM systems as it evolved over time. Dark shad-
ing represents reuse of existing facilities; light grey high-
lights the part that is necessarily unique to the CM system
being built. The balance between these two has changed
from building an entire CM system from the ground up, to
reusing an existing database or CM system, to leveraging
a reusable repository with a generic CM model that can be
customized and accessed through an associated program-
matic interface. Our work represents the next step in this
evolutionary path: by reusing CM policies in association
with a generic, pluggable repository, the amount of unique
code that needs to be designed and developed to create a
new CM system is further reduced as compared to previ-
ous approaches.

3. Approach

The design and implementation of MCCM was sparked
by an experiment in which we modeled ten different CM
policies using NUCM [28]. By design, these policies cov-
ered a diverse set of approaches and philosophies, ranging
in complexity from a basic check out/check in policy to an
advanced change set policy. Moreover, they varied in the
distribution of artifacts over multiple repositories as well
as in the kinds of artifacts managed. While we expected a
set of widely differing approaches to the implementations

of the policies, we observed an interesting pattern quite to
cerns and often addressed these concerns in similar ways.
This was all the more surprising given our use of NUCM,
which provides a generic CM model and already factors
out much code common to manipulating this model. This
means that the details of the policies themselves are much
more alike than one would initially suspect.

MCCM capitalizes upon this observation by providing
an architecture designed to exploit the similarities of CM
policies. Shown in Figure 2 (and updated from our initial
architecture introduced in [30]), the architecture separates
the different concerns of CM policies by providing a ge-
neric client and a generic server that can be customized
through the use of small, reusable modules. By plugging
in desired modules (which form the CM policy) into the
slots of the MCCM client and server (which provide stan-
dard facilities for workspace access and a customizable
CM model, respectively), the core of a new CM system
can be rapidly composed.

Modules are either constraint or action modules. Con-
straint modules plug into the server side of MCCM and
maintain the consistency of its generic CM model per the
needs of a desired CM policy. Action modules plug into
the client side of MCCM to, also per the desired policy,
enact the rules of that policy. A good way to characterize
the functionality of constraint and action modules is to
view a constraint module as setting allowable boundaries
and an action module as deciding, within those bounda-
ries, the exact operations that are to take place.

MCCM supports five dimensions along which individ-
ual CM policies may differ. Each dimension is addressed
by a pair of modules, namely a constraint module and an
action module. For example, how multiple versions of an
artifact are stored as baselines and changes is determined
by the combination of a storage constraint module and an
evolution action module. Analogously, how different arti-
facts are distributed and replicated over multiple reposito-
ries is determined by a distribution constraint module and
a placement action module. The remaining three dimen-
sions are concerned with the hierarchical operation of a
CM policy (composition constraint & hierarchy action
modules), the rules by which the CM policy supports con-

Figure 1. Evolution of CM System Architecture.

current modification of artifacts (concurrency constraint &
locking action modules), and the way in which the CM
policy selects and places artifacts in workspaces (selection
constraint & population action modules).

MCCM separates constraint and action modules from
each other because it increases the level of reuse: a single
constraint module can be combined with multiple action
modules to form different CM policies. As a trivial exam-
ple, a constraint module disallowing the use of branching
may be combined with, among others, a storage action
module that stores each version of an artifact as a baseline
or a storage action module that stores the first version as a
baseline and any subsequent versions as changes from the
previous version. A slightly different policy is formed, but
the constraints on the generic CM model only need to be
implemented once.

In building a new CM system, a designer can use mod-
ules in three ways: (1) associated with an individual arti-
fact stored in MCCM, (2) associated with a group of arti-
facts as defined by their artifact type, or (3) through use of
default modules. In searching for modules to apply when
an artifact is manipulated, MCCM first checks whether the
artifact has individual modules that should be used, then
checks whether its artifact type has any applicable mod-
ules, and only then resorts to the default modules. MCCM
therefore supports the creation of CM policies in which
applicable rules depend on the nature of the artifacts being
stored. It is common, for instance, that the rules of a CM
policy vary depending on whether an artifact is a file or a
directory. By setting the default modules to the rules for
files, and as necessary associating different modules with
the DIRECTORY artifact type (only as necessary, since typi-
cally not all modules need to be different), these kinds of
policies can be easily implemented using MCCM.

It is important to realize that the result of plugging in a
desired set of modules into MCCM does not constitute an
entire CM system. As illustrated in the last architecture of
Figure 1, the role of MCCM is to serve as a reusable, core
infrastructure. Upon this core, the user interface of a CM
system, the dynamic association of modules with artifacts
(if desired), and any further details of the CM policy (such
as attaching descriptive attributes or enforcing high-level
processes) must still be programmed. However, those re-
maining parts are typically intrinsically unique to different
CM systems, and they have to be programmed regardless
of how much reuse of other parts takes place.

4. Implementation

MCCM consists of three parts: a server, a client, and a
set of base modules that can be plugged into the client and
server. The MCCM server implements a distributed, peer-
to-peer repository with facilities for storing multiple ver-
sions of artifacts as sets of baselines and changes, hierar-
chically relating artifacts, locking artifacts, distributing
and replicating artifacts over multiple servers, and select-
ing (versions of) artifacts from the repository. The MCCM
client builds upon the server to provide workspace access
to artifacts. Furthermore, it exposes a programmatic inter-
face (implemented and accessible using Java RMI) upon
which the remainder of a desired CM system can be built.
This interface revolves around three functions: OPENARTI-

FACT, INITIALIZECHANGE, and COMMITCHANGE. These are
policy neutral: they represent the stages that any artifact
goes through when undergoing modifications, irrespective
of which CM policy is used. Any CM system built using
MCCM, thus, invokes these three functions in exactly the
same order (albeit sometimes at different times). They can
therefore be considered a main loop, to which the modules
are attached to change its behavior.

The programmatic interface contains a large number of
additional functions. Space prohibits us to discuss them all
in detail. In brief, though, they make it possible to add and
remove artifacts to (from) collections, to rename artifacts,
to cancel changes and close workspaces, to move and rep-
licate artifacts across multiple servers, to associate textual
attributes with artifacts, to set default modules and attach
or detach modules to (from) particular (types of) artifacts,
and to query the state of artifacts, workspaces, and reposi-
tories. It is important to note that, compared to other infra-
structures, these functions exclusively reflect user actions;
policies are programmed using modules and not using the
MCCM client programmatic interface.

In designing MCCM, a primary consideration was that
individual modules should be small in their implementa-
tions. Key to achieving this goal are two factors: (1) inter-
nally, MCCM makes use of simple, dedicated graph struc-
tures that record the current state of the repository, and (2)

Figure 2. MCCM Architecture.

each module addresses one single concern, leveraging the
functions in the interfaces of the relevant graph structures
to either check certain conditions (a constraint module) or
decide upon a particular course of action (an action mod-
ule). For instance, a storage constraint module only needs
to implement a single function that checks whether or not
the graph of baselines and changes for an artifact violates
any of its storage constraints. As another example, an evo-
lution action module needs to implement only four func-
tions: one that returns a version identifier for the first ver-
sion of an artifact; two that return a version identifier for a
next version of an artifact (with or without user input), and
one that decides whether new versions are only created for
artifacts that have changed or also for artifacts that did not
change (some policies will store a duplicate). Because of
these small and focused responsibilities, most of our base
modules are implemented in 100 lines of code or less.

4.1. Constraint Modules

The MCCM server provides a generic CM model, but

places no restrictions on how this model is used. To tailor
the generic CM model to the needs of a new CM policy,
constraint modules must be used to restrict the server’s
behavior to only permit the kinds of uses that do not vio-
late the CM policy. Five kinds of constraint modules exist,
the role of each of which we describe below.

4.1.1. Storage constraint modules. At its core, the server
can store baselines, changes, and dependency relations, all
on a per-artifact basis. That is, each artifact is stored sepa-
rately and each incremental change is stored as a baseline
containing the entire version of the artifact or as a change
containing a delta with the changes made in a workspace.
Dependency relations among baselines and changes repre-
sent inclusion hierarchies: whenever a change is selected,
its dependency relations are recursively traced until each
of the preceding baselines are found. Intermittent changes
as well as any baselines that reside on different branches
are then merged to create a single version of the artifact.
Dependency relations are not mandatory; that is, the stor-
age model is not a version tree in which deltas are used
for saving space. Instead, our model reflects the change
set approach in its use of baselines and changes, and uses
dependency relations as the basis for enforcing the con-
straints of storage constraint modules.

Together, baselines, changes, and dependency relations
form a (potentially disconnected) graph. Different storage
constraint modules can be used to enforce particular struc-
tures on this graph—structures that reflect the needs of the
desired CM policy. As an example, Figure 3 illustrates the
structures that result from use of several of our base stor-
age constraint modules. In Figure 3a, each new version of
an artifact can only be stored as a baseline. This policy is
relaxed in Figure 3b, where baselines and changes can be

used intermittently and where branching is allowed. Sub-
sequent modules further allow merging (Figure 3c), inde-
pendent lines of development (Figure 3d), and independ-
ent storage of changes with the possibility of mutual de-
pendencies (Figure 3e).

Of note is that this mechanism does not recreate exist-
ing CM models, but instead emulates them. For instance,
together with the standard mechanism of always merging
in dependency relations, the use of the storage constraint
module shown in Figure 3c creates a storage facility that
is equivalent to the well-known version tree model. Simi-
larly, Figure 3d and Figure 3e support the needs of the
change package and change set CM policies, respectively.

Figure 3. Results of Applying Different Storage
Constraint Modules (‘b’ = baseline, ‘c’ = change).

4.1.2. Composition constraint modules. MCCM distin-
guishes atoms and collections. Atoms are not further bro-
ken down for CM purposes; collections may contain other
artifacts (both collections and atoms). As with the storage
model, MCCM maintains a graph for capturing the com-
position of artifacts. For efficiency purposes, the graph is
stored as a set of small graphs (one per artifact). Concep-
tually, though, the graph is treated as one large graph.

Figure 4 illustrates an example of composition. Dashed
lines indicate that a baseline or change of one artifact con-
tains other baselines and changes of other artifacts. Note
that composition is per baseline or change, and is not nec-
essarily constant throughout an artifact. For instance, Fig-
ure 4 shows a collection for which each baseline is com-
posed of different artifacts. Not all CM policies need this
flexibility, but advanced CM policies typically do need it.
In the change set policy, for example, composition identi-
fies the constituents of a logical change, which are small
in number since they typically only change a few artifacts.

By default, the composition graph is extremely permis-
sive: it can be disconnected, it may contain cycles, etc. By
using a composition constraint module, this behavior can
be restricted to precisely support the needs of the desired
CM policy. Our base modules consider the following di-
mensions: (1) whether or not hierarchical composition is
allowed, (2) whether or not an artifact can be part of mul-

tiple, higher-level artifacts, and (3) whether or not cyclic
relationships are allowed. Other dimensions, such as that a
baseline always contain baselines or a change always con-
tain changes can be added as necessary.

The combination of the generic server with just storage
constraint and composition constraint modules already is
very expressive. A simple version of the storage needs of
CVS, for instance, can be defined by associating two con-
straint modules each to the standard DIRECTORY and FILE

artifact types. Since CVS does not version directories, the
storage constraint module for directories should limit their
storage to be as a single baseline only. The composition
constraint module for directories should allow hierarchi-
cal, non-cyclic composition. Files, on the other hand, must
have the storage constraint module illustrated in Figure 3c
and a composition constraint module that disallows con-
tainment of other artifacts.

Figure 4. Example of Hierarchical Composition.

4.1.3. Concurrency constraint modules. The graph with
which MCCM records locks on artifacts extends the stor-
age graph discussed in Section 4.1.1. As such, locks in the
CM model are per-artifact, and can be attached to individ-
ual baselines or changes. Each invocation to the MCCM
server to establish a lock on an artifact, however, may
request more than one baseline or change to be locked. To
ensure that such a request follows the proper CM policy,
MCCM provides a base set of concurrency constraint
modules that range in functionality from not enforcing any
locking at all (a number of CM policies, after all, rely on
merging instead of locking), to requiring locking of at
least a single baseline or change (a typical strategy), to
requiring locking of at least an entire branch (assuming
that a complementary storage constraint module is used,
another typical strategy), to requiring locking of an entire
artifact (as often used for maintenance purposes).

We note that MCCM currently just supports write-only
locks. While sufficient for modeling all of our experimen-
tal CM policies, we recognize that a more advanced read-
write locking scheme may be desired and in the near fu-
ture will enhance MCCM to support such a scheme.

4.1.4. Distribution constraint modules. MCCM supports
distribution and replication of artifacts at a fine-grained
level: different baselines and changes for a single artifact
can be stored across different servers, and a single base-
line or change may be replicated across multiple servers
for redundancy and performance reasons. Naturally, not
every CM policy supports these options. Therefore, distri-
bution constraint modules can be used to limit how arti-

facts are distributed and replicated over multiple servers.
In particular, a concurrency constraint module is provided
with a distribution graph that contains a map of which
baselines and changes are stored where. Based on this
graph, our base distribution constraint modules can re-
strict a CM policy to have no distribution (replication), to
only support distribution (replication) of an artifact as a
whole, or to not restrict distribution (replication) and sim-
ply adopt the fine-grained model provide by MCCM.
Other strategies can be implemented as desired.

4.1.5. Selection constraint modules. Selection constraint
modules restrict, per artifact, the combination of baselines
and changes that may be placed in a workspace. They, for
instance, ensure that any selection includes at least one
baseline to which to apply the changes or that all selected
baselines and changes are from the same branch. At first
sight, this may seem unnecessary, since storage constraint
modules prevent any illegal combinations of baselines and
changes from being committed. However, selection con-
straint modules still serve two important roles. First, it is
useful to know a-priori whether a selected combination is
invalid, such that any unnecessary work is avoided. Sec-
ond, and more importantly, the set of situations that can be
avoided with selection constraint modules is greater than
with just storage constraint modules. For instance, the first
situation described above (a selection must include at least
one baseline) cannot be enforced “after the fact”.

4.2. Action Modules

Within the bounds established by constraint modules,
there still is considerable freedom as to which particular
actions are taken. Action modules reduce this freedom to
one particular choice. As with constraint modules, action
modules base their decisions on the graphs that are made
available to them, are small and focused in nature, and
only direct MCCM (they do not perform the operations,
but simply decide which operations must happen). Often,
user input is a factor in these decisions, for instance when
a user wants to (in a CVS-like policy) manually initiate a
branch or explicitly create a new major revision. Obtain-
ing this kind of user input is the responsibility of the CM
system implementer, and it must be passed to the MCCM
client using the programmatic interface. MCCM then
passes the information to the relevant action modules.

4.2.1. Evolution action modules. When an artifact has
undergone modifications and must be stored back into the
repository, an evolution action module decides whether it
is stored as a baseline or change, whether any dependency
relations must be created, what the identifier is with which
the new baseline or change can be identified, and whether
a new version is stored even if the artifact has not changed
from the previous version. To do so, MCCM provides the

evolution action module with the current graph of the arti-
fact at hand and with the original selection that was made
to put the artifact in the workspace (see Section 4.2.5). In
addition, any user preferences are passed on for the mod-
ule to take into consideration.

Thus far, we have implemented a small number of base
evolution action modules. In particular, available for reuse
are a module that stores each version as an entire baseline,
a module that stores a first version as a baseline and any
subsequent version as a change (creating a branch when
needed), and a module that simply maintains one baseline
that is continually replaced when a new version is stored
(as used for directories in the CVS policy, for instance).

4.2.2. Hierarchy action modules. Hierarchy action mod-
ules serve a very important role within the MCCM archi-
tecture: they decide if certain operations occur recursively
over the parents and children of an artifact under consid-
eration. For instance, hierarchy constraint modules decide
whether or not a lock on a collection results in attempts to
lock its constituent artifacts. Although recursive propaga-
tion typically is downwards, CM policies such as those of
COOP/Orm [17] demand recursive propagation upwards.
Hence the desirability of both must be specified by all
hierarchy constraint modules.

Note that hierarchical operation does not mean that the
same modules are applied throughout; instead, an opera-
tion is performed recursively, but is parameterized by the
constraint and action modules of each artifact under con-
sideration. This allows CM policies such as those of CVS
(in which the rules for directories and files differ) to still
benefit from hierarchical operation.

We note that the presence of hierarchical operation in-
troduces some difficult issues with respect to the comple-
tion of certain actions. For instance, it may happen that
deep in the recursion a lock fails or a commit cannot com-
plete because it violates the rules of the CM policy. In
such cases, the MCCM infrastructure rolls back the entire
operation. This creates a transactional behavior and
guarantees that an operation either completes successfully
or does not complete at all.

4.2.3. Locking action modules. A locking action module
complements a concurrency constraint module in choosing
which baselines and changes must be locked when an arti-
fact is to undergo change in a workspace. In support of
optimistic CM policies, the simplest locking action mod-
ule does not lock any baselines or changes at all. More
pessimistic locking action modules, however, determine
the precise set of locks by inspecting the current graph of
baselines and changes, accounting for the selection placed
in a workspace, and incorporating any user preferences.
Several commonly-used base modules are available, each
enforcing different semantics in terms of amount of lock-
ing (e.g., single baseline or change, branch, entire arti-

fact). If another kind of locking scheme is needed, it can
be easily derived from any of these existing modules.

4.2.4. Placement action modules. A placement action
module decides the location of artifacts when multiple
servers manage a federation of distributed repositories. In
particular, it assigns a specific repository when a new arti-
fact is created or when a new baseline or change is com-
mitted. Additionally, it determines which set of baselines
and changes to move as well as which set of baselines and
changes to replicate at any given time.

Analogously to other action modules, a placement ac-
tion module operates on a per-artifact basis and uses the
graph of baselines, changes, and their current locations for
making its decisions. Currently, we have implemented two
base placement action modules. One prohibits distribution
and replication, the other supports full replication of all
artifacts. Intermediate placement action modules are under
development.

4.2.5. Population action modules. The final type of ac-
tion modules are population action modules. Based on the
current storage graph (as discussed in Section 4.2.1), these
modules are responsible for selecting a particular version
of an artifact to be placed in a workspace. This version is
dynamically constructed by merging the set of baselines
and changes that are selected by the module. Selection is
especially important in the context of hierarchical compo-
sition. While most CM policies by default use a contained
version of an artifact, other policies (such as the one of
DVS [4]) always choose the latest version. Currently, we
have implemented these two as the set of base modules.

Clearly, this module is the most influenced by any user
preferences that are expressed. Often, a user wants a spe-
cific version of an artifact to be placed in their workspace.
This choice must be respected, although it may potentially
be enhanced by a population action module to incorporate
any dependencies that should have been included for con-
sistency purposes in the initial user selection as well.

4.3. Discussion

Pluggable architectures have successfully been used in
a wide variety of domains, including, among others, de-
velopment environments [19], operating systems [23], and
web servers [24]. Their use has been ignored, however, in
the area of generic infrastructures for CM system building.
It is our belief that this is largely due to the misperception
that CM policies are monolithic entities that—in their
entirety—are built on top of whichever generic facilities
are available in the infrastructure that is (re)used. As the
preceding discussion illustrates, MCCM refutes this mis-
perception, and demonstrates that it is possible to provide
a pluggable infrastructure that supports the composition of
CM policies out of reusable modules.

 The strength of our approach lies in the following two,
closely related factors:

1. The generic client and server implement the mecha-
nisms by which the repository is maintained and the
workspace is manipulated. This allows the implemen-
tation of modules to concentrate on making decisions
and not on actually carrying out those decisions.

2. Each of the modules addresses a different concern.
This is most evident within the set of constraint mod-
ules and within the set of action modules. But even in
the case of paired constraint and action modules, each
module addresses a different concern (maintaining the
consistency of the generic CM model versus choosing
a particular course of action).

Clearly, successful operation of MCCM cannot be guaran-
teed and depends on the way it is used. It is critical, for
example, that compatible constraint and action modules be
selected, since MCCM itself cannot detect when the se-
lected modules have conflicting semantics. It is the re-
sponsibility of a designer, therefore, to ensure a coherent
overall CM policy (something they must do regardless of
which infrastructure is used).

An interesting question about the use of MCCM is how
to address crosscutting concerns. For example, currently it
is not possible to create a locking action module that only
places locks on artifacts residing in a specific repository.
Our experience in building CM policies indicates, though,
that such crosscutting concerns are rarely needed. Should
they nevertheless be needed, they can be programmed on
top of the programmatic interface of the MCCM client. In
the example above, for instance, a designer should use the
programmatic interface to first verify the location of an
artifact and then explicitly request a lock (instead of rely-
ing on the action module to place the locks). Should we

encounter particular dimensions along which crosscutting
concerns are frequent, we will change the architecture of
MCCM to make available relevant graphs to the constraint
and action modules that should address those crosscutting
concerns (in the example above, we would make available
the distribution graph to locking action modules).

5. Experience

To show how MCCM promotes reuse in the composi-
tion of CM policies, we built approximations of RCS [25],
CVS [3], and Subversion [26], as well as a prototype CM
system based on change sets. While none of our example
implementations is as fully functional as its original coun-
terpart (all core functionality is implemented, but we omit-
ted parts of the user interface and administrative options),
all of the systems are functional and allow a user to ver-
sion artifacts in accordance with the CM policies.

Table 1 summarizes our experience. For each example
system, the table lists the modules that were used in com-
posing it. Several observations are in place. First, a high
number of base modules were reused, confirming that the
availability of base modules significantly eases develop-
ment. Second, nine custom modules were developed, but
these modules were reused ten times—amortizing their
development cost over multiple CM systems. We further-
more will add the custom modules to our library of base
modules, which in future will reduce the need for develop-
ing new modules for other new CM systems.

We also observe that it is trivial to change the policies
of these systems. For instance, should we desire a distrib-
uted version of CVS that supports multiple servers and
replication of artifacts, we can simply take the placement
action module used in the Subversion system and plug it
into the CVS system. No further changes are needed.

 Modules RCS CVS SubVersion Change Sets
Storage (S) Version tree (S) Version tree (files)

(S) Single baseline (directories)
(S) Version tree (C) Individual changes with

dependent baselines
Composition (S) No composition (S) Single parent (S) Single parent (S) Single parent
Concurrency (S) Full artifact locking (S) No locking (S) No locking (S) No locking
Distribution (S) No distribution (S) No distribution (S) Full artifact distribution &

replication
(S) No distribution

Co
ns

tr
ai

nt
 m

od
ul

es

Selection (C) At most two baselines or
changes

(R) RCS module (R) RCS module (C) Baseline plus set of de-
pendent changes

Evolution (C) Store on existing or new
branch, or use user input

(R) RCS module for files
(S) Single baseline (directories)

(R) RCS module (C) Independent change de-
pending on original baseline

Hierarchy (S) No hierarchical operations (C) Evolve parents (files)
(C) Evolve children and parents
& populate children (directories)

(R) CVS module for files
(R) CVS module for directories

(R) CVS module for files
(R) CVS module for directories

Locking (S) Full artifact locking (S) No locking (S) No locking (S) No locking
Placement (S) No distribution (S) No distribution (S) Full artifact distribution &

replication
(S) No distribution

Ac
tio

n
m

od
ul

es

Population (C) Select newest version or
use user input

(R) RCS module (files)
(S) Select baseline (directories)

(R) RCS module (C) Use user input and select
missing baselines & changes

Table 1. Example Compositions of CM Policies (Modules: ‘S’ = Standard, ‘R’ = Reused, ‘C’ = Custom).

The time and effort involved in developing each sys-
tem was small: each was completed within a few days and
comprised a modest amount of new source code (RCS:
564 LOC, CVS: 446 LOC, Subversion: 341 LOC, change
sets: 615 LOC). This new code includes all of the code for
the textual user interfaces we implemented for each of
these systems (which we built on top of the MCCM client
programmatic interface). The amount of code dedicated to
the development of new modules, thus, is even smaller.

To confirm that use of MCCM also saves effort when it
comes to real-world systems, we performed a second ex-
periment. In this experiment we compared an existing CM
system in active use, DVS [4], as it was originally imple-
mented using NUCM [29] and now re-implemented using
MCCM. Implementing the new version of DVS only took
a few days and required less than 1500 new lines of code.
Compared to the original version of DVS, which required
3000 lines of code, this represents a significant amount of
savings. While some of the savings can be attributed to a
change in programming language (from C in the original
DVS to Java in the new DVS), a close analysis of the code
reveals that the reuse of modules as promoted by MCCM
accounts for as much as 75% of the savings.

In sum, our experiments show that MCCM is a viable
and effective approach to CM policy composition and can
support a developer in rapidly assembling the core of dif-
ferent CM systems with highly variable CM policies.

6. Related Work

EPOS [32] and ICE [34] are logic-based approaches to
creating an infrastructure similar to MCCM. As discussed
in Section 2, however, their infrastructures are focused on
supporting the reuse of CM models only. Nonetheless, a
few of the policies implemented with ICE are able to re-
use existing logic rules from other policies, which, while
seemingly incidental, indicates that the use of ICE as a
vehicle for policy reuse should be further explored.

NUCM [29] is a predecessor to our work. Unlike ICE
and EPOS, it is not based on logic; rather, it provides a
programmatic interface to its generic repository. MCCM
inherits this API-based approach, but compared to NUCM
provides an enhanced architecture that supports pluggable
modules. Furthermore, whereas NUCM only supports the
reuse of a generic CM model, MCCM inherently supports
the reuse of CM policies.

WebDAV [10] and DeltaV [14] are two web standards
that together add extensive distributed authoring and ver-
sioning techniques to the HTTP protocol. While squarely
aimed at the web, the two standards combined provide a
set of features that is similar to those provided by NUCM:
they provide a generic CM model and, through new HTTP
methods, they provide a programmatic interface for build-
ing web clients. While exact details and relative strengths

and weaknesses differ between the WebDAV/DeltaV pro-
tocols and NUCM, the overall result is largely similar, and
the combination of the two standards suffers the same
kinds of drawbacks when compared to MCCM.

Parisi-Presicci and Wolf introduce a formal approach
to policy programming [20]. Using graph transformations,
different CM policies can be specified. Their approach is
promising in demonstrating reuse of parts of CM policies,
but unfortunately falls short of demonstrating reuse across
a broad variety of CM policies. Thus far, they have only
included existential, state-based policies in their experi-
ments. MCCM, on the other hand, supports reuse across
existential and intentional CM policies as well as across
change-based and state-based CM policies.

Finally, BAMBOO is a new infrastructure leveraging a
generic CM domain model to generate new CM reposito-
ries [16]. While in the early stages of design and thus far
focusing on the generation of CM models, BAMBOO is
promising in being first in taking a generative approach to
reuse in CM systems. We believe it could be extended to
include the generation of different CM policies, but as of
now it has not demonstrated so. We do note that the CM
models generated by BAMBOO have more dimensions of
freedom than the set of modules allowed by MCCM. As
such, a combination of both approaches represents an at-
tractive avenue of future research.

7. Conclusions

This paper has successfully demonstrated the feasibil-
ity and practical reality of the idea of CM policy composi-
tion. Through a novel infrastructure that consists of a ge-
neric, pluggable architecture and an associated set of con-
straint and action modules, MCCM can achieve high lev-
els of reuse in the implementation of the core of new CM
systems. As demonstrated by the application of MCCM to
the implementation of several representative CM systems,
this reuse translates into a significant reduction in effort as
compared to existing implementation strategies (i.e., from
scratch or leveraging other existing infrastructures).

Our infrastructure is still experimental in nature: addi-
tional dimensions of variability exist among CM policies
that our infrastructure does not yet address; the infrastruc-
ture can be made more robust by hosting it on a reliable,
transactional database system; and we wish to extend the
approach to other domains such as content and document
management. Even so, MCCM makes two important con-
tributions. The first is the theoretical result that it is possi-
ble to modularly compose CM policies; the second is the
practical demonstration of our approach through our plug-
gable architecture and base set of modules.

While MCCM addresses an important problem, we be-
lieve its true value is still ahead. Two long-standing prob-
lems in the CM domain are those of incremental adoption

and CM policy interaction. The first problem stems from a
desire to gradually introduce users to all of the features of
a CM system. The second problem pertains to the need of
different groups to work together—even when each group
uses a different CM policy. MCCM provides an excellent
basis upon which to explore these two issues. We believe,
for instance, that it is possible to address the first problem
by modifying MCCM to support modules on an individual
user basis. Only after a user has demonstrated mastery of
the basic principles will new, more permissive modules be
made available to them. With respect to the second prob-
lem, MCCM’s strong separation of its generic CM model
from individual CM policies, combined with its separation
of constraint and action modules, provides a starting point
for exploring how different CM policies may leverage the
common model and constraint modules for policy interac-
tion. Clearly, both research problems are strongly related,
and—in addition to further refining MCCM—our future
work will address the two in concert.

Acknowledgments

We thank our research group, and in particular Anita Sarma
and Eric Dashofy. Effort funded by the National Science Foun-
dation under grant numbers CCR-0093489 and IIS-0205724.

References

[1] D. Belanger, D. Korn, and H. Rao, Infrastructure for Wide-

Area Software Development, Proc. of the Sixth Interna-
tional Workshop on Software Configuration Management.
1996, Springer-Verlag: p. 154-165.

[2] Bell Labs Lucent Technologies. Sablime v5.0 User’s Refer-
ence Manual. 1997.

[3] B. Berliner. CVS II: Parallelizing Software Development.
Proceedings of the USENIX Winter 1990 Technical Con-
ference, 1990: p. 341-352.

[4] A. Carzaniga. DVS 1.2 Manual. Department of Computer
Science, University of Colorado at Boulder, 1998.

[5] M.C. Chu-Carroll and S. Sprenkle. Coven: Brewing Better
Collaboration through Software Configuration Manage-
ment. Proc. of the Eighth International Symposium on
Foundations of Software Engineering, 2000: p. 88-97.

[6] CollabNet, SourceCast,
http://www.collabnet.org/products/sourcecast/, 2002.

[7] S. Dart, Not All Tools Are Created Equal, in Application
Development Trends. 1996. p. 39-54.

[8] M. de Jonge. Source Tree Composition. Proc. of the Sev-
enth Interantional Conference on Software Reuse, 2002.

[9] J. Estublier. Defining and Supporting Concurrent Engi-
neering Policies in SCM. Proc. of the Tenth International
Workshop on Software Configuration Management, 2001.

[10] Y. Goland, et al. HTTP extensions for distributed author-
ing -- WEBDAV (RFC 2518, Standards Track). 1999.

[11] Hansky, Firefly,
http://www.hansky.com/products/ff/firefly.html, 2003.

[12] J.J. Hunt, et al. Distributed Configuration Management via
Java and the World Wide Web. Proc. of the Seventh Inter-

national Workshop on Software Configuration Manage-
ment, 1997: p. 161-174.

[13] IBM Rational, ClearCase,
http://www.rational.com/products/clearcase/, 2003.

[14] IETF Delta-V Working Group, Versioning Extensions to
WebDAV, Internet Draft,
http://www.webdav.org/deltav/protocol/, 2000.

[15] Inobyte, Ltd., Global Source, http://www.inobyte.com/,
2003.

[16] S. Kim, et al. SCM Domain Modeling and Repository Kit
Design. University of California, Santa Cruz, 2003.

[17] B. Magnusson and U. Asklund. Fine Grained Version Con-
trol of Configurations in COOP/Orm. Proc. of the Sixth In-
ternational Workshop on Software Configuration Manage-
ment, 1996: p. 31-48.

[18] J. Micallef and G.M. Clemm, The Asgard System: Activity-
Based Configuration Management, Proc. of the Sixth In-
ternational Conference on Software Configuration Man-
agement. 1996, Springer-Verlag: p. 175-186.

[19] Object Technology International, Inc., Eclipse Platform,
http://www.eclipse.org/, 2003.

[20] F. Parisi-Presicce and A.L. Wolf. Foundations for Software
Configuration Management Policies using Graph Trans-
formations. Proc. of the Third International Conference on
Fundamental Approaches to Software Engineering, 2000:
p. 304-318.

[21] M.J. Rochkind, The Source Code Control System. IEEE
TSE , 1975. SE-1(4): p. 364-370.

[22] SCMLabs, Inc., Quartet, http://www.scmlabs.com/, 2003.
[23] A.S. Tanenbaum, Modern Operating Systems. Prentice

Hall, Englewood Cliffs, N.J., 1992.
[24] The Apache Software Foundation, Apache HTTP Server

Project, http://www.apache.org/, 2003.
[25] W.F. Tichy, RCS, A System for Version Control. Software -

Practice and Experience, 1985. 15(7): p. 637-654.
[26] Tigris.org, Subversion, http://subversion.tigris.org/, 2002.
[27] Tigris.org, Subversion Frequently Asked Questions,

http://subversion.tigris.org/project_faq.html, 2002.
[28] A. van der Hoek. A Generic, Reusable Repository for Con-

figuration Management Policy Programming. Ph.D. The-
sis, University of Colorado at Boulder, Department of
Computer Science, 2000.

[29] A. van der Hoek, et al., A Testbed for Configuration Man-
agement Policy Programming. IEEE TSE, 2002. 28(1): p.
79-99.

[30] R. van der Lingen and A. van der Hoek. Dissecting Con-
figuration Management Policies, Software Configuration
Management. Proc. of the ICSE Workshops SCM 2001
and SCM 2003 (Selected Papers), 2003: p. 177-190.

[31] C. Walrad and D. Strom, The Importance of Branching
Models in SCM. IEEE Computer, 2002. 35(9): p. 31-38.

[32] B. Westfechtel, B.P. Munch, and R. Conradi, A Layered
Architecture for Uniform Version Management. IEEE TSE,
2001. 27(12): p. 1111-1133.

[33] D. Wiborg Weber. Change Sets versus Change Packages:
Comparing Implementations of Change-Based SCM. Proc.
of the Seventh International Workshop on Software Con-
figuration Management, 1997: p. 25-35.

[34] A. Zeller and G. Snelting, Unified Versioning through
Feature Logic. ACM TOSEM, 1997. 6(4): p. 398-441.

