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transformations an be applied repeatedly, or in a hi-erarhial fashion, as illustrated below. The bene�ts ofthe NavP inremental parallelization inlude: (1) Ev-ery program is a result of applying the mehanis of oneof the transformations and is a natural and inrementalstep from its predeessor. As a result, no abrupt hangein ode will happen between any onseutive steps; (2)Every intermediate program is an improvement fromits predeessor. If program development is limited bytime or resoures, any one of the intermediate programsan be taken as prodution ode; (3) The transforma-tions are highly mehanial and straightforward to use,and yet the resulting parallel programs are elegant andeÆient.We briey desribe the NavP methodology inSet. 2. Setion 3 summarizes the appliation of NavPto the lassial problem of matrix multipliation; formore details and the omplete pseudoode at eah in-termediate step, the interested reader is referred to ouronferene paper [1℄. Setion 4 ontains performanedata. We present a detailed omparison of the paral-lel algorithm derived from our NavP solution with thelassi Gentleman's algorithm in Set. 5.2. Navigational ProgrammingNavigational Programming (NavP) is a methodologyfor distributed parallel programming based on the useof self-migrating omputations. In NavP ode, a pro-grammer inserts navigational ommands, i.e., hop()statements, to migrate omputation lous in order toaess remotely distributed data and spread out om-putations. Small data that is \arried" by the movingomputation is put in \agent variables," whereas largedata that stays on a omputer is held by \node vari-ables." An agent variable is private to a omputationthread, and is available to the thread wherever it mi-grates. The ost of a hop() is mainly spent in shippingthe data stored in agent variables. The synhroniza-tion among di�erent migrating omputations is donethrough \events" (signalEvent() and waitEvent()).Details on how to use the Messengers system an befound in the manual [2℄.NavP provides a di�erent view of distributed om-putation from the lassial SPMD view. The SPMDview desribes distributed omputations at stationary



2 IEICE TRANS. INF. & SYST., VOL.E89{D, NO.2 FEBRUARY 2006
space

time

PE0

(a) time

2

1

0

PE0 PE1 PE2

space

(b)
PE0 PE1 PE2

00

01

02

time

10

11

12

20

space

22

21

()

PE0 PE1 PE2

space

00

02

01

time

11

10

12

22

21

20

(d)Fig. 1 The ode transformations in NavP. (a) Sequential. (b)DSC. () Pipelining. (d) Phase shifting.loations, whereas the NavP view desribes a om-putation following the movement of its lous. Thethree transformations under the NavP view are de-pited in Fig. 1. Here and throughout the paper, ar-rows indiate hop() operations. The basi idea be-hind the transformations is to spread out omputationsusing self-migrating omputation threads as soon aspossible without violating any dependeny onditions.(1) DSC Transformation: Large data is distributedamong the PEs (proessing elements), and hop() state-ments are inserted into the sequential ode in order forthe omputation to \hase" large data while arryingsmall data. The DSC Transformation is shematiallydepited using Figs. 1(a) and (b). The resulting pro-gram performs \Distributed Sequential Computing,"whih is more onveniently termed DSC. The imme-diate bene�t of DSC is that, with a reasonable amountof work, a sequential program an be used to eÆientlysolve large problems that annot �t in the main mem-ory of one omputer. By using a network of worksta-tions, the DSC program has ompletely removed pagingoverhead by trading it against a modest amount of net-work ommuniation [3℄. DSC also serves as the start-ing point of parallel program development in NavP.(2) Pipelining Transformation: This transforma-

tion is depited using Figs. 1(b) and (). The basi ideais to pipeline multiple DSC omputation threads. Syn-hronization may be neessary to keep the DSC threadsordered orretly in the pipeline. (3) Phase-shiftingTransformation: Sometimes the dependeny amongdi�erent omputations allows di�erent DSC threads toenter the pipeline from di�erent loations. In these sit-uations, we an phase shift the DSC threads to ahievefull parallelism, as depited in Figs. 1() and (d).The NavP transformations an be systematiallyapplied repeatedly or hierarhially in di�erent dimen-sions of a network of PEs, as will be shown with matrixmultipliation later in this paper. At eah step, we havea fully funtional implementation of matrix multiplia-tion that is an improvement of the previous step. Theresult of the �nal step has a resemblane to the las-sial Gentleman's Algorithm, but there are importantdi�erenes as desribed in Set. 5.3. Inremental Parallelization of Matrix Mul-tipliationMatrix multipliation is a fundamental operation ofmany numerial algorithms. Pseudoode for sequen-tial matrix multipliation is listed in Fig. 2. Through-out the paper, we assume N is the order of thesquare matries involved. It is lear that the om-putation of eah entry of the matrix C is indepen-dent of all other entries of C, and therefore there areN2 updatings that an be done in parallel. Never-theless, exploiting the abundant parallelism in ma-trix multipliation is not as straightforward as onemight think. Suppose we parallelize the two outerloops using the popular doall notation, as shown inFig. 3. We an get, for example, two onurrent state-ments run by two PEs: C(1; 1)+ = A(1; 1) � B(1; 1) andC(1; 2)+ = A(1; 1) � B(1; 2). These two parallel exeu-tions both need the entry A(1; 1). If the requests forA(1; 1) from the two PEs arrive at the same time atthe PE that hosts A(1; 1), ontention happens. On theother hand, if we ahe multiple opies of A(1; 1) onthe PEs that require it, this solution is not salable.Gentleman onduted researh into the data movementrequired for matrix multipliation, and his analysis on-�rmed that data movement { and not arithmeti oper-ations { is often the limiting fator in the performaneof algorithms [4℄, [5℄.(1) do i=0,N-1(2) do j=0,N-1(3) t = 0.0(4) do k=0,N-1(5) t += A(i,k) * B(k,j)(6) end do(7) C(i,j) = t(8) end do(9) end doFig. 2 Pseudoode for sequential matrix multipliation.



PAN et al.: TOWARD INCREMENTAL PARALLELIZATION USING NAVIGATIONAL PROGRAMMING 3(1) doall i=0,N-1(2) doall j=0,N-1(3) C(i,j) = 0.0(4) do k=0,N-1(5) C(i,j) += A(i,k) * B(k,j)(6) end do(7) end doall(8) end doallFig. 3 Pseudoode for parallel matrix multipliation usingdoall.We provide a solution that does not trigger on-tention (i.e., we avoid the situation where multiple PEsget matrix entries from a single PE at the same time),and does not use data repliation (i.e., at any giventime, there is only one opy of any matrix entry). Forsimpliity, we desribe the problem and our solution ata �ne granularity level. That is, we assume N == P,where P is either the number of PEs in a 1D proessornetwork or the order of a 2D proessor network. To ex-tend our solution to a oarser level, we would treat eahelement (e.g., C01 or A21) as a sub-matrix blok, insteadof an entry of the matrix. Our solution is inrementaland involves applying a series of transformations, ob-taining a algorithm at eah step. The pseudoode foreah algorithm in the series is given in our onferenepaper [1℄; here, beause of page limitations, we simplygive a summary.We �rst apply the DSC Transformation to sequen-tial matrix multipliation, as depited in Fig. 4(a).The essene of this DSC transformation is to distributethe omputation in the j dimension. The PE net-work is 1D in whih eah PE has a unique identi-�er HnodeID = 0; 1; :::; N� 1 from west to east. Thikboxes ontain node variables on di�erent mahines, andthin boxes arry agent variables. Next, we apply thePipelining Transformation to the DSC ode obtainedfrom the last step, as depited in Fig. 4(b). Eah rowof matrix A is assigned to a omputation thread, andthese threads are \injeted," or spawned, into the PEpipeline in turn, and follow eah other in the networkto ompute the orresponding C entries. We then applythe Phase-shifting Transformation to ahieve full DPC,as depited in Fig. 4(). This is possible beause eahrow of A, though needed on all three PEs, an startits omputation from any PE. At this point we havea matrix multipliation algorithm that is fully parallel,exept that it only uses one dimension (the j dimen-sion) rather than two.To exploit the i dimension as well, we nextintrodue a 2D network in whih eah PE hasa unique 2D identi�er (HnodeID; VnodeID), whereHnodeID = 0; 1; :::; N� 1 from west to east, andVnodeID = 0; 1; :::; N� 1 from north to south, and ap-ply the DSC Transformation in the seond dimension,as depited in Fig. 4(d). We then apply the Pipelin-ing Transformation in both dimensions, as depited inFig. 4(e). A pair of A and B entries an move on along

their pipelines respetively as soon as they �nish om-puting and ontributing the orresponding C entry. Aproduer BCarrier needs to make sure that the B en-try produed by its predeessor in the pipeline is on-sumed before it puts the B entry it arries in plae.Finally, we apply the Phase-shifting Transformation inboth dimensions to ahieve full parallelization, as de-pited Fig. 4(f).In Fig. 4, eah sub-matrix blok, e.g., A10 or C11, isalled a \distribution blok" in our implementation, asit is a basi unit of data distribution on a PE. To ahievebetter performane from a blok algorithm, a furtherlevel of matrix deomposition is used [6℄. A distribu-tion blok is deomposed into \algorithmi bloks," andeah algorithmi blok of A or B is arried by a migrat-ing thread (i.e., ACarrier or BCarrier). If we \zoomin" to the physial node (HnodeID = 1; VnodeID = 1) inFig. 4(f) (assuming the entire PE network is the upper-left 2� 2 proessors), we an see algorithmi bloks asdepited by lowerase letters (e.g., a57 or 46) in Fig. 6of Set. 5.1. As an example, the distribution blok ofC11 in Fig. 4(f) is deomposed into algorithmi bloksontained in the thik box (whih indiates a physialnode) in Fig. 6. Our sequential and MPI implementa-tions desribed below use algorithmi bloks as well.Pseudoode for DPC in both dimensions is listedin Fig. 5. The matries are initially distributed suhthat A(i; j), B(i; j) and C(i; j) (initialized to 0) are onnode(i; j). In this pseudoode, A and B indiate nodevariables, whereas mA and mB represent agent variables.In our NavP programs, we adapt a naming onventionof starting an agent variable's name with a lowerase m.Matrix A is loaded into agent variable mA and arriedby the migrating thread. node(j) maps to the PE thathosts olumn j of matries B and C. Every time thethread of omputation hops bak to node(0), it will pikup a di�erent row of matrix A for the omputation of theloop over j. Detailed desriptions and the pseudoodefor all individual inremental steps an be found in ouronferene paper [1℄.4. Performane DataWe have implemented parallel matrix multipliation us-ing both NavP and message passing. The NavP systemused wasMessengers (Version 1.2.05 Beta) developedat the Donald Bren Shool of Information & ComputerSienes, University of California Irvine [2℄. The mes-sage passing system used was LAM 7.0.6 from IndianaUniversity [7℄. The SaLAPACK used was version 1.7from the University of Tennessee, Knoxville and theOak Ridge National Laboratory [8℄. The C ompilerused was GNU g-3.2.2, and the Fortran ompiler usedwas GNU g77-3.2.2. The performane data was ob-tained from SUN workstations (SUN Blade 100, CPU:502 MHz SUNW,UltraSPARC-IIe, OS: SunOS Release5.8) with 256MB of main memory, 1GB of virtual mem-
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C20 (f)Fig. 4 From sequential to parallel matrix multipliation. (a) DSC. (b) 1D pipelining.() 1D phase shifting. (d) 2D DSC. (e) 2D pipelining. (f) 2D phase shifting.(1) do mj=0,N-1(2) hop(node(0,mj))(3) injet(spawner(mj))(4) end do(1) spawner(int mj)(2) do mi=0,N-1(3) hop(node(mi,mj))(4) signalEvent(EC(mi,mj))(5) injet(ACarrier(mi,mj))(6) injet(BCarrier(mi,mj))(7) end do(8) end(1) ACarrier(int mi, int mk)(2) mA = A(3) do mj=0,N-1(4) hop(node(mi,(N-1-mi-mk+mj)%N)(5) waitEvent(EP(mi,(N-1-mi-mk+mj)%N))(6) C += mA * B(7) signalEvent(EC(mi,(N-1-mi-mk+mj)%N))(8) end do(9) end(1) BCarrier(int mk, int mj)(2) mB = B(3) do mi=0,N-1(4) hop(node((N-1-mj-mk+mi)%N,mj))(5) waitEvent(EC((N-1-mj-mk+mi)%N,mj))(6) B = mB(7) signalEvent(EP((N-1-mj-mk+mi)%N,mj))(8) end do(9) endFig. 5 Pseudoode for matrix multipliation with full DPC inboth dimensions.ory, and 100Mbps of Ethernet onnetion. These work-stations have a shared �le system (NFS).When the total memory use on a PE reahes or ex-

eeds the available physial memory, performane be-omes poor. This is beause of paging overhead. Forsome algorithms, when the working set exeeds thephysial memory, thrashing happens and the perfor-mane is ompletely unaeptable. In distributed om-putation, the data of a sub-problem may �t in the mem-ory of a mahine ompletely even if the entire problemis too large for one omputer. In order to obtain fairspeedup numbers, we alulate sequential timing forlarge problems using least squared urve �tting with apolynomial of order 3 using performane numbers ol-leted with small problems.In all tables, \Matrix order" means the order ofmatries A, B, or C. \Blok order" means the order ofthe algorithmi bloks. Table 1 lists the performanedata for NavP and SaLAPACK on a 1D PE networkof three mahines. It an be seen that the performaneimproves as we go from NavP DSC to NavP pipeliningand then to NavP phase shifting. For small problems,NavP 1D DSC is only marginally slower than the orre-sponding sequential exeution, but as the problem sizegrows it beomes faster. This an be seen by ompar-ing the data in the \NAVP (1D DSC)" olumn with theunstarred data in the \Sequential" olumn (i.e., the a-tual data, as opposed to the data derived from urve�tting.) Table 2 indiates that with several networkedomputers DSC performs almost as fast as the sequen-tial program running with enough main memory, and itis signi�antly faster than the sequential program pag-



PAN et al.: TOWARD INCREMENTAL PARALLELIZATION USING NAVIGATIONAL PROGRAMMING 5Table 1 Performane of matrix multipliation on 3 PEs.Sequential NavP (1D DSC) NavP (1D pipeline) NavP (1D phase) SaLAPACK#Matrixorder Blokorder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1536 128 65.44 1.00 67.22 0.97 27.72 2.36 24.55 2.67 26.80 2.442304 128 219.71 1.00 229.45 0.96 91.03 2.41 81.23 2.70 82.83 2.653072 128 520.30 1.00 543.91 0.96 205.87 2.53 189.50 2.75 211.45 2.464608 128 1934.73 (1745.94*) 1.00 1809.73 0.96 688.18 2.54 653.64 2.67 767.91 2.275376 128 3033.92 (2735.69*) 1.00 2926.24 0.93 1151.07 2.38 990.05 2.76 1173.46 2.336144 256 5055.93 (4268.16*) 1.00 4697.32 0.91 1811.77 2.36 1554.99 2.74 1984.18 2.15(*) Obtained from least squared urve �tting and used in alulating speedup.(#) SaLAPACK uses a logial LCM hybrid algorithmi bloking tehnique, not ontrolled by users [6℄.Table 2 Performane of matrix multipliation on 8 PEs.Sequential NavP (1D DSC)Matrixorder Blokorder Time(s) Speedup Time(s) Speedup9216 128 36534.49 (13921.50*) 1.00 14959.42 0.93(*) Obtained from least squared urve �tting and used inalulating speedup.ing using virtual memory. With N = 9216, the totalmemory usage is about 1GB, but eah of our mahineshas only 256MB of main memory.Tables 3 and 4 list the performane data for MPI,NavP, and SaLAPACK on a 2D PE network of ninemahines. Again, performane improves as we hierar-hially apply the three NavP transformations in theseond dimension.In both 1D and 2D ases, our DSC and pipelin-ing programs ahieve high performane. This anbe attributed to the use of algorithmi bloks. TheRowCarriers or ACarriers, eah of whih responsiblefor the omputation of a row of algorithmi bloks or analgorithmi blok, an spread out their omputationsto the entire network earlier than if a full distributionblok on a PE has to be omputed before these arriersan hop out.The MPI implementation used for the omparisonwas Gentleman's Algorithm modi�ed to use blok par-titioning of matries, and with pointer swapping usedto avoid unneessary loal data opying [1℄. SaLA-PACK uses a logial LCM hybrid algorithmi blokingtehnique [6℄, so the blok orders in the tables do notapply to the SaLAPACK numbers.The performane data indiates that the NavP im-plementation ahieves higher speedup than the MPIimplementation. It would be possible to improve theperformane of the MPI ode by subtle �ne-tuning ata ost of onsiderably more programming e�ort. Someways that this ould be done are desribed in Set. 5.Nevertheless, the data makes it lear that the NavPprogram is faster than a straightforward implementa-tion of Gentleman's Algorithm and ompetitive with ahighly tuned version.5. Comparison of ImplementationsNot only does NavP bring in a new way of thinking,but the NavP implementation is also superior in per-

formane. In the following, we ompare our solutionwith message passing and try to explain why NavP iseasier to use and faster than message passing.5.1 CommuniationIn all of our sequential, NavP, and MPI implementa-tions, we use blok algorithms. The C matrix is parti-tioned into algorithmi bloks, and eah physial nodeis assigned to a number of suh bloks. The matries Aand B are partitioned in the same way as C. Figure 6depits an example in whih the large thik box repre-sents a physial node that hosts C algorithmi bloks(e.g., 44, 45, and et.) and algorithmi bloks of Aand B (e.g., a40, a57, or b04, b75, and et.) ome fromwest and north neighbors to partiipate in the ompu-tations that will ontribute to the C algorithmi bloks.The bene�t of this blok algorithm is that by adjust-ing the order of algorithmi bloks, we an obtain thebest ahe and ommuniation performane for our se-quential, NavP, and MPI implementations. (For the se-quential program, the blok algorithm improves aheperformane only.)
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Fig. 6 One senario of matrix multipliation using algorithmibloks on a physial node.We use a senario depited in Fig. 6 to explain howthe NavP ode an eÆiently utilize CPU yles andhide some of the ommuniations. Let us suppose that,after the algorithmi blok b04 arried by a BCarrier



6 IEICE TRANS. INF. & SYST., VOL.E89{D, NO.2 FEBRUARY 2006Table 3 Performane of matrix multipliation on 2� 2 PEs.Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) SaLAPACK#Matrixorder Blokorder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1024 128 19.49 1.00 6.02 3.24 7.63 2.55 5.88 3.31 5.54 3.52 5.23 3.732048 128 158.51 1.00 50.99 3.11 50.59 3.13 42.61 3.72 41.54 3.82 45.53 3.483072 128 520.30 1.00 157.53 3.30 158.06 3.29 144.09 3.61 137.39 3.79 156.27 3.334096 128 1281.58 (1238.21*) 1.00 367.04 3.37 362.73 3.41 328.98 3.76 321.70 3.85 417.83 2.965120 128 2727.86 (2373.32*) 1.00 733.91 3.23 792.23 3.00 757.67 3.13 624.87 3.80 907.16 2.62(*) Obtained from least squared urve �tting and used in alulating speedup.(#) SaLAPACK uses a logial LCM hybrid algorithmi bloking tehnique, not ontrolled by users [6℄.Table 4 Performane of matrix multipliation on 3� 3 PEs.Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) SaLAPACK#Matrixorder Blokorder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1536 128 65.44 1.00 10.97 5.97 13.66 4.79 9.18 7.13 8.21 7.97 8.08 8.102304 128 219.71 1.00 29.95 7.34 39.53 5.56 29.93 7.34 26.74 8.22 29.39 7.483072 128 520.30 1.00 82.25 6.33 86.52 6.01 66.94 7.77 62.36 8.34 70.92 7.344608 128 1934.73 (1745.94*) 1.00 241.92 7.22 268.41 6.50 220.28 7.93 205.68 8.49 255.87 6.825376 128 3033.92 (2735.69*) 1.00 437.27 6.26 421.78 6.49 360.77 7.58 323.67 8.45 398.50 6.866144 256 5055.93 (4268.16*) 1.00 637.79 6.69 745.18 5.73 584.85 7.30 510.29 8.36 635.36 6.72(*) Obtained from least squared urve �tting and used in alulating speedup.(#) SaLAPACK uses a logial LCM hybrid algorithmi bloking tehnique, not ontrolled by users [6℄.arrives, the north neighbor beomes slow for some rea-son and delays the BCarriers of b75, b66, and b57 fromhopping into the node; meanwhile, let us also imaginethat the west neighbor ontinues to run at a normalspeed, allowing ACarriers arrying a40, a57, a66, anda75 and their followers a50, a67, a76, a60, a77 and a70hop in as usual. The ACarrier of a40 will be put tosleep after it omputes with b04 to ontribute to 44,beause the event to be signaled by the BCarrier ofb75 is not posted yet. Now the CPU yles will beused for omputations that ontribute to 54, 64, and74, as the orresponding ACarriers hop in. At thistime, assuming the BCarriers of b75, b66, and b57 allarrive, the ACarrier of a40 will be signaled and �nishthe omputations that ontribute to 45, 46, and 47.(InMessengers, waitEvent(E) falls through when theevent E is signaled before the waitEvent(E) is posted.)So the omputations atually happen in the order thatis marked by numbers in bold font in Fig. 6. (Thisdoes not inlude the omputations involving those al-gorithmi bloks of B that are already on this PE at thebeginning of this senario.) Sine the CPU is mostlybusy doing omputations as the data they need (i.e.,the orresponding algorithmi blok pairs of A and B)beome available, the ommuniation overhead of thealgorithmi bloks is mostly hidden from being seen inthe overall elapsed time.The run-time task sheduling desribed above ishandled by the queuing mehanisms built into theMes-sengers daemon. Thus it is handled at the systemlevel, invisible to the appliation programmers. It isthe NavP view that allows us to fous on desribing theappliation level omputations following their move-ment and to fator out the funtionality assoiated withsheduling { ode that desribes behaviors at �xed loa-tions { and put it into the Messengers daemon ode.

In MPI, the situation is quite di�erent. Thestraightforward way to program the blok implemen-tation is to have a loop over all the algorithmi bloksof C that are hosted on a partiular physial node. Theloop introdues an arti�ial sequential order to the om-muniations and omputations, even though they areatually independent of eah other. This arti�ial se-quential order may result in slower performane in somesenarios. For example, if the load in the network isdynamially hanging due to other users sharing someof the PEs or subnet and if the hange is distributedrandomly, the MPI implementation may be unable toadapt to the hange eÆiently beause CPU yles arewasted while waiting for a partiular sub-matrix pairto arrive. In ontrast, the NavP solution is able to\absorb" the impats, as desribed above. Even whenthe load in the network is perfetly homogeneous andbalaned, the best order in whih to perform the sub-omputations depends on the appliation. In matrixmultipliation, it is likely to be a skewed order that isneither row-major nor olumn-major and may be dif-�ult to desribe with nested loops. Any prede�nedorder that is not arefully hosen may ause unnees-sary \synhronization uts" in the network that slowdown the exeution. In ontrast, the NavP solutionperforms omputations as the data they need beomesavailable, rather than using a prede�ned order.There are several ways to remove the arti�ial se-quening of omputation in the MPI implementation.One way is to mimi the funtionality of the Messen-gers daemon by adding task-sheduling logi to theMPI appliation ode. Beause there is not a uniformway of ombining task sheduling ode and appliationode, this would need to be done separately for eahappliation. So this shifts the burden of task shedul-ing from the system to the appliation programmer and



PAN et al.: TOWARD INCREMENTAL PARALLELIZATION USING NAVIGATIONAL PROGRAMMING 7makes the programming task muh more ompliated.Another approah would use a ompiler that performsdependeny analysis for the ode segments that are ex-euted on a loal node and assigns independent om-putations to di�erent threads. This solution ould bemade to work, and it would be general enough to han-dle future appliations. However, this solution involveswriting a parallelizing ompiler to ahieve what is gen-erally onsidered to be a manual programming method.And the ompiler needs to be able to understand the be-haviors of bloking and non-bloking send and reeiveand their use of bu�ers in MPI.Yet another approah is to use parallel diretives,suh as those in HPF [9℄, UPC [10℄, or OpenMP [11℄, toassign independent omputations to di�erent threads.Hybrid use of MPI and OpenMP has been applied [12℄,and a thread-ompliant implementation of MPI sup-porting MPI THREAD MULTIPLE in LAM/Open MPIhas been developed [13℄. Nevertheless, using multi-threading under MPI to inrease performane on everyMPI node in e�et requires ase-by-ase manual han-dling of an arti�ial omputation sequening problemthat does not even exist in the NavP program. NavPdoes not have this problem beause what a NavP pro-grammer sees is a virtual multi-threading environmenton top of networked distributed memory mahines.5.2 Cahe PerformaneDuring the exeution of a blok fashion sequential ma-trix multipliation program, an algorithmi blok of Cis updated using the produts of several pairs of algo-rithmi bloks of A and B. This algorithmi blok of Cstays in ahe for di�erent pairs of A and B algorithmibloks until it is fully updated.By ontrast, in our MPI implementation, sine theloop over all algorithmi bloks of C that a physial nodehosts updates all these bloks using the blok pairs of Aand B arrived during the last phase of ommuniation,every triplet of A B C bloks are potentially fresh inahe. This may lead to less eÆient ahe use.In the NavP implementation, an ACarrier ontin-uously omputes and ontributes to the C algorithmibloks as long as the orresponding algorithmi bloksof B are ready for use. One senario of this is depitedin Fig. 6 in whih ontributions to algorithmi bloks45, 46, and 47 are omputed by the ACarrier ofa40 without stop. This results in similar ahe perfor-mane as the sequential exeution beause the A blokstays in ahe during the proess.The following numbers provide an estimate of thesavings that an be ahieved by better ahe perfor-mane. With matrix order of N = 6144, a blok or-der of 256, and a 3� 3 network, on average, the MPIode spent 0:334 seonds on eah produt of a pair of256� 256 bloks, whereas the NavP ode spent 0:322seonds. Applied to a total of 1; 536 bloks on eah PE,

the overall savings from a better ahe performane ofNavP is 18:43 seonds. This is roughly a 4% improve-ment from a total elapsed time of 510:29 seonds (referto Table 4).To ahieve better ahe performane in the MPIode, the program would need to hold an A blok andlook for all orresponding B bloks that are ready toompute. If no suh B bloks are ready, there wouldhave to be a \ontext swith" to the next A blok. Thiswould require a queuing mehanism, as desribed inSet. 5.1, to allow the program to later return to theun�nished A bloks.5.3 Initial Staggering
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(b)Fig. 7 (a) An example in whih forward staggering takes morethan two steps. N = 5 and position shift is 1. (b) An example inwhih forward staggering an take three steps even if N is a powerof 2 (N = 8). The position shift is 3. Three steps if ommuniationin node pairs (0; 5); (7; 4); (6; 3) takes plae in the �rst step.In the �nal NavP program listed in Fig. 5, \re-verse staggering" is used for both matries A and B.That is, the \hain" of a row or a olumn is reverse-ordered and shifted. An entry of matrix A on node(i; j) is diretly staggered to node TA(i; j), whereTA(i; j) = (i; (N� 1� j� i)%N). The staggering for Bis de�ned similarly: TB(i; j) = ((N� 1� j� i)%N; j).Assuming that a fully onneted network and aollision-free swith are available, the ost of initialstaggering for the Amatrix in the NavP algorithm listedin Fig. 5 is exatly two ommuniation steps. Thisan be seen by observing that TA(TA(i; j)) = (i; j).Hene the staggering onsists of a olletion of in-dependent swaps of A values between pairs of nodes,whih an learly be performed in two ommuniationsteps. (Note that for odd N there are nodes for whihTA(i; j) = (i; j); suh nodes stagger their values forfree.) Similarly, the staggering for B an be performedin two ommuniation steps.The staggering of Gentleman's Algorithm is di�er-ent from that of the NavP ode. Gentleman's Algo-rithm uses \forward staggering," whih shifts the posi-tions of the entries without reversing the order. The



8 IEICE TRANS. INF. & SYST., VOL.E89{D, NO.2 FEBRUARY 2006staggering formula for the A matrix in Gentleman'sAlgorithm is T0A(i; j) = (i; (j� i)%N). This forwardstaggering may require three ommuniation steps, asillustrated in Fig. 7(a). In general, unless N is a powerof two, there will be some row that requires three om-muniation steps. (Proof: if i is the highest power of2 that divides N, then the direted graph representingthe forward staggering of row i will have an odd y-le, and hene the staggering of this row will requirethree ommuniation steps.) Even when N is a powerof two, speial are must be taken for forward stagger-ing to avoid wasting a ommuniation step, as shownin Fig. 7(b). In our implementation of Gentleman'sAlgorithm, we do not have this mehanism in plae.Initial staggering in Cannon's Algorithm [14℄moves the A entries east and the B entries south. Whilethe staggering may look the same as NavP, it is di�erentbeause the sequene of matrix entries is not reversed.The ost of initial staggering in Cannon's Algorithm isexatly the same as that of Gentleman's Algorithm.The reverse staggering of our NavP algorithm,whih is always as good as that of Gentleman's Al-gorithm and usually better, was not arrived at by a-ident. It is a diret result of our NavP methodologyand our strit systematial appliation of the three odetransformations that inrementally develop a parallelprogram from the sequential program. Of ourse, mod-ifying the MPI algorithm to use reverse staggering isquite easy, unlike the �ne tuning for improving om-muniation overhead and ahe performane disussedearlier in this setion.6. Final RemarksWe have shown that systemati appliation of NavPtransformations yield a series of programs, eah an im-provement on the previous one, that onstitute an in-remental path from sequential matrix multipliationto a ompletely parallel version. The transformationsare mehanial and straightforward to apply.Our NavP matrix multipliation implementation isfaster than our MPI ode, as seen in Set. 4. This ismainly beause the NavP ode suessfully hides someof the ommuniation overhead using an eÆient buttransparent run-time sheduling. This task shedulingfuntionality is fatored out from the appliation odeunder the NavP view and put into the Messengersdaemon. Although it is entirely possible to ahievebetter task sheduling in the MPI ode, with the MPIenvironment available today, the ode that implementsthis would have to be developed separately for eah ap-pliation and interleaved with the appliation ode. Inthis sense, message passing is harder to use than NavP.Our performane numbers indiate that NavP is apromising approah, not only in terms of its simpliitybut also in terms of the eÆieny of the �nal program.Nevertheless, many questions and open researh prob-
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