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Abstract 2. APPROXIMATE MEAN FIELD (AMF)
Variational inference is an important class of ap- Mean field (MF) has been applied to many dif-
proximate inference techniques that has been ap-  ferent models @pper & Saad 2001 Blei etal, 2003
plied to many graphical models, including topic Beal & Ghahraman200§. In MF, a factorized variational

models. We propose to improve the efficiency of  distribution¢(z) over hidden variables is introduced, and
mean field inference for Dirichlet-based models the goal is to minimize KL divergence Ki(z)||p(x|y)].

by introducing an approximative framework that To make this method explicit, we derive “free energies” by
converts weighted geometric means in the up-  starting at the negative marginal loglikelihood (“energy”
dates into weighted arithmetic means. This paper  denoting observed variablesgand hidden variables as
also discusses a close resemblance between our  and keeping implicit the dependence on paramelters
approach and other methods, such as the factor-

ized neighbors algorithm and belief propagation. —logp(y) = — 1ng

Empirically, we find that our approachis accurate

and efficient compared to standard mean field. <_ Z Ylog p(z,y) — My L)
1. INTRODUCTION Fi= —ZHQi(Ii)logP(I|y)—Hz+01 (2)
Exact probabilistic inference is usually intractable fonc Fo=— qi(zi) logp(zilzn iy, y) — He + 2. (3)
plicated graph-structured models. For such models, one ’ ;1:[ Mo ’

must resort to approximate inference techniques such
Markov chain Monte Carlo or variational inference. In par-
ticular, mean field is a widely-used variational technique.

R Eq (1) Jensen’s inequality is used to break up the “a
erage” energy (1st term) from the “entropy” (2nd term)
where entropy i1, = — ) q(x)logqg(x). Itis the ap-

We propose a framework that improves the computationaplication of Jensen’s inequality, in tandem with the use of
efficiency of mean field inference for models such as di-a factorized variational posterior, where error creeps int
rected Bayesian networks with Dirichlet priors. Further-MF. In Eq (2), we arrive at the free enerdy, by introduc-
more, we posit that our method can potentially be as accung a fully factorizedy(x) = [, ¢i(x;), and we also break
rate as standard mean field (or even more accurate), sincéf the “log p(y|0)” term and move it into constant. Then
it tries to counteract the error introduced by Jensen’s in<F: is created in EqJ) by breaking off log p(x x|y, 0)”
equality. While our approach is approximative and doesand moving it intocs, which is is a constant with respect to
not maintain the bound on the marginal loglikelihood, we ¢;(x;). Here the focus is og;(z; ), since we will take a gra-
find that our technique is very accurate for various mod-dient with respect t@;(z;) to obtain a variational update.
els. Interestingly, the proposed approach has connectiori$ote thatN () denotes the neighborhoodof.
to loopy belief propagation (BP), the factorized neighbors

algorithm (FNA), Gibbs sampling, and MAP estimation. One can optimizeé-; by takmg the gradient, setting it equal

to zero, and solving fog; (;)?, yielding the following MF
In the next section, we detail our AMF framework. We thenupdate (which uses a weightgdometricmean),

show how AMF is related to FNA and loopy BP. We apply . . _
AMF to Dirichlet-based models and empirically find that 6i(x:) o exP{Ey(ay ) logplailzn),y-6)]}
AMF is both accurate and efficient. = H [p(zi|z NGy, Y, 0)] SO (4)
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Now we describe our method. Starting frafa, we move  Surprisingly, the FNA updates are precisely the updates
the log out of N — 1 expectations in the average energyin Eq (5), obtained by performing our AMF transforma-
(whereN is the number of variables, and where the exceptions. The fixed points of these updates are solutions to
tion is the expectation ovet(x;)). By Jensen’s inequality, the reduced system of equations in Bj} (FNA has been
this transformation provides a lower bouﬁg < F5. Re-  shown to empirically outperform MF on spin-glass models
call thatF; is itself an upper bound on the true energy. Thisin terms of accuracyRosen-Zvi et al.2005. The fact that
modified “free energy’F} is specific to index, FNA is a special case of our AMF framework suggests that

our framework can produce accurate algorithms.
- Z 4i(7:)108 Eq(z (1)) [p(zilzny, v, 0)] — He.

zi _ 4. CONNECTION TO LOOPY BP
Taking the gradient of-; and solving forg; (z;) yields an

update with a weightedrithmeticmean, The AMF transformations can produce a modified version
of loopy belief propagation (BP). We apply AMF 8, in
qi(xi) < Eglay ey [P@ilzn, y,0)] - (5)  Eq (), and introduce factors(z|y, 6) = [, Ya(za),
Thus, the AMF transformation, which movieg functions
out of expectations, produces a weighted arithmetic mean 71 = =20 I al@log¥a(ra) - Ha

in the update rather than the weighted geometric mean that @ Ta i€N(a)

was present in the MF update in E4)( For topic mod-  \ye move thdog out of N — 1 expectations in the average

els with Dirichlet-multinomial conjugacy, a weighted &rit energy as before, producing a lower boufid< 7. Note
metic mean is more efficient to compute. Furthermore, Wehat£; focuses on terms specific to variable

argue that moving the logarithm back out of the expecta-

tions can potentially “reverse” the error of Jensen'sirdgu 7 _ (2108 B v [ (2] — H...
ity incurred in Eq (), since the AMF transformation is ap- ! Z qu( i)108 Bq(az) [Va(@a)] !
plying Jensen’s inequality in the opposite direction from
the original application of Jensen’s inequality in B, ( Taking the gradient and solving fgr(z;) produces an up-
date which features weightedithmeticmeans,

a€N (i) i

AMF can also be used to separate terms within
p(zi|T NGy, y, 0), prior to moving theog out of the expec-
tations — this technique is further discussed in Sedion gi () o H Z H 4i(2;)| Yalza). (8)

a€N (i) zo\zi |JEN()\i

3. CONNECTION TO FNA .
Consider the standard BP updates for a factor graph,
The Dobrushin-Lanford-Ruelle (DLR) equations represent

all possible marginalizations of a distribution, Mia(T;) — H mgi(z;) 9)
BEN (i)\a
P(zr) = Y plrlrnm)Plrnm)  VREA,
Tnm) Meai(T;) Z U, (24a) H Mja(z;) (10)
whereA is the power set over variableR, is an arbitrary fo JEN
subset, andV(R) is the neighborhood oR. This sys- = I msi(z:). (11)
tem of equations ensures that the joint, conditionals, and BEN(3)

marginals are consistent with each other, and solving thes,g] i iahtl dified date bet
equations is tantamount to performing exact inference. ow consider a slightly modilied message update between

variable i and factora that includes the back-message
Consider a“reduced” system of DLR equations, where nown,,;(z;) and thus becomes the beligfz;):
Ay = {i} (singleton variables). Lét;(x;) = P(xz;). The

reduced DLR equations are the following, Mo (x;) — H mgi(z:) = qi(xs). (12)
N (i
biw) = 3 plailawe) [ bies) Vie A (6) gent
TN () JEN(3) Surprisingly, by substituting this modified message into

the update fomn,;(z;) in Eq (10) and then substituting

mqi(x;) into the expression fog; (x;) in Eq (11), the ex-

act AMF update in Eq8) is obtained. Thus, BP and AMF

are closely connected, with the difference being the inclu-

bi(x;) — Z p(xilzn) H bj(x;). (7)  sion of back-messages from the factor to the node. Typ-
Tre) JEN(D) ically, for BP, one strives tgreventthis back-flow, since

The factorized neighbors algorithm (FNA) inspired by
these reduced DLR equatiori®dsen-Zvi et a].2005 uses
the following update for each;,
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back-messages can cause the algorithm to destabilize atitelog is moved out ofV — 1 expectations for each of the
collapse to a mode which may be undesirable in certairthree terms. Since one of the terms is positive while the
situations. A well-known property of MF is its ability to other two are negative, the “reversal of error” discussed in
break symmetry and gravitate towards a modlgakkola  Section2 is mitigated when applying Jensen’s inequality on
2000, since MF minimizes Klg||p); thus, it is unsurpris- the positive terri Nonetheless, an efficient update is ob-
ing that AMF corresponds to BP with back-messages. Irtained when using the approximate free energy inEs),
some models, like topic models (with multiple symmetric
modes), this symmetry-breaking property is desirable. Eyain [Ny + 8]
Eyein N7 + W)

5. APPLICATION TO VARIOUSMODELS (16)

In this section, we apply the AMF transformations to topic Incidentally, this AMF update for LDA is equivalent to
models and hidden Markov models, which lead to efficientthe “CVBO0” algorithm proposed bgsuncion et al(2009,
algorithms. As we develop these algorithms, we also highwhich was originally derived as an approximation to the
light connections to Gibbs sampling and MAP estimation. update in Eq 18). For comparison, consider the MF up-
date which can be derived from the free energy in &4,
Latent Dirichlet Allocation (LDA) Bleietal, 2003, gy in BG,(

known as a “topic model,” is widely used in machine learn- Gij(xij = k) xexp{Ey,-u) [log(N];.ij +a)]} * (17)
ing. The generative process is summarized below: ' ! m

exp{ Ey(z-i)[log(N,,,) + 8)]}
Okj ~Dla]  Guwr~DIF] mij~0k;  Yij ~ Guwa, exp{Eq(mm)[log(NW + W)}

Collapsed Gibbs sampling (in whichandd are integrated  Thjs MF update consists of weighted geometric means and

out) is a common method for LDAQriffiths & Steyvers s costly to compute. To address this probléfeh et al.

2004, where the conditional is used to sample eagh (2007 proposed a Gaussian approximation of MF which
(N w ) uses a second-order Taylor expansion to obtain the update,

(V. ”J +Wp)

ai iy = ) o By [N+

plaij = klz-ij,y) o< (N7 +a) (13)

Eq(e~) [Ny + 5]
Eq(mﬂj)[N i + Wﬂ]

Gij(xij = k) o< Eypmin) [N + @
whereN,x; = 3, I[y;; = w,x;; = k], with the conven-

tion that missing indices are summed out, arg denotes . ( V(M‘[Nﬁij] Var[N W]
- . X _— —
that the corresponding word is excluded from the counts. P 2By [Nm ta))2 2B, [N, 1 )2
The conditional in EqX3) can be used to create an AMF al- Var[NW]
gorithm for LDA. We begin at the free enerdy; in Eq (3): + ) (18)
2(Ey- [N7 + Wp))2

=Y [ gu(@i) logp(wisle—is, y) — He
xr  ij

N
:_ZHqLJ (wi;) log Nﬂj )((7—1—@

This update contains several variance terms. Hj (s
similar to the AMF update in Eql@), with the difference
being the presence of these second-order terms which sig-

.+ WE) nificantly add to the overhead in comparison to AMF. For
=_ Z H qij(zij) log(N, w +a) (14)  LDA, Asuncion et al(2009 compared MF in Eq¥8) with
m AMF (“CVBO0”) and found that while both methods achieve
_ Z H g (i) log(NJ7 4 §) the same accuracy, AMF is more than twice as fast than MF,
" suggesting that AMF should be preferred over MF.
+ZHqij z:5) log(NSY + W) — Ha AMF is closely connected to other methods. AMF in
@ ij Eq (16) is similar to the Gibbs sampler in E43), with the
_ Z aij (zi;) log Eq@m)[N '+ q] (15) ~ main difference being that the AMF update is determinis-
oi; tic and uses expected countasuncion et al.(2009 also

draw links between AMF and MAP estimation; further-

- 1 1, 1 E -t N_‘Z . .
;q’ 7i) 108 Bytamin) Nuil + ] more, Beal & Ghahraman{2006 study MAP estimation
- i with a softmax basis, which is very similar to AMF (with
+ Z Gi3 (i) 108 Eg(mi) [Ny + W] = Ha the difference being the exclusion of counts, +;).
Tij

. . 2|t is possible to only apply our AMF transformations to cer-
In Eq (14), the log breaks up the conditional into three tain terms; however, we are generally interested in effayiemd
terms. AMF transformations are applied in Hdp), where  usually itis beneficial to apply the transformations toladl terms.
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Our AMF approach can be applied more generally to other
models. As a testbed, consider the HMRiapiner 1990);

in particular, consider an HMM with time-varying transi-
tion parameters. In this model, the observed sequences,
{yi},1 < i < N, are each of lengtii’, where eachy;; is .
discrete, taking one af/ values. Each observed sequence - ;AMFGE)”DP)SO ZOO*A""F ;*(')“(;'M)
has a hidden sequengg and eaclhr;; takes one of state Iteration Time
values. The transition matrices (of sigex S) are denoted  Figure 1.Test loglikelihoods achieved by AMF and MF on (a)
by 6, (with initial distribution being a vectof,), and the  HDP, (b) HMM. AMF is accurate and efficient compared to MF.
emission probabilities (of siz& x M) are denoted by:

Test Log-Likelihood

S
-6.5) 7
—MF (HDP)

|
[y
o]
o

Test Log-Likelihood

|
N
5]
o

We also performed an experiment on the HMM in Sec-
Oo[-] ~ D], 04|s] ~ D[al, o[-|s] ~ D[B] tion 5, with T" = 100 slices, M = 4 hidden states, and
R = 9 observed states, and we get= 0.1 andg = 0.1.

We simulated ground trutb,e and e from DJ[0.1], and
One way to perform direct collapsed Gibbs sampling oveifrom these distributions, we simulated synthetic training
the hidden variables (withand¢ integrated out) is to make datayi, with 1,000 sequences and test data, with 200

use the following conditional distributiors¢ott 2002, sequences. We ran both AMF and MF (with a Gaussian
p(@is = klzie, ) (19) approximation) for 200 iterations on the training data.

S8 p(yit|17it = k)p(xit = k|xi,t71)p(a7i,t+1|xit = k)

xi ~ Oo], Tig ~ O lxi—1],  Yie ~ O[T

Figure1(b) shows test loglikelihoods achieved by MF and
it it AMF as a function of time. While both algorithms achieve
Ny +8 (Nms 4 a) Nibwiin T2 the same accuracy, AMF is significantly faster than MF due
N+ Mp i=bwie-1k Nt +Sa ] to AMF's efficient arithmetic updates. MF takes 401 sec-
onds to reach a loglikelihood of -120, while AMF takes 105
where Ny, = > Ilwie = k,yi = m]andNir1 = seconds to reach the same loglikelihood: thus, our AMF
2oillzi =k, wipen = 1. transformations provide a substantial 4x speedup over the

On can develop MF for this HMM, but the updates would Gaussian version of MF for this model. Had we used stan-
be inefficient (similar to EqX7)). Moreover, a Gaussian dard MF (which is even less efficient than the Gaussian ver-

version of MF can be developed as in B@(, AMF would ~ Sion of MF), this speedup would be even higher.
follow the same type of derivation as in Etf}, yielding,
7. CONCLUSIONS

(i = k) Eq(f“)[Nl;git + 0] N (20) We have introduced an approximative framework that uses
Qit\Fat Bty [N + M]] weighted arithmetic means in the MF updates. Further-

By [N +a more, we have uncovered connections between AMF and
(E (IM)[N;“l S +a]) (@), St technlqu_es SL_Jch as FNA, qupy BP, Gibbs sampl_|r_19, and
! e Eq(mw)[Nt,ét + Saj MAP estimation. Our experimental results on Dirichlet-
based models suggest that AMF is as accurate as standard
6. EXPERIMENTS MF, while being more efficient than MF.

We perform experiments on topic models and HMMs, andAcknowledgements
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