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Abstract

Variational inference is an important class of ap-
proximate inference techniques that has been ap-
plied to many graphical models, including topic
models. We propose to improve the efficiency of
mean field inference for Dirichlet-based models
by introducing an approximative framework that
converts weighted geometric means in the up-
dates into weighted arithmetic means. This paper
also discusses a close resemblance between our
approach and other methods, such as the factor-
ized neighbors algorithm and belief propagation.
Empirically, we find that our approach is accurate
and efficient compared to standard mean field.

1. INTRODUCTION

Exact probabilistic inference is usually intractable for com-
plicated graph-structured models. For such models, one
must resort to approximate inference techniques such as
Markov chain Monte Carlo or variational inference. In par-
ticular, mean field is a widely-used variational technique.

We propose a framework that improves the computational
efficiency of mean field inference for models such as di-
rected Bayesian networks with Dirichlet priors. Further-
more, we posit that our method can potentially be as accu-
rate as standard mean field (or even more accurate), since
it tries to counteract the error introduced by Jensen’s in-
equality. While our approach is approximative and does
not maintain the bound on the marginal loglikelihood, we
find that our technique is very accurate for various mod-
els. Interestingly, the proposed approach has connections
to loopy belief propagation (BP), the factorized neighbors
algorithm (FNA), Gibbs sampling, and MAP estimation.

In the next section, we detail our AMF framework. We then
show how AMF is related to FNA and loopy BP. We apply
AMF to Dirichlet-based models and empirically find that
AMF is both accurate and efficient.
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2. APPROXIMATE MEAN FIELD (AMF)

Mean field (MF) has been applied to many dif-
ferent models (Opper & Saad, 2001; Blei et al., 2003;
Beal & Ghahramani, 2006). In MF, a factorized variational
distributionq(x) over hidden variables is introduced, and
the goal is to minimize KL divergence KL[q(x)||p(x|y)].
To make this method explicit, we derive “free energies” by
starting at the negative marginal loglikelihood (“energy”),
denoting observed variables asy and hidden variables asx,
and keeping implicit the dependence on parametersθ,

− log p(y) = − log
∑

x

q(x)
p(x, y)

q(x)

≤ −
∑

x

q(x) log p(x, y)−Hx (1)

F1 = −
∑

x

∏

i

qi(xi) log p(x|y)−Hx + c1 (2)

F2 = −
∑

x

∏

i

qi(xi) log p(xi|xN(i), y)−Hx + c2. (3)

In Eq (1), Jensen’s inequality is used to break up the “av-
erage” energy (1st term) from the “entropy” (2nd term),
where entropy isHx = −

∑

x q(x) log q(x). It is the ap-
plication of Jensen’s inequality, in tandem with the use of
a factorized variational posterior, where error creeps into
MF. In Eq (2), we arrive at the free energyF1 by introduc-
ing a fully factorizedq(x) =

∏

i qi(xi), and we also break
off the “log p(y|θ)” term and move it into constantc1. Then
F2 is created in Eq (3) by breaking off “log p(xN(i)|y, θ)”
and moving it intoc2, which is is a constant with respect to
qi(xi). Here the focus is onqi(xi), since we will take a gra-
dient with respect toqi(xi) to obtain a variational update.
Note thatN(i) denotes the neighborhood ofxi.

One can optimizeF2 by taking the gradient, setting it equal
to zero, and solving forqi(xi)

1, yielding the following MF
update (which uses a weightedgeometricmean),

qi(xi) ∝ exp{Eq(xN(i))

[

log p(xi|xN(i), y, θ)
]

}

=
∏

xN(i)

[

p(xi|xN(i), y, θ)
]q(xN(i))

. (4)

1We assume that the variational distributionqi(xi = k) is
discrete, so there is a different update for eachk.
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Now we describe our method. Starting fromF2, we move
the log out of N − 1 expectations in the average energy
(whereN is the number of variables, and where the excep-
tion is the expectation overqi(xi)). By Jensen’s inequality,
this transformation provides a lower bound̃F i

2 ≤ F2. Re-
call thatF2 is itself an upper bound on the true energy. This
modified “free energy”F̃ i

2 is specific to indexi,

F̃ i
2 = −

∑

xi

qi(xi) log Eq(xN(i))

[

p(xi|xN(i), y, θ)
]

−Hx.

Taking the gradient of̃F i
2 and solving forqi(xi) yields an

update with a weightedarithmeticmean,

qi(xi) ∝ Eq(xN(i))

[

p(xi|xN(i), y, θ)
]

. (5)

Thus, the AMF transformation, which moveslog functions
out of expectations, produces a weighted arithmetic mean
in the update rather than the weighted geometric mean that
was present in the MF update in Eq (4). For topic mod-
els with Dirichlet-multinomial conjugacy, a weighted arith-
metic mean is more efficient to compute. Furthermore, we
argue that moving the logarithm back out of the expecta-
tions can potentially “reverse” the error of Jensen’s inequal-
ity incurred in Eq (1), since the AMF transformation is ap-
plying Jensen’s inequality in the opposite direction from
the original application of Jensen’s inequality in Eq (1).

AMF can also be used to separate terms within
p(xi|xN(i), y, θ), prior to moving thelog out of the expec-
tations – this technique is further discussed in Section5.

3. CONNECTION TO FNA

The Dobrushin-Lanford-Ruelle (DLR) equations represent
all possible marginalizations of a distribution,

P (xR) =
∑

xN(R)

p(xR|xN(R))P (xN(R)) ∀R ∈ Λ,

whereΛ is the power set over variables,R is an arbitrary
subset, andN(R) is the neighborhood ofR. This sys-
tem of equations ensures that the joint, conditionals, and
marginals are consistent with each other, and solving these
equations is tantamount to performing exact inference.

Consider a “reduced” system of DLR equations, where now
Λ1 = {i} (singleton variables). Letbi(xi) ≡ P (xi). The
reduced DLR equations are the following,

bi(xi) =
∑

xN(i)

p(xi|xN(i))
∏

j∈N(i)

bj(xj) ∀i ∈ Λ1. (6)

The factorized neighbors algorithm (FNA) inspired by
these reduced DLR equations (Rosen-Zvi et al., 2005) uses
the following update for eachxi,

bi(xi)←
∑

xN(i)

p(xi|xN(i))
∏

j∈N(i)

bj(xj). (7)

Surprisingly, the FNA updates are precisely the updates
in Eq (5), obtained by performing our AMF transforma-
tions. The fixed points of these updates are solutions to
the reduced system of equations in Eq (6). FNA has been
shown to empirically outperform MF on spin-glass models
in terms of accuracy (Rosen-Zvi et al., 2005). The fact that
FNA is a special case of our AMF framework suggests that
our framework can produce accurate algorithms.

4. CONNECTION TO LOOPY BP

The AMF transformations can produce a modified version
of loopy belief propagation (BP). We apply AMF toF1 in
Eq (2), and introduce factorsp(x|y, θ) =

∏

α Ψα(xα),

F1 = −
∑

α

∑

xα

∏

i∈N(α)

qi(xi) log Ψα(xα)−Hx.

We move thelog out ofN − 1 expectations in the average
energy as before, producing a lower boundF̃ i

1 ≤ F1. Note
thatF̃ i

1 focuses on terms specific to variablei,

F̃ i
1 = −

∑

α∈N(i)

∑

xi

qi(xi) log Eq(x¬i
α )[Ψα(xα)]−Hx.

Taking the gradient and solving forqi(xi) produces an up-
date which features weightedarithmeticmeans,

qi(xi) ∝
∏

α∈N(i)

∑

xα\xi





∏

j∈N(α)\i

qj(xj)



Ψα(xα) . (8)

Consider the standard BP updates for a factor graph,

miα(xi)←
∏

β∈N(i)\α

mβi(xi) (9)

mαi(xi)←
∑

xα\xi

Ψα(xα)
∏

j∈Nα\i

mjα(xj) (10)

qi(xi)←
∏

β∈N(i)

mβi(xi). (11)

Now consider a slightly modified message update between
variable i and factorα that includes the back-message
mαi(xi) and thus becomes the beliefqi(xi):

miα(xi) ←
∏

β∈N(i)

mβi(xi) ≡ qi(xi). (12)

Surprisingly, by substituting this modified message into
the update formαi(xi) in Eq (10) and then substituting
mαi(xi) into the expression forqi(xi) in Eq (11), the ex-
act AMF update in Eq (8) is obtained. Thus, BP and AMF
are closely connected, with the difference being the inclu-
sion of back-messages from the factor to the node. Typ-
ically, for BP, one strives topreventthis back-flow, since
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back-messages can cause the algorithm to destabilize and
collapse to a mode which may be undesirable in certain
situations. A well-known property of MF is its ability to
break symmetry and gravitate towards a mode (Jaakkola,
2000), since MF minimizes KL(q||p); thus, it is unsurpris-
ing that AMF corresponds to BP with back-messages. In
some models, like topic models (with multiple symmetric
modes), this symmetry-breaking property is desirable.

5. APPLICATION TO VARIOUS MODELS

In this section, we apply the AMF transformations to topic
models and hidden Markov models, which lead to efficient
algorithms. As we develop these algorithms, we also high-
light connections to Gibbs sampling and MAP estimation.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003),
known as a “topic model,” is widely used in machine learn-
ing. The generative process is summarized below:

θk,j ∼ D[α] φw,k ∼ D[β] xij ∼ θk,j yij ∼ φw,xij
.

Collapsed Gibbs sampling (in whichφ andθ are integrated
out) is a common method for LDA (Griffiths & Steyvers,
2004), where the conditional is used to sample eachxij ,

p(xij = k|x¬ij , y) ∝ (N¬ij
kj + α)

(N¬ij
wk + β)

(N¬ij
k + Wβ)

(13)

whereNwkj =
∑

i I[yij = w, xij = k], with the conven-
tion that missing indices are summed out, and¬ij denotes
that the corresponding word is excluded from the counts.

The conditional in Eq (13) can be used to create an AMF al-
gorithm for LDA. We begin at the free energyF2 in Eq (3):

F2 = −
X

x

Y

ij

qij(xij) log p(xij|x¬ij , y) −Hx

= −
X

x

Y

ij

qij(xij) log

"

(N¬ij

kj + α)
(N¬ij

wk + β)

(N¬ij

k + Wβ)

#

−Hx

= −
X

x

Y

ij

qij(xij) log(N¬ij

kj + α) (14)

−
X

x

Y

ij

qij(xij) log(N¬ij

wk + β)

+
X

x

Y

ij

qij(xij) log(N¬ij

k + Wβ) −Hx

≈ −
X

xij

qij(xij) log Eq(x¬ij)[N
¬ij

kj + α] (15)

−
X

xij

qij(xij) log Eq(x¬ij)[N
¬ij

wk + β]

+
X

xij

qij(xij) log Eq(x¬ij)[N
¬ij

k + Wβ]−Hx

In Eq (14), the log breaks up the conditional into three
terms. AMF transformations are applied in Eq (15), where

the log is moved out ofN − 1 expectations for each of the
three terms. Since one of the terms is positive while the
other two are negative, the “reversal of error” discussed in
Section2 is mitigated when applying Jensen’s inequality on
the positive term2. Nonetheless, an efficient update is ob-
tained when using the approximate free energy in Eq (15),

qij(xij = k) ∝ Eq(x¬ij)[N
¬ij
kj + α]

Eq(x¬ij)[N
¬ij
wk + β]

Eq(x¬ij)[N
¬ij
k + Wβ]

(16)

Incidentally, this AMF update for LDA is equivalent to
the “CVB0” algorithm proposed byAsuncion et al.(2009),
which was originally derived as an approximation to the
update in Eq (18). For comparison, consider the MF up-
date which can be derived from the free energy in Eq (14),

qij(xij = k) ∝ exp{Eq(x¬ij)[log(N¬ij
kj + α)]} ∗ (17)

(

exp{Eq(x¬ij)[log(N¬ij
wk + β)]}

exp{Eq(x¬ij)[log(N¬ij
k + Wβ)]}

)

This MF update consists of weighted geometric means and
is costly to compute. To address this problem,Teh et al.
(2007) proposed a Gaussian approximation of MF which
uses a second-order Taylor expansion to obtain the update,

qij(xij = k) ∝ Eq(x¬ij)[N
¬ij
kj + α]

Eq(x¬ij)[N
¬ij
wk + β]

Eq(x¬ij)[N
¬ij
k + Wβ]

exp

(

−
V ar[N¬ij

kj ]

2(Eq¬ij [N¬ij
kj + α])2

−
V ar[N¬ij

wk ]

2(Eq¬ij [N¬ij
wk + β])2

+
V ar[N¬ij

k ]

2(Eq¬ij [N¬ij
k + Wβ])2

)

. (18)

This update contains several variance terms. Eq (18) is
similar to the AMF update in Eq (16), with the difference
being the presence of these second-order terms which sig-
nificantly add to the overhead in comparison to AMF. For
LDA, Asuncion et al.(2009) compared MF in Eq (18) with
AMF (“CVB0”) and found that while both methods achieve
the same accuracy, AMF is more than twice as fast than MF,
suggesting that AMF should be preferred over MF.

AMF is closely connected to other methods. AMF in
Eq (16) is similar to the Gibbs sampler in Eq (13), with the
main difference being that the AMF update is determinis-
tic and uses expected counts.Asuncion et al.(2009) also
draw links between AMF and MAP estimation; further-
more, Beal & Ghahramani(2006) study MAP estimation
with a softmax basis, which is very similar to AMF (with
the difference being the exclusion of counts, i.e.¬ij).

2It is possible to only apply our AMF transformations to cer-
tain terms; however, we are generally interested in efficiency and
usually it is beneficial to apply the transformations to all the terms.
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Our AMF approach can be applied more generally to other
models. As a testbed, consider the HMM (Rabiner, 1990);
in particular, consider an HMM with time-varying transi-
tion parameters. In this model, the observed sequences,
{yi}, 1 ≤ i ≤ N , are each of lengthT , where eachyit is
discrete, taking one ofM values. Each observed sequence
has a hidden sequencexi, and eachxit takes one ofS state
values. The transition matrices (of sizeS × S) are denoted
by θt (with initial distribution being a vectorθ0), and the
emission probabilities (of sizeS ×M ) are denoted byφ:

θ0[·] ∼ D[α], θt[·|s] ∼ D[α], φ[·|s] ∼ D[β]

xi,1 ∼ θ0[·], xi,t ∼ θt−1[·|xi,t−1], yi,t ∼ φ[·|xi,t].

One way to perform direct collapsed Gibbs sampling over
the hidden variables (withθ andφ integrated out) is to make
use the following conditional distribution (Scott, 2002),

p(xit = k|x¬it, y) (19)

∝ p(yit|xit = k)p(xit = k|xi,t−1)p(xi,t+1|xit = k)

∝

(

N¬it
k,yit

+ β

N¬it
k + Mβ

)

(

N¬it
t−1,xi,t−1,k + α

)

(

N¬it
t,k,xi,t+1

+ α

N¬it
t,k + Sα

)

whereNk,m =
∑

i,t I[xit = k, yit = m] andNt,k,l =
∑

i I[xit = k, xi,t+1 = l].

On can develop MF for this HMM, but the updates would
be inefficient (similar to Eq (17)). Moreover, a Gaussian
version of MF can be developed as in Eq (18). AMF would
follow the same type of derivation as in Eq (15), yielding,

qit(xit = k) ∝

(

Eq(x¬it)[N
¬it
k,yit

+ β]

Eq(x¬it)[N
¬it
k + Mβ]

)

∗ (20)

(

Eq(x¬it)[N
¬it
t−1,xi,t−1,k + α]

)

(

Eq(x¬it)[N
¬it
t,k,xi,t+1

+ α]

Eq(x¬it)[N
¬it
t,k + Sα]

)

6. EXPERIMENTS

We perform experiments on topic models and HMMs, and
we find that AMF is accurate and efficient.

Asuncion et al.(2009) showed that AMF (“CVB0”) is
computationally faster than MF for LDA. Here we tried the
AMF approach on Hierarchical Dirichlet Processes (HDP).
We obtained code for collapsed MF for HDP (which uses a
Gaussian approximation similar to Eq (18)) from Teh et al.
(2008), and we removed the second-order terms to ob-
tain AMF. In Figure1(a), we conducted an experiment on
Reuters data, and we find that performing our technique
does not negatively affect the test loglikelihood. In fact,
the accuracy of AMF appears to better than MF. Note that
this improvement may be an artifact of possibly suboptimal
hyperparameters (e.g. seeAsuncion et al.(2009)). Never-
theless, we can be reasonably confident that AMF is learn-
ing an accurate solution on this nonparametric topic model.
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Figure 1.Test loglikelihoods achieved by AMF and MF on (a)
HDP, (b) HMM. AMF is accurate and efficient compared to MF.

We also performed an experiment on the HMM in Sec-
tion 5, with T = 100 slices,M = 4 hidden states, and
R = 9 observed states, and we setα = 0.1 andβ = 0.1.
We simulated ground truthθtrue andφtrue fromD[0.1], and
from these distributions, we simulated synthetic training
dataytrain with 1,000 sequences and test dataytest with 200
sequences. We ran both AMF and MF (with a Gaussian
approximation) for 200 iterations on the training data.

Figure1(b) shows test loglikelihoods achieved by MF and
AMF as a function of time. While both algorithms achieve
the same accuracy, AMF is significantly faster than MF due
to AMF’s efficient arithmetic updates. MF takes 401 sec-
onds to reach a loglikelihood of -120, while AMF takes 105
seconds to reach the same loglikelihood; thus, our AMF
transformations provide a substantial 4x speedup over the
Gaussian version of MF for this model. Had we used stan-
dard MF (which is even less efficient than the Gaussian ver-
sion of MF), this speedup would be even higher.

7. CONCLUSIONS
We have introduced an approximative framework that uses
weighted arithmetic means in the MF updates. Further-
more, we have uncovered connections between AMF and
techniques such as FNA, loopy BP, Gibbs sampling, and
MAP estimation. Our experimental results on Dirichlet-
based models suggest that AMF is as accurate as standard
MF, while being more efficient than MF.
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