
Aggregating Processor Free Time for Energy Reduction∗

Aviral Shrivastava† Eugene Earlie‡ Nikil Dutt† Alex Nicolau†

aviral@ics.uci.edu eugene.earlie@intel.com dutt@ics.uci.edu nicolau@ics.uci.edu

Center for Embedded Computer Systems† Strategic CAD Labs‡
School of Information and Computer Science Intel Corporation,

University of California, Irvine, CA 92697 Hudson, MA, 01749

ABSTRACT
Even after carefully tuning the memory characteristics to the
application properties and the processor speed, during the ex-
ecution of real applications there are times when the proces-
sor stalls, waiting for data from the memory. Processor stall
can be used to increase the throughput by temporarily switch-
ing to a different thread of execution, or reduce the power
and energy consumption by temporarily switching the pro-
cessor to low-power mode. However, any such technique has
a performance overhead in terms of switching time. Even
though over the execution of an application the processor is
stalled for a considerable amount of time, each stall dura-
tion is too small to profitably perform any state switch. In
this paper, we present code transformations to aggregate pro-
cessor free time. Our experiments on the Intel XScale and
Stream kernels show that up to 50,000 processor cycles can
be aggregated, and used to profitably switch the processor to
low-power mode. We further show that our code transfor-
mations can switch the processor to low-power mode for up
to 75% of kernel runtime, achieving up to 18% of processor
energy savings on multimedia applications. Our technique
requires minimal architectural modifications and incurs neg-
ligible (< 1%) performance loss.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based systems, Real-time and embedded
systems; D.3.4 [Software]: Programming Languages, Pro-
cessors [Compilers, Code generation, Optimizations]

General Terms
Algorithms, Performance, Design, Experimentation

∗This work was partially funded by grants from Intel Corpo-
ration, UC Micro(03-028), and SRC contract 2003-HJ-1111

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009 ...$5.00.

Keywords
Energy Reduction, Embedded Systems, Processor Free Time,
Aggregation, Code Transformation, Clock Gating

1. INTRODUCTION
Memory customization is one of the most important steps

in embedded processor design because of its significant im-
pact on the system performance, cost and power consump-
tion. Memory characteristics (like latency, bandwidth, etc.)
are numerous and complex, but they should be matched
carefully to the application requirements and the processor
computation speed. On one hand, processor stalls (proces-
sor waiting for data from memory) should be minimized,
while on the other hand, idle memory cycles (memory wait-
ing for requests from processor) should be reduced. A lot of
time and effort of experienced designers is invested in tuning
the memory characteristics of embedded systems to target
application behavior and processor computation.

0

10

20

30

40

50

60

70

80

90

0 50000 100000 150000 200000 250000

F
re

e
S

tr
et

ch
 L

en
gt

h

Time(cycles)

Processor Free Stretches

Figure 1: Length of Processor free stretches

However even after such careful design of the memory sys-
tem there are times during the execution of real-life applica-
tions when the processor is stalled, and there are times when
the memory is idle. We define a processor free stretch to be a
sequence of contiguous cycles when the processor is stalled.
Figure 1 plots the lengths of processor free stretches over
the execution of the qsort application from the MiBench
benchmark suite[6] running on the Intel XScale [7]. Very
small processor free stretches (1-2 cycles) represent proces-
sor stalls due to pipeline hazards (e.g. Read After Write

hazard). A lot of free stretches are approximately 30 cycles
in length. This reflects the fact that the memory latency is
about 30 cycles. An important observation from this graph
is that although the processor is stalled for a considerable
time (approximately 30% of the total program execution
time) the length of each processor free stretch is small. The
average length of a processor free stretch is 4 cycles, and all
of them are less than 100 cycles.

>> 36,000 cycles

36,000 cycles

180 cycles

450 mW

0 mW10 mW

1mW

RUN

SLEEPIDLE

DROWSY

Figure 2: Power State Machine of XScale

A processor free stretch is an opportunity for optimiza-
tion. System throughput and energy can be improved by
temporarily switching to a different thread of execution [11].
The energy consumption of the system may be reduced by
switching the processor to a low power state. Figure 2 shows
the power state machine [2] of the Intel XScale. In the de-
fault mode of operation, the XScale is in RUN state, con-
suming 450mW. XScale has three low power states: IDLE,
DROWSY, and SLEEP. In the IDLE state the clock to the
processor is gated, and the processor consumes only 10mW.
However, it takes 180 processor cycles to switch to and back
from the IDLE state. In the DROWSY state the clock gen-
eration circuit is turned off, while in the SLEEP state the
processor is shut down. DROWSY and SLEEP states have
much reduced power consumption, but at an increased cost
of state transition. The break-even processor free stretch
for a transition to IDLE state is 180 × 2 = 360 cycles. This
implies that the processor free stretch should be more than
360 cycles to profitably switch the processor to IDLE state.
Clearly existing processor free stretches are not large enough
to achieve power savings by switching to a low-power state.
It is important to note that this is in-spite of the fact that
the total processor stall duration is quite large.

Traditional assumption has been that power optimiza-
tion opportunities by switching the processor to low-power
state can only be found at the operating system level (inter-
process), and not at the compiler-level (intra-process). Con-
sequently a lot of research has been done to develop power
optimization techniques, that operate application level gran-
ularity, and are controlled by the operating system. To the
best of our knowledge there has been no research to aggre-
gate processor free times within an application to reduce the
power/energy consumption of the processor.

In this paper we address this traditional oversight. We
present code transformations to aggregate processor free
times and obtain large chunks of processor free time, in
which the processor can be profitably switched to a low-
power state. Our experimental results on Stream kernels
running on an Intel XScale show that our technique can ag-
gregate processor free times to up to 50,000 processor cycles
and thereby switching the processor to low-power state for
up to 75% of kernel execution time. Further, we show that
for real-life multimedia applications our technique achieves
up to 18% savings in processor energy. Minimal architec-
tural support is needed for our approach and it incurs neg-
ligible performance (< 1%) impact.

2. RELATED WORK
Prefetching can be thought of as a technique to aggre-

gate memory activity. [12] presents an exhaustive survey
of hardware, software, and cooperative prefetching mecha-
nisms. Processor free cycles can be used to increase the
throughput of systems by switching to a different thread of
execution [11]. They can also be used to reduce the power
consumption of a processor by switching it to a low-power
mode [9]. Clock gating, power gating, frequency scaling and
voltage scaling provide architectural support for such low-
power states [9].

Several power/energy reduction techniques work at the
operating system level by switching the whole processor to
a low-power mode. The operating system estimates the pro-
cessor free time using predictive, adaptive or stochastic tech-
niques [2]. Some power/energy reduction techniques operate
at the application level but they control only a very small
part of the processor, e.g. multiplier, floating point unit.
The compiler statically or hardware dynamically estimates
the inactive parts of processor, and switches them to low-
power mode [5].

However, there are no existing techniques to switch large
parts of processor to a low-power state, during the execution
of an application. This is mainly because during the execu-
tion of an application, without aggregation the processor
rest times are too small to profitably make the transition
to low-power state. This is true even though the total stall
duration may be quite significant. In this paper we present
a technique to aggregate small processor stalls to create a
large free chunk of time when the processor is idle, and can
be profitably switched to a low-power state.

3. MOTIVATION
Consider the loop expressed in Figure 3(a). In each iter-

ation the next element from two arrays a and b are loaded
and their sum is stored into the third array c. The ARM
assembly code of the loop generated by GCC is shown in
Figure 3(b).

1. L: mov ip, r1, lsl#2
2. ldr r2, [r4, ip]
3. ldr r3, [r5, ip]
4. add r1, r1, #1
5. cmp r1, r0
6. add r3, r3, r2
7. str r3, [r6, ip]
8. ble L

for (i=0; i<1000; i++)
c[i] = a[i] + b[i];

(a) (b)

Figure 3: Example Loop

Consider a simple hypothetical pipeline model of a proces-
sor. In the absence of cache misses every instruction takes
one cycle to execute. To model a realistic memory behavior
we need a slightly complicated memory model. The memory
architecture of the processor is described in Figure 4. We
assume there is a request buffer in front of the cache. This
makes the cache non-blocking (the processor does not stall
on a cache miss). The request latency of the memory (time
elapsed between making a request to getting the first word)
is 12 cycles. The memory bus is pipelined so that multiple
requests can be pending and hide the memory latency. We
assume independent request and data bus for increased ef-
ficiency of memory bus. The memory bandwidth is 1 word
per 3 cycles and the cache line size is 16 bytes.

Pipelined
Memory

Load Store Unit

Data BusRequest Bus

Buffer
Request

Data Cache

Cache line = 16 bytes
Request Latency = 12 cycles
Bandwidth = 1 word/ 3 cycles

Pipelined Memory
Independent Request and Data bus

Request Buffer

Processor

Figure 4: Example Memory Architecture

To simplify the analysis we assume simple loops with se-
quential array accesses, like the loop in Figure 3. The anal-
ysis can be easily generalized later. For such loops it is
convenient to think of memory operations per k loop itera-
tions; where k is the number of elements (of the type that
are being accessed in the loop) that fit in one cache line. For
example the loop in Figure 3 loads integers(4 bytes), thus
k = 16/4 = 4. Therefore we define an Iteration (with a
capital I) as 4 iterations (with a small i). In one Iteration,
the loop needs to load 3 lines, one line each from arrays a,
b, and c.

The Computation C in a loop is defined to be the number
of cycles required to execute one Iteration of the loop if
there are no cache misses. For this loop, C = 8 × 4 = 32
cycles. The Memory Latency ML of a loop is defined as the
number of cycles required to transfer all the data required in
one Iteration in steady state, assuming that the request was
made well in advance. In every Iteration in steady state,
three lines have to be loaded (one line each from arrays a,
b, and c) and one line has to be written back (one out of
every three lines, the one corresponding to array c, is dirty).
Thus ML = 4 × 4 × 3 = 48 cycles.

For this loop ML > C. We call such a loop as memory
bound, and there is no way to avoid processor stalls for such
a loop. Even if the request for the data is made well in
advance, the memory bandwidth is not enough to transfer
the required data in time. For loops in which ML = C, the
memory requirement and computation are matched. The
memory system can be said to be tuned for such loops.

Time (cycles)

Normal
Execution Memory Bus Activity

Processor Activity

Processor Activity
Memory Bus Activity

Processor Activity
Memory Bus Activity

Normal
Prefetching

DMA
Prefetching

Figure 5: Processor Memory Activity

The top two sets of lines in Figure 5 represent the pro-
cessor and memory bus activity in a normal processor. The
processor executes intermittently. It has to stall at the 6th

instruction of each Iteration, and wait for the memory to
catch up. The memory activity starts with the request made
by the 2nd instruction, but data continues to transfer on the
memory bus, even after the processor has stalled. Even
before all this data could be transfered, there is a new re-

quest from the 2nd instruction of the next Iteration of the
loop, and the request latency could not be completely hid-
den. Thus in a normal processor, both the processor and
memory bus activities are intermittent.

Prefetching has the effect of aggregating the memory bus
activity. The next two horizontal lines from the top in Fig-
ure 5 represent the processor and memory bus activity with
prefetching. Each period of processor execution is longer
because of the computational overhead of prefetching. How-
ever, the memory bus activity is now continuous. The mem-
ory bus is one of the most critical resources in several sys-
tems, including our example architecture. Improving the
utilization of such an important resource is very important.
As a result of this, the runtime of the loop decreases.

However, the processor utilization is still intermittent. If
we can aggregate the processor utilization, we can achieve
an activity graph as shown by the bottom two lines of Fig-
ure 5. The plot clearly shows that the processor needs to
be active only for a fraction of time of the memory bus
activity, the fraction being equal to C/ML. Furthermore
the aggregated inactivity window can be large enough to
enable profitable switching to low-power mode, and energy
reduction achieved. In this paper we present a code trans-
formation and architectural support required to achieve this
aggregation.

4. AGGREGATION APPROACH

for (i=0; i<1000; i++)
c[i] = a[i] + b[i];

(a) (b)

for (i1=0; i1<T2; i1+=T)
startPrefetch()

 setProcWakeup(w)
 procIdleMode()
 for (i2=i1; i2<i1+T; i2++)
 c[i2] = a[i2] + b[i2]

Figure 6: Loop Transformation

Our idea of aggregating processor rest time is very intu-
itive, and requires a prefetch engine. Figure 6 shows the
transformation of the loop shown in Figure 3. For each
memory bound loop in the application we find out which
arrays and how many lines from each array are required by
the loop and the prefetch is started. The loop is first tiled
with tile of size T . Inside each tile, the wakeup factor w is
set in the prefetch engine to wake up the processor. The
processor is then switched to a low-power state. In the low-
power state, the processor waits for an interrupt from the
prefetch engine. All parts of processor except the load store
unit are switched to a low-power state. At appropriate time
the prefetch engine generates an interrupt to wake up the
processor. The processor wakes up and resumes execution
on the prefetched data in the cache. The prefetch engine
continues to work even after the processor is awake. The
tile size T , and the wake up parameter w are computed so
as to maximize the time the processor is in the low-power
state.

Note that Figure 6 shows only the transformation of the
loop kernel. However to implement this transformation, we
need to identify the loop kernel, the epilogue and the pro-
logue of the loop. First we describe the complete loop trans-
formation steps, then we show the calculation of T and w to
achieve the maximum energy savings, and finally describe
our prefetch engine implementation.

4.1 Code Transformation

b. ML can be estimated by source code of loop
a. C can be estimated by assembly code of loop

1. Identify simple memory bound loops

5. Find the wakeup time for the third part of loop

Break away the third part (tail) of the loop

4. Find tiling factor and wakeup time for
second part of the loop

Compute wakeup time for first part of loop
3. Find MLof the first part of loop by profiling

b. At steady state
a. Before steady state

2. Break the loop into two parts

Figure 7: Transformation Steps

The transformation is applied only to memory bound loops.
The loop transformation described in Figure 7, converts the
loop in Figure 3 into the loop in Figure 8. The first step
in the transformation is to estimate the memory latency
ML and the computation C of the loop. The ML can be
estimated by a simple source code analysis, while C can be
estimated by a simple assembly code analysis. We define the
steady state of the loop, as when the loop has consumed a
cache-full of data. Before steady state, the memory latency
of the loop may not be equal to ML. If the data required in
an Iteration is already present in the cache, there will be no
memory transfers. On the other hand, if the data residing
in the cache is dirty, then more writebacks will happen. The
loop is therefore broken into two parts, the first one is before
steady state (i = 0; i < T1), the prologue, and the second
one is at steady state (i = T1; i < N). For this we need to
estimate T1, the break point of the loop.

Before steady state, profile information is needed to es-
timate ML. A cycle accurate simulator is instrumented to
count all memory activity in the loop in the first part of
the loop. Thus for the prologue, ML = cache misses/T1.
Using ML, C and T1, the wake up parameter w1 for the
first part of the loop is computed.

For the second and the main part of the loop, ML and C
are known. The tile size T of the loop needs to be computed.
There will be (N − T1)/T tiles in the second part of the
loop. However, there may be a tail end of the loop left
(i = ((N − T1)/T) × T ; i < N). The tail end of the loop, is
separated as the third part or epilogue of the loop. In the
main kernel, the processor will be switched to low-power
mode at the beginning of each tile, and processor wake up
factor will be setup in the prefetch engine. The processor
wakes up by the interrupt from the prefetch engine, and
starts executing. The wake up factor w is computed in such
a way that the tile computation ends by the time processor
exhausts the prefetched data. The wake up time w2 for the
epilogue is also estimated.

Currently our analysis of aggregating processor free times
is for loops that request consecutive lines from each array. It
should be possible to extend the scope of this transformation
by employing more sophisticated data analysis techniques.
The overhead of the additional instructions inserted by our
transformation is negligible (< 1% of the total runtime).

17. c[i1] = a[i1] + b[i1]
16. for (i1=T2; i1<N; i1++)
15. procIdleMode
14. setProcWakeup w2
// tail of the loop

13. c[i2] = a[i2] + b[i2]
12. for (i2=i1; i2<i1+T; i2++)
11. procIdleMode
10. setProcWakeup w
9. for (i1=0; i1<T2; i1+=T)
// tile the second part of the loop

8. c[i1] = a[i1] + b[i1]
7. for (i1=0; i1<T1; i1++)
6. procIdleMode
5. setProcWakeup w1
// first part of the loop

4. startPrefetch
3. setPrefetchArray b, N/L
2. setPrefetchArray b, N/L
1. setPrefetchArray a, N/L
// Set the prefetch engine

Figure 8: Fully Transformed Loop

4.2 Computation of Loop breakpoints, Tile
size and Wake up Factor

The loop breakpoints, tile size, and wake up time depend
on the the loop characteristics, cache parameters, and the
location of arrays in memory. For our analysis we assume
that C is the computation, and ML is the memory latency
of the loop. Also assume that in each Iteration of the loop,
r lines need to be read. Further assume that the cache has
s sets, and has associativity a.

We first compute the first breakpoint T1 of the loop. The
steady state starts when the loop has consumed one cache-
full of data. In s Iterations, the loop completely uses r lines
of each set. Thus it will use the whole cache and a little more
in T1 = a×s/r+s Iterations. To compute the wake up time
w1 of the processor, given the number of Iterations the loop
will execute, the following condition must hold true, C ×
T1 = ML×(T1−w1/r). This ensures that enough data has
been loaded into the cache to perform computation without
any cache misses. Thus w1 = ((ML − C) × T1 × r)/ML.

The wake up time w of the processor inside the tile is
computed such that each time we prefetch a cache-full of
data, thus w/r = (a/r) × s. The tile size T can then be
computed by the following relation, (C×T/ML)+w/r = T .
This implies T = w/r × ML/(ML − C).

The wake up time w2 for the third part of the loop can be
computed similarly as w2/r = ((ML−C)× (N −T2))/ML.

4.3 Architectural Support
Very little architectural support is needed for the pro-

posed scheme to work. The exact implementation of the
prefetch engine as well as its interface may differ for each
architecture. Our implementation is shown in Figure 9. A
mechanism to set up the prefetch engine is required. The
processor needs to specify the start of the arrays, and the
number of lines of each array to be prefetched to the prefetch

Pipelined
Memory

Load Store Unit

Data BusRequest Bus

Buffer
Request

Data Cache

prefetch
engine

Processor

Figure 9: Prefetch Engine

engine. The processor also needs to specify the number of
lines to prefetch before waking up the processor (w). A
mechanism to start the prefetch engine and a way to switch
the processor to a low-power mode is needed. In the low
power mode, the clock to the processor(other than the load
store unit) can be frozen, and even powered-down. The pro-
cessor just waits for an interrupt from the prefetch engine.
The prefetch engine keeps prefetching by inserting requests
in the request buffer. The prefetch engine monitors the re-
quest buffer, and it does not let the request buffer be empty.
If the request buffer is always full, the activity on the data
bus remains uninterrupted. This ensures the maximum us-
age of data bus by keeping the request buffer non-empty.
After the prefetch engine has requested more than w lines
from the memory, it should generate an interrupt to wake
up the processor. The processor should catch the interrupt
and resume execution again. The prefetch engine contin-
ues its operation even after waking up the processor. After
all the data has been prefetched, the prefetch engine should
disengage itself, until it is invoked by the processor again.

5. EXPERIMENTS
To demonstrate the usefulness and efficacy of our ap-

proach we perform experiments on our XScale simulator.
The simulator has been validated against the 80200 EVB
(XScale Evaluation Board) [1] to be accurate within 7% on
an average in cycle count measurements. The simulator has
been extended to model the prefetch engine. The code trans-
formations have been applied on the best performing code
generated by GCC.

5.1 Steady-state Analysis
We perform the first set of experiments on kernels from

the Stream suite[8]. Stream kernels are widely used to bal-
ance the memory bandwidth to the computation speed of
processors. The kernels have varying degree of computa-
tion to memory requirement (C/ML) ratio. The leftmost
(black) bars in Figure 10(a) plot the processor free stretch
our aggregation technique could obtain for each kernel in
Stream suite. Up to 50,000 processor free cycles can be ac-
cumulated. Two of the kernels, stream3 and stream5, do
not have black bars. Our technique was unable to aggre-
gate processor free stretches for these two kernels, because
C > ML for these kernels. The leftmost (black) bars in Fig-
ure 10(b) represent the percentage of total execution time,
the processor can be switched to a low-power mode (proces-
sor switch time). The processor state switching time (360

cycles for each switch), is considered to be full-power mode.
The processor can be switched to a low-power mode for up
to 33% of the program execution time. Note again, that
the processor cannot be switched to a low-power mode in
stream3 and stream5. This shows that our technique is able
to aggregate processor free times into large chunks, so that
it becomes profitable to switch the processor to a low-power
mode. Furthermore, our results show that the processor can
be switched to low-power mode for a significant amount of
kernel run-time.

5.2 Effect of Loop Unrolling
The processor free time our technique is able to aggregate

is proportional to the ratio, C/ML. Optimizations that
improve this ratio improve the aggregation results. Loop
unrolling is a popular optimization that reduces the com-
putation per Iteration (C) of a loop. In this subsection we
analyze the impact of loop unrolling on the processor free
stretch and the processor switch time obtained. Figure 10(a)
shows that the processor free stretch size obtained is not af-
fected by unrolling. As discussed in Section 4, the ability
to accumulate processor free time is dependent on whether
ML > C, but if it is possible, the size of the processor
free stretch obtained is proportional to ML. It does not
increase by reducing C. Figure 10(b) show plots the proces-
sor switch time percentage obtained for the Stream kernels
for different unroll factors. The first observation is that af-
ter unrolling the processor can find switching opportunities
even for kernels stream3 and stream5, which were earlier
deemed unprofitable. The second important obeservation is
that unrolling increases the processor switch time percent-
age for the kernels. The processor can now be switched to
a low-power mode for up to 75% of kernel run-time. Thus
unrolling improves the applicability and efficacy of our ag-
gregation technique. It is worth mentioning here that hand-
generated assembly code has even better C/ML ratio. Hand
generated assembly uses much fewer instructions to code the
same functionality (thereby reducing C) , but the ML re-
mains the same. Thus the aggregation techniques works
even better on hand-generated assembly code.

5.3 Energy Saving Estimation
In this subsection we estimate the energy consumption

of the processor with and without applying our aggregation
technique. We develop simple and conservative state-based
processor energy models. We show that even with such
conservative energy models, our technique achieves signifi-
cant processor energy reduction. In the normal RUN mode,
operating at 600 MHz, the XScale consumes 450 mW. In
the STALL mode, the XScale consumes 25% of 450 mW
= 112.5 mW [3, 7, 4]. In the aggregated processor free
time, we switch the processor to our low-power mode called
MY IDLE. In the normal IDLE mode of XScale, the clock
to the processor and memory are gated, and XScale con-
sumes 10 mW. However in our idle state, MY IDLE, the
memory clock needs to be on, the prefetch engine is on, and
we need to keep performing writes in the cache. Clock con-
sumes about 20% power in the XScale, i.e. 90 mW. The
clock power is divided into processor clock power and mem-
ory clock power. We assume that processor clock is 6 times
faster than memory clock. The capacitive load on the pro-
cessor clock is much more than the capacitive load on the
memory clock. We conservatively assume same capacitive

Processor free stretch variation with Unrolling

0

10000

20000

30000

40000

50000

60000

stream1
stream2

stream3
stream4

stream5

Benchmarks

Pr
oc

es
so

r f
re

e
st

re
tc

h
si

ze
No unrolling
Unroll 2
Unroll 4
Unroll 8

Processor switch time variation with unrolling

0%

10%

20%

30%

40%

50%

60%

70%

80%

stream1
stream2

stream3
stream4

stream5

Benchmarks

Pr
oc

es
so

r s
w

itc
h

tim
e

No unrolling
Unroll 2
Unroll 4
Unroll 8

(a) Variation of processor free stretch size with Unrolling (b) Variation of processor switch time with Unrolling

Figure 10: Processor free stretch size and switch time variation with Unroll factor on Stream benchmarks

load, therefore memory clock consumes 90/7 = 13 mW.
Caches in XScale consume about 25% power, i.e. 112.5 mW.
However this is divided into data cache power and the in-
struction cache power. In XScale the instruction cache and
data cache have the same architectural parameters. How-
ever on an average the instruction cache is accessed every
cycle, while the data cache is accessed every 3 cycles. Thus
energy consumed by the data cache is 112.5/4 = 28 mW.
We synthesized the prefetch engine using design-compiler
of Synopsys-2001.10 on a 0.8µ library, and estimated its
power consumption using Synopsys power-estimate[10]. The
power consumption, scaled to the XScale process technology
(0.18µ) is less than 1 mW. Thus in MY IDLE state, proces-
sor consumes 13+28+1 = 42 mW. However for our experi-
ments, we make a further conservative estimate, and assume
processor power consumption to be 50 mW. We augmented
the cycle accurate simulator with the power of RUN state,
STALL state and MY IDLE state. Depending on the cur-
rent state of the processor, the corresponding state power
is added and the total energy consumption computed. Fig-
ure 11 shows the even with such a conservative estimate,
up to 18% processor energy savings can be obtained by our
processor free time aggregation technique on multimedia ap-
plications running on XScale.

Reduction in Energy Consumption

0

2

4

6

8

10

12

14

16

18

20

SOR Compress Linear Wavelet

Multimedia Benchmarks

%
 E

ne
rg

y
Sa

vi
ng

s

Figure 11: Energy savings on multimedia apps.

6. SUMMARY
Although the processor is stalled for a significant duration

over program execution, each stall duration is too small to
profitably perform any performance and energy optimiza-

tion. In this paper we presented a code transformation tech-
nique that can aggregate up to 50,000 processor free cycles
on the XScale over Stream kernels. The aggregated proces-
sor free stretch cycles can be used to profitably switch the
processor to low-power mode for upto 75% of kernel run-
time. Furthermore we have shown that our technique can
save up to 18% of system-wide energy consumption on real-
life multimedia benchmarks. The code size, performance
penalties, and energy overhead of our technique are negligi-
ble (< 1%), demonstrating the feasability of our approach.
As yet our analysis can handle only simple loops. We are
working to extend the applicability of our technique to more
general loops, and also to non-loop regions of code.

7. REFERENCES
[1] Intel 80200 processor based on intel xscale microarchitecture.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design
techniques for system-level dynamic power management. IEEE
Transactions on VLSI Systems, 8(3):299–316, 2000.

[3] L. T. Clark, E. J. Hoffman, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K. E. Velarde, and M. A. Yarch. An embedded
32-b microprocessor core for low-power and high-performance
applications. IEEE Journal of Solid State Circuits,
36(11):1599–1608, 2001.

[4] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G. Y. Lueh.
XTREM: A power simulator for the intel xscale core. In
LCTES, 2004.

[5] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
considerations in the design of the alpha 21264 microprocessor.
In Design Automation Conference, pages 726–731, 1998.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE Workshop
in workload characterization, 2001.

[7] Intel Corporation,
http://www.intel.com/design/intelxscale/273473.htm. Intel
XScale(R) Core: Developer’s Manual.

[8] J. D. McCuplin. Memory bandwidth and machine balance in
current high performance computers. Newsletter of IEEE
Computer Architecture Technical Committee, 1:19–25, 1995.

[9] J. M. Rabaey and M. Pedram. Low power design
methodologies. In Kluwer, 1996.

[10] Synopsys. Synopsys Design Compiler.
http://www.synopsys.com/products/logic/design compiler.html,
2001.

[11] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. SIGARCH
Comput. Archit. News, 23(2):392–403, 1995.

[12] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms.
ACM Computing Surveys (CSUR), 32(2):174–199, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

