ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ?

HollyShare:
Peer-to-Peer File Sharing Application

| CS 243A Class Project

Songmel Han
Bijit Hore
llyalssenin
Sean McCarthy
Shannon Tauro

I e T e — —— —— — — — R— — — ——

HollyShare Project: Final Report

INTRODUCTIONttt ee et e et e st e st e e sa e e e nsaeeesaeeeaeeesnneesnneeas 3
Y 0 LN e PSR 5
Architecture of Existing Peer-to-Peer File Sharing SYStEMSc.cccveccisrereeesess st ssssssssesssens 5
The Centralized Mode of P2P File-Sharing 5
The Decentralized Model of P2P File-Sharing 6
Comparison of Centralized and Decentralized P2P Systems 7
File Discovery in Decentralized P2P File Sharing SYyStEMS ...t esssssssssssssssesenes 12
File Discovery Mechanismsin Freenet: Chain Mode 12
File Discovery in Gnutella network: Broadcast 14
Sear ch Performance Comparison of Gnutella and Freenet 16
Problemswith Existing P2P File Sharing Systems 17
L essons L ear ned from Surveying the Existing P2P File Sharing System........cccvvceevvecccsvessceesesseeenns 17
IMPLEMENTATION ...ttt ettt st e s sne e s s nae e e snneeeanes 19
SYSLEM AT CRITECTUN €.ttt bbb 19
System Overview & Graphical User INterface (GUI) ... 20
N0 T0 Lo I = o= 1 OO 21
L o I =T = T OO 22
CONFIQUIBLTION IMBNAGEYcecveeieeereee st es bbbttt 24
FIlE TranSfEr IMOUUIE.......cce ettt ettt eene e st e s 24
Client component 25
Server component 25
File Transfer Module Summary & Future Work: 26
NEtWOr K CONNECLIVITY M BNAGEScveuiriecreeeirereises e s es bbb 26
Network topology 26
Connecting to the network 26
Reconnection 28
Information Discovery M echanism 30
HollyShar e Network Protocol 30
P Oj ECt DEVEIOPIMENT ...ttt bbb 33
Requirements Phase 33
Architectur e Development 34
Distribution of Modules 34
Development & Integration of Modules 34
Divison of Labor 34

ANAIYSIS OF SYSEEM ...ttt e st 35

HollyShare Project: Fina Report

CONCLUSIONS

REFERENCES.

HollyShare Project: Final Report 3

I ntroduction

Peer-to-peer file sharing applications have been in exigence for some time. Familiar
applications or architectures such as Napster, Gnutella, and Freenet have a large user base.
The main design idea of these systems is files are digtributed throughout nodes. This is much
different from traditional client/server systems, where files would lie on one central machine, and
al trandfers would occur only between the individua dlients and that machine. In peer-to-peer,
file transfers can occur between the individua nodes.

Hollyshare is another peer-to-peer file sharing application. Why did we decide to create one
more file sharing sysem? The answer is that HollyShare have some unique properties, which
diginguish it from other exiging sysems.

Firs, HollyShare is designed for use by a group of people that know each other as opposed to
exiding file- sharing systems, where anybody can enter the system.

Second, it is designed to be a catadogue system, as opposed to a query system like many of the
more familiar peer-to-peer file sharing gpplications and architectures. The cataogue exists on
each of the nodes in the system, so searching for files is not necessary. This is beneficid for
relatively smal number of shared files, when the users are not sure what do they want to
download and prefer to select something from exiging lig, rather than try to search for
something that is most probably is not in the system.

Third, our sysem isfully decentraized — here are no dedicated servers.

Fourth, HollyShare was designed with privacy congderaions in mind — nobody outside the
group is supposed to get any information about the files shared or obtain transferred file
contents usng a network sniffer.

Those congderations lead us to make the following assumptions, which affected our design
decisons. The implications for each module will be discussed later. For this project we have
assumed the following:

1. The number of userswill be limited.

2. Userswill not hop on and off frequently.

3. Thefilesbeing shared are very large.

4. Sincethefiles being shared are very large, the number of fileswill be limited.

5. One or more of the usersin the system have the same | P address across sessions.

The rationde for assumption 1 is that the intended user base for the gpplication is a set of
persons ingde the UCI community. Although use of the program is not limited to these users,
the files will only be shared with a known group. Assumption 2 follows from assumption 1. In

HollyShare Project: Final Report 4

order for the system to be of any use, the users mugt leave the gpplication running to alow other
users access to our shared files.

The files being shared in this system are large multimedia (digitized movie) files, with a typica
dzein excess of 600 MB. Obvioudy because of this expectation, the number of such files for
any given user will be smell, most likely limited to fewer than 10 per person (and likely to be less
than thet).

The dgorithms we use for connecting to other nodes require that at least one of the nodesin the
system has the same IP address in two consecutive reconnections. The reason for this will
become obvious when connectivity is discussed.

This paper conssts of severa sections. We discuss peer-to-peer file sharing in generd, and
urvey severd exiging architectures. The sections following our survey give an overview of the
Hoallyshare system architecture, and then expanded descriptions of each of those modules. The
final sections provide an evauation of our system, and finaly conclusions and future work.

HollyShare Project: Final Report 5

Survey

Architecture of Existing Peer-to-Peer File Sharing Systems

Peer-to-Peer (P2P) systems and applications are distributed systems without any
centralized control or hierarchica organization [1]. In a pure P2P system, the software running
a each node is equivaent in functiondity. P2P is not a new concept. However, it has caught
the public eye only recently with the familiar peer-to-peer file- sharing network applications such
as Napster, Gnutdlla, Freenet, Morpheus, etc [2, 3]. Until recently, peer-to-peer file sharing
goplications have followed one of two main modds the hybrid peer-to-peer system with
centralized servers such as that used by Napster, and the pure decentralized peer-to-peer
system such as Gnutella and Freenet [4]. A third modd that harnesses the benefits of the
centralized mode and the decentralized model has emerged recently. This modd is a hybrid
where a centra server facilitates the peer discovery process and super-peers proxy the requests
for locd peers and unloads the searching burden on the centra server [5]. Applications such as
Morpheus and KazaA use the third model. The new versons of some Gnutella gpplications
such as BearShare have a so applied the super-peer concept in their file discovery dgorithms.,

In searching for an gppropriate architecture for our HollyShare project, we surveyed the
architecture of three models used in peer-to-peer file sharing systems. In the next part of the
paper, we will firg discuss different systems in terms of their architecture and then compare
them in terms of performance, resource requirements, fault tolerance, and scadability. The last
part of this survey will concentrate on search agorithms in two decentraized peer-to-peer file-
sharing sysems. Gnutdlla and Freenet.

The Centralized Model of P2P File-Sharing

In this modd, a centrd server or a cluster of central servers directs the traffic between
individua registered peers [4]. This mode is aso referred to as a hybrid file-sharing system
because both pure P2P and client-server systems are present [6]. The file transfer is pure P2P
while the file search is dient-server. Both Napster and OpenNap use this model. The central
sarvers in Napster and OpenNap maintain directories of the shared files stored at each
registered peer of the current network. Every time a user logs on or off the Napster network,
the directories at the central servers are updated to include or remove the files shared by the
user. A user logs on the Napster network by connecting with one of the central servers. Each
time a user wants a paticular file, it sends a request to the centra server to which it is
connected. The central server will search its database of files shared by peers who are currently
connected to the network, and creates alist of files matching the search criteria. The resulted list
will be sent to the user. The user can then select the desired file from the list and open a direct
HTTP link with the peer who possesses that file. Thefile is directly transferred from one peer to
another peer. The actud MP3 file is never stored in the central server. The central server only
holds the directory information of the shared file but not the file itsdf.

HollyShare Project: Final Report 6

In the centrdized modd used by Napder, information about dl files shared in the
system is kept in the centrd server. There is no need to query individud usersto discover afile.
The centrd index in Napster can locate files in the system quickly and efficiently. Every user has
to regigter with the centra server to be on the network. Thus the central index will include dl
files shared in the system, and a search request at the central server will be matched with dl files
shared by dl logged-on users. This guarantees that al searches are as comprehensve as
possible. Fig. 1 shows the architecture of the Napster network.

Fig 1 Napster’s Architecture.

The Decentralized Model of P2P File-Sharing

In a decentrdized P2P file-sharing modd, peers have the same capability and
respongbility. The communication between peers is symmetric in the sense that each peer acts
both as a client and a server and there is no master-dave relationship among peers. At any given
point in time, anode can act as a server to the nodes that are downloading files from it and asa
client to the nodes that it is downloading files from. The software running a each node includes
both the server and client functiondlity.

Unlike a centrdized P2P file sharing system, the decentraized network does not use a
central server to keep track of dl shared files in the network. Index on the meta-data of shared
files is sored locally among dl pears. To find a shared file in a decentrdized file sharing
network, a user asks its friends (nodes to which it is connected), who, in turn, asks their friends
for directory information. File discovery in adecentralized system is much more complicated
than in a centraized system. Different systems have applied different file discovery mechaniams.

HollyShare Project: Final Report 7

The success of a decentrdized file sharing system largely depends on the success of the file
discovery mechanisms used in the sysem. Applications implementing this modd include
Gnutdlla, Freenet, etc. We will discuss two file discovery mechanisms used in Gnutdlla network
and Freenet later. Fig 2 shows the architecture of the decentralized mode!.

Fig 2 Architecture of a Decentralized P2P File Sharing System

Comparison of Centralized and Decentralized P2P Systems

In a centrdized modd, file discovery can be done efficiently and comprehensively with
the file indexing information kept a centra server. At the same time, the centrd server is the
only point of entry for peersin the sysem. The centra server itsef can become a bottleneck to
the systlem. A central server failure can lead to the collapse of the whole network. Information
provided by the central server might also be out of date because the database at the centra
server is only updated periodicaly. To store information about al files shared in the system dso
requires a sgnificant amount of storage space and a powerful processor at the central server to
handle dl the file search requests in the system. The scalability of the syssem depends on the
processing power a the central server. When Napster centrd servers are overloaded, file
search in the system can become very dow and some peers might not be able to connect to the
network due to the central server’s limited capability [7].

HollyShare Project: Final Report 8

In a decentrdized modd, the respongbility for file discovery is shared among peers. If
one or more peers go down, search requests can till be passed dong other peers. Thereis no
gngle point fallure that can bring the network down [8]. Therefore, a decentraized P2P system
is more robust compared with a centrdized P2P system. At the same time, since indexing
information is kept locdly at individud user's computer, file discovery requires search through
the network. File discovery in a decentraized P2P system can become inefficient and produce a
large amount of network treffic.

Ingpired by the efficient file discovery advantage in a centralized P2P system and the
scaability and fault tolerance advantages in a decentralized P2P system, Morpheus and KazaA
have implemented pseudo-centraized system architectures to take advantage of the strengths of
both the centralized and decentraized modd!.

Partially Centralized System with Super Nodes

Both Morpheus and KazaA implemented a partially centralized architecture based on
technology developed by FastTrack, an Amsterdam:-based startup company. Like Gnutella but
unlike Napster, Morpheus and KazaA do not maintain centra file directories. Like Napster but
unlike Gnutella, Morpheus and KazaA are formaly closed systems, requiring centralized user
registration and logon [5].

Both Morpheus and KazaA implement the FastTrack P2P Stack protocol, a C++-
based protocol stack licensed from FastTrack. Although Morpheus clams to be a “ distributed,
sdf-organizing network”, there is gill a centrd server in the network that is responsible for
maintaning user regidrations, logging users into the system (in order to maintain active user
satistics, etc.), and bootstrapping the peer discovery process.

The registered user can look for super nodes through http://supernodekazaa.com [9]. A
user needs to provide user name and password information to get access to super node
information. After aMorpheus peer is authenticated to the server, the server provides it with the
IP address and port (lways 1214) of one or more “SuperNodes’ to which the peer then
connects. Once the new node recaivesitslist of super nodes, little communication between the
central server and the new node is needed for file discovery and file transfer. Upon receiving the
IP address and port of super nodes, the new node opens a direct connection with one super
node. A SuperNode acts like aloca search hub that maintains the index of the mediafiles being
shared by each peer connected to it and proxies search requests on behaf of these peers. A
super node connects to other super nodes in the network to proxy search requests on behaf of
local peers. Queries are only sent to super node not to other peers. A SuperNode will process
the query received and send the search results back to the requester directly if the data found in
the SuperNode's database. Otherwise, the query is sent to other super nodes for search
through the network. Search results in Morpheus contain the 1P addresses of peers sharing the
files that match the search criteria, and file downloads are purdly peer-to-peer. Like Gnutdlla,
filesare tranderred with HTTP protocol in Morpheus.

HollyShare Project: Final Report 9

Such a scheme greatly reduces search times in comparison to a broadcast query
agorithm like that employed on the Gnutella network. Fig 3 shows the architecture of Morpheus
network.

Peer 1: File 1, File 2, File 3,
Peer 2: File 1, File 2, File 3,
Peer 3: File 1, File2, File 3,

Super Node C

Super Node A

Query
Peer 2, File1

Peer 1 Peer 2 Peer 3

Fig 3 Architecture of Morpheus Network

A Morpheus peer will be automatically eected to become SuperNode if it has sufficient
bandwidth and processing power. Peers can choose not to run their computer as SuperNode
with a configuration parameter. Since the FastTrack P2P stack protocol used by Morpheus is
proprietary, no documentation regarding the SuperNode dection process is available. Clip2, a
firm that provided network datistics and information about P2P networks before it ceased
operations, independently developed the equivaent of a SuperNode for Gnutella, a product
cdled the Clip2 Reflector and generically designated a“ super peer.” A prototype future verson
of BearShare (code-named Defender), a popular Gnutdlla gpplication, implements the super-
peer concept in the same integrated manner as Morpheus.

Since the application of the SuperNode concept in Morpheus has been done using
proprietary agorithms and protocols, we were unable find the protocol, but we found the paper
that proposed a scheme to implement the dynamic SuperNode sdection mechaniam in the
Gnutella network [10]. The approach discussed in the paper may or may not be identica to the
proprietary one used in Morpheus, with which we have no way to compare. The following
discusson about SuperNode sdlection is solely based on the scheme proposed for Gnutella

HollyShare Project: Final Report 10

network. It should be noted that a SuperNode is Smply a traditiond peer, but with super-
powers. Thisis due to the machine properties on which the gpplication is running.

There are two types of nodes in the proposed new verson of Gnutela network
protocol: super node and shielded node. A super node is just like any other node except that it
has better networking capabilities and processing power. These capabilities are not necessary
but are the desired ones. A super node aso needs to implement additiona functiondity in order
to proxy other nodes. A shielded node is a node that maintains only one connection and that
connection isto asuper node. A super node acts as a proxy for the shielded node, and shidds it
from al incoming Gnutdlatraffic.

When a shielded node A firg joins the Gnutella network, it connects to Node B in the
normal fashion, but includes the following header in the connection handshake:

GNUTELLA CONNECT/0.6 <cr><lIf>
Supernode: False <cr><If>

which states that Node A is not a super node. If node B is a shielded node, it will not be able to
accept any connection. Node B will then reject the connection using suitable HT TP error code.
However, Node B can provide IP addresses and ports of few super nodes that it knows,
including the one it is connected to, to Node A. Node A can try to establish a connection with
one of the super nodes it received from Node B. If Node B is a super node with available
client connection dots, Node B will accept the connection from Node A. Node B may aso
optionaly provide some other Supernode IP addresses in the HT TP header sent to Node A for
it to cache. These can be used by Node A in the future in case the connection with this super
node bresks. If Node B is a super node with no client connection dot available, it will rgject the
connection but provide Node A with IP addresses and port number of other super rodes it
knows so that Node A can connect to the network through other super nodes.

A super node joins the network with connections to other super nodes. It can obtain the
addresses and port of other super nodes ether through well know host cache such as
connectl.gnutellahosts.com:6346) or IRC channdls, or through its own cached addresses from
previous connections. When a new super node C tries to establish a super node connection to
another super node D, node D will accept the connection if it has super node connection dot
available. Otherwise, node D will provide it with the addresses and port numbers of other super
nodes o that node C can establish connections with other super nodes.

Two schemes were proposed for super nodes to handle the query from shielded nodes.
In the first scheme, a super node keeps index information about al files shared by dl shielded
nodes that connect to it. When a shielded node first connects to a super node, the super node
sends an indexing query with TTL=0, HOPS=0 to the dient. Upon receiving the indexing
query, a shiddded node will send in dl the files that it is sharing wrapped in Query Replies. The
super node indexes the information it received from dl shielded nodes. When recaiving a query,
the super node search through the index in its database to find a match and creates query replies

HollyShare Project: Final Report 11

using the IP address and the port of the corresponding file owner (itself, or a shielded node). In
the second scheme, a super node does not keep index information for al files shared by
shielded nodes, but instead of keep query routing information received from shielded nodes.
When receiving a query, the super node routes it to shielded nodes selectively based on query
routing information. A super node can occasondly update the shielded nodes it connects to
with the IP addresses and port of other super nodes. The shielded nodes will cache this
information. In case this super node goes down, the shielded nodes can use the cached super
node information to establish connection with other super nodes.

The following protocol can be used in Gnutella network to assign a node as a shielded
node or a super node. If a node has a dow CPU or a dow network connection, it should
choose to be a shielded node itself and try to open a connection to a super node. If thereisno
super node available to accept its connection, it will act as a super node but accept no shielded-
client node connection from other shielded nodes.

When a node that has enough CPU processing power and network capability joins the
network, it acts as a super node and establishes the configured number of super node
connections. At the configuration, a node dso sat the minimum number of shielded nodes
needed for it to be a super node (MIN_CLIENTS) and the time period to reach the number
(PROBATION_TIME). The new super node is on probation during the PROBATION_TIME.
If it received at least MIN_CLIENTS number of shielded node connection requests during the
PROBATION_TIME, it continues to behave as a super node. If the super node faled to
receve MIN_CLIENTS number of shidded node connection requests during the
PROBATION_TIME, it becomes a shielded client node and tries to connect to other super
nodes as a shielded node. Whenever the number of shielded node connections drops below
MIN_CLIENTS, a super node will go on probation until PROBATION_TIME. If the number
of shidded node connection fails to reach MIN_CLIENTS when PROBATION_TIME is
over, the super node becomes a shielded node and establishes a shielded node connection with
other super nodes. When a super node goes down, the shielded nodes connecting to it can
behave as a super node or a shielded node according to the node's processing power and
network capability. If a shielded node chooses to behave as a super node in case of its
connection to the super node bresks, it is on probation using the mechanisms described above.
Conggtent with the autonomous nature of Gnutella network, a node chooses to behave as a
shielded node or a super node without the interference from a centrd server.

Besdes the rules described above, a new node can get guidance from the existing super
node about whether it should be a super node or a shieded client when it establishes connection
with a super node.

With the proposed protocol described above, the new verson of the Gnutella network
sdf-organizes into an interconnection of super nodes and shielded nodes automaticaly. The
super node scheme will reduce the traffic in Gnutella network since only super nodes participate
in message routing. At the same time, more nodes will be searched because each super node
may proxy many shidded nodes. Moreover, many queries can be satisfied locdly within the

HollyShare Project: Final Report 12

shielded nodes connecting to the same super node without routing the query to other super
nodes. Thiswill dso reduce the network traffic related to query.

Since the protocol does not require a central server to assgn super node, there is no
gngle point falure that can bring the network down. This partidly centralized P2P network is
more robust and scaleable than the centralized P2P systems such as Napster and OpenNap.
Even in Morpheus and KazaA where a central server is used, the centra server only keeps
information about super nodes in the system but not indexing information about dl files shared in
the system. This reduces the workload on central servers in comparison with fully centralized
indexing system such as Napster and OpenNap. In the case where the central server of
Morpheus or KazaA breaks down, the nodes that have been in the network before can use
super node information cached from previous connections to establish a connection to super
nodes they knew. However, new users cannot join the network without getting super node
information from the centrd server.

The super nodes in Morpheus and KazaA function differently from the centrd server in
Napster. The centrd server in Napster just keeps the index of the files shared in the system. The
central server itsalf does not share any file with peersin the system or download files from other
peers. In Morpheus and KazaA, a super node itself is a peer. It shares file with other peersin
the system. Napster will collapse if the central server goes down. If one or severa super nodes
goes down, the peers connected to these super nodes can open connection with other super
nodes in the system, the network will gill function. If dl super nodes go down, the exigting peers
can become super nodes themsalves.

Since super nodes keep indexing or routing information about files shared in the locd
area, searches in these systems is more efficient than that in completely decentradized systems
such as origind Gnutdlla network and Freenet. The new verson of the Gnutella protocol that is
proposed in paper [10] and FastTrack P2P stack used by Morpheus and KazaA reduce
discovery time in comparison with purely decentrdized indexing system such as origind Gnutella
network and Freenet. While Morpheusis largely a decentraized system, the speed of its query
engine rivasthat of centraized systems like Napster because of its SuperNode.

File Discovery in Decentralized P2P File Sharing Systems

Since there is no centrd directory service available in a decentraized P2P file sharing
sysem. A peer who wants a file is required to search the network to locate the file provider.
The success of a decentrdized P2P file sharing system largely depends on the success of itsfile
discovery mechanisms. Both Freenet and Gnutella networks are decentrdized P2P file-sharing
systems, but their file search dgorithms are not he same. The next pat of this survey will
concentrate on the query mechanisms in Freenet and Gnutella network.

File Discovery Mechanisms in Freenet: Chain Mode

HollyShare Project: Final Report 13

Freenet is an adaptive peer-to-peer network of nodes that query one another for file
sharing [11,12]. Filesin Freenet are identified by binary file keys [11]. There are three types of
file keys in Freenet: keyword-sgned key, Signed-subspace key, and content-hash key. The key
for afileis obtained by applying a hash function. Each node in Freenet maintains its own loca
files that it makes available to the network as well as a dynamic routing table containing the
addresses of other nodes associated with the keys that they are thought to hold. When auser in
Freenet wants afile, it initiates a request specifying the key and a hops-to-live vdue. A request
for keys is passed dong from node to node through a chain where each node makes a loca
decision about where to forward the request next depending on the key requested. To keep the
requester and the data provider anonymous, each node in Freenet only knows their immediate
upstream and downstream neighborsin the chain.

The hops-to-live vaue of the request, andlogous to IP s time-to-live, is decremented at
each node to prevent an infinite chain. Each request in Freenet aso has aunique ID for node to
keep track of the requests. A node will rgect arequest with the ID it saw previoudy to prevent
loops in the network. Messages in Freenet contain a randomly generated 64-bit ID, a hops-to-
live vaue, and a depth counter [11]. The depth counter is incremented at each hop and is used
to set hops-to-live vaue when areply message is created so that the reply will reach the origind
requester. If adownstream neighbor rejects a request, the sender will choose a different node to
forward to. The chain continues until either the requested data is found or the hops-to-live vaue
of the request is exceeded. If found, the requested data is passed back through the chain to the
origina requester. If the request times out, a failure result will be passed back to the requester
through the same chain that routes the request. The following routing agorithm is used to search
and transfer filesin Freenet.

After receiving arequest, a node firgt searches its own files and returns the data if found
with a note saying that it was the source of the data. If a node cannot satisfy the request with its
own files, it looks up its routing table for the key closest to the key requested in terms of
lexicographic distance and forwards the request to the node that holds the closest key. If anode
cannot forward the request to the best node in the routing table because the preferred node is
down or aloop would form, it will forward the request to its second-best, then third-best node
in the routing table, and so on. When running out of candidates to try, a node will send a
backtracking failure message to its upstream requester, which, in turn, will try its second, then
third candidate. If dl nodes in the network have been explored in thisway or therequest T.T.L.
reaches O, a fallure message will be sent back through the chain to the node that sends the
origina request. Nodes store the ID and other information of the Data Request message it has
seen for routing Data Reply message and Request Failed message. When receiving a Data
Request with 1D that has been seen before, the node will send a backtracking Request Failed
message to its upstream requester, which may try other candidates in its routing table. Data
Reply message in Freenet will only be passed back through the nodes that route the Data
Request message previoudy. Upon recelving a Data Reply message, a node will forward it to
the node that the corresponding Data Request message was received from so that the Data
Reply will eventudly be sent to the node that initiated the Data Request. If a node receives a
Data Reply message without seeing the corresponding Data Request message, the Data Reply
message will be ignored.

HollyShare Project: Final Report 14

If arequest is successful, the requested data will be returned in a Data Reply message
that inheritsthe ID of the Data Request message [12]. The TTL of the Data Reply should be set
equa to the depth counter of the Data Request message. The Data Reply will be passed back
through the chain that forwarded the Data Request Message. Each node dong the way will
cachethefilein its own database for future requests, and cregte a new entry in its routing table
asociding the actud data source with the requested key for future routing. A subsequent
request to the same key will be served immediately with the cached data. A request to a
“amilar” key will be forwarded to the node that provided the data previoudy. This scheme
alows the node to learn about other nodes in the network over time so that the routing decison
can be improved over time and an adaptive network will evolve. There are two consequences
with this scheme. Firdt, nodes in Freenet will specidize in locating sets of smilar keys. This
occurs due to the fact that if a node is associated with a particular key in the routing table, it is
more likely that the node will receive requests for keys smilar to that key. Hence this node gains
more experience in answering those queries and become more knowledgeable about other
nodes carrying the smilar keys in its routing table to make better routing decision in the future,
This in turn will make it a better candidate in the routing table of other nodes for those keys.
Second, nodes will specidize in storing files with smilar keys in the same manner because
successfully forwarding a request will gain a copy of the requested file for the node. Since most
requests forwarded to a node will be for smilar keys, the node will obtain files with smilar keys
in this process. In addition, this scheme dlows popuar data to be duplicated by the system
automatically and closer to requesters.

To keep the actual data source anonymous, any node aong the way can decide to
change the reply message to claim itself or another arbitrarily chosen node as the data source.
Since the data are cached aong the way, the node that clamed to be the data source will
actually be able to serve future request to the same data.

File Discovery in Gnutella network: Broadcast

Gnutdlais aprotocol for digtributed file search in peer-to-peer file sharing systems [13].
Applications that implemented the Gnutella protocol form a completely decentraized network.
Gnutella was a protocal origindly designed by Nullsoft, a subsdiary of America Online. The
current Gnutella protocol is the verson 0.4 and can be found at [13]. Many applications have
implemented the Gnutella protocol: BearShare LimeWire, ToadNode, NapShare are just afew.

Unlike Freenet, a node in the Gnutella network broadcadis to dl its neighbors when it
requests a file search. There are five types of messages in the Gnutella network: Ping, Pong,
Query, QueryHit and Push. Each message in Gnutella contains a Descriptor Header with a
Descriptor 1D uniquely identifying the message. A TTL fidd in the Descriptor Header specifies
how many times the message should be forwarded. A "Hops' fied in the Descriptor Header
indicates how many times the message has been forwarded. At any given node z, the "TTL" and
"Hops' fidds must stidfy the following condition:

TTL (0) = TTL (2) + Hops (2

HollyShare Project: Final Report 15

where TTL (0) is the TTL a the node that initiates the message. A node decrements a
descriptor header’s TTL fiedld and increments its Hops field before forwarding it to any node
[13].

When a node joins the Gnutella network, it connects to an existing node and announces
it isaive by sending a ping message to the exigting node. After receiving a Ping message, anode
will send a pong message backwards to the originator of the ping message with the ID inherited
from the ping message and aso forward the ping message to dl its neighbor except the one
where it received the ping message. Nodes in Gnutdlla network keep information about the ping
messages that they see in their routing table. When receiving a pong message, a hode |ooks up
its routing table to find the connection that the corresponding ping message came from and
routes the pong message backwards through the same connection. A pong message takes the
corresponding ping message' s route backwards. A pong may only be sent dong the same path
that carried the incoming ping. Only those nodes that routed the ping will see the pong in
response. If a node receives a pong with descriptor ID = n, but has not seen a ping descriptor
with the same ID, it should remove the pong from the network. The TTL fidd of the ping
message enaures that the ping message will not propagate infinitely.

Queries are routed in the same way with pings. A node posts a Query to its neighbors.
When a node sees a Query message, it forwards it to its neighbors and aso searches its own
files and sends back a QueryHit message to the node that originates the Query if a match is
found. A QueryHit message takes the Query’ s route backwards.

A node forward incoming ping and Query message to al of its directly connected
neighbors except the one that sent the incoming ping or Query. If anode receives the same type
of message with the ID that it saw previoudy, it will not forward the message to any of its
directly connected neighbors to avoid loops.

The QueryHit message sent back to the Query originator contains the following fieds
Number of Hits, Port, IP Address, Speed, Result Set, Servent ID. The QueryHit message does
not contain the actud files. After receiving the QueryHit message, a node could download the
sdected files from the nodes that provide the files directly usng HTTP protocol. The actud files
are transferred off the Gnutella network.

Gnutdla protocal dlows a node behind a firewal to share files usng Push requests
when a direct connection cannot be established between the source and the target node. If a
direct connection to the source node cannot be established, the node that requests the file can
send a Push request to the node that shares thefile. A Push request contains the following fields:
Servant ID, File Index, IP Address, and Port. After receiving a Push request, the node that
share the file, identified by the Servant ID fidd of the Push request, will attempt to establish a
TCP/IP connection to the requesting node identified by the IP address and Port fields of the
Push request. If a direct connection cannot be established from the source node to the
requesting node, it is most likely that the requesting node itself is dso behind afirewdl. Thefile
transfer cannot be accomplished in this case. If a direct connection to the requesting node is
established, the source node behind the firewall will send the following GIV request header to
the requesting node:

HollyShare Project: Final Report 16

GlV <FileIndex> : <Servant ldentifier>/<File Name> \n\n

Where <File Index> and <Servant Identifier> are the corresponding vaues from the Push

Request. After receiving the above GIV request header, the requesting node constructs an

HTTP GET request with <File Index> and <File Name> extracted from the header and sendsiit
to the source node behind the firewall. Upon receiving the GET request, the source node sends
the file data preceded by the following HT TP compliant heeder:

HTTP 200 OK\r\n

Server: Gnutella\r\n

Content-type: application/binary\r\n
Content-length: xxxx\r\n

\r\n

where “xxxx" isthe actud file sze.

The routing agorithm described above is based on Gnutdla Protocol Specification
Verson 04, which is currently used by most Gnutdla applications. Severd schemes were
proposed to extend the Gnutella Protocol Version 0.4 in order to reduce the Query traffic in the
network and improve the network’s scaability (see references [14, 15, 16, 17] for detailed
information about the extension to the current Gnutella Protocol).

Search Performance Comparison of Gnutella and Freenet

The search performance in Freenet follows the Smdl-World Effect found by Stanley
Milgram [1]. In 1967, Stanley Miglram, a Harvard professor, mailed 60 letters to a group of
randomly chosen people in Omaha, Nebraska and asked them to pass these letters to a target
person in Boston as a part of asocid experiment. Those people did not know the target person
and they were asked to pass the letters only using intermediaries known to one another on a
fird-name basis. Each person would pass the letter to one of his or her friends who were
assumed to bring the letter close to the target person in Boston. The friend would pass the letter
to his or her friend, and so on until the letter reached the target person. Surprisingly, 42 out of
60 letters reached the target person through just 5.5 intermediaries on average. This famous
phenomenon was cdled the Small-World Effect.

The file search process in a decentraized P2P network such as Freenet resembles the
socid experiment described above. The question is finding the node that tolds the file. Each
node passes the search request to its neighbor that is thought to most likely hold the file. The
search request will eventudly reach the node that holds the file through a smal number of
intermediate nodes because of the Small-World Effect.

This can be seen as a graph problem where people or nodes are vertices and the
relationship between people or the connections between nodes are edges. The question is to
find a shortest path between two people or two nodes. In a random graph where each of N
vertices in the graph connects to random K vertices in the graph, the path length is

HollyShare Project: Final Report 17

approximately logN/logK, which is much better than N/2K, the path length in a regular graph
where each node connects to the nearest K vertices. The random connection among people or
nodesiswhat yidded the Smdl-World Effect.

The search performance in Freenet dso has the Small-World Effect, which renders a
good average path length. However, in the worst case, the search can result in unnecessary
failure due to poor loca routing decision. Thisis true especidly at the beginning when nodes do
not have enough knowledge about other nodes. As the nodes in the network gain more
knowledge about other nodes, the routing decison improves.

With broadcagting, Gnutella queries are guaranteed to find the optimd path in any case.
The price Gnutella paid for the optimd path length is a large amount of query traffic over the
network.

Problems with Existing P2P File Sharing Systems

Peer-to-peer file sharing has become popular recently, but there is a flip Sde to the
gory. The decentrdization and user autonomy that makes P2P appealing in the first place aso
poses some potential problems.

The content of the files shared by individua users could be spurious. However, thereis

no authority in the P2P system that can remove objectionable or invalid content.
The qudity of the download service can vary due to heterogeneous connection qualities.
According to one study, 35% Gnutella users have upsiream bottleneck bandwidth of at least
100K bps, but only 8% of Gnutella users have at least 10Mbps bandwidth while other 22%
have bandwidth 100K bps or less [18].

Another problem with current P2P file sharing is Free Riding. According to one study,
approximately 66% of Gnutella peers share no files and 73% share ten or less files and nearly
50% of al responses are returned by the top 1% of sharing hosts [19]. The designer of P2P
system needs to think of ways to regulate the growth of P2P network to compensate the
information providers and discourage the Free Riders.

Mog files shared in popular P2P file sharing system are audio or video files. Mogt of
them involve some kind of copyright infringement and intelectud piracy. The lavsuit of Napster
has caught public's atention to this issue. In adecentraized P2P system, there is nobody to sue
even though there is copyright infringement. The popularity of the P2P file sharing sysem has
posed a potentid threet to the music industry.

Lessons Learned from Surveying the Existing P2P File Sharing
System

The firgt lesson we learned from the exiging P2P file sharing system is that there are
aways tradeoffs in desgning a P2P network protocol. Freenet trades off the optima path
length for less query treffic in the network. On the other hand, Gnutdlla trades off the query
traffic for the optima path length. A centralized P2P system trades off fault tolerance and
scdability for quick file discovery. A decentraized P2P system trades off quick file discovery
for fault tolerance and scalability. In a partialy centrdized indexing P2P system, the protocol

HollyShare Project: Final Report 18

designer tries to get both scdability and search efficiency. In designing the HollyShare system,
we made a trade-off of storing a complete catdogue in return for no search time.

The second lesson we learned from surveying the existing P2P network is that the users
of the P2P file sharing network are heterogeneous in terms of many characteristics network
connection speed, online time, the amount of data shared, etc [18, 20]. The designer of future
P2P sysem mud teke peers heterogenety into congderation when implementing routing
dgorithms. The HollyShare application we implemented is curtaled to a particular of user
population. Peers in the HollyShare network are much more homogeneous than peers in
otherP2P file-sharing systems. Severa design decisions were made based the assumption that
the system is used only by a smdl group of peers who are geographicaly close to each other
and share a smdl number of large files anong them. These decisons were made to best serve
the need of this particular group. If the system were to be used by alarge group of people who
share an enormous amount of files with various sSzes, some design choices would be different.
As we saw earlier, P2P system design involves many tradeoffs. We have to make decisions
based on our knowledge about our user population.

HollyShare Project: Fina Report 19

| mplementation

System Architecture

The HoIIyshare system architecture consists of 6 modules. The modulesinclude:
Network Connectivity Manager — responsible for connections between the nodes
not relating to direct file transfers (i.e. node database information, shared file
information)
Node Database — responsble for storing and retrieving information about nodes in
the system (IP Addresses, port numbers, user IDs, €tc.)
File Database Manager — responsible for storing and retrieving information about
shared files in the sysem (filename, host sharing file, locd file information for file
transfers, etc.)
Configuration Manager — responsible for information about the local node (user ID,
port information, shared directories, etc.)
File Trandfer Module — responsible for both serving requested files stored at alocal
node and initiating requests to remote nodes for files
GUI — the user interface which provides the front end for the users to view and
request files for download, and to control loca configuration information

Figure 4 shows a picture of the interactions between the modules. The following sections will
each describe one module in detall.

HollyShare Project: Final Report 20

System Overview & Graphical User Interface (GUI)

It is gppropriate to discuss the GUI and the system overview smultaneoudy because the user’s
familiarity of the sysem comes from the GUI. The GUI presents the user with enough
information to effectively use the system, but hides the complexity of the underlying architecture.
The GUI in HollyShare mainly interacts with the following modules: Configuration Manager, File
Database, Node Connectivity Module, and the File Transfer Module. To show the interactions,
we shdl wak through atypica regigtration and use of the HollyShare application.

Upon the firgt run of the HollyShare application, the GUI contacts the Configuration Manager to
determine whether the gpplication has been regisered with the machine the gpplication is
running. The Configuration Manager checks for the existence of afile caled “config.ini”. Thisfile
contains information about previous runs of the program. For example, it contains the user 1D,
the IP addresses for initial connection, and the cached IP addresses of previous connections
(Node Database). If thisfileis not present, the user is presented with a Regigtration Didlog. This
didog requires the user to register a least one IP-address (provided by whom this user has
been invited), and that the user provide an ID. Once the minimum required fields have been
registered, the user is presented with the main window.

The main window has many sub-parts. It is primarily a tab-diaog, which alows easy access to
information within one window. There are 5 tabs. Each tab presents a different interface.

The firg tab ligted is the File List tab. This tab presents dl files that are available to the user for
download from other HollyShare users. Thislig is provided to the GUI from the File Database.
The Fle Database receives the lidings of avalable files from the Network Connectivity
Manager (NCM). The NCM maintains the connectivity of the node. The NCM is aware when
a connection to a node has been logt, aswedl aswhen anew connection to the system has been
made. The NCM defines the set of messages that are used to edtablish and tear down
connections, as well as transfer or propagate file-listing information (the NCM will be described
in deeper detail in asubsequent section of this paper). The File Database is notified of the
changes, and updates it's listings. The GUI is naotified by the File Database, and receives the
additiond files. Thus, the propagation of new files hgppens automaticaly. In contrad, in a
decison to reduce traffic on the network, the deletion of files from the list (due to a node
disconnection) is handled on a case-by-case or file-by-file bass The “File Lig” tab adso
provides commands to control the download of afile. These commands are download, cance,
and pause/resume. Once the file has been sdected, the File Transfer Module requires one more
piece of information: the download directory. To reduce the amount of free-riding (this occurs
when a user employs the system to obtain files, and does not make files available to other
users), we present the user with a dialog to sdect the download directory from the ligt of

available shared directories. Thus, we are ensuring that the file will be placed in a directory that
other users can see. If no download directory is selected, the download does not proceed. If a
directory was sdlected, a download request is sent to the File Transfer Module. The GUI places

HollyShare Project: Final Report 21

the movie entry into the Trandfer tab (see beow for explanaion), and the FTM updates the
status of the download.

Another sub-part to the main window isthe “Loca Files’ tab. The information presented in this
view, are the shared files from this user. The information is presented by directory, with the files
for sharing in this directory, listed benegth it. An additiona fesature provided is the space
remaining for the disk on which the shared directory resides. The command available to the user
in thistab is the delete function. This dlows a user to delete the file from the directory if they so
wish. It should be noted that the review system has not yet been implemented.

The third tab (“Node Ligt”) shows the contents of the Node Database. The listings displayed
show the IP addresses of currently active (indicated by a ‘A’ in the active column) nodes, as
well as nodes that participated in the group in the past. The date when the node was on last time
is provided in the ‘Last on” column. The Configuration Manager places the information for the
Node Database in permanent storage, & well as provides the list of potential candidates for
connection. The current user is dways listed, and thus will aways be represented as active
when connected. A gtatus bar at the bottom of the main window (outside of the tabbed portion
of the didog) indicates how many nodes are connected. “Active Hogts 17 indicates that this
peer is the only node connected to the network.

The fourth tab provided to the user is the “Trandfers’ tab. This tab shows the current
downloads, and uploads taking place. The download status (percentage of completion) vaueis
updated through a dot provided to the File Transfer Module. From this window, it is only
possible to cancel a download. The bottom window shows the current uploads. Again, the File
Transfer Module updates the status of the transfer.

The fifth and find tab is the “Natifications’ tab. This tab provides the user with the system
messages. These messages include network connection status, and warning messages. It
provides notice that new files have been made available, and is avalable to any module
(including the GUI) that needs to make something made known to the user.

It should be noted, that the user can initiate downloads via the menu system, as well as perform
most functiondity provided in the “Fle Ligt” tab. In the User Preferences menu, the user is able
to update their regidtration information and add/remove the share directories.

Node Database

The node database stores dl information necessary to create connections between nodes. This
includes he IP address for each hogt, as well as the port number that a given host uses to
accept new connection requests. Each node also has a user ID, a string representing a user
name or some other identifier to dlow Hollyshare users to tell who is on the system (without
having to know IP addresses). The database adso stores activity data, including an “active’ flag
and a“lagt on” fidd (which is used to delete old nodes that have had no activity for along time).

HollyShare Project: Final Report 22

The node database provides this functiondity with severa methods:
add_node — add a node to the database
delete_node — delete a node from the system
deactivate_node — change state of nodes in the database when a user logs out
get_node ligt —returnsalis of dl nodesin the system
get_next_node — returns the next node in a random sequence of al nodes stored in
the database (active or inactive) — used in connecting to other nodesin the system
reset_next_node — resets the random node sequence generator
getUpdatedNodel ist — creates anode list for presentation in the GUI

Because the node database is expected to be smdl, the information is stored in an array of

records that can be kept in main memory at dl times. Any searches performed in the database
are done in alinear manner. The data is unsorted, so no more efficient search is possible. This
perhaps limits the scalability of the system, but in al tests we have run, the system performs very
well. A possbleimprovement would be to sort the data while inserting.

The only method that does something unusud is the get_next_node method. There is a private
method, generate random_sequence, which functions behind the scenes. This method takes the
current contents of the node database and creates a random sequence of nodes for use by the
Network Connectivity Manager to attempt connection.

The node database communicates directly with the GUI, the Configuration Manager, and the
Network Connectivity Manager. Communication with the GUI is handled through a messaging
system supplied by the QT library known as dots and signds. When a new node is added to
the database, or the state of the node changes, asignd is emitted by the database. Any dotsin
other modules that are connected to the signd execute the methods tied in by the main program
(driver).

The node database does not send any updates to the Network Connectivity Manager (NCM).
Since any changes to the system are propagated from neighbors, the NCM calls the gppropriate
functions (add, deectivate, delete, get_next) directly on the node database. Any updates for the
GUI are sgnaded by the node database.

The Configuration Manager (CM) aso interacts directly with the node database. When the
CM reads the perdagtent information from the configuration file (the contents of the node
database when the user last logged off), nodes are added one at atime to the database. When
the CM writes out to the configuration file, it requests the list of nodes directly from the node
database, and writes them out to thefile.

File Database
The file database stores dl the information necessary to alow individua nodes to trandfer files
between them. This includes such information as the file name, the IP address of the host that

HollyShare Project: Final Report 23

has the file, the port the requester must connect with, the size of the file, and specid information
if thefileislocaly stored (path, locd flag, etc.).

The file database provides this functiondity with severa methods:
find locd_file — used by the file transfer module for serving requests for files stored
at the current node
add file— add afileto the database
remove file—removes afile from the database
remove_share — remove al files from the database that are stored in the specified
share directory (only for loca files, but the files removed are propagated to all other
nodes in the system via the Network Connection Manager)
add share — add dl files in the specified directory to the file database (locd files),
information is propagated to dl other nodes in the system via the Network
Connection Manager
non_loca files—returnsthelist of non-locd filesfor the“Fle Ligt” tab in the GUI
dl_files—returnsalig of dl filesin the file database
dl_locds—returnsalig of dl locd files in the database for the “Locd Files’ tab in
the GUI
give lig of hosts—returnsalig of dl hosts serving a specified file
free_space — a non-portable method that returns the free space on a disk (for
alowing the user to choose which directory to download filesto)

Like the node database, the internd representation of the file database is an array, but many
different representations are supported as return types depending on what is needed. For
example, there are two separate ligs of files for the GUI: alist of non-locd files (files available
for downloading), and aligt of locd files. Each ligt isreturned to the cdler in a different format.
Once again, al searches peformed in the database are linear searches. In many cases,
collections of files are returned, or collections of hosts in the case of looking for al users who
have a specific file.

The chdlenge for this particular module was determining exactly what each module required
from the database. This involved planning out exactly what information each module would
require, and tailoring each representation to facilitate easy access by the caling module.

The Configuration Manager (CM) passes the share directories read in from the configuration file
to the file database. The file database in turn goes out to the share directory and adds each file
in the directory to the database. Each time afile is added to the database, a Sgnd that a new
file is avalable is emitted, and the Network Connectivity Manager (NCM) requests the list of
files and propagates these new files to neighbor nodes, which in turn pass them to the rest of the
sysem.

HollyShare Project: Final Report 24

The NCM adds files to the database one at a time as the information for them is received by
directly caling the add_file method. When a new file is added, the file database emits a sgnd
for the GUI to update the “File Lis” window.

When the user sdects a file for download via the GUI, the File Trandfer Module (FTM)
requests (via the file name and file size) the lig for dl hosts who are serving that particular file.
How the FTM uses that information will be discussed in the FTM section.

Configuration Manager

The configuration manager sores dl information regarding the local node including the node ID,
connection port, the share directories, and is responsible for saving and restoring the node
database to a configuration file.

The oonflguratlon manager provides this functiondity with the following methods:
get_shares—returnsthe list of current share directories
add_share — adds a directory to the dlowed shares, dso naotifies the file database
that a new share directory has been added to update the file database
remove_share — removes a directory from the dlowed shares, and natifies the file
database that a share directory has been removed
write_config file — writes the configuration information and the node database to the
configuretion file “config.ini”

The shared directories and user ID are smply grings, and the port information is a 16-bit
integer. The shared directories are dored in alinked ligt. The only time the list changesiis either
when the program starts up, or the user salects to add or delete share directories via the GUI.
When the shared directories changes, the CM cdls dther the add share or remove share
method in the File Database (FD), which in turn sends updates to the GUI and Network
Connectivity Manager (NCM).

When the program darts, the CM reads in the user 1D, the port used for connections in the
NCM, the share directories, and the contents of the node database from the previous session.
This information is passed on to the appropriate modules as the node initidlizes. Once the node
has been configured, the NCM takes over to atempt connection with nodes in the Node
Database. When the user closes the program, the CM writes out the user 1D, the connection
port, the share directories, and the contents of the node database to the configuration file. The
user ID can be changed in the GUI, which passes the update to the CM.

File Transfer Module

The file trandfer module is implemented in the class FtManager. The FtManager implements the
logic for efficient download of files from peer nodes. The File transfer module has a Server and
a Client component. The implementation of the components are described below.

HollyShare Project: Final Report 25

Client component

Client component implements the agorithm to efficiently download alargefilein pardld from
severd servers smultaneoudy:

User chooses afile from the catd ogue that she wishes to download.

- GUI natifies the FtManager about the event.

FtManager requests list of dl active-hostsfor thet file from file database.
Client divides the download task of the large file into smaler sub-tasks (i.e. downloading
chunks a atime) and puts these into a sub-task stack. For the present we assume that al
the hogts of the file are equivalent in al respects so that choice of nodes to connect to can
me made seridly in order from the list of hogts (or in arandom manner). Also currently we
have a fixed sze (100KB) for each chunk of sub-task being assigned, but sub-tasks are
smadl enough so that most of them could be assigned to the faster connections and thus the
bulk of the work is done faster.

Client then attempts to establish Ssmultaneous connections to a predetermined fixed number

of hods (this number is fixed arbitrarily) from the list of hosts passed to it. Their number is

determined by the max_connections for_a task congant and is fixed in the current
implementation.

Once a number of connections are established, the client pops a task from the sub-task

stack and alocates it to each of the stable connections set up for that file. The sub-task

gpecifies the name and totd length of the file (for identification of the file), Sarting postion
and the length of the chunk to be downloaded.

It sets atime-out timer for each one of these allocated sub-tasks.

- In case the time-out timer Sgnds, the sub-task is considered failed and put back on
stack to be reassigned. (There is a data structure corresponding to each File-download
which gtores the task assgnments, timer information, unsuccessful download attempts,
socket numbers etc. corresponding to each connection opened for that download).

In case of success, the sub-task is complete and a new sub-task is popped from the
stack and assigned to that connection.

If one connection fails multiple times to complete an assigned task then it is closed and a

new connection is opened with anew hogt of the file to replace that connection.

The number of times that a sub-task can be redllocated, number of new connections that

can be opened smultaneoudy or number of attempts to open a new connection each have

limits

The dynamic alocation of sub-tasks to different connections allows the file transfer process

to distribute the load well amongst the set of connections by utilizing faster connections to

the maximum and hence optimizing the performance.

Server component
This component is much smpler. The server accepts connections from the clients attempting to
connect. It o recaives their requests (for file chunks) and provides the specified file chunks.

HollyShare Project: Final Report 26

File Transfer Module Summary & Future Work:

The File trandfer module has a comparatively complex client. The dlient's basic dgorithm has
one main god: load digtribution. The rationde for incorporating load ditribution and isto ensure
successful downloads even in the case of afew faled connections.

The profiling of nodes based on speed and reliability of connection and using these to set up
newer connections could be an interesting future work. Also, dynamicaly adjusting the size of
chunks and the number of Smultaneoudy open connections presents interesting possibilities.

Network Connectivity Manager

The whole HollyShare system consists of peer nodes, which are PCs, running the HollyShare
goplication. In this chapter we will discuss the way nodes communicate with each other.

Network topology

All nodes participating in the systlem have permanently open TCP connections with one or more
neighbors. The shared file lists, connectivity messages, and node information are passed through
them. The dgorithms used in HollyShare were designed to maintain a tree configuration of

nodes. The tree configuration ensures that there are no loops in the network. You can see an
example of such aconfiguration in Figure 5.

Figure5

The Network Communication Module (NCM) handles establishment, maintenance, and use of
connections within a node. The main aspects of its operation are connecting to the network,
reconnecting when one of the nodes exits the gpplication, and propagating the information about
shared filesin the system. Thisis discussed in more detal below.

Connecting to the network

Each node in the HollyShare system has its | P address, port number and name of the user (user
ID).

The name of the user serves as additiona information for display purposes only. No agorithm
makes any decison based upon it. The user ID together with an encryption key (given to this
participant by the administrator of the group) is supposed to be stored in the *.key file.

HollyShare Project: Final Report 27

However, Snce encryption is not currently implemented, it is kept in configuration file (config.ini)
and can be changed by editing thisfile.

In order to join the network, the user of the application must know an IP address and port of at
least one currently active node. Thus this user must have received an invitation from another
user. If the config.ini file, where the persistent node database informetion is kept, is not present
at the start of the program, the user is asked to provide at least one IP address and port of a
node in order to try to connect to it. After successful connection to a node, the node database
from the connected node (which contains dl the currently active nodes and past active nodes) is
downloaded to the new node. Thisinformation isin turn placed in persstent storage, thus at the
next art of the program the user does not have to provide an address for connection.

The following agorithm is used during the connection phase to ensure connections form atree.

Notes:

1. All nodes that are attempting to connect to the network, but are not connected yet are
consdered to be in the Init State. Nodes in the Init State do not accept connections from other
nodes that are trying to connect to the network (those adso in the Init State). Init State nodes
that have been asked for a connection reply with a Wait' message. When the node has
succeeded in obtaining a connection (got reply ‘OK’ instead of ‘Wait’ from some node), it goes
to state ‘On’ and starts accepting connections to it.

2. Every node tries to establish only one connection. This ensures the tree dructure of
connections. In this case the number of nodesis N and the number of connections (edges) is N-
1 because the very first node does not connect to another node and any connected graph of N
nodes and N-1 verticesisatree.

3. The‘ID’ of the node shdl be referred to as the IP address concatenated with port number of
anode.

4. A Boolean varidble K of a node is used in the agorithm to show if the TCP connection has
been established with a node that has a higher 1D than the current node.

Connection Algorithm:

1. Create arandom permutation of the IP addresses in the node database.
2. Takefirgt address A
3. AssgnK =fdse.
4. Try to connect to A.
5. If it was possible to establish TCP connection to A and (ID of A) > (my ID):
6. Assign K =true
7. If connection succeeded (my node got the *OK’ answer) — go to state ‘On’ and exit.
8. If you get a ‘Wait' message or didn't get anything — wait till timeout (5 sec currently). If
connection succeeded before timeout— go to state *On’ and exit.
9. If there are more nodes in the current permutation:
10. Take next node A.

HollyShare Project: Final Report 28

11. Go to step 4.
12. If K == true:
13. Goto step 1.
14. Assume that you are the first node in the network and go to state * On'.

Indl casesthis dgorithm will terminate:

If there are some nodes in the system, which are in the ‘On’ gate, the dgorithm finishes
within the firgt round (loop 1 — 13) as soon as the node tries to connect to that ‘On’ node.

If dl the nodes are in ‘Init’ sate, the node with the highest ID will exit in step 14 after the
first round, and dl the rest of the nodes will connect to it (or to other nodes which change
their sateto ‘On’) after that.

Reconnection

If any node disconnects, the network gets disconnected into several connected components (the
property of atree). So it is necessary to restore the tree structure of the network connections.
Thus areconnection agorithm is required.

Three dgorithms were proposed for this purpose, which are described below. Algorithm 1
seemed to be more optimal at first for two reasons. Firg, it tries to preserve the connectivity of
the connected components, and second, it would add only one connection to join these
connected components. It is obvious that it will work in case when only one node goes off.
However, it is not clear what will happen if severd nodes go off after the gart of the
reconnection process (during the process of sdecting the highest ID of the connected
component). Mogt probably it is possble to create a robust implementation of this agorithm
relying on time outs, but in this case it may take the same time or more to reconnect in
comparison with Algorithm 2, which is much smpler. We implemented the second adgorithm in
the HollyShare gpplication.

Reconnection Algorithm 1:

The neighbors of the disconnected node initiate the process of reconnection:
1. Each connected component (group) determines the highest ID (IP || port) present in this
group:
a) Propagate message ‘Need highest ID’ to the leaf nodes
b) Each leaf node replies back with the message * Current highest ID’ with their IDs
c¢) Each nonleaf node wats for the answers from the neighbors to which he
propagated ‘Need highest ID’ message, sdlects the highest between that 1Ds and his
ID, and replies back with * Current highest ID’ message using flooding.
d) Findly the nodes that initiated the selection receive the highest 1D of their group of
connected nodes.
2. The nodes that initiated the sdection propagate the highest ID to al the nodes in their group.

HollyShare Project: Fina Report 29

3. The nodes that initiated the selection try to reconnect to other nodes in randomly selected
order. If the ‘group ID’ of the node they are trying to connect to is greeter than 1D of their
group, they establish the connection. If not, they break the connection and try to connect to the
next node, until they try al nodesin the node database.

The group with the highest ID will not be able to connect to anybody, and group will not be able
to connect to itsdf. Again, we will have N-1 connections per N groups, which ensures tree
topology. Figure 6 shows an example of this.

Figures Connected component 2
Connected component 1 Group ID: 9
Group ID: 5
Reconnection Algorithm 2:

If a node detects a disconnection, it closes al connections with the neighbors and after a small
delay tries to connect to the network again using Connection Algorithm.

Both Recomection Algorithms 1 and 2 work even if the computer of the node which goes off
has crashed or was turned off without properly closing the program. However, both of them are
relatively dow if the number of nodes participating in the network is big. It is possible to
sgnificantly reduce this time by Reconnection Algorithms 3, but with one condition: the
gpplication program of node, which goes off, should be quitted properly. If the program (or
computer) crashes, we sill need to use Reconnection Algorithms 1 or 2 for reconnection.

HollyShare Project: Final Report 30

Reconnection Algorithms 3:

1. The node which is going to go off sends ‘MemOff’ messages to dl of its neighbors, letting
them know that they should ddete dl its shared files from their databases and mark him as
inactive.

2. The node which is going to go off, which has N neighbors, sends messages to neighbors
1..N-1, asking them to reconnect to the neighbor N. The node dso sends a message to
neighbor N teling it that (N-1) nodes are going to switch to it. As soon as neighbor N gets
these (N-1) new connections, it disconnects the node. After that the node can exit from the

program.
Currently only Reconnection Algorithm 2 isimplemented.
Information Discovery Mechanism

One of the properties of our system, that distinguishes HollyShare from other exigting file sharing
goplications, is the information discovery mechanism. Instead of using searches that are based
on gring matching (which is effective technique in the sysems with the large number of files) we
are usng catalogue- based approach. That means that each node displays a synchronized lit of
al shared files in the system. When new node connects to the systems or adds a new share
directory, it sends the information about new files available to dl the nodes usng a flooding
agorithm. Along with file name it sends the file size, the IP address and the port number of the
computer that has this file, and the name of the user. To ddete a shared file from the ligt, the
node sends the file name, file sze, computer 1P and the port. All files are identified by the file
name plus file sze. Thus, if the two nodes have two files with the same file name and size, the
system assumes that the contents of the two files are identical.

The flooding agorithm is rdaively smple. When a node receives a message (say, to add a
shared file), it addsthisfileto loca database and sends the same message to al other neighbors.
Since nodes are connected in a tree, N0 unNnecessary messages are sent and no messages arrive
at the same node twice. This diminates the need of tracking of previoudy received messages or
having a TTL-dmilar mechaniam.

HollyShare Network Protocol

All communication in HollyShare is performed by the messages in Table 1 The message
conssts of the message header, which specifies the type of the message and an optiond
message body where information is stored. Even though TCP connection provides reliable
communication channel, checksums are added in order to ensure integrity of the messages when
they are encrypted.

HollyShare Project: Fina Report 31

Bytes Field Description
01 Type Type of the message, see next table

[}

g % 2-5 Sze M essage body length in bytes

=T (613 Reserved Should be filled with Os
14-15 H_CRC Message header checksum

o

% > | 16—(15+Size) Body M essage body

8

= m
(16+Size) . .
(17+Siz¢) B CRC M essage body checksum, 0 if message body is empty

All possible message types and body formats are listed in Table 2. Int32 and int16 are written
MSB — fird, LSB — lagt, and implementation was made in a plaform-independent mamer,
regardless of the byte-orientation of the sysem memory.

Type#

Type

Description

M essage body for mat

Res

Reset — first message
after establishing TCP
connection

Server port, ID (user name)
int16, null-terminated string

NShare

New share — have some
new filesto share

List of all shared files that should be added to the
filelist.

int16 — total number of filesinthelist

List of files:

string — name of thefile

int32 — size of thefile

int8 —hasreview or not (1 or 0)

int32-1P

int16 — port

string — computer 1D (name of the user)

DShare

Delete file from the
shared list

List of all files that should be deleted from the file
list

int16 — total number of filesin thelist

List of files:

string — name of thefile

int32 — size of thefile

int32—-1P

intl6 — port

MemOn

Member connected

IP, port#, ID
int32, int16, string

11

OK

Reply for Res message —
connection accepted

server ID and list of 1P addresses currently in the
system (node database)

string - server 1D

int16 — number of nodesin thelist

List of nodes:

int32 — P address

HollyShare Project: Final Report

32

Type#

Type

Description

M essage body for mat

int16 — port

int8 — active (1) or not (0)

string —node ID (user name)

int16 — year when it was last time on
int8 — month when it was last time on
int8 — day when it was last time on

Wait

Reply for Res message —
wait for OK message
(reconnection is in
progress)

server |ID and list of 1P addresses currently in the
system (node database)

string - server ID

int16 — number of nodesin thelist
List of nodes:

int32 — IP address

int16 — port

int8 — active (1) or not (0)

string — node ID (user name)

int16 — year when it was last time on
int8 — month when it was last time on
int8 — day when it was last time on

14

Ping

Request to send a Pong
message

Empty

Pong

“I'm alive’ message

Empty

After establishing a connection (receiving an ‘OK’ message), both nodes start a timeout timer.
They reset atimer after getting any message via this connection. If the timer times out, the node
sends a ‘Ping’ message (the opposite node is supposed to answer with ‘Pong’ message). If a
timeout occurs four times in a row and no messages has arrived, the connection is consdered
broken and is closed by the node where the time outs have happened (after that a reconnection
phase occurs).

A typica scenario of exchanging messages right after establishing TCP connection is shown in

Figure7.
Res (8000, llya)

“Client” “Server” Figure 7

Addr: IP1 . Addr: IP2

Port: 8000 M Port: 8010

Name: llya Name: MemOn
OK (Shannon, node Shannon IP1, 8000,
database) llya

Nshare (list of shared
files in system)

Nshare (list of local
of llya)

— —

Nshare
(llya’s files)

sharegl files \

HollyShare Project: Final Report

A red trace of garting a HollyShare gpplication and joining the network is shown below.

Trace

Comments

----- GUI: Welcome To HollyShare-----

Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:
Debug:

NetworkManager::connect ToNetwork

Connecting to host 128.195.10.141, port 8000, index 0
NetworkM anager::addConnection: socket 472, index 1
Connection from: 128.195.10.141 Port: 3631
NetworkManager::socConnected
NetworkManager::sendMessage, index 0, type Res
NetworkM anager:: processNewM essage, index 1, type Res
Message from: 128.195.10.141 Port: 3631
(socNetwConnect: 128.195.10.141 Port: 3631, soc 184)
Can't connect to myself

NetworkM anager::deleteConnection, index 1, P 0.0.0.0
NetworkM anager::connectionDropped, index 0

NetworkM anager::deleteConnection, index O, 1P 128.195.10.141
NetworkManager::connect ToNetwork

Connecting to host 128.195.11.218, port 8000, index 0
NetworkM anager::socConnected
NetworkManager::sendMessage, index 0, type Res
NetworkManager::processNewM essage, index 0, type OK
Message from: 128.195.11.218 Port: 8000
(socNetwConnect: 128.195.11.218 Port: 3632, soc 456)
NetworkManager::sendMessage, index O, type NShare
NetworkManager:: processNewM essage, index 0, type NShare
Message from: 128.195.11.218 Port: 8000
(socNetwConnect: 128.195.11.218 Port: 3632, soc 456)
NetworkManager::processNewM essage, index 0O, type Ping
Message from: 128.195.11.218 Port: 8000
(socNetwConnect: 128.195.11.218 Port: 3632, soc 456)
NetworkM anager::sendM essage, index 0, type Pong
NetworkManager::processNewM essage, index 0O, type Ping
Message from: 128.195.11.218 Port: 8000
(socNetwConnect: 128.195.11.218 Port: 3632, soc 456)
NetworkM anager::sendM essage, index 0, type Pong

Initial greeting

Took first host from the node database,
it happened to be the address of the computer
on which application is running
TCP connection succeeded

Application detected that it istrying
to connect to itself

Took next address from the node database
TCP connection succeeded

Sent ‘Res' message

Got ‘OK’ answer — connection is successful

Sent its shared file list
Got thelist of the shared filesin the system

Got ‘Ping’ request

Replied by ‘Pong’ message
Got ‘Ping’ again

Project Devel opment

The following section describes how the development of the HollyShare project took place. The
find project resulted in 16 header files, 17 implementation files, and over 8000 lines of code
developed by 4 members.

Requirements Phase
There were approximately 5 initid meetings to establish the project idea. We had severd. We
were thinking of a cha application, an on-line game system, and a movie-sharing gpplication.
The winning idea was the peer-to- peer movie-sharing application.

HollyShare Project: Final Report 34

Next, the group determined the basic requirements and assumptions of our gpplication. They
are/lwere asfollows:

develop a peer-to-peer application

ghare large multimediafiles

small group of users (users are known to each other)

lig dl shared files

We dso specified theinitid peer-to-peer systems that we wanted to survey for our find paper.

Architecture Development
Again, there were gproximately 5 meetings to establish the architecture required to meet the
requirements of our system.
From Requirements =what Modules are needed
Transfer Files: File Transder Module
Connect/Disconnect/Remain: Network Connectivity Module
Support/Databases:. Node Database(who is connected), Configuration
M anager(user/system settings), File Database(manages ligt of usersfiles)
User/System Interaction: GUI

Distribution of Modules
The team held gpproximately 2 meetings to establish which member would develop which
module&(s). The following were the assgnments:

User/System Interaction: Shannon Tauro

Support/Databases. Sean McCarthy

Trander Fles Bijit Hore

Connect/Disconnect/Remain: Ilyalssenin

Development & Integration of Modules

The devdopment of HollyShare took place on Windows NT workstations using C++ & Qt
Library. Each member developed his or her modules independently. We met after classes to
discuss progress, concerns, and provide assistance. We sent countless E-mails to notify of/send
updated project files, request for services to be added in a module, and integrate. We had
origindly planned an integration week for week 9, however one member (Ilya Issenin) took it
upon himsdf to integrate and resolve conflicts between modules. Thus, throughout devel opment,
we were able to develop & test using afunctioning application.

Division of Labor

Given below are the team members and their contributions to the project.

Shannon Tauro:

Graphicd User Inteface (GUI), find presentation, Sysem Overview & GUI +
assembly/correction of find report Team Coordinator (i.e. deadline manager)

Sean McCarthy:

HollyShare Project: Final Report 35

Node Database, File Database, Configuration Manager, third presentation, Introduction +
Node Database + Configuration Manager + File Database + Andysis + Conclusion chaptersin
fina report + assembly of fina report

llyalssenin:

HollyShare Network protocol and reconnection algorithms, + File Transfer Module

Network Connectivity Manager module, integration of dl the modules, debugging, initid
presentation, network topology + Node Connectivity Module in fina report

Bijit Hore:
File Transfer Module, second presentation, File Transfer Module in find report

Songme Han
Survey presentation, survey part in fina report

Analysisof System

In order to analyze our system, we chose to track both the numbers of messages passed
between nodes and the size of those messages. To set up the tests, static counters were placed
in the Network Connection Manager to keep track of messages and the bytes of information
being sent out. Quite smply, every time a message was sent from a node, the message counter
was incremented, and the running byte total was updated with the Sze of the message.

Two portions of the sysem were measured: the connection traffic, and file database change
propagation traffic. The connection traffic includes the connection establishment between
nodes, as well as the propagation of the node database information and file database
information for the new node.

We tested the system in severd dfferent configurations, from 2 nodes, up to 6 nodes. Each
configuration was tested separately, restarting from scratch each time. This was done to insure
that dl tests were conducted in a uniform manner.

In order to test the connectivity traffic, nodes were added to the system one at a time until the
number of nodes in that configuration (2, 3, 4, 5, or 6) was reached. Once the system had
settled (once al non-ping/pong traffic ceased), the measurements for both the number of
messages and the bytes of messages were taken. You can see from figures 8 and 9 that the
increase in traffic is linear in both cases. Thisis far from unexpected, as there are no loopsin the
network topology S0 no duplicated messages are sent. The variation from draight linearity
observed in the graph is caused by each node having a different amount of information to add to
the syslem when connection is established (each node shares a different number of files). The
minimum amount of information required to maintain both the node and file databases is
transferred during connection.

HollyShare Project: Final Report

Messages

Figure 8

Total Number of messages Total Bytes of network traffic

25000

// 20000 /”
& 15000

/ = /
/ @ 10000
/ 5000 //0/
T T T T T 0 T T T
1 2 3 4 5 6 1 2 3 4 5 6
Nodes Figure 9 Nodes

In order to test the propagation traffic, nodes were added to the system one a a time until the
number of nodes in the configuration was reached. Once the system had settled, a base
measurement for each node was taken. Then a share directory (containing 427 files) was
added a one node. Once the new file information had propagated to al other nodes in the
system, another measurement of the number of messages and bytes of traffic was taken at each
node, compared with the base measurement, and the difference between the two was
determined as the propagation traffic. Asyou can see from figures 10 and 11, the propagation
traffic is grictly linear. This is exactly what was expected, as the same amount of information
(both number and size of messages) was propagated to al other nodesin the system.

Total number of network messages Total Bytes of network traffic
2500 160000
140000 +
2000 — _—
5 / 120000 =
2 1500 % 100000 ——
@ / £ 80000
o 1000 o
g / 60000 "
500 40000 ——
/ 20000
0 T T T T T 0 T T
1 2 3 4 5 6 1 2 3 4 5 6
1 Nodes 1 Nodes
Figure 10 Figure 11

In order to test the system further, we want to set up specific controlled conditions. Our test
bed for the measurements we took was Windows workstations running on the campus network.
The campus network has traffic from many users congtantly. In this sort of Stuation, making
accurate measurements of time for file transfers and information propagation is & the very lesst
inaccurate.

To actudly measure these things, we would want an isolated network where the only traffic is
the Hollyshare traffic between active nodes on the sysem. All nodes on the network should
have their clocks synchronized in order to alow measurement of connection and propageation
times. Since we can measure exactly how many bytes are sent in each message (the header size
is known, and we can count the number of bytes sent out).

Actud speed of propagation would be highly dependent on the topology of the network.

HollyShare Project: Final Report 37

Obvioudy, it will take more time to propagete to the rest of the nodes in the system if we

choose node 3 than node 1.
@ 4_@ 4_@ Figure 12

Our test should be a worst-case topology, which would smply be such that the nodes would be
connected in adraight line, like the topology below.

OO OO0 [

In this Stuation, we would select one of the end nodes, and measure the time to propagate
everything to the other end of the network. Since we know the bandwidth of the connection
media, we could measure the tota time and determine the processing time required at each
node. Thiswould give usagood indication of the sort of scalability of our system by increasing
the size of our network, and pushing more and more data through.

We know that the number of messages and amount of data increases linearly in the number of
nodes in the system, and it is reasonable to expect that the time to propagate from one end of
the network to the other would dso increase linearly. Since each node is running the identica
program, processing time at each node should be the same at each point in the network.

HollyShare Project: Final Report 38

Conclusions

Our godl for this project was to produce an application that would adlow us to easily share large
multimedia files among a smal group of known users. In pursuit of this goa, we learned much
about peer-to-peer file sharing applications. There are severd different architectures, each with
its own strengths and weaknesses. Despite these differences, there are some common threads
among dl such applications.

Hrdly, files are distributed among users of the system (peers). The notion of decentralized
dorage dlows for sharing a very large number of files, where storage space on centraized
saversistypicadly limited. In a peer-to-peer system, if you wish more storage space, you need
only add another node. Another consequence of this is that such a system quite often has a
built-in redundancy. If aparticular fileis popular, multiple userslikdy shareit.

Having files on multiple nodes dso distributes the download traffic. Unlike acentrdized system
where dl download requests would go to the centrd server, in peer-to-peer each download
request is passed among peers. This may increase overdl network traffic, but aso has a good
chance of relieving system bottlenecks that often occur in client/server systems.

Another ability provided by peer-to-peer systems that can't be done in a centraized system is
pardld downloads. It is possble to open up multiple connections with more than one node to
download files. This dlows for files to be obtained more quickly than might normaly be
possble in a centrdized system, especidly if the sysem is busy. Downloading from peers
distributes the system load so that system bottlenecks can hopefully be avoided.

HadlyShare was designed with these idess in mind. Each node in the system is identicdl,
providing a completely decentrdized architecture. Files shared by multiple nodes can be
downloaded from multiple sources in pardld, providing relidble, high-speed transfers. Users
can share many files easly, and have easy access to any files shared by other users. HollyShare
is a flexible peer-to-peer gpplication with many festures (mentioned in the report) that can be
added in the future.

HollyShare Project: Final Report 39

10.

11.

12.

13.

14.

15.

16

17

18.

REFERENCES

Yima, The survey of the technologies of peer-to-peer.
Fox, G. Peer to Peer Networks.

Parameswarn, M.; Susarla, A. & Whington, A. P2P Networking: an Information
Sharing Alternative.

Modern peer-to- peer file-sharing over the internet.
http:/Amww.limewire.com/index.jso/p2p
http://Aww.openp2p.com/pub/al/p2p/2001/07/02/morpheus.html

Yang, B. & Gacia-Molina Comparing Hybrid Peer-to-Peer Systems.?.
http:/Avww.napster.com/hel p/win/fag/#x-2

What is Gnutdlla? http:/mww.gnutel lanews.convinformation/what_is gnutdlashtml.
Sander, S. Invedtigating one incidence of anomalous network traffic.

Supernode specification.

http://groups.yahoo.com/group/the_gdf/files/'Supernodes.htm

Clarke, L.; Sandberg, O.; Wiley, B.; Hong, T.W. (Edited by: Federrath, H.) Freenet:
a distributed anonymous information storage and retrieval system. Desgning
Privacy Enhancing Technologies. International Workshop on Designlssuesin Anonymity
and Unobservability. Proceedings (Lecture Notes in Computer Sience Vol.2009),
(Dedigning Privacy Enhancing Technologies. International Workshop on Design Issues
in Anonymity and Unobsarvability. Proceedings (Lecture Notes in Computer Science
V0l.2009), Desgning Privacy Enhancing Technologies. Internationd Workshop on

Desgn Issues in Anonymity and Unobservability, Berkdey, CA, USA, 25-26 July
2000.) Berlin, Germany: Springer-Verlag, 2001. p.46-66

Clarke, I. A distributed decentralized information storage and retrieval system.
unpublished dissertation, University of Edinburgh, 1999.

The Gnutdla protocol specification v04. Clip2 didributed search services,
http:/Amww.limewire.comvindex.jsp/devel oper.

Gnutella 0.6 Protocol Extenson Handshaking Protocol (also caled the LimeWire
Connection Proposal): http://groups.yahoo.com/group/the_gdf/message/2010

Proposd Gnutella Protocol Extensons. Ping/Pong Scheme:
http://mww.limewire.com/index.jg/pingpong.

MetaData Proposd: http://mww.limewire.com/index.jgo/metainfo_searches,

http:/Amww.limewire.com/deve oper/MetaProposal 2.htm.

Query Routing: http:/AMww.limewire.com/devel oper/query_routing/keyword routing.htm.
Sarious, S., Gummadi, PK., Gribble, SD. A measurement study of peer-to-peer file
sharing systems.

HollyShare Project: Fina Report

19. http:/Amww.firsdsmonday.dk/issueslissue5 10/adar/index.html.
20. Gedik, B. Determining Characterigtics of the Gnutella Network.

