
WHY CSCW APPLICATIONS FAIL: PROBLEMS IN THE DESIGN
AND EVALUATION OF ORGANIZATIONAL INTERFACES

Jonathan Grudin

MCC
3500 West Balcones Center Drive

Austin, Texas 78759

Abstract.

Many systems, applications, and features that support
cooperative work share two characteristics: A significant
investment has been made in their development, and their
successes have consistently fallen far short of expecta-
tions. Examination of several application areas reveals a
common dynamic: 1) A factor contributing to the
application’s failure is the disparity between those who
will benefit from an application and those who must do
additional work to support it. 2) A factor contributing to
the decision-making failure that leads to ill-fated
development efforts is the unique lack of management
intuition for CSCW applications. 3) A factor contributing
to the failure to learn from experience is the extreme
difficulty of evaluating these applications. These three
problem areas escape adequate notice due to two natural
but ultimately misleading analogies: the analogy between
multi-user application programs and multi-user computer
systems, and the analogy between multi-user applications
and single-user applications. These analogies influence
the way we think about cooperative work applications and
designers and decision-makers fail to recognize their
limits. Several CSCW application areas are examined in
some detail.

Introduction. An illustrative example: automatic meeting
scheduling.

Where electronic calendars are in use on a large or
networked system, an automatic meeting scheduling
feature is often provided (e.g., Ehrlich, 1987a, 1987b).
The concept that underlies automatic meeting scheduling
is simple: The person scheduling the meeting specifies a
distribution list and the system checks the calendar for
each person, finding a time convenient for all. The system
then notifies all involved of the tentative schedule.

Permission to copy without fee all or part Of this material is granted provided that
the copies are not made or distributed for direct commercial advantage. the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
TO copy otherwise. or to republish, requires a fee and/or specific permission.

0 1988 ACM O-89791-282-9/88/0085 $1.50

For automatic meeting scheduling to work efficiently,
everyone involved must maintain a personal calendar and
be willing to let the computer schedule their free time
more often than not. Data reported by Ehrlich (1987a,
1987b) suggest that neither of these requirements is
generally satisfied.

Electronic calendars are not electronic versions of paper
calendars. They serve communication functions, primarily
for managers and executives with personal secretaries
who maintain the calendars. An electronic calendar may
be used simultaneously by the secretary for scheduling,
the manager for reviewing, and other group members for
locating or planning. Ehrlich describes the successful use
of the electronic calendar in detail; a key point is that “the
secretary’s role is critical”; those who do not have a secre-
tary are much less likely to maintain an electronic calen-
dar. Another relevant finding is that for managers, “free
time is never really free.” Unauthorized scheduling of a
manager’s apparently open time “can be sufficient moti-
vation for total rejection of the system by the manager.”

Thus, electronic calendars are voluntarily maintained
primarily by managers and executives (or their
secretaries). This has dire consequences for automatic
meeting scheduling. If a manager wants to meet with
non-management subordinates, few of the latter are likely
to maintain electronic calendars. The scheduling program
will find all times open, schedule a meeting, and conflicts
will ensue. “In order to take full advantage of an
electronic calendar, all members of a group must commit
to using this medium,” (Ehrlich, 1987b). If managers or
executives keeping on-line calendars wish to meet among
themselves, automatic scheduling could work. But as
noted above, free time is often not truly free for such
managers; it would be wise to consult with their
secretaries anyway. Thus, automatic meeting scheduling
may rarely be used in this situation, either.

The simple meeting scheduling feature previews the
pattern that emerges from the major applications
discussed later. Who would benefit from automatic
meeting scheduling? The person who calls the meeting: in
general, a manager would benefit. But who would have to
do additional work to make the application succeed? The
subordinates, who would have to maintain electronic
calendars that they would not otherwise use. The

85

application might be madr to work through persuading or
ordering employees to maincain calendars, and replacing
people who won’t, but automatic meeting scheduling is
not perceived to be of great. enough collective benefit to
warrant such measures.

Why design and implement a feature that is unlikely to be
used? The managers who make the final design decisions
may see the personal benefit of automatic meeting sched-
uling to managers such as themselves, without noticing
that those users who would be forced to do extra work to
support the feature would not benefit from it. (Other
reasons for adding this feature might be a potential mar-
keting benefit or simply the ease of implementing it.)

As with the more complex cases described later, the
conclusion is not entirely negative. Automatic meeting
scheduling could be targeted to environments or groups
making the most uniform use of electronic calendars.
Their value can be enhanced by adding conference room
and equipment scheduling. Individual use of calendars to
support the feature might increase if the perceived
collective benefit were higher; that is, if organizations
recognized how much they may be losing through
inefficient meeting scheduling (Ehrlich, 1987b).

Problems in the design and evaluation of organizational
interfaces.

Several major CSCW application areas have attracted
significant investments of capital and labor over many
years, with results that have uniformly fallen far short of
expectations. These include the areas of digitized voice,
group decision support, natural language interface to
shared databases, and project management. The preced-
ing example, automatic meeting scheduling, is a simple
and relatively inexpensive feature. Its problems are easily
identified, however, and can then be seen as common to
many CSCW applications and as key factors in the their
disappointing performance. The problems are:

The application fails because it requires that some
people do additional work, while those people are not
the ones who perceive a direct benefit from the use of
the application.

The design process fails because our intuitions are
poor for multi-user applications -- decision-makers
see the potential benefits for people similar to them-
selves, but don’t see the implications of the fact that
extra work will be required of others.

We fail to learn from experience because these com-
plex applications introduce almost insurmountable
obstacles to meaningful, generalizable analysis and
evaluation.

These problems have received altogether inadequate
attention given their impact on CSCW applications. This
may be due to two powerful, natural analogues to CSCW
applications for which these problems are in general less
severe: multi-user systems (such as management informa-
tion systems, computer-integrated manufacturing, order-
and-inventory-control systems), and single-user applica-
tions. Our possible unconscious use of the analogies and

the danger of faiiing to identify where they break down
are discussed below and explored in more detail in two
appendices.

The paper concludes with detailed “case studies” of four
CSCW application areas. While the focus is on their
problems, all of these areas are important and may lead
to significant advances. It sometimes appears that in striv-
ing toward very ambitious goals we are taking turns beat-
ing our heads against the same wall, but pointing to the
wall is not intended to devalue the goals. There are ways
to get over the wall -- to build successful CSCW applica-
tions. Investing resources adequate to the solution of the
problems, developing the appropriate research and devel-
opment methodologies, finding niches where the problems
don’t arise or where applications will succeed in spite of
them, and adequately preparing users for the introduction
of the applications are all approaches that may lead to
success. The first step is to see the problems clearly.

Problem 1. The disparity between who does the work
and who gets the benefit.

The immediate beneficiary of the automatic meeting
scheduler is the manager (or secretary) who initiates a
typical meeting. Successful use of the feature in a typical
environment would require additional work for other
group members, most of whom would have to maintain
electronic calendars when they would not otherwise do so.
Not all CSCW applications introduce such a disparity --
with electronic mail, for example, everyone generally
shares the benefits and burdens equally. But electronic
mail may turn out to be more the exception than the rule,
unless greater care is taken to distribute the benefit in
other CSCW applications.

Can a CSCW application succeed if doing the extra work
is left to individual discretion? Unfortunately, probably
not. Communication, at the heart of most CSCW
applications, will break down without relatively uniform
use. If a substantial number of people do not maintain
their calendars, the meeting scheduler is pointless. In this
respect, the single-user application is a misleading model.
In many environments, there is no harm if different users
choose to use different editors, for example; but an
application designed to support the entire group must be
used by everyone in the group. “A critical mass of users
is essential for the success of any communication system”
(Ehrlich, 1987b).

Can a CSCW application be made to succeed by
mandating that those who need to do the extra work do
so? Even setting aside the implications of coercion (which
are discussed in the final appendix), this is complicated.
This traditional approach, changing existing job descrip-
tions or inventing new ones, is widely used when CSCW
systems are introduced (Chems, 1980; Rowe, 1985). Word
processing skills become a job requirement for
secretaries, the new job of database administrator is
created, and so forth. However, the multi-user system --
multi-user application analogy breaks down. An organiza-
tion invests a large amount in introducing a system and is
usually willing to reorganize to make it succeed,
retraining, transferring, or dismissing people as deemed
I’ zessary. This will not be done for each CSCW

86

application that arrives -- the cost will outweigh the
benefit. Maintaining a personal calendar in order to
support automatic meeting scheduling is unlikely to
become a job requirement. In general, the orgunizution
may adapt to the computer system, but an application
program must adapt to the orgcmization.

What if the application really might provide a collective
benefit to the group or organization? Of course, measur-
ing a “collective benefit” may be hard. If maintaining the
application requires an hour per week from each group
member, and its benefit is to save just one person an hour
per week, is it worth it? What if the one person is the
group manager? What if it is the Vice President of Re-
search & Development? But assuming that a collective
benefit has been determined, education and leadership
may be critical. If it is demonstrated that inefficiency in
scheduling meetings is costly to the group and that main-
taining calendars to support the scheduling feature is the
best solution, people may be willing to do the extra work.

However, the best solution is to try to insure that everyone
benefits directly from using the application. This may
mean building in additional features. It certainly means
eliminating or’ minimizing the extra work required of
anyone, or rewarding them for doing it. (This includes
minimizing the training needed; Carasik and Grantham,
1988, attribute a rejection of The Coordinator, a CSCW
application, in large part to the effort required to learn it.)
User interfaces must be provided that vary appropriately
with a user’s background, job, and preferences. This is a
substantial undertaking, but there may be no other option.

Problem 2. The breakdown of intuitive
decision-making.

Why was the problem with the automatic meeting sched-
uler not anticipated? More generally, we need to under-
stand why thousands of developer-years and hundreds of
millions of dollars have been committed to various CSCW
application areas despite little or no return. In most
instances of failure, a substantial and timely return on
investment was certainly anticipated; the decision-makers
were not in business to throw away money.

Decision-makers in a position to commit the resources to
application development projects rely heavily on intuition
(see e.g. Butler, Bennett, & Whiteside, 1987). The experi-
ence, and very likely the track record, of a development
manager considering a CSCW application is generally
based on single-user applications. Intuition may be a far
more reliable. guide to single-user applications -- a
manager with good intuition may quickly get a feel for the
user’s experience with a word processor, spreadsheet, or
so forth. But a typical CSCW application will be used by a
range of user types -- people with different backgrounds
and job descriptions, ull of whom may have to participate
in one way or another for the application to succeed. The
decision-maker’s intuition will fail when an appreciation
of the intricate dynamics of such a situation is missing.

Not surprisingly, the decision-maker is drawn to applica-
tions that selectively benefit one subset of the user popu-
lation: managers. Intuitions about what will be useful to
People similar to ourselves are generally good. Managers

tend to overlook or underestimate the down side, the extra
work that might be required of other users to maintain the
application; extra work that might not be forthcoming in
most environments, subjecting the application to neglect
or sabotage. The decision-makers may also fail to appre-
ciate the difficulty of producing and evaluating this new
type of application, as described in the next section. The
converse possibility also exists: the decision-maker may
not see the value in applications or features that will
primarily benefit other categories of user, even where
they would provide a collective benefit to the organiza-
tion. This would be particularly true for features that
might undercut or create additional work for the manager.

Intuition may be less unreliable for applications directed
at smaller or more homogenous groups. In particular,
there may be less bias when only peer-peer communica-
tion is involved than when the communication moves
vertically through the organizational hierarchy. Beyond
that, education seems to be called for -- general
education about groupware, the risks involved, and the
resources and approaches required to minimize the risk,
specific research on the application area at hand.
Education is needed, and vigilance.

Problem 3. The underestimated difficulty of evaluating
CSCW applications.

Task analysis, design, and evaluation are never easy, but
they are considerably more difficult for CSCW
applications than for single-user applications. An
individual’s success with a particular spreadsheet or word
processor is not likely to be affected by the backgrounds
of other group members or by administrative or
personality dynamics within the group. These factors are,
however, quite likely to affect applications intended to
support an entire group, where motivational, economic,
and political factors come to the fore (Malone, 1985).

Evaluation of CSCW applications requires a very ‘different
approach, based on the methodologies of social
psychology and anthropology. This may not be news to
those who have been monitoring the field of CSCW very
closely, but the skills are largely absent in development
and many research environments, where human factors
engineers and cognitive psychologists are only starting to
be accepted. And the required methods are generally
more expensive, more time-consuming, and less precise.

It is relatively easy to bring a single user into a lab to be
tested on the perceptual, cognitive, and motor variables
that have been the focus for single-user applications. But
it is difficult or impossible to create a group in the lab
that will reflect the social, motivational, economic, and
political factors that are central to group performance
(Malone, 1985). In addition, group observation must
extend over a longer period of time. Much of a person’s
use of a spreadsheet might be observed in a single hour,
for example, but group interactions typically unfold over
days or weeks.

Evaluation of groupware “in the field” is remarkably
complex due to the number of people to observe at each
site, the wide variability that may be found in group
composition, and the range of environmental factors that

87

play a role in determining acceptance, such as user

training, management buy-in, and vendor follow-through
(e.g., Lucas, 1976; Gaffney, 1985; White, 1985; Ehrlich,
1987b). Establishing success or failure will be easier than
establishing the underlying factors that brought it about.

Finally, the difficulty of evaluation is increased
dramatically by the importance of providing features and
interfaces that vary according to a user’s job, background,
and preferences, as mentioned above. A single-user
application may get away with appealing to a kind of
“lowest common denominator.” CSCW applications will
often have to appeal to every possible denominator.

As with the other problems, evaluation may be less diffi-
cult if the application supports a smaller or more homoge-
neous group than if the target user population involves
individuals distributed across an organization. But it will
still be substantial, and management must be aware from
the start of the skills and the time that will be required.

Case 1. Digitized voice applications.

At a conference panel titled “Voice: Technology searching
for communication needs” it was noted that after 25 years
of research, no company specializing in voice technology
has become profitable, and that projected sales of voice
products have recently been revised downward sharply
(Aucella, 1987). Eventual success of voice technology
may require an understanding of the exaggerated fore-
casts and the relative failures to date. Here only the use
of voice in computer-mediated communication is consid-
ered, as in computer-based voice messaging or voice
annotation to documents. (Voice is also used for input
only -- speech recognition -- and for output only -- e.g.,
speech synthesis.)

The advantages of digitized voice as a computer-based
communication medium. Almost everyone can speak, while
many people cannot type fluently. Moderately paced
speech is much faster than even the fastest typing. Speech
can readily convey emotion and subtle nuance. Voice
messages can be sent or received by telephone when away
from the computer. Voice annotation can be added
without cluttering or overloading a visual display.

The disadvantages of digitized voice. It can be more difficult
to understand than “live” speech because stereophony
and lip movements are absent and the speaker cannot be
asked to clarify inaudible or unclear passages. Speaking
may be faster than typing, but reading is faster than
listening to speech. A digitized voice message cannot be
scanned (by computer or human) as written text can --
the only way to be sure there is nothing of interest in a
message is to listen to the whole thing. Similarly, the
receiver cannot review a voice message later as easily as a
written message. If suggested document changes or addi-
tions are contained in a voice annotation, the receiver
must type those changes into the document. For the
speaker, reviewing and correcting a spoken message is
more difficult; hence, voice messages may be more likely
to contain errors. A recipient cannot edit a voice message
and must forward the entire message or none at all, which
can be inconvenient (or even embarrassing to the origina-
tor; Ehrlich, 1987a, 1987b). Voice mail with no accompa-

:‘ying visual display has only the transient auditory chan-
nel for presenting and explaining options, leading to
serious user interface challenges (see Aucella and
Ehrlich, 1986). Finally, digitized voice requires a lot of
disk space. (See Newell, 1984, for a broader discussion.)

72e pattern. The advantages of digitized voice over typed
input are almost all advantages for the speaker: Speech is
faster to produce, conveys emotion and nuance easily,
and may be available without access to a computer termi-
nal. The disadvantages to digitized voice, however, are
overwhelmingly problems for the listener. It is harder to
understand, slower to take in, not easily scanned or re-
viewed, more likely to contain errors, and more difficult
to manipulate.

To succeed, voice systems require that everyone in an
environment use them. If some people do not use voice
mail, time is wasted trying to reach them and group
distribution lists won’t work. If some people do not listen
to their voice mail frequently enough, calls won’t be
returned promptly and use of the system may dwindle and
die.

The speaker benefits from voice applications, and the
listener does additional work. When will it be acceptable
for speakers to thus burden listeners? One such time is
when all users are both speakers and listeners in equal
measure, thus sharing the benefits and costs, which is
generally true of voice mail systems. In some cases, there
may be no alternative -- a sales force on the road may
have no electronic mail option, and for such users voice
mail has proven particularly successful (Ehrlich, 1987a).
Similarly, voice may be the best recourse for a user whose
hands are necessarily busy. A disparity may also be
acceptable when the speaker is of higher status than the
listener, although this may be unpredictable.

Some past failures of voice technology are no doubt due
to technical problems and storage requirements. Digitized
voice messaging has proven successful given the right
environment and implementation (Ehrlich, 1987a, 1987b).
Voice may succeed more generally where its potential
collective benefit is conveyed through high-level support
and action (Ehrlich, 1987a, 1987b). In one case, a voice
messaging system that failed initially succeeded when the
alternative, telephone receptionists, was removed.

But, in general, the disparity between who is inconven-
ienced and who gets direct benefit from digitized voice
may work against its adoption in situations where sender
and receiver are of comparable status -- the imposition it
makes upon the receiver may be unacceptable. Voice
annotation may be unacceptable in most environments,
where the authorial and editorial roles are rarely evenly
shared. Voice annotation particularly benefits those who
don’t type or who are more likely to act in an editorial
than in an authorial role. These are characteristics of
managers and executives. Because of their status, they
may not be concerned by the inconvenience of voice for
others -- dictaphones are used. But the manager-secre-
tary gulf is a particularly wide one; the danger is that
decision-makers will support the development of voice
applications that appeal to them but that will fail because
their use will be onerous to other categories of user.

88

Case 2. Project management applications.

A project management application running on a
distributed system might be the best demonstration of the
potential of computer-supported cooperative work -- a
major advance over the currently available single-user
work management applications. A distributed project
management application would cover the scheduling and
chronicling of activities, the creation and evaluation of
plans and schedules, the management of product versions
and changes, and the monitoring of resources and
responsibilities (Sathi, Morton, and Roth, 1986).
Milestone completions might be signaled, documents
routed to appropriate recipients, problems identified early
and communicated to those who can help solve them,
delays in critical path activities flagged, costs calculated,
and so forth. Some people have felt that such an
application will be the next major commercial success,
“the next spreadsheet.”

Cooperative work management applications are being
developed. “Callisto: an intelligent project management
system” (Sathi et al., 1986; reprinted in Greif, 1988), is a
thorough description of a project begun in 1981. It is clear
that in this area, it is crucial to ask who is the immediate
beneficiary, who will be asked to take on additional work
to make the application succeed, and what will be the
incentive to do this extra work. The principal beneficiaries
are clear: project managers. It is also clear that the
success of such an application will be contingent on all
group members keeping the information base current.
This includes updating significant developments that
occur around, rather than through, the system: in
meetings, telephone conversations, and so forth. The
project management application may also require that
critical information that is usually unstated be made
electronically accessible, such as a secretary’s awareness
of a manager’s priorities (Ehrlich, 1987b).

The greatest user interface challenges will be on the side
of information input -- reducing the additional effort to a
bare minimum, allowing information to be entered in a
manner comfortable to each worker, providing compensa-
tory benefits to those who must take on the additional
effort of maintaining the on-line database or knowledge
base. But that is not where attention is being directed. It is
being directed toward information display, toward the us-
er interface for the principle beneficiary, the manager.
“Managers must know what information is needed, where
to locate it, and how to interpret and use it. Equally im-
portant is that they be able to do so without great effort”
(Sathi et al., 1986). This is not unimportant, but exclusive
focus on improving the system for the person already its
principal beneficiary seems ill-advised, although it might
appeal to the manager sponsoring such a project.

This is reflected in experience with management
information systems. In one example, a ten year
development project culminated in a “computer-assisted
management system” installed on an aircraft carrier, “its
primary purpose to help the Commanding Officer and his
department heads administer the ship” (McCracken and
Akscyn, 1984). While numerous factors contributed to its
eventual replacement by a system that lacked manage.

ment features, one reported reason for the failure of the
management system was the difficulty of getting everyone
to use it (Kling, 1987).

Worse fates than neglect may confront a project manage-
ment application if monitoring and reporting are not
carefully handled. In one implemented system, an em-
ployee who reported identifying a priority problem began
receiving system-generated requests for progress reports
to be forwarded to the Chief Executive Officer! This
quickly led to the end of priority problem reporting. The
vigilant system noted that employees had stopped using
the system, and alerted the administrator. The employees
dealt with the resulting complaints by writing programs
that periodically opened files and changed dates, which
satisfied the watchful, automatic monitor. Thus “sabo-
taged,” the work management application was of little
use, and was eventually quietly withdrawn. (Carroll Hall,
personal communication.)

Case 3. Natural language interfaces to shared
databases.

Natural language is not usually included in treatments of
CSCW, but it is typically described as an interface style
that by virtue of familiarity will appeal to subsets of users
-- novice and “casual” or intermittent users -- with other
interfaces available for heavy users (Rich, 1984;
Shneiderman, 1987). Thus, it is in fact portrayed as
useful in group work settings, and will seem more
attractive as we address the problems of designing
interfaces that must appeal to almost all users. AS
computer systems offer more capability, casual use of a
given feature will increase, perhaps become the norm.
Within a group, frequency of use of a CSCW application
will inevitably be uneven; natural language could make it
easier for some users to enter and retrieve information.

Database access seems a logical target application: the
domain is circumscribed, much of the necessary
vocabulary is explicitly set down in the database field and
record labels, and the interaction -- user query followed
by system response -- is predictable and limited. Natural
language interfaces to databases have been available for
several years.

Over the last ten years, most major developers of office
systems have undertaken natural language projects and
over fifty software companies have entered the field
(Foley, 1986). While absorbing 1000 developers and
hundreds of millions of dollars, none of these ventures
had been profitable by 1985 (Johnson, 1985). (While one
or two companies marketing databases with natural
language interface options have since reported profitabil-
ity, surveys have shown that the natural language feature
was not responsible; Paul Martin, personal communica-
tion, 1988.) A survey of the natural language industry
concluded “its story is not the stuff of which venture
capitalists’ dreams are made,” (Johnson, 1985).

We need to understand two things: why has natural
language failed to meet expectations and how has it
attracted such high levels of support?

89

Problenls of tutural language interfaces to databases. Natu-
ral language understanding is incredibly complex: there is
not yet a complete theory of syntax and semantics and
pragmatics may be even more difficult. While a database
interface based even on primitive linguistic approaches
can correctly respond to a high percentage of the limited
range of queries it encounters, it is not clear how an
occasional error will affect the user’s overall confidence
in the system. If you ask for the average secretary’s salary
at the U.N. and are told $SOE; because it has averaged in
the General Secretary of the U.N., you may cease to tru.;t
the system (Paul Martin, persona! communication).

Another potential problem is coverage. People rely on a
huge, structured knowledge acquired over years in order
to understand simple things, more than existing systems
can hope to incorporate (see e.g., Bobrow et al., 1977). A
related problem is that users may expect an application
that handles English to exhibit broad human intelligence
and be disappointed when it does not (Rich, 1984). Rich
also notes that the natural language user must do a lot of
typing, although users can and do develop truncated
“pidgin languages” that may end up more concise than
complex queries in a formal query language. And one
must also consider the conservatism of the database
market and the need to develop appropriate marketing
strategies as contributing factors to the poor reception for
natural language interfaces.

Finally and more speculatively, natural language may not
be matched to the tasks for which computers are used. In
human interactions, we gravitate toward more formal
language when we are uncertain of our audience, when
we will get minimal feedback and opportunity to correct
misinterpretations, and when we desire precise responses
by the listener. Ail of these are characteristic of hurnan-
computer interaction. Perhaps if neural net or connec-
tionist systems succeed in giving computers a more
“fuzzy,” human-like intelligence, natural language will be
a good match.

The attrwtion of a natwal language interface to databases.
Perhaps more important than the circumscribed domain
of a database and the explicit, built-in terminology are
the problems outlined in this paper. The casual database
user is the beneficiary of the natural language interface.
The heavy user pays the price of additional keystrokes
and reduced precision. The truly heavy user may work
primarily by creating and modifying command files for
frequently-issued complex queries in the formal query
language. The heavy user always retains the option of
using the formal query language that accompanies the
natural language interface, but if that query language is
not the best available formal interface, the heavy user
would pay a price to use the system.

The manager and executive can envision themselves as
casual users of a shared database, with others delegated
to enter the data and carry out routine queries. Thus,
natural language interfaces may appeal to decision-mak-
ers. But once again, decision-making intuition has failed
if frequent users, the principal users of databases, prefer
not to do the extra work that choosing such a system may
entail.

Case 4. Group decision support systems.

The many efforts to develop computer support for group
decision-making have generally produced systems, but it
is clear that group decision support will benefit consider-
ably by integrating with the systems people use for other
aspects of their work and will thus become a CSCW
application area. Such applications are already under
development. At CSCW’86, Kraemer and King reviewed a
large number of group decision support systems and
concluded that their current reality is “far less than might
be expected given their need and promise,” and that
“although some for-profit companies have undertaken to
build (group decision support systems), they are not yet
making much money,” (Kraemer and King, 1986).

While they vary considerably in character, group decision
support systems are highly susceptible to the problems
outlined in this paper. They are expressly designed to be
of principal benefit to decision-makers, insofar as one
person is primarily responsible for the outcome of a meet-
ing or a group decision process (undoubtedly the norm in
OUT culture). The amount of work required of others to
learn and use the system may vary. If use of the system
requires significant learning, requires putting information
on-line to make it publicly available, records information
that a participant would prefer not to leave the meeting,
blocks other means to influence decision-making (such as
private lobbying), or undermines management authority,
then the system may encounter resistance.

Conclusion.

Computer support for the activities of individuals in their
group and organizational contexts will unquestionably
change the way people live in significant ways. It is
difficult to imagine anything more important or fascinat-
ing than trying to understand and guide that change. The
analyses in this paper suggest that we are just beginning.
Progress has been technology-driven to a surprising de-
gree -- technologies searching for needs, as one panel
organizer described it (Aucella, 1987). Many of us are
aware of this general problem, pointed out by Engelbart
(1982, 1985) and others, but its specific manifestations
may continue to elude analysis, much less solution.

We need to have a better understanding of how groups
and organizations function and evolve than is reflected in
most of the systems that have been developed. At the
same time, we also need to know more about individual
differences in responding to technology if we are to
develop systems that can support entire groups. One
approach may be the contextual research of John
Whiteside and his colleagues (Whiteside, Bennett, and
Holtzblatt, 1987). Another is that used at Aarhus
University in Denmark: “The Aarhus people start out with
a problem situation defined by workers, and work beside
them a long time in order to develop a new system that is
“owned” by the workers... This is very different from
traditional systems development, as you can imagine, and
you can’t simply package a set of techniques to do the
job...see Ehn and King (1987).” (Liam Bannon, personal
c:ommunication).

90

We must also develop a better behavioral understanding
of our own decision-making processes as researchers and
developers. The intuitions that have guided us in the past
are breaking down. If we are going to support groups that
include any diversity at all, we will have to learn much
more about how different kinds of people work. Very
frequently we see researchers studying other researchers,
developers building systems because the technology
exists, and managers supporting the development of
systems that will appeal to other managers. We must
make a strong effort to broaden our intuitions because
experiments in the cooperative work area are so
expensive and time-consuming.

Appendices.

Analogy 1. Multi-user systems and multi-user
applications.

Most of our experience with computer support for group
activity is based on the introduction of entire systems into
an organization. I do not intend “multi-user system” to
include a central, timesharing computer that essentially
supports several individuals using individual applications,
but rather a system that includes hardware and software
developed to support group activity, such as a

’ management information system, a computer-integrated
manufacturing system, or an inventory control system.
Multi-user application refers to software (and possibly
minor hardware) acquired with the intent of integrating it
into an existing computer system, such as a co-authoring
program.

Computer support of group activity has typically required
the acquisition or development of an entire system
because the prerequisites -- multi-tasking, networking,
interactive interfaces, and computer literacy -- were not
in place. But as more advanced environments become
widespread and people are comfortable with the terminal,
PC, or workstation on their desk, systems will have to give
way to applications. Today, an entire work management
system might be installed, replacing or absorbing existing
technology, but tomorrow a work or project management
upplication will be sought, to run on an existing system.
Cooperative applications that are appearing include
co-authoring aids, sophisticated mail and time manage-
ment, voice applications, shared databases, shared
financial analysis packages, etc.

Our experience with multi-user systems, whether direct
or through the literature, may influence our approach to
multi-user applications. They have similarities -- they
may serve the same purpose and behave much the same.
But there are critical differences, particularly at the time
of introduction: the system has a much higher cost,
greater visibility, and stronger commitment of upper
management. As a result, a new system brings with it the
expectation of organizational change. While an organiza-
tion will also adapt or evolve following the introduction of
a CSCW application, the far less expensive application

will not carry the same visibility, commitment, and
expectation of change. From the perspective of the user,
the introduction of the application must be smoother. This
makes the job of the designer and implementer more
difficult (see Pew, 1986).

The strong management commitment to ensuring the
success of a new system means that a) the collective
benefit of the system is recognized to be high; b) the
organization may create new jobs to achieve success, if
necessary; c) if a few important individuals will not or
cannot use the system (the manager who won’t use a
terminal, for example), ways to work around them may
be found; d) pressure from management to try the system
may be high (whether through leadership and positive
example or through more coercive approaches). Even
with these forces working to the advantage of the system,
we know that successful implementation is difficult.
Introducing CSCW applications without this backing, all
else being equal, will be more difficult. Better design and
implementation are ways to ensure that all else isn’t
equal. (The application may have the advantage of finding
a higher level of computer literacy, since a system is
already in place.)

The much less expensive application program is likely to
provide a smaller or uncertain collective benefit and won’t
have the same degree of management commitment. The
organization cannot restructure itself around each new
application, nor will management be likely to work as
hard to ensure full participation. To a greater degree, the
application must fit into existing work patterns and appeal
to all the people needed to support it. For many of these
communication-centered applications, this may be every-
one: The application program may require full group
participation without the advantage that a system often
has of choosing or defining its users.

Analogy 2. Single-user applications and multi-user
applications.

Whether we are researchers, designers, implementers,
users, evaluators, or managers, most of our computer
experience has almost certainly been with single-user
applications. This experience has inevitably influenced
the skills we have acquired, the intuitions we have
developed, and the way we view our work. When we find
ourselves thinking about or working with a CSCW
application, it is useful to examine our approach carefully
with this in mind, as many of our skills, intuitions, and
outlooks will not help us in this different domain.

One effect of working with single-user applications is that
we do not train ourselves to think extensively in terms of
the disparity between the benefit obtained by and the
work required of different user categories. We do of
course give some consideration to the novice, casual user,
heavy user distinctions, but in general, we can rely on
feedback from a few “typical users.” This experience may
lead us to be unaware that we are only viewing a CSCW
application from the perspective of the primary intended
user, the user who obtains the most direct benefit. For

91

managers, this may have the effect of biasing their judg-
ment regarding the CSCW application. A manager with
good intuition might look at the design of an editor and
correctly surmise “I would like these features and I think
most users would.” Looking at a CSCW application, the
manager might surmise “I would like these features and I
think most users would,” but only be correct insofar as
the other users are also managers. The single-user appli-
cation does not train us to consider users of the same
product who have a crucial but entirely different engage-
ment with it.

Another effect of working with single-user applications is
that we do not acquire the very different evaluative skills
that CSCW applications will require. Most human factors
engineers and other user interface specialists are versed
primarily in applying techniques from perceptual, cogni-
tive, and motor psychology to study phenomena of rela-
tively brief duration. The one-hour experiment is still
typical, and a study involving even a few sessions over
several days is rare. But the group processes that will
influence and be influenced by the use of CSCW applica-
tions bring social, motivational, economic, and political
factors into prominence, and the temporal granularity
required to understand such dynamics is much larger.

When is job redesign justifiable?

Central to this paper is the point that many CSCW
applications wil! directly benefit certain users, often
managers, while requiring additional work from others. A
traditional method of coping with such a problem *is to
create new jobs or “redesign” existing jobs -- in short, to
require people to do the additional work. Technology and
organizational change is covered in depth elsewhere (e.8.,
Kraut, 1987a, 1987b; Crowston and Malone, 1987). This
paper comments more on how things are than on how
they might be, so I will limit myself to a few observations.

First,‘as noted in the paper, CSCW applications will not
have recourse to changing job requirements to the degree
thar often occurs when entire systems are installed. The
investment and commitment are smaller and the
organization won’t tolerate significant disruption for each
new application acquired. CSCW applications will have to
be more “group-friendly” than systems have been. They
will change the organization, but more gradually. For this
reason. the focus of CSCW will shift to user interface
issues to minimize the disruption and additional work
required of uny user of the application.

Second, there may be a shift toward greater egalitarian-
ism in the workplace (see e.g. Chems, 1980), some of it
surface and some of it perhaps a deeper emphasis on
managing by building consensus. Therefore, it may be
more difficult for management to mandate participation
in new applications unless the collective benefit is very
evident.

Third, when the collective benefit of using an application
does appear great enough to warrant requiring some
people to accept new or different tasks -- and
measurements of collective benefit are of course difficult
-- management has several options. Educating all users
to the collective benefit may create a willingness to do the
work. Inspiring through example or positive leadership is
another approach. And, of course, improving the user
interface to minimize the work or providing compensatory
benefits in another area will help.

Finally, in some cases the work will be made part of the
job. Setting aside tasks that most people would agree no
one should be asked to do, the discomfort from job rede-
sign is often transitory: Those hired with an understanding
of the new requirements will be less uncomfortable with
them than those living through the change.

Consider the example of programmer documentation of
software code. Twenty years ago programmers writing
entirely undocumented code might have been unhappy if
forced to change for the collective benefit to the company
of having maintainable software. But today more
programmers are educated and socialized to accept this as
part of their work; it is written into job descriptions, those
taking the job are reasonably content to do it.

This is a cursory treatment of a difficult ethical topic, but
anything more is, as they say, beyond the scope of this
paper.

Acknowledgment.

This paper owes a lot to published and personal
communications of Susan F. Ehrlich and to Liam
Bannon’s insightful comments. Clarence Ellis, Don
Gentner, Donald A. Norman, Gail Rein, and Elaine Rich
also contributed Useful comments and encouragement. I
am especially grateful for conversations on specific issues
with Carroll Hall, Paul Martin, and Steven Roth. Clarence
Ellis, Simon Gibbs, Bill Kuhlman, Steve Poltrock, Gail
Rein, and I explored the significance of a group’s position
on the continuum from a small, homogeneous team to a
large, heterogeneous organization using GROVE, a
CSCW application developed by the MCC Software
Technology Program to support brainstorming, leading to
my greater appreciation for the importance of this factor.
Many of the ideas in this paper were developed from a
paper delivered at Interact’87 (Ggdin, 1987).

92

References.

Aucella, A:F. (moderator), 1987. Voice: Technology
searching for communication needs. In Proc. CHZ+GI
‘87 Human Factors in Compuring Systems (Toronto, April
5-9, 1987), pp. 41-44.

Aucella, A.F. and Ehrlich, S.F., 1986. Voice messaging:
Enhancing the user interface based on field perform-
ance. In Proc. CHI ‘86 Human Factors in Computing
Systems (Boston, April 13-l 7, 1986), pp. 156-161.

Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D.A.,
Thompson, H., and Winograd, T., 1987. Gus, a
frame-driven dialog system, Artificial Intelligence, 8,
pp. 155-173.

Butler, K., Bennett, J., and Whiteside, J., 1987. Engineer-
ing objectives for usability. Tutorial presented at
CHI+GI ‘87 Human Factors in Computing Systems
(Toronto, April 5-9, 1987).

Carasik, R.P. and Grantham, C.E., 1988. A case study of
computer-supported cooperative work in a dispersed
organization. In Proc. CHI ‘88 Human Factors in Com-
puting Systems (Washington D.C., May 15-19, 1988),
pp. 61-66.

Chems, A.B., 1980. Speculations on the social effects of
new microelectronics technology. Innternational Lubour
Review, 119, 6, pp. 705-721.

Crowston, K. and Malone, T.W., 1987. Information tech-
nology and work organization. CISR WP No. 165.
Cambridge, MA: MIT Sloan School of Management.

Ehn, P., and Kyng, M., 1987. The collective resource
approach to systems design. In Bjet-knes, G., Ehn, P.,
and Kyng, M. (Eds.) Computers and democracy - a
Scandinavian challenge. Aldershot, UK: Cower.

Ehrlich, SF., 1987a. Social and psychological factors
influencing the design of office communication sys-
tems. In Proc. CHI+GI ‘87 Human Factors in Computing
Systems (Toronto, April S-9. 1987), pp. 323-329.

Ehrlich, S.F., 1987b. Strategies for encouraging success-
ful adoption of office communication systems. ACM
TOOIS, 5, pp. 340-357.

Engelbart, D.C., 1982. Towards high-performance knowl-
edge workers. OAC 82. Reprinted in Greif, 1988.

Engelbart, D.C., 1985. Plenary address, CHl ‘85 Human
Factors in Computing Systems (San Francjsco, April
18, 1985).

Foley, M.J., 1986. Teaching computers plain English.
High Technology, May, 1986.

Gaffney, C.T., 1985. Avoiding the “seven deadly sins” of
OA implementation. In Proc. Syntopican X111 Making
Business Systems Effective (Washington, D.C., June
17-20, 1985), pp. 241-254.

Greif, I. (Ed.), 1988. Computer-supported cooperative work:
a book of readings. San Mateo: Morgan Kaufmann.

Grudin, J., 1986. Designing in the dark: Logics that
compete with the user. In Proc. CHI ‘86 Human Factors
in Compvting Systems (Boston, April 13-l 7, 1986), pp.
281-284.

Grudin, J., 1987. Social evaluation of the user interface:
Who does the work and who gets the benefit? In Proc.
INTERACT’87 (Stuttgart, September I-4, 1987), rj;p.
805-811.

Johnson, T., 1985. Natural language computing: the com-
mercial applications. London: Ovum Ltd.

Kling, R., 1987. The social dimensions of computeriza-
tion. Plenary address given at CHI+GI ‘87 Human
Factors in Computing Systems (Toronto, April 5-9,
1987).

Kraemer, K. and King, J., 1986. Computer-based systems
for group decision support: Status of use and prob-
lems of development. In Proc. CSCW Conference on
Computer-Supported Cooperative Work, (Austin, De-
cember 3-5, 1986), pp. 353-375.

Kraut, R.E. (Ed.), 1987a. Technology arid the transforma-
tion of white-collar work. Hillsdale: Lawrence Erlbaum
Associates.

Kraut, R.E., 1987b. Social issues and white-collar tech-
nology: an overview. In Kraut (1987a), pp. 1-21.

Lucas, H.C., Jr., 1976. The analysis, design and implemen-
tation of information systems. New York: McGraw-Hill.

Malone, T.W., 1985. Designing organizational interfaces.
In Proc. CHI ‘85 Human Factors in Computing Systems
[San Francisco, April 14-18, 1985), pp. 66-71.

McCracken, D.L. and Akscyn, R.M., 1984. Experience
with the ZOG human-computer interface system. Int.
.I. Man-Machine Studies, 21, pp. 293-310.

Newell, A.F., 1984. Speech -- the natural modality for
man-machine interaction? In Proc. INTERACT ‘84
IFIP Conference on Human-Computer Interaction, (Lon-
don, September 4-7, 1984), pp. 231-235.

Pew, R. (moderator), 1986. Socio-tech: What is it (and
why should we care)? In Proc. CHI ‘86 Human Factors
in Computing Systems (Boston, April 13-I 7, 1986), pp,
129-130.

Rich, E., 1984. Natural-language interfaces. Computer,
September, 1984, pp. 39-47.

Rowe, C.J., 1985. Identifying causes of failure: a case
study in computerized stock control. Behaviour and
Informatipn Technology, 4, pp. 63-72.

Sathi, A., Morton, T.E., and Ro\h, S.F., 1986. Callisto:
An intelligent project management system. AI Maga-
zine, Winter, 1986, pp. 34-52. Reprinted in Greif
(1988), pp. 269-309.

Shneiderman, B., 1987. Designing the user interface. Read-
ing: Addison-Wesley.

White, K.B., 1985. Socio-technical task team design. In
Proc. Syntopican XIII Making Business Systems Effective
(Washington, D.C., June 17-20, 1985), pp. 32-35.

Whiteside, J., Bennett, J., and Holtzblatt, K., 1988. Us-
ability engineering: our experience and evolution. In
M. Helander (Ed.), Handbook of human-computer
interaction. Amsterdam: North-Holland, in press.

93

