
22 PERVASIVEcomputing 1536-1268/02/$17.00 © 2002 IEEE

Project Aura:

Toward Distraction-Free
Pervasive Computing

A
s the effects of Moore’s law cause
computing systems to become cheaper
and more plentiful, a new problem
arises: increasingly, the bottleneck in
computing is not its disk capacity,

processor speed, or communication bandwidth, but
rather the limited resource of human attention.
Human attention refers to a user’s ability to attend
to his or her primary tasks, ignoring system-gener-
ated distractions such as poor performance and fail-
ures. By exploiting plentiful computing resources to
reduce user distraction, Project Aura is creating a
system whose effectiveness is considerably greater

than that of other systems today.
Aura is specifically intended

for pervasive computing environ-
ments involving wireless commu-
nication, wearable or handheld
computers, and smart spaces.
Human attention is an especially

scarce resource in such environments, because the
user is often preoccupied with walking, driving, or
other real-world interactions. In addition, mobile
computing poses difficult challenges such as inter-
mittent and variable-bandwidth connectivity, con-
cern for battery life, and the client resource constraints
that weight and size considerations impose.

To accomplish its ambitious goals, research in
Aura spans every system level: from the hardware,
through the operating system, to applications and
end users. Underlying this diversity of concerns,
Aura applies two broad concepts. First, it uses

proactivity, which is a system layer’s ability to antic-
ipate requests from a higher layer. In today’s sys-
tems, each layer merely reacts to the layer above it.
Second, Aura is self-tuning: layers adapt by observ-
ing the demands made on them and adjusting their
performance and resource usage characteristics
accordingly. Currently, system-layer behavior is rel-
atively static. Both of these techniques will help
lower demand for human attention.

Envisioned scenarios 
To illustrate the kind of world we are trying to

create, we present two hypothetical Aura scenarios.
Although these might seem far-fetched today, they
represent the kind of scenarios we expect to make
commonplace through our research.

In the first scenario, Jane is at Gate 23 in the Pitts-
burgh airport, waiting for her connecting flight. She
has edited many large documents and would like to
use her wireless connection to email them. Unfortu-
nately, bandwidth is miserable because many pas-
sengers at Gates 22 and 23 are surfing the Web. Aura
observes that, at the current bandwidth, Jane won’t
be able to finish sending her documents before her
flight departs. Consulting the airport’s wireless net-
work bandwidth service and flight schedule service,
Aura discovers that wireless bandwidth is excellent
at Gate 15, and that there are no departing or arriv-
ing flights at nearby gates for half an hour. A dialog
box pops up on Jane’s screen suggesting that she go
to Gate 15, which is only three minutes away. It also
asks her to prioritize her email, so that the most crit-

The most precious resource in a computer system is no longer its
processor, memory, disk, or network, but rather human attention. Aura
aims to minimize distractions on a user’s attention, creating an
environment that adapts to the user’s context and needs. 

I N T E G R A T E D  E N V I R O N M E N T S

David Garlan, Daniel P. Siewiorek,
Asim Smailagic, and 
Peter Steenkiste
Carnegie Mellon University



ical ones are transmitted first.
Jane accepts Aura’s advice and
walks to Gate 15. She watches
the election returns on the TV
there until Aura informs her
that it is close to being done
with her messages, so she can
start walking back. The last
message is transmitted during
her walk, and she is back at
Gate 23 in time for her board-
ing call.

In the second scenario, Fred
is in his office, frantically pre-
paring for a meeting at which
he will give a presentation and a software
demonstration. The meeting room is a 10-
minute walk across campus. It is time to
leave, but Fred is not quite ready. He grabs
his PalmXXII wireless handheld computer
and walks out of the door. Aura transfers
his work from his desktop to his handheld,
and lets him make his final edits using voice
commands during his walk. Aura infers
where Fred is going from his calendar and
the campus location tracking service. It
downloads the presentation and the demon-
stration software to the projection computer
and warms up the projector. Fred finishes
his edits just before he enters the meeting
room. As he walks in, Aura transfers his
final changes to the projection computer. As
the presentation proceeds, Fred is about to
display a slide with highly sensitive budget
information. Aura senses that this might be
a mistake: the room’s face detection and
recognition capability indicates that there
are some unfamiliar faces present. It there-
fore warns Fred. Realizing that Aura is right,
Fred skips that particular slide. He moves
on to other topics and ends on a high note,
leaving the audience impressed by his pol-
ished presentation.

These scenarios embody key pervasive
computing ideas.1 In scenario 1, Aura is
proactive in estimating how long it will take
Jane to send her documents. In addition, it
combines knowledge from different system
layers, determining both wireless conges-
tion (a low-level system consideration) and
the flight’s boarding time (an application
or user-level concept) to let Jane complete
her email transmission. Furthermore, Aura

takes advantage of smart spaces, using the
services its environment provides to deter-
mine wireless conditions at other gates,
arrival and departure times and gates, and
distances between gates.

Scenario 2 shows how we can easily
transfer the execution state across diverse
platforms—for example, from a desktop
to a handheld and from the handheld to
projection computer. It exemplifies self-
tuning through Fred’s ability to edit the
handheld using speech input rather than a
keyboard and mouse. Aura shows signs of
proactivity when it infers that Fred is
headed for the room across campus,
warms up the projector, transfers the pre-
sentation and demonstration, anticipates
the upcoming budget slide, and senses dan-
ger by combining this knowledge with the
inferred presence of strangers. Aura uses
smart spaces when it consults the location
tracking and online calendar services to
infer Fred’s destination; warms up the soft-
ware-controlled projector; and uses the
camera-equipped room with continuous
face recognition to warn Fred that he is
about to present sensitive information.

Project Aura 
The component technologies presented

in these scenarios are not complex. The
hardware technologies (such as the laptops,
handhelds, wireless communication, soft-
ware-controlled appliances, and room cam-
eras) are readily available, as are many of
the component software technologies—
location tracking, face recognition, speech
recognition, and online calendars. Unfor-

tunately, the whole is much
greater than the sum of parts.
Research is needed not just on
the building blocks of perva-
sive computing but in their
seamless integration.

In Project Aura, which started
about two years ago, we are
developing the system archi-
tecture, algorithms, interfaces,
and evaluation techniques
needed to realize the Aura
vision. Figure 1 shows the
architecture we’ve adopted,
including an Aura client’s com-

ponents and their logical relationships. The
text in italics indicates each component’s
role. Coda and Odyssey were created prior
to Aura but are being modified substantially
to meet pervasive computing demands.
Odyssey supports resource monitoring and
application-aware adaptation,2 and Coda
provides support for nomadic, discon-
nectable, and bandwidth-adaptive file
access.3 Spectra is an adaptive remote exe-
cution mechanism that uses context to
decide how to best execute the remote call.
Prism, discussed later, is a new system layer
that is responsible for capturing and man-
aging user intent. It is layered above appli-
cations and provides high-level support for
proactivity and self-tuning.

Cyber foraging 
Aura uses cyber foraging1 to amplify the

capabilities of a resource-limited mobile
client and thus improve user experiences.
Compute servers or data-staging servers
located near the client provide this ampli-
fication. We call such a server a surrogate
of the Aura client it is temporarily assist-
ing. We expect a surrogate to have good
connectivity to the Internet and wireless
LAN connectivity to Aura clients nearby.
We have started using surrogates both as
compute servers4 and as data-staging
servers. For brevity, we discuss only data
staging here.

Staging data on surrogates can reduce the
impact of end-to-end Internet latency on
interactive file-intensive applications. This
impact is easily seen in situations such as
reading mail using mail clients such as exmh
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in Linux or browsing a remote directory tree
with Explorer in Windows. In such appli-
cations, a flurry of cache misses on relatively
small files can result in annoying delays and
sluggish behavior. Merely improving band-
width does not help because such interac-
tive applications are latency-limited rather
than bandwidth-limited.

Although aggressive use of caching can
mask latency, there are some important cir-
cumstances in which cache misses are
unavoidable. First, a resource-poor mobile
client might not have a cache large enough
to fit all relevant data. Second, the client
might experience periods of disconnection
during which updates of interest to the user
might have occurred. Upon reconnection,
there will be cache misses as the client
accesses this data. Third, some uncached
files might unexpectedly become relevant
to a user. For example, the user might
receive a cell phone call requiring that he or
she access files previously considered unim-
portant. Because cache misses are unavoid-
able, our approach is to reduce their per-
formance impact through data staging.

In Aura, the Coda file system provides
nomadic file access,3 and we recently
extended Coda to exploit data staging.
Data staging applies the well-understood
concept of prefetching5,6 to pervasive com-
puting environments. Our current imple-
mentation stages data in relatively coarse-
grained snapshots of file system data. Each
snapshot corresponds to a volume, which

is a predefined partial subtree of the file
system name. This name space typically
contains a group of related files. Each snap-
shot is a consistent read-only view of the
file server state at some point in time.

Figure 2 shows how our data-staging
architecture is split across three comput-
ers: the server, surrogate, and handheld.
The orange components represent the pre-
existing distributed file system. The yellow
components show our modifications to
support data staging. The staging server on
the surrogate is an unmodified Apache
HTTP/1.1 Web server. The proxy inter-
cepts and redirects file system traffic. If a
request is for data contained on the surro-
gate, the proxy directs the request to it.
Otherwise, it forwards the request to the
distant file server. The proxy also performs
translation between the file system proto-
col and HTTP.

The staging manager on the distant
Coda server oversees snapshot creation. It
contacts the file server to create a snapshot,
then encrypts and transmits it to the stag-
ing server. The backup creation, encryp-
tion, and network transmission are
pipelined to reduce latency. We now man-
ually perform surrogate discovery and
snapshot creation, but we’ll automate these
as Aura development progresses.

Our staging architecture avoids the need
to trust surrogates, using an approached
characterized as “caching trust rather than
content.”7 In other words, we require

clients to cache sufficient information to
validate the contents of a file even if they
cannot cache the entire file. Our imple-
mentation uses MD5 checksums for vali-
dation. The proxy uses these checksums to
verify the integrity of files that the surro-
gates give it.

To ensure privacy, we use end-to-end
encryption of snapshots. Our current
implementation uses  the Data Encryption
Standard by default; it also supports
triple-DES and other private key encryp-
tion schemes. The staging manager can
choose a per-file or per-volume encryp-
tion key when creating a snapshot. Key
distribution is simpler with per-volume
encryption, but per-file keys offer greater
resilience to compromise. Key distribu-
tion is done through direct client-server
communication, without any involve-
ment of a surrogate. MD5 checksums are
included in the key distribution process.
Typically, a user will cache keys for vol-
umes of interest before he or she departs
on a trip. If unforeseen data accesses arise
on the trip, the user can obtain keys via
a secure client-server channel such as ssh
(secure shell).

Preliminary performance results confirm
the benefits of data staging. The experi-
mental setup consists of a laptop connected
to a surrogate using an 11-Mbits-per-sec-
ond wireless local area network. The con-
nection between the surrogate and the
remote server is a 100 Mbps Ethernet on
which a delay of 30 ms was emulated using
the NISTnet network emulator. For a first
benchmark, we modeled a user searching
an email archive of 250 messages using
1.67 Mbytes. Data staging reduced the
cumulative delay that the user must wait
before messages are displayed from 59 sec-
onds to 32 seconds. A second benchmark
modeled a user browsing a large video
database with 345 images (354 Mbytes of
data). Data staging reduced the time to
load each image in succession using djpeg
(an application that decompresses jpeg
images) from 70 to 44 minutes.
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A wireless bandwidth advisor 
Network-aware applications can use rea-

sonable estimates of future available band-
width to make informed decisions, such as
server selection. To support such applica-
tions, the research community has devel-
oped several bandwidth advisor services8–10

that provide information on network con-
ditions. Users of such services include end-
user applications (such as Jane’s mail client),
file systems,3 or middleware services.2

In the wireless realm, where bandwidth
is often scarce, the opportunities for lever-
aging estimates of future available band-
width are greatly increased. At the same
time, there are some unique challenges asso-
ciated with developing a wireless bandwidth
advisor. First, application throughput in a
wireless network is affected not only by the
nature of the competing traffic (as in wired
networks) but also by effects such as noise
and cross-cell interference. Furthermore, in
a wireless network, network performance
depends on the device’s physical location.

The components of our bandwidth advi-
sor (for IEEE 802.11 wireless networks) are
divided into two categories: monitoring and
prediction. Two monitoring components
periodically gather information from wire-
less access points using SNMP (simple net-
work management protocol). The AP Seg-
ment Service collects incoming and outgoing
traffic rates and related information, such
as error and collision rates, while the AP
Device Service obtains cell population infor-
mation by querying each access point’s
bridge table. Recent information is held in
memory to provide data needed to satisfy
client requests. In addition, all data the mon-
itoring components gather is stored to disk.
Prediction components can then operate on
this data online or offline.

As a first step toward providing an accu-
rate application throughput prediction, we
need to know how heavily the cell will be
used. We have investigated using simple
linear models to predict future use from
recently observed past values. Using the AP
Segment Service, we gathered data from

several access points in Carnegie Mellon
University’s School of Computer Science
as well as CMU’s business school over a
period of several weeks during April and
May 2000. During this time, CMU’s wire-
less network operated at 2 Mbps. We took
samples in these traces every 10 seconds.

Inspecting the data confirmed many of
our intuitive suspicions: many cells were
almost entirely idle while others were heav-
ily used. Moreover, utilization tended to
change at hourly intervals and can be cor-
related with the same interval in other
weeks and with the number of stations in
a cell. Given that classes typically run for
60 and 90 minutes and start at regular
times, this was not a surprise.

We examined the accuracy of the fol-
lowing three models at predicting one sam-
ple ahead in our traces (details on these pre-
dictive models are presented elsewhere11):

• PPREV predicts future values to be the
same as the most recent value observed.

• AV (average value) uses an evenly
weighted average of the several previous
observations (10 for the results pre-
sented here).

• Arfima (auto-regressive fractionally inte-
grated moving average) computes future
values as a dynamically weighted aver-
age of past values (again, we show
results for 10 previous samples). Unlike
AV, this model applies a different weight
to each past sample and updates these
weights as it runs to better fit currently
observed error.

Figure 3a shows a typical set of results
that compare the accuracy obtained with
these three predictive models; our metric
is the mean absolute error for predictions.
The mean absolute error is shown as a
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function of the ranges of actual traffic
observed. For example, the first set of bars
shows the mean error for each predictor
when little traffic was present. The results
clearly show that AV is inferior to the other
methods. For actual traffic values above
0.5 Mbps, PPREV is the clear winner, while
Arfima does better for traffic values less
than this.

We can easily explain this result. In cells
that are idle or have low utilization, the traf-
fic is usually just background traffic—for
example, ARP (address resolution protocol)
and periodic management traffic. Arfima is
good at picking up patterns in traffic, so it
works well in low-utilization cells. How-
ever, in high-utilization cells, traffic is very
bursty, so PPREV works better because it
adapts quickly to changes in traffic condi-
tions. Figure 3b uses a 2D histogram to
show the PPREV model’s performance.
Many of the data points lie on the diagonal
(predicted = actual), indicating that the
model works well for this data set.

The results presented here are for predic-

tions on a short time scale (10 seconds). The
wireless bandwidth advisor also collects his-
torical data. For predictions further into the
future (such as deciding where you can get
the best bandwidth in 15 minutes), we are
evaluating whether extrapolation from his-
torical data will yield more accurate results.

The service described is just a first step.
We are in the process of more carefully
characterizing the bandwidth advisor’s
accuracy. One aspect of this effort is to
determine how we can best combine near-
term utilization measurements with
longer-term historical data. Another issue
is that the wireless network has been
upgraded to 11 Mbps. This complicates
network utilization prediction because
hosts can now send at different rates,
depending on noise conditions. We also
want to report estimated application
throughput, based on utilization estimates.
This is a difficult problem, especially in a
wireless network where hosts can use dif-
ferent transmission rates and can option-
ally use power management.

The WaveLAN-based 
people locator 

Location information is a key parameter
of context awareness. Our implementation
of a people location service is based on sig-
nal strength and access point information
from the IEEE 802.11 WaveLAN wireless
network covering the CMU campus. Its
availability was a significant factor in
determining the underlying technology for
the location service. Other systems based
on radio frequency, ultrasound, and video
require an investment in infrastructure and
hardware. GPS-based systems tend to have
poor indoor coverage and require each
client to be equipped with a GPS unit,
which adds weight and consumes power.
Our goal was to develop a cheap, scalable,
and easy-to-use location service that a vari-
ety of clients, ranging from wearable com-
puters to laptops, could use.

We have developed two algorithms for
location sensing: CMU’s pattern-matching
algorithm (CMU-PM) and the triangula-
tion-based remapped interpolated algo-
rithm (CMU-TMI).

CMU-PM determines location by mea-
suring the signal strength from a computer to
all available wireless access points. It com-
pares these measurements to a table con-
taining a unique reading of signal strengths
for each location. To train the system, the
user enters his or her location into the com-
puter. The algorithm takes and averages sig-
nal strength samples and stores them in a
table that it can reuse across sessions. Dur-
ing use, the algorithmcompares measure val-
ues to those in the table and computes dif-
ferences. It assumes the entry with the
smallest difference is the current position (see
Figure 4).12 The client requests the location
of a target from a server. It may use a caching
mechanism or send the request to the target
user. The target’s computer determines its
location and sends the results to the server,
which are then passed to the client.

The Radar algorithm gathers signal
strength data from access points,13,14 while

26 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D  E N V I R O N M E N T S

Client

Server

Target

AP

Response

Request

Response

Request

APAP
Triangulation

Figure 4. Client-side location service
architecture (AP stands for access point).

TABLE 1
Accuracy of location measurements.

Confidence (%) Strength (dBm) Range (ft)

68.6 +/– 0.939 +/– 5
95.4 +/– 1.146 +/– 10
99.9 +/– 2.817 +/– 15



CMU-PM has clients gather the data. The
advantage of these algorithms is that, given
a sufficiently dense table of patterns, we can
often pinpoint a user’s position to within five
feet (see Table 1), while the accuracy is
almost always 15 feet or better. We initially
trained the system with an equal distribution
of signal strength measurements taken with
a laptop at waist height. Recording the sig-
nal strengths from a stationary location over
several hours showed signal strength with a
standard deviation of 2.13 dBm. Opening a
door produced a change of 10 dBm. Other
handheld devices present in the test area
caused an effect of up to 5 dBm. We con-
ducted most experiments where there was
line-of-sight—for example, along the length
of hallways in university buildings. We also
included places in a 2D plane and extended
them to 3D. Signal strength readings taken
during the day were nearly identical to read-
ings taken at night. The presence of people
did not appear to affect the measurements.
However, this algorithm, as well as Radar,
requires many training points.

The high training overhead motivated
us to design a new algorithm, CMU-TMI.
When designing CMU-TMI we had two
specific goals: accuracy within a few feet,
and scalability, such that every returned
value does not require a trained data point.
This approach required interpolation
between trained values.

CMU-TMI performs two transforma-
tions on the raw data of signal strengths. It
calculates the client’s position on a contin-
uous coordinate grid, assuming that signal
strengths map directly to distance (triangu-
lation in Figure 4). It then maps the result-
ing coordinates onto real space coordinates
using a set of trained values. Because both
transformations are continuous, the result
is interpolative on the trained data and is
significantly more accurate than the area
divided by the number of trained values.

CMU-TMI requires less complicated
training than Radar, as Figure 5 shows. We
need to know the physical position of all
access points, and to generate the signal
space positions, we must generate a func-
tion that maps signal strength to distance.

We calculated this empirically from obser-
vations. Finally, to map the signal space
positions onto physical space positions, we
must generate a set of trained points. These
are offset vectors from signal space posi-
tions onto physical space positions, and we
calculate them by performing the algo-
rithm at a known location and then record-
ing that location.

Accuracy for the CMU-TMI falls
between that of the CMU-PM and Radar
algorithms for low error distances. How-
ever, it generates better results when errors
are greater than four feet. The greater accu-
racy at high distances is a direct result of
the nature of the algorithms. Errors in
CMU-PM or Radar are often large,
because they are typically the result of an
incorrect training point being returned. In
contrast CMU-TMI’s errors are continu-
ous, so although small errors are common,
it is unlikely that the returned position will
be far from the user’s actual location.

Although the results are usually accurate,
we have observed that certain environ-
mental elements can affect location system’s
output. Using a Lucent WaveLAN 802.11
card installed on the side of a laptop, rotat-
ing the laptop would move the reported
physical location more than the 6-inch
radius of the rotation. Placing a hand over
the antenna has shown a reduction of sig-
nal strengths reported from access points.
We’ve tested the system with a minimum
of six additional wireless units operating
on the same channel, within close proxim-
ity to the location client. We conducted

these measurements in a building with mul-
tiple offices, laboratories, and people.

Location sensing is useful for mobile
users, who often have significant power con-
straints. We designed our algorithms to con-
sume minimal power. We evaluated the bat-
tery life for a Jornada 680 handheld
computer while running the location sens-
ing algorithms. These algorithms force the
wireless network card on the device to scan
nearby access points, depleting the battery.
For our experiment, the device was fully
charged, and it ran until fully discharged. It
performed location calculations once every
10 seconds. CMU-PM decreased battery life
by 8 percent; CMU-TMI decreased it by 6
percent.

We need to perform more experiments
to quantify the impact of various environ-
mental factors on the people locator. We
are also experimenting with the scalability
of this approach, increasing the number of
users by an order of magnitude to over 100
users, including several academic classes.
We hope to further increase its efficiency
and scalability by incorporating caching
and location prediction.

Capturing user intent
Two of Aura’s most important capabil-

ities are supporting user mobility and
shielding users from variations in resource
availability. When a user moves from one
environment to another, Aura attempts to
reconfigure the new environment so that
the user can continue working on tasks
started elsewhere. As resources in an envi-
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ronment change (such as wireless band-
width), Aura attempts to adapt ongoing
tasks to accommodate the change, possi-
bly reconfiguring certain services or replac-
ing one service with another.

For Aura to achieve these goals, it is cru-
cial that the system maintain some repre-
sentation of user intent. Without this capa-
bility, determining which system actions will
help rather than hinder the user is almost
impossible. For example, suppose a user is
viewing video over a network connection
whose bandwidth suddenly drops. Should
the system reduce the video’s fidelity, pause
briefly to find another higher-bandwidth
connection, or advise the user that the task
can no longer be accomplished? The correct
choice depends on the task.

In a major departure from existing sys-
tems, Aura introduces a new layer of sys-
tem abstraction: the task layer. This layer,
called Prism, sits above individual applica-
tions and services but below the user (see
Figure 1). By explicitly representing user
intent, the task layer makes available to the
rest of the system a powerful basis on which
to adapt or anticipate user needs. In the two
scenarios presented earlier, for example, the
system must know such things as the user’s

plans for moving from one location to
another, resource requirements for the
user’s future computing activities, and the
user’s preferred privacy policies.

Key ingredients of Prism’s architecture are

• Explicit representations of user tasks as
coalitions of abstract services

• Context observation that lets Prism con-
figure tasks in a way that is appropriate
for the environment 

• Environment management infrastruc-
ture that assists with resource monitor-
ing and adaptation

Each of these capabilities is encapsulated in
a component of the architectural framework:
the Task Manager, Context Observer, and
Environment Manager, respectively (see Fig-
ure 6). A set of components called Service
Suppliers carry out the services needed to
support a user’s task. Finally, Prism’s infra-
structure supports interactions between
those parts, built on top of existing middle-
ware such as remote procedure call or
Corba.15

Figure 7 illustrates an application of
Prism’s architecture, where the Aura envi-
ronment at Fred’s home cooperates with the

Aura environment at his office to migrate
tasks between the two locations. When Fred
leaves one environment, the local Context
Observer points out that fact to the Task
Manager. The Task Manager then check-
points the state of the running services in a
platform-independent fashion and causes
the local Environment Manager to pause
those services. This information, along with
Fred’s task state, is stored in a distributed
file space. When Fred enters his office envi-
ronment, the local Context Observer notices
the fact and informs the local Task Man-
ager. The Task Manager reinstantiates the
tasks by finding and configuring service sup-
pliers in the new environment. This recon-
figuration attempts to maximize the use of
local resources, subject to various resource
utility functions specified by the task.

Prism’s architectural framework has sev-
eral important benefits. By representing user
tasks explicitly, it provides a placeholder to
capture user intent that can guide the search
for suitable configurations in each environ-
ment. By representing tasks as service coali-
tions, Aura can determine when to support
the essential services in a task, instantiating
them jointly or otherwise providing early
warning to the user when that is not possi-
ble. By providing an abstract characteriza-
tion of the services in a task, the infrastruc-
ture can search heterogeneous environments
for appropriate matches to supply those ser-
vices. By providing the environment with
self-monitoring capabilities, the infrastruc-
ture can detect when task requirements
(such as minimum response time) are not
being met and can deploy alternative con-
figurations to support the task.

Our current prototype supports migrat-
ing tasks between two types of environ-
ments: Windows and Linux platforms. For
example, suitably-wrapped Microsoft
Word and Emacs become suppliers of text
editing services on their respective plat-
forms, while Media Player and Xanim

28 PERVASIVEcomputing http://computer.org/pervasive

I N T E G R A T E D  E N V I R O N M E N T S

Operating system

Environment
Manager

Task Manager (Prism)

Co
nt

ex
t O

bs
er

ve
r

…

…

…

Emacs Xanim

Supplier
(video)

Supplier
(text)

Figure 6. Prism’s architecture.

Home
Environment

Manager

Home Task Manager

Ho
m

e 
Co

nt
ex

t
Ob

se
rv

er

Office Context
Observer

Office Task Manager

Aura OS extensions Aura OS extensions

Service
Suppliers

Service
Suppliers

Aura
file space

Office
Environment

Manager

Fred’s home Fred’s office
Figure 7. Task mobility in Aura.



become suppliers of video-playing services.
The current implementation of the Envi-
ronment Manager has rudimentary service
registry abilities built on top of existing
solutions such as Jini16 and Salutation17 and
relies on distributed file systems such as
Coda3 for file access across environments.
Currently, we are extending Prism to sup-
port other environments, such as those
based on PDAs and smart rooms. We are
also developing mechanisms to manage the
interaction of several users’ tasks.

Context-aware applications 
A key component of our research is

developing applications that use the Aura
infrastructure. One set of these applica-
tions, called Handy Andy, has been
designed with the goal of supporting on-
campus collaboration. Two of its core
applications are the Portable Help Desk
and Idealink.

Portable Help Desk
PHD is a context-aware application

built on two fundamental services: spatial
awareness and temporal awareness. Spa-
tial awareness includes a user’s relative and
absolute position and orientation. Tempo-
ral awareness includes the scheduled time
of public and private events.

PHD lets a user determine the location
of teammates on campus as well as infor-
mation about them. It displays maps of the
immediate area, which indicate resources
and nearby people. It also provides other
services, such as notifying the user of the
closest available printer or where food
might be available. This capability builds
on Aura’s people location services.

PHD has both a visual and an audio
interface. Each interface supports users in

different contexts. A user who is walking
around campus is likely to be less distracted
by the hands-free speech interface, while a
stationary user might want the richer visual
interface. Both interfaces, however, are dri-
ven off the same database of information
and underlying Aura services.

Figure 8 illustrates PHD’s visual user
interface. People and resources are selected
in the left pane, the results of the queries are
presented in the middle pane, and locations
of people and resources are displayed in the
right pane. For the queries made in Figure 8,
the speech interface’s transcript would be 

User: “Locate Bryan.”
Speech PHD: “Bryan is located in Ham-
burg Hall.”
User: “What is Bryan’s phone number?”
Speech PHD: “Bryan’s phone number is
412-802-6819.”

PHD delivers relevant information to the
user in both a proactive and user-driven
manner. It delivers proactive information
to users when they are interacting with
Aura infrastructure resources, such as
printers. For example, when a user begins
a print job, PHD alerts the user if there is
a large print queue and suggests a nearby
printer with a shorter one. PHD can also
suggest a printer near the destination of a
user en route. An example of a user-driven
interaction is a request from a design group
to locate a missing colleague.

Idealink
Idealink is a virtual collaboration envi-

ronment that facilitates planned and ad-
hoc collaboration among mobile users. Its
goal is to provide easy access to informa-
tion needed to initiate and conduct collab-

orative design meetings. It provides users
with features that let them communicate
their ideas to others via a shared distrib-
uted whiteboard. In addition to providing
standard pen and text tools, it supports
multiple channels, enabling simultaneous
collaborative sessions. This feature lets
teams in a large class use Idealink simulta-
neously without interfering with other
teams’ whiteboards. Figure 9 contains a
screenshot of the Idealink interface.

Idealink is integrated with PHD to
retrieve information related to users’ pref-
erences and schedules. PHD knows what
meeting is taking place by consulting a
user’s calendar; this also lets the system
automatically determine who should be
included in the Idealink session. Aura’s per-
vasive computing infrastructure stores Ide-
alink preferences, including the tool palette
layout and keystroke combinations that the
user selects. Idealink combines each user’s
additions to the session and distributes
these updates to each client. At the end of
the meeting, Idealink archives the session.

In pilot user studies, we found that an Ide-
alink-based design task takes less time than
with a traditional whiteboard (see Table 2).
In addition, participants made fewer errors.
We asked two groups of four participants
to collaborate on the design of a stereo
remote control. We instructed them to lay-
out a remote control with a predetermined
list of features, working until they came 
to consensus about a final design. The par-
ticipants were undergraduate students in
mathematics, computer science, human-
computer interaction, electrical engineering,
and English. We recorded the time taken to
complete the task and the number of errors
they made during the process. Errors include
things such as one participant asking
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another participant to explain what was
written because the original content was not
understandable, redrawing an illustration
to make it more understandable, and com-
petition to use the whiteboard.

Idealink let the participants be more
effective by allowing interactions not pos-
sible with a traditional whiteboard. For
example, because it lets users edit simulta-
neously, they could more easily reference
and modify the shared design. Also, inter-
action was more evenly distributed among
participants using Idealink. In particular,
unlike face-to-face meetings in which a few
people tend to dominate the discussion,
with Idealink, more people could interact
electronically. In addition, it let meeting par-
ticipants work in parallel, review each
other’s efforts, and converge on a common
result. Its replay feature let participants mix
and match different versions of an illustra-
tion that evolved over time.

In the near future, we will expand this
experiment, increasing the number of par-
ticipants to eight groups. This will help us
verify these results and might reveal addi-
tional Idealink benefits and drawbacks. We
also plan to integrate a meeting moderator’s

assistant, which will guide participants to
follow specified meeting and collaboration
practices by reminding them of steps that
they should take during the meeting. We’ll
supplement this capability with templates
that easily categorize captured sketches and
that can capture a series of ideas while
sketching design. We’ll also add voting
mechanisms for anonymously voicing opin-
ions during a meeting and a mechanism for
categorizing and selecting the best ideas. 

Integration and deployment
An important component of the Aura

project is developing a prototype for non-
trivial use. To evaluate some aspects of Aura
on a larger scale, we are deploying parts of
it on the CMU campus and developing sev-
eral applications that the campus-wide com-
munity can use. The campus is an attractive
deployment environment, not only because
we are familiar with it and it is easily acces-
sible, but also because it has features that
are targeted by Aura. For example, it has
mixture of “smart rooms” (for example,
conference rooms that have been upgraded
with a variety of devices and sensors) and
device-poor environments (such as lawns

and parks). It also has a large community
of mobile users, who routinely rely on the
campus-wide wireless network for access to
information and computing systems.

Our efforts toward Aura deployment
have focused on two main areas. The first
is a set of contextual information services.18

These services provide information about
the entities of interest in a pervasive com-
puting environment (devices, people, phys-
ical spaces, and networks) and also about
their relationship (such as “Where is Joe?”).
Although some of this information is sta-
tic, some of the more interesting informa-
tion is dynamic and will be used by Aura
to perform self-tuning and adaptation.

The second area of deployment is in
developing applications that exploit the
Aura infrastructure. In addition to the appli-
cations we described earlier, we are devel-
oping prototype implementations that could
be used in the Jane and Fred scenarios. 

In the future, we plan to extend Aura’s
capabilities to more fully integrate the
components we’ve described and to
make them available to the campus

community. We also plan to continue
developing applications such as PHD and
Idealink.

A final thrust of the project will be to
evaluate Aura’s impact using human fac-
tors studies to evaluate both its components
and the integrated Aura system. Cognitive
task analyses yield psychologically valid
descriptions of peoples’ task performance.
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Figure 9. Idealink application.

TABLE 2
Comparing Idealink with whiteboard performance.

Metric Idealink Whiteboard

Group 1: Time 10:14 17:13
Group 2: Time 15:26 17:17
Population Standard Deviation 2:30 ~0 
Group 1: Errors 1 3
Group 2: Errors 4 6
Population Standard Deviation 1.5 1.5



They are guided by formal descriptions of
the task (assumptions and goals) and con-
straints on task performance. In our user
studies, people perform multiple tasks,
from fairly simple ones, such as organizing
team meetings, to significantly more com-
plex tasks such as refining the design of
complex components. Our user studies test-
bed is fully instrumented to record team
member activities, including time on task,
keystrokes, mouse clicks, and tasks com-
pleted. Aura’s focus on reducing user dis-
traction drives our choice of metrics, includ-
ing task execution time, errors, number of
context switches, and task quality.
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