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Abstract

The paper investigates parameterized approximate mepsagang schemes that are based on
bounded inference and are inspired by Pearl’s belief prajp@galgorithm (BP). We start with the
bounded inference mini-clustering algorithm and then rmtowée iterative scheme called Iterative
Join-Graph Propagation (IJGP), that combines both itmmadind bounded inference. The algo-
rithm 1JGP belongs to the class of Generalized Belief Prapag algorithms, a framework that
allowed connections with approximate algorithms fromistizial physics and is shown empirically
to surpass the performance of mini-clustering and beliepagation, as well as a number of other
state-of-the-art algorithms on several classes of netsvovie also provide insight into the accu-
racy of IBP and IJGP by relating these algorithms to well knalasses of constraint propagation
schemes.

1. Introduction

Probabilistic inference is the principal task in Bayesian networks and iarkno be an NP-hard
problem (Cooper, 1990; Roth, 1996). Most of the commonly used edgotithms such as join-
tree clustering (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzenle&en, 1990) or variable-
elimination (Dechter, 1996, 1999; Zhang, Qi, & Poole, 1994), and marentyy search schemes
(Darwiche, 2001; Bacchus, Dalmao, & Pitassi, 2003; Dechter & MateeXi07) exploit the net-
work structure. While significant advances were made in the last decastadhalgorithms, many
real-life problems are too big and too hard, especially when their structdenge, since they are
time and space exponential in threewidthof the graph. Approximate algorithms are therefore
necessary for many practical problems, although approximation withim giker bounds is also
NP-hard (Dagum & Luby, 1993; Roth, 1996).
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The paper focuses on two classes of approximation algorithms for the fthgkief updating.
Both are inspired by Pearl’s belief propagation algorithm (Pearl, 1988%h is known to be exact
for trees. As a distributed algorithm, Pearl’s belief propagation can alsppked iteratively to
networks that contain cycles, yielding Iterative Belief Propagation (IBBp known as loopy belief
propagation. When the networks contain cycles, IBP is no longer gesmno be exact, but in
many cases it provides very good approximations upon convergeonoge Sotable success cases
are those of IBP for coding networks (McEliece, MacKay, & Chen@8 McEliece & Yildirim,
2002), and a version of IBP called survey propagation for some sladgssatisfiability problems
(Mézard, Parisi, & Zecchina, 2002; Braunsteiré2drd, & Zecchina, 2005).

Although the performance of belief propagation is far from being wellewsiod in general,
one of the more promising avenues towards characterizing its behaviorfcamanalogies with
statistical physics. It was shown in (Yedidia, Freeman, & Weiss, 2001)20at belief propagation
can only converge to a stationary point of an approximate free enertpeaystem, called Bethe
free energy. Moreover, the Bethe approximation is computed over gaiasiables as terms, and is
therefore the simplest version of the more general Kikuchi (1951) cluat@tional method, which
is computed over clusters of variables. This observation inspired the afl@sneralized Belief
Propagation (GBP) algorithms, that work by passing messages betweterslaf variables. As
mentioned in (Yedidia et al., 2000), there are many GBP algorithms that porrgégo the same
Kikuchi approximation. A version based on region graphs, called ‘c@adf by the authors, is
presented in (Yedidia et al., 2000, 2001; Yedidia, Freeman, & Weis$)2QQr algorithm Iterative
Join-Graph Propagation is a member of the GBP class, although it will noegerided in the
language of region graphs. Our approach is very similar to and wasdndeptly developed from
that of (McEliece & Yildirim, 2002).

We will first present thenini-clusteringscheme which is an anytime bounded inference scheme
that generalizes the mini-bucket idea. It can be viewed as a belief @paglgorithm over a tree
obtained by a relaxation of the network’s structure (using the technigueriable duplication). We
will subsequently presenterative Join-Graph PropagatiolJGP) that sends messages between
clusters that are allowed to form a cyclic structure.

Through these two schemes we investigate: (1) the quality of boundedriofers an anytime
scheme (using mini-clustering); (2) the virtues of iterating messages in betipagation type
algorithms, and the result of combining bounded inference with iterativeagegsassing (in IJGP).

In the background section 2, we overview the Tree-Decomposition sctinrms the basis
for the rest of the paper. By relaxing two requirements of the tree-deasitign, that of connect-
edness (via mini-clustering) and that of tree structure (by allowing cycléeinnderlying graph),
we combine bounded inference and iterative message-passing with therbasdecomposition
scheme, as elaborated in subsequent sections.

In Section 3 we present the partitioning-based anytime algorithm called Misie€lng (MC),
which is a generalization of the Mini-Buckets algorithm (Dechter & Rish, 2003s a message-
passing algorithm guided by a user adjustable parameter ¢ditmahd offering a flexible tradeoff
between accuracy and efficiency in anytime style (in general the highé&bthend, the better the
accuracy). MC algorithm operates on a tree-decomposition, and similaattsReelief propaga-
tion algorithm (Pearl, 1988) it converges in two passes, up and downdabe @ur contribution
beyond other works in this area (Dechter & Rish, 1997; Dechter, Kaslarrosa, 2001) is in: (1)
Extending the partition-based approximation for belief updating from mini<étsdio general tree-
decompositions, thus allowing the computation of the updated beliefs for albtiebles at once.
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This extension is similar to the one proposed in (Dechter et al., 2001) Batespoptimization with
probabilistic inference. (2) Providing empirical evaluation that demonstthéeeffectiveness of the
idea of tree-decomposition combined with partition-based approximation lief bpdating.

Section 4 introduces the lIterative Join-Graph Propagation (IJGP)ithlgor It operates on a
general join-graph decomposition that may contain cycles. It also pgaidser adjustabiebound
parameter that defines the maximum cluster size of the graph (and henceblexity), therefore
it is both anytime and iterative. While the algorithm IBP is typically presented &narglization
of Pearl’s Belief Propagation algorithm, we show that IBP can be viewédiG with the smallest
i-bound.

We also provide insight into IJGP’s behavior in Section 4. Zero-beliefvariable-value pairs
that have zero conditional probability given the evidence. We show thkif 4 value of a variable
is assessed as having zero-belief in any iteration of IJGP, it remaing-dekef in all subsequent
iterations; (2) that IJGP converges in a finite number of iterations relatiie $et of zero-beliefs;
and, most importantly (3) that the set of zero-beliefs decided by any afetaive belief propa-
gation methods is sound. Namely any zero-belief determined by IJGP pondsto a true zero
conditional probability relative to the given probability distribution exprddsgthe Bayesian net-
work.

Empirical results on various classes of problems are included in Sectidreédiag light on
the performance of IJGP(i). We see that it is often superior, or othereasnparable, to other
state-of-the-art algorithms.

The paper is based in part on earlier conference papers: (Deklaisk, & Mateescu, 2002;
Mateescu, Dechter, & Kask, 2002; Dechter & Mateescu, 2003).

2. Background

In this section we provide background for exact and approximate piladies inference algorithms
that form the basis of our work. While we present our algorithms in the gbofalirected proba-
bilistic networks, they are applicable to any graphical model, including Mamnledworks.

2.1 Preliminaries

Notations: A reasoning problem is defined in terms of a set of variables taking valudinite
domains and a set of functions defined over these variables. We dearables or subsets of
variables by uppercase letters (e ,,Y, Z, S, R...) and values of variables by lower case letters
(e.g.,z,y, z,s). An assignmentX; = zi,..., X,, = x,) can be abbreviated as= (z1, ..., z,).
For a subset of variablegs, Dg denotes the Cartesian product of the domains of variabl8's iry

is the projection oft = (x4, ...,x,) over a subset. We denote functions by letters ¢, h, etc.,
and the scope (set of arguments) of the funcifdsy scope(f).

DEFINITION 1 (Graphical Model) (Kask, Dechter, Larrosa, & Dechter, 2005) A graphical model
M is a 3-tuple M = (X, D, F), where: X = {X;,...,X,} is a finite set of variablesD =
{D,...,D,} is the set of their respective finite domains of valuBs= {f1,..., f,} is a set
of positive real-valued discrete functions, each defined over a subsatiablesS; C X, called
its scope, and denoted Byope(f;). A graphical model typically has an associated combination
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operator! ®, (e.g.,® € {II, >_} (product, sum)). The graphical model represents the combination
of all its functions: ®;_, f;. A graphical model has an associated primal graph that captures the
structural information of the model:

DEFINITION 2 (Primal graph, dual graph) The primal graph of a graphical model is an undi-
rected graph that has variables as its vertices and an edge connects/avertices whose corre-
sponding variables appear in the scope of the same function. A duah gfapgraphical model has
a one-to-one mapping between its vertices and functions of the graphocklnTwo vertices in the
dual graph are connected if the corresponding functions in the graphicalel share a variable.
We denote the primal graph iy = (X, E), whereX is the set of variables and’ is the set of
edges.

DEFINITION 3 (Belief Networks) A belief (Bayesian) network is a graphical mod8l =
(X,D,G, P), whereG = (X, E) is a directed acyclic graph over variable$ and P = {p;},
wherep; = {p(X; | pa (X;)) } are conditional probability tables (CPTs) associated with each vari-
able X; andpa(X;) = scope(p;) —{X;} is the set of parents of; in G. Given a subset of variables
S, we will write P(s) as the probabilityP(S = s), wheres € Dg. A belief network represents
a probability distribution overX, P(z1,....,x,) = I} P(z;|7pq(x,)). An evidence setis an
instantiated subset of variables. The primal graph of a belief networkllecca moral graph. It
can be obtained by connecting the parents of each vertéxamd removing the directionality of
the edges. Equivalently, it connects any two variables appearing in the fsamily (a variable and

its parents in the CPT).

Two common queries in Bayesian networks are Belief Updating (BU) and Rrabable Ex-
planation (MPE).

DEFINITION 4 (Bayesian Network Queries)The Belief Updating (BU) task is to find the poste-
rior probability of each single variable given some evideacéhat is to compute?(X;le). The
Most Probable Explanation (MPE) task is to find a complete assignment tioeallariables having
maximum probability given the evidence, that is to computenax x I1;p;.

2.2 Tree-Decomposition Schemes

Tree-decomposition is at the heart of most general schemes for solwitgaange of automated
reasoning problems, such as constraint satisfaction and probabilistierinée It is the basis for
many well-known algorithms, such as join-tree clustering and bucket elimindtiavur presenta-
tion we will follow the terminology of (Gottlob, Leone, & Scarcello, 2000; Kalal., 2005).

DEFINITION 5 (tree-decomposition, cluster-tree)Let B = (X, D, G, P) be a belief network. A
tree-decompositiofor B is a triple (T', x, ¢), whereT = (V, E) is a tree, andy and) are labeling
functions which associate with each verteg V two setsy(v) C X andi(v) C P satisfying:

1. For each functiorp; € P, there isexactlyone vertexv € V such thatp; € ¢ (v), and
scope(p;) € x(v).

2. For each variableX; € X, the set{v € V|X,; € x(v)} induces a connected subtreeTof
This is also called the running intersection (or connectedness) property.

1. The combination operator can also be defined axiomatically (She®@g).1
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We will often refer to a node and its functions aslasterand use the ternree-decompositioand
cluster-treenterchangeably.

DEFINITION 6 (treewidth, separator, eliminator) Let D = (T, x, ) be a tree-decomposition of
a belief network3. Thetreewidth(Arnborg, 1985) ofD is max,cv|x(v)| — 1. The treewidth of
B is the minimum treewidth over all its tree-decompositions. Given two adjaeetitesw and

v of a tree-decomposition, theeparatoof v and v is defined assep(u,v) = x(u) N x(v), and
the eliminatorof u with respect tov is elim(u,v) = x(u) — x(v). Theseparator-widtrof D is
maz (. |sep(u, v)|. The minimum treewidth of a graggh can be shown to be identical to a related
parameter callednduced-width(Dechter & Pearl, 1987).

Join-tree and cluster-tree elimination (CTE). In both Bayesian network and constraint satisfac-
tion communities, the most used tree-decompaosition method is join-tree decomp(isitioitzen
& Spiegelhalter, 1988; Dechter & Pearl, 1989) (introduced based laticieal database concepts
(Maier, 1983)). Such decompositions can be generated by embeddimgtiterk’'s moral graphiz,
in a chordal graph, often using a triangulation algorithm and using its maxifgaks as nodes in
the join-tree. The triangulation algorithm assembles a join-tree by conneotinggtkimal cliques in
the chordal graph in a tree. Subsequently, every @RI placed in one clique containing its scope.
Using the previous terminology, a join-tree decomposition of a belief netieek( X, D, G, P) is
atreel’ = (V, E), whereV is the set of cliques of a chordal graghthat containg=, andFE is a set
of edges that form a tree between cliques, satisfying the running interspcoperty (Maier, 1983).
Such a join-tree satisfies the properties of tree-decomposition and isoteegetluster-tree (Kask
et al., 2005). In this paper, we will use the terms tree-decomposition andr¢@rdecomposition
interchangeably.

There are a few variants for processing join-trees for belief updaligrgsen et al., 1990; Shafer
& Shenoy, 1990). We adopt here the version from (Kask et al., 2@@8%d cluster-tree-elimination
(CTE), that is applicable to tree-decompositions in general and is geavaditospace savings. It
is a message-passing algorithm; for the task of belief updating, messagesnaputed by sum-
mation over the eliminator between the two clusters of the product of functioie iariginating
cluster. The algorithm, denoted CTE-BU (see Figure 1), pays a spétatian to the process-
ing of observed variables since the presence of evidence is a cantrpboent in belief updating.
When a cluster sends a message to a neighbor, the algorithm operateshenfafictions in the
cluster except the message from that particular neighbor. The messs#iges a singleombined
function andindividual functions that do not share variables with the relevant eliminator. All the
non-individual functions areombinedn a product and summed over the eliminator.

Example 1 Figure 2a describes a belief network and Figure 2b a join-tree decoitipogor it.
Figure 2c shows the trace of running CTE-BU with evidefice g., whereh,, ,,) is a message that
clusteru sends to clustes.

THEOREM1 (Complexity of CTE-BU) (Dechter et al., 2001; Kask et al., 2005) Given a Bayesian
networkB = (X, D, G, P) and a tree-decompositiofY’, x, ¢) of 3, the time complexity of CTE-
BUisO(deg- (n+ N)-d* ') and the space complexity@( N - d*°?), where deg is the maximum
degree of a node in the tree-decomposition, n is the number of varidbisgshe number of nodes
in the tree-decomposition, d is the maximum domain size of a variablis, the treewidth and sep
is the maximum separator size.
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Algorithm CTE for Belief-Updating (CTE-BU)

Input: A tree-decompositiodT’, x,v), T = (V, E) for B = (X, D,G, P). Evidence variables
var(e).

Output: An augmented tree whose nodes are clusters containing ip@adrCPTs and the
messages received from neighbdf§.X;, e), VX; € X.

Denote byH |, ., the message from vertexto v, ne, (u) the neighbors of, in T' excluding,
cluster(u) = (u) U{H,u)|(v,u) € E},

cluster,(u) = cluster(u) excluding message fromto w.

e Compute messages:

For every node: in T', onceu has received messages fromsall, (u), compute message to node
v:

1. Process observed variables:
Assign relevant evidence to @) € 1 (u)
2. Compute the combined function:

Py = Z Hf.

elim(u,v) fEA

whereA is the set of functions inluster, (u) whose scope intersect&m (u, v).

Add h, . to H, .,y and add all the individual functions ittuster, (u) — A

SendH(, . to nodev.
e Compute P(X;, e):
For everyX; € X let u be a vertex inT such thatX; € x(u). ComputeP(X;,e) =
Zx(u)f{Xi}(ercluster(u) f)

Figure 1: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU).

X ={AB,C}
¢ ®={p(@), p(bla), p(c|a,b)}

x(@={B,C,D,F}
O Y@ ={p(dD). p(f |c.d}
©\ X@={B.EF}
$@={pelb. N}

huy(0,¢) =3 p(a)Ip(b|a) Ip(c|a,b)

hen(0,€) = p(d |b) Op(f [c,d)Che, (b, f)

sy (b, £)= 2 p(d]b) p(flc,d) hy,(b,c)
c,d

hazy (b, f) = plelb, ),y (e, f)

e

(F) Now(e 1) =3 p(elb, f) My (b, )
o @, s (e, 1 =G = 0. le.)
(a) (b) (c)

Figure 2: (a) A belief network; (b) A join-tree decomposition; (c) Exeautid CTE-BU.

3. Partition-Based Mini-Clustering

The time, and especially the space complexity, of CTE-BU renders the algantbasible for prob-
lems with large treewidth. We now introduce Mini-Clustering, a partition-basgtina@ algorithm
which computes bounds or approximate valueg?0X;, e) for every variableX;;.
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ProcedureMC for Belief Updating (MC-BU(i))

2. Compute the combined mini-functions:
Make an )-size mini-cluster partitioning afluster, (u), {mc(1),...,mec(p)};
1 —
h(u,v) - Zelim(u,v) ermc(l) f
h’zuﬂ)) = MaZelim(u,v) ]-_-[fEmc(i) f 1= 2, Lo, P
add{hiu’v)\i =1,...,p}t0 Hy, .. SendH, ,) tov.

Compute upper boundsP(X;, e) on P(X;,e):

For everyX; € X letu € V be a cluster such that; € x(u). Make ¢) mini-clusters from
cluster(u), {mc(1),...,mc(p)}; ComputeP(X;,e) =

(Zx(u)—Xi HfEmc(l) f) ’ (HZ:Q MATy (u)-X; HfEmc(k) f)

Figure 3: Procedure Mini-Clustering for Belief Updating (MC-BU).

3.1 Mini-Clustering Algorithm

Combining all the functions of a cluster into a product has a complexity expiahé its number
of variables, which is upper bounded by the induced width. Similar to the mizkdiuscheme
(Dechter, 1999), rather than performing this expensive exact cotignytave partition the clus-
ter into p mini-clustersmc(1), ..., me(p), each having at mostvariables, wheré is an accu-
racy parameter. Instead of computing by CTE-BUY ) = >_ s (u0) [ rey(w) /o We can divide
the functions ofi(u) into p mini-clustersmc(k), and rewriteh, ) = > ciimu.v) [ ep) |
D elim(u,w) | [1 eme) /- By migrating the summation operator into each mini-cluster, yield-

ing TTi—1 2 ctim(u.e) I femeqry £+ We get an upper bound d, ). The resulting algorithm is
called MC-BU(i).?

Consequently, the combined functions are approximated via mini-clustéadloags. Suppose
u € V has received messages from all its neighbors other:tlfgre message fromis ignored even
if received). The functions inluster,(u) that are to be combined are partitioned into mini-clusters
{mc(1),...,me(p)}, each one containing at mosvariables. Each mini-cluster is processed by
summation over the eliminator, and the resulting combined functions as well ag atidikidual
functions are sent to. Alternatively, we can replaceum by amean operator (taking the sum
and dividing by the number of elements in the sum), deriving an approximatithre goint belief
instead of upper bounds.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU byaejng step 2 of the
main loop and the final part of computing the upper bounds on the joint bglteEtprocedure given
in Figure 3. In the implementation we used for the experiments reported hengaittitioning was
done in a greedy brute-force manner. We ordered the functionsdiegdo their sizes (humber of
variables), breaking ties arbitrarily. The largest function was placediimiacluster by itself. Then,
we picked the largest remaining function and probed the mini-clusters indlee ofrtheir creation,

2. In (Dechter & Rish, 2003) it is shown that the upper bound can beowegr by using “max” rather than “sum” on
some mini-buckets and that we can also generate lower bounds byimgmam with min for some buckets.
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1| asc H o) [Mio®0=3 p@b(la)Cp(c|ab)

BC b [P =Y P(d]b) i, (b, T)
d,f
! @ Ihty (©):= maxp(f lc.d)
2| BCDF
l b [lea®=3 eI 00
cd
BE @ h ()= maxp(f |c,d)
a[ ser J H g [Mea® D=2 p(e|b,f)tm%4,3)(e,f>‘
H e Moo (@ =3 pelb, 1)y (b) mfz‘@(f)‘
EF ' >

H (4.3) h](.A‘S) (ef)=pG=g.le f)‘
4| EFG

Figure 4: Execution of MC-BU foi = 3.

trying to find one that together with the new function would have no more ilvanables. A new
mini-cluster was created whenever the existing ones could not accommoga@atunction.

Example 2 Figure 4 shows the trace of running MC-BU(3) on the problem in FigurEigst, evi-
denceG = g. is assigned in all CPTs. There are no individual functions to be sent frogterlu
to cluster2. Clusterl contains only 3 variablesy(1) = { A, B, C}, therefore it is not partitioned.
The combined functioh%m) (b,c) = > ,p(a) - p(bla) - p(cla,b) is computed and the message
H(,9) = {h{; 5)(b,c)} is sent to node. Now, node2 can send its message to nakleAgain, there
are no individual functions. Clusté contains 4 variablesy(2) = {B, C, D, F'}, and a partition-
ing is necessary: MC-BU(3) can choose:(1) = {p(d[b), h(1,2)(b,c)} andmc(2) = {p(f|c,d)}.
The combined functiort, 4 (b) = 3=, ;p(d[b) - h(1 2) (b, ¢) andhf, 5 (f) = mazcap(fle. d) are
computed and the messagg, 3) = {hé,g)(b), h?zg)(f)} is sent to nod&. The algorithm contin-
ues until every node has received messages from all its neighborgpénloound o (a, G = g.)
can now be computed by choosing clugtewhich contains variabled. It doesn’t need partition-
ing, so the algorithm just computs,, . p(a) - p(bla) - p(cla,b) - hiy 1 (b) - hf, 1) (c). Notice that
unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) mgnoeesses more than 3
variables at a time.

It was already shown that:

THEOREM2 (Dechter & Rish, 2003) Given a Bayesian netw#itk= (X, D, G, P) and the evi-
dencee, the algorithm MC-BU(i) computes an upper bound on the joint probabifityX;, e) of
each variableX; (and each of its values) and the eviderce

THEOREM 3 (Complexity of MC-BU(i)) (Dechter et al., 2001) Given a Bayesian netwdtk=
(X, D, G, P) and a tree-decompositiofT’, x, ¢) of B, the time and space complexity of MC-BU(i)
is O(n - hw* - d*), where n is the number of variables, d is the maximum domain size of dleria
andhw* = mazxyer|{f € Plscope(f) N x(u) # ¢}|, which bounds the number of mini-clusters.
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—
1 ABC 1
— Hiay={h' o 1(b)= H =ty (C)=
Hp,=thlp1(b), 2p(d’[b)h% 3 »(b,f)} max p(f”|c,d”)}
) hz(z,l)(c)}
2 |BcDF 2';
| S
Hz2)=th a5 (b,f)} His2)={h"(5.2)(b,f)}
— —
3 | BEF 3| BEF
| S e
H(4,3)={h1(4,3)(e;f)} H(4,3)={h1(4,3)(e;f)}
— —
4 EFG 4| EFG
e/ N
(a) (b)

Figure 5: Node duplication semantics of MC: (a) trace of MC-BU(3); (&y¢rof CTE-BU.

Semantics of Mini-Clustering. The mini-bucket scheme was shown to have the semantics of relax-
ation vianode duplicationKask & Dechter, 2001; Choi, Chavira, & Darwiche, 2007). We extend
it to mini-clustering by showing how it can apply as is to messages that flow irdioeetion, as
follows. Given a tree-decompositiad, where CTE-BU computes a functidn,, ., (the message
that clusten: sends to cluster), MC-BU(i) partitions clustet: into p mini-clustersuy, ..., u,, which

are processed independently and then the resulting fundtigns are sent ta. Instead consider

a different decompositio®’, which is just like D, with the exception that (a) instead of it has
clustersuy, ..., up, all of which are children of, and each variable appearing in more than a single
mini-cluster becomes a new variable, (b) each childf « (in D) is a child ofuy (in D’), such

that h,,,,) (in D) is assigned tay, (in D') during the partitioning. Note thab’ is not a legal
tree-decomposition relative to the original variables since it violates theecteuiness property:
the mini-clustersy, ..., u, contain variableglim(u, v) but the path between the nodes ..., u,

(this path goes through) does not. However, it is a legal tree-decomposition relative to the new
variables. It is straightforward to see théf, ., computed by MC-BU(i) onD is the same as
{P(u; wli = 1, ..., p} computed by CTE-BU o’ in the direction from leaves to root.

If we want to capture the semantics of the messages from root to leavegeddo generate a
different relaxed decompositioX’) because MC, as defined, allows a different partitioning in the
up and down streams of the same cluster. We could of course stick with thmdesition inD’
and use CTE in both directions which would lead to another variant of miniecing.

Example 3 Figure 5(a) shows a trace of the bottom-up phase of MC-BU(3) on ttveonkin Figure
4. Figure 5(b) shows a trace of the bottom-up phase of CTE-BU algomthm problem obtained
from the problem in Figure 4 by splitting nodéxs(into D’ and D”) and F (into F’ and F”).

The MC-BU algorithm computes an upper bouRdX;, ¢) on the joint probabilityP(X;, e).
However, deriving a bound on the conditional probabilityX;|e) is not easy when the exact
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Figure 6: Convergence of IBP (50 variables, evidence from 0-8@bias).

value of P(e) is not available. If we just try to divide (multiplyP(X;,e) by a constant, the
result is not necessarily an upper bound B(X;|e). It is easy to show that normalization,
P(xi,e)/ Y,,ep, Plxi,e), with themean operator is identical to normalization of MC-BU output
when applying the summation operator in all the mini-clusters.

MC-BU(i) is an improvement over the Mini-Bucket algorithm MB(i), in that it all®the com-
putation of P(X;, e) for all variables with a single run, whereas MB(i) compuf&sy;, ) for just
one variable, with a single run (Mateescu et al., 2002). When compXiAg, ¢) for each variable,
MB(i) has to be rum times, once for each variable (an algorithm we call nMB(i)). In (Mateescu
et al., 2002) it was demonstrated that MC-BU(i) has up to linear speedarmB(i). For a given

1, the accuracy of MC-BU(i) can be shown to be not worse than that & iV

3.2 Experimental Evaluation of Mini-Clustering

In (Mateescu et al., 2002; Kask, 2001) we provide empirical evaluafidtGeBU that evaluates the
impact of the accuracy parameter on its quality of approximation and compedserative Belief
Propagation and a Gibbs sampling scheme. We will include here only a siilisese experiments
which will provide the essence of our results. Additional empirical evalnatfdVMC-BU will be
given when comparing against IJGP later in this paper.

We tested the performance of MC-BU(i) on random Noisy-OR netwoeksjam coding net-
works, general random networks, grid networks, and three ben&hRCS files with 54, 360 and
422 variables respectively (these are belief networks for medicineeddrom the Computer based
Patient Case Simulation system, known to be hard for belief updating). @rygaecof network we
ran Iterative Belief Propagation (IBP) - set to run at most 30 iteratioitshs5Sampling (GS) and
MC-BU(i), with ¢ from 2 to the treewidthv* to capture the anytime behavior of MC-BU(i).

The random networks were generated using parameters (N,K,C,P)y Wherthe number of
variables, K is their domain size (we used only K=2), C is the number of conditigrobability
tables and P is the number of parents in each conditional probability tablgaréets in each table
are picked randomly given a topological ordering, and the conditiordialnility tables are filled

10
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[ N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
le| 10

20 max [ mean max [ mean max [ mean max [ mean
0 9.0E-09 1.1E-05 0.102
IBP 0 3.4E-04 4.2E-01 0.081
0 9.6E-04 1.2E+00 0.062
0 0 1.6E-03 1.1E-03 1.9E+00 1.3E+00 0.056 0.057
MC-BU(2) 0 0 1.1E-03 8.4E-04 1.4E+00 1.0E+00 0.048 0.049
0 0 5.7E-04 4.8E-04 7.1E-01 5.9E-01 0.039 0.039
0 0 1.1E-03 9.4E-04 1.4E+00 1.2E+00 0.070 0.072
MC-BU(5) 0 0 7.7E-04 6.9E-04 9.3E-01 8.4E-01 0.063 0.066
0 0 2.8E-04 2.7E-04 3.5E-01 3.3E-01 0.058 0.057
0 0 3.6E-04 3.2E-04 4.4E-01 3.9E-01 0.214 0.221
MC-BU(8) 0 0 1.7E-04 1.5E-04 2.0E-01 1.9E-01 0.184 0.190
0 0 3.5E-05 3.5E-05 4.3E-02 4.3E-02 0.123 0.127

Table 1: Performance on Noisy-OR networks, = 10: Normalized Hamming Distance, absolute
error, relative error and time.

randomly. The grid networks have the structure of a square, with edigesed! to form a diagonal
flow (all parallel edges have the same direction). They were genergtspdeifying N (a square
integer) and K (we used K=2). We also varied the number of evidencesnatnoted bye| in
the tables. The parameter values are reported in each table. For all thenpsp Gibbs sampling
performed consistently poorly so we only include part of the results in thesiog tables and
figures.

In our experiments we focused on the approximation power of MC-BU(&. cdmpared two
versions of the algorithm. In the first version, for every cluster, wel tkemaxoperator in all its
mini-clusters, except for one of them that was processed by summatitime second version, we
used the operataneanin all the mini-clusters. We investigated this second version of the algorithm
for two reasons: (1) we compare MC-BU(i) with IBP and Gibbs samplingh) bbwhich are also
approximation algorithms, so it would not be possible to compare with a bousdiregne; (2) we
observed in our experiments that, although the bounds improve as thed-lmmueases, the quality
of bounds computed by MC-BU(i) was still poor, with upper bounds bemegtgr than 1 in many
cases Notice that we need to maintain teamoperator for at least one of the mini-clusters. The
meanoperator simply performs summation and divides by the number of elements innthd-sr
example, ifA, B, C are binary variables (taking values 0 and 1), gitd, B, C) is the aggregated
function of one mini-cluster, anelim = { A, B}, then computing the messagéC') by themean
operator gives1 /43 4 pero 1y f(4, B, C).

We computed the exact solution and used three different measuresuch@ccl) Normalized
Hamming Distance (NHD) - we picked the most likely value for each variabléheapproximate
and for the exact, took the ratio between the number of disagreements danthtlmimber of vari-
ables, and averaged over the number of problems that we ran forleash2) Absolute Error (Abs.
Error) - is the absolute value of the difference between the approximdi¢hanexact, averaged
over all values (for each variable), all variables and all problemsgehtiRe Error (Rel. Error) - is
the absolute value of the difference between the approximate and the dixatgd by the exact,

3. A recent paper (Wexler & Meek, 2008) compared the upper/lowanding properties of the mini-bucket on com-
puting probability of evidence, showing more promising results. This kiewie outside the scope of this paper.
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N=50, P=3, 25 instances

10 NHD Abs. Error Rel. Error Time
le|] 20

30 max | mean max | mean max [ mean max | mean
0 1.3E-04 7.9E-01 0.242
IBP 0 3.6E-04 2.2E+00 0.184
0 6.8E-04 4.2E+00 0.121
0 0 1.3E-03 9.6E-04 8.2E+00 5.8E+00 0.107 0.108
MC-BU(2) 0 0 5.3E-04 4.0E-04 3.1E+00 2.4E+00 0.077 0.077
0 0 2.3E-04 1.9E-04 1.4E+00 1.2E+00 0.064 0.064
0 0 1.0E-03 8.3E-04 6.4E+00 5.1E+00 0.133 0.133
MC-BU(5) 0 0 4.6E-04 4.1E-04 2.7E+00 2.4E+00 0.104 0.105
0 0 2.0E-04 1.9E-04 1.2E+00 1.2E+00 0.098 0.095
0 0 6.6E-04 5.7E-04 4.0E+00 3.5E+00 0.498 0.509
MC-BU(8) 0 0 1.8E-04 1.8E-04 1.1E+00 1.0E+00 0.394 0.406
0 0 3.4E-05 3.4E-05 2.1E-01 2.1E-01 0.300 0.308
0 0 2.6E-04 2.4E-04 1.6E+00 1.5E+00 2.339 2.378
MC-BU(11) 0 0 3.8E-05 3.8E-05 2.3E-01 2.3E-01 1.421 1.439
0 0 6.4E-07 6.4E-07 4.0E-03 4.0E-03 0.613 0.624
0 0 4.2E-05 4.1E-05 2.5E-01 2.4E-01 7.805 7.875
MC-BU(14) 0 0 0 0 0 0 2.075 2.093
0 0 0 0 0 0 0.630 0.638

Table 2: Performance on Noisy-OR networks, = 16: Normalized Hamming Distance, absolute
error, relative error and time.

Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances
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Figure 7: Absolute error for Noisy-OR networks.
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averaged over all values (for each variable), all variables and @lilggms. For coding networks,
we report only one measure, Bit Error Rate (BER). In terms of the measigfined above, BER
is the normalized Hamming distance between the approximate (computed by athaiyand the
actual input (which in the case of coding networks may be different fileensolution given by
exact algorithms), so we denote them differently to make this semantic disting¥@ilso report
the time taken by each algorithm. For reported metrics (time, error, etc.) pcovidlee Tables, we

give both mean and max values.

In Figure 6 we show that IBP converges after about 5 iterations. Site whour experiments
we report its time for 30 iterations, its time is even better when sophisticated termimatiged.
These results are typical of all runs.
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Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances  Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances
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Figure 8: Absolute error for random networks.

o=.22 o =.26 o=.32 o = .40 o =.51
BER | max [ mean| max | mean| max [ mean| max [ mean| max | mean| Time
N=100, P=3, 50 instances, w*=7
IBP | 0.000 | 0.000| 0.000 | 0.000| 0.002 | 0.002 | 0.022 | 0.022 | 0.088 | 0.088 | 0.00

GS | 0.483| 0.483 | 0.483| 0.483 | 0.483 | 0.483| 0.483 | 0.483 | 0.483| 0.483 | 31.36
MC-BU(2) | 0.002 | 0.002 | 0.004 | 0.004 | 0.024 | 0.024 | 0.068 | 0.068 | 0.132 | 0.131| 0.08
MC-BU(4) | 0.001 | 0.001 | 0.002 | 0.002 | 0.018 | 0.018 | 0.046 | 0.045| 0.110 | 0.110| 0.08
MC-BU(6) | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 0.004 | 0.038 | 0.038 | 0.106 | 0.106 | 0.12
MC-BU(8) | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.002 | 0.023 | 0.023 | 0.091 | 0.091 | 0.19
N=100, P=4, 50 instances, w*=11
IBP | 0.000 | 0.000| 0.000| 0.000| 0.002 | 0.002 | 0.013| 0.013| 0.075| 0.075| 0.00

GS | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 0.506 | 39.85
MC-BU(2) | 0.006 | 0.006 | 0.015 | 0.015| 0.043 | 0.043 | 0.093 | 0.094 | 0.157 | 0.157 | 0.19
MC-BU(4) | 0.006 | 0.006 | 0.017 | 0.017 | 0.049 | 0.049 | 0.104 | 0.102 | 0.158 | 0.158 | 0.19
MC-BU(6) | 0.005 | 0.005| 0.011 | 0.011| 0.035| 0.034| 0.071 | 0.074| 0.151 | 0.150 | 0.29
MC-BU(8) | 0.002 | 0.002 | 0.004 | 0.004 | 0.022 | 0.022 | 0.059 | 0.059 | 0.121 | 0.122| 0.71
MC-BU(10) | 0.001 | 0.001 | 0.001 | 0.001 | 0.008 | 0.008 | 0.033 | 0.032 | 0.101 | 0.102 | 1.87

Table 3: Bit Error Rate (BER) for coding networks.

Random Noisy-OR networks results are summarized in Tables 1 and 2, and Figure 7. For NHD,
both IBP and MC-BU gave perfect results. For the other measuresptieced that IBP is more
accurate when there is no evidence by about an order of magnitudevilQwas evidence is added,
IBP’s accuracy decreases, while MC-BU’s increases and theygjmiar results. We see that
MC-BU gets better as the accuracy parameéteicreases, which shows its anytime behavior. We
also observed a similar pattern of behavior when experimenting with smalley-Rétsnetworks,
generated with P=2 (w*=10).

General random networks results are summarized in Figure 8. They are similar to those for
random Noisy-OR networks. Again, IBP has the best result only whemtimber of evidence
variables is small. It is remarkable how quickly MC-BU surpasses the qmegicce of IBP as
evidence is added (see (Mateescu et al., 2002) for more).

Random coding networks results are given in Table 3 and Figure 9. The instances fall within the
class of linear block codesy (is the channel noise level). It is known that IBP is very accurate for
this class. Indeed, these are the only problems that we experimented wit lBReoutperformed
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Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances
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Figure 9: Bit Error Rate (BER) for coding networks.
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Figure 10: Grid 15x15: absolute error and time.

MC-BU throughout. The anytime behavior of MC-BU can again be seen iwetiation of numbers
in each column and more vividly in Figure 9.

Grid networks results are given in Figure 10. We notice that IBP is more accurate for no evédenc
and MC-BU is better as more evidence is added. The same behavior wasteotly manifested
for smaller grid networks that we experimented with (from 7x7 up to 14x14).

CPCS networks results We also tested on three CPCS benchmark files. The results are given
in Figure 11. It is interesting to notice that the MC-BU scheme scales up to Rargg networks,

like the real life example of CPCS422 (induced width 23). IBP is again marerate when there

is no evidence, but is surpassed by MC-BU when evidence is addedevdq whereas MC-BU

is competitive with IBP time-wise when i-bound is small, its runtime grows rapidly asuit
increases. For more details on all these benchmarks see (Mateesc@@d2).,

Summary Our results show that, as expected, IBP is superior to all other approxim&to
coding networks. However, for random Noisy-OR, general randyid, networks and the CPCS
networks, in the presence of evidence, the mini-clustering scheme is ofieria even in its weak-

14



JOIN-GRAPH PROPAGATION ALGORITHMS

CPCS 422, evid=0, w*=23, 1 instance CPCS 422, evid=10, w*=23, 1 instance
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Figure 11: Absolute error for CPCS422.

est form. The empirical results are particularly encouraging as we use-aptimized scheme that
exploits a universal principle applicable to many reasoning tasks.

The next section introduces Iterative Join-Graph Propagation (Iff@aP¥an be viewed as an
iterative version of mini-clustering, improving the quality of approximation,eegyl for low i-
bounds. Given a cluster of the decomposition, mini-clustering can potentigateca different
partitioning for every message sent to a neighbor. This dynamic partitionm@agapen because
the incoming message from each neighbor has to be excluded when competiagtitioning, so a
different set of functions are split into mini-clusters for every messagaeghbor. In principle, we
can imagine a version of mini-clustering where for every cluster we creatégae static partition
into mini-clusters such that every incoming message can be included into tme oini-clusters.
This new algorithm can be extended into IJGP by introducing some links betmaegitlusters
of the same cluster, and carefully limiting the interaction between the resultiresriodrder to
eliminate over-counting. The idea of partitioning into mini-buckets (Dechter & R#903) or
mini-clusters can also be explained by node-splitting (Choi et al., 2007 wetidy running an
exact algorithm on a relaxation of the original model.

4. Join-Graph Decomposition and Propagation

We next introduce IJGP which, like mini-clustering, is designed to benefit fsounded inference
and also exploit iterative message-passing as used by IBP. The algerifrks on a general join-
graph which may contain cycles. The cluster size of the graph is usetaupidy thei-bound
(providing the anytime nature), and the cycles in the graph allow iterating.

4.1 Join-Graphs

DEFINITION 7 (join-graph decompositions) Ajoin-graph decompositiofor a belief network3 =
(X,D,G,P)isatripleD = (JG, x, ), whereJG = (V, E) is a graph, andy andt are labeling
functions which associate with each vertex V' two setsy(v) C X and«(v) C P such that:

1. For eachp; € P, there isexactlyone vertexo € V such thatp; € ¢ (v), andscope(p;) C
x(v).

15



MATEESCU, KASK, GOGATE & DECHTER

2. (connectedness) For each variable € X, the set{v € V|X; € x(v)} induces a connected
subgraph of/G. The connectedness requirement is also called the running interseabipn p
erty.

DEFINITION 8 (joinwidth) LetD = (JG, x, ¢ ) be a join-graph decomposition of a belief network
B = (X,D,G, P). Thejoinwidth of D is maz,cv|x(v)|. The joinwidth ofB is the minimum
joinwidth over all its join-graph decompositions.

We will often refer to a node iV and its CPT functions as @ustef* and use the terrjoin-
graph decompositiomnd cluster-graphinterchangeably. Clearly, jin-tree decompositior a
cluster-treds the special case when the join-graphs a tree.

It is clear that one of the problems of message propagation over cycligijaphs isover-
counting To reduce this problem we devise a scheme, which avoids cyclicity witlecesp any
single variable. The algorithm works on edge-labeled join-graphs.

DEFINITION 9 ((minimal) edge-labeled join-graph decompositionsin edge-labeled join-graph
decompositiorfor B = (X, D, G, P) is a four-tupleD = (JG, x, ¥, 0), whereJG = (V, E) is
a graph, x and ¢ associate with each vertex € V the setsy(v) C X and«(v) C P andé
associates with each edge, u) C E the set)((v,u)) C X such that:

1. For each functiorp; € P, there isexactlyone vertexv € Vsuch thatp, € (v), and
scope(p;) € x(v).

2. (edge-connectedness) For each efge), 6((u,v)) C x(u) N x(v), such thatvX; € X,
any two clusters containing’; can be connected by a path whose every edge label includes
X;.

Finally, an edge-labeled join-graph iminimal if no variable can be deleted from any label while
still satisfying the edge-connectedness property.

DEFINITION 10 (separator, eliminator of edge-labeled join-graphs)Given two adjacent vertices
u andv of JG, theseparatoof u andv is defined asep(u, v) = 6((u,v)), and theeliminatorof «
with respect ta is elim(u, v) = x(u) — 6((u, v)). The separator width imax, ,) [sep(u, v)|.

Edge-labeled join-graphs can be made label minimal by deleting variablegtielabels while
maintaining connectedness (if an edge label becomes empty, the edgedeatbd). It is easy to
see that,

Proposition 1 A minimal edge-labeled join-graptoes not contain any cycle relative to any single
variable. That is, any two clusters containing the same variable are aaddy exactly one path
labeled with that variable.

Notice that every minimal edge-labeled join-graph is edge-minimal (no edgbeaeleted), but
not vice-versa.

4. Note that a node may be associated with an empty set of CPTs
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Figure 12: An edge-labeled decomposition.

Example 4 The example in Figure 12a shows an edge minimal join-graph which cansailycle
relative to variable4, with edges labeled with separators. Notice however that if we remowe var
able 4 from the label of one edge we will have no cycles (relative to single varipblbe the
connectedness property is still maintained.

The mini-clustering approximation presented in the previous section woneddxing the join-
tree requirement of exact inference into a collection of join-trees havimgler cluster size. It
introduces some independencies in the original problem via node duplicettbapplies exact in-
ference on the relaxed model requiring only 2 message passings. [Etasbhef IJGP algorithms we
take a different route. We choose to relax the tree-structure requit@meérnuse join-graphs which
do not introduce any new independencies, utilizing an iterative messegig on the resulting
cyclic structure.

Indeed, it can be shown that any join-graph of a belief network is ang<{independency map
(Pearl, 1988)) of the underlying probability distribution relative to noegasation. Since we plan
to use minimally edge-labeled join-graphs to address over-counting prokiteenguestion is what
kind of independencies are captured by such graphs.

DEFINITION 11 (edge-separation in (edge-labeled) join-graphd)et D = (JG, x, ¢, 0), JG =
(V, E) be an edge-labeled decomposition of a Bayesian net®etk( X, D, G, P). Let Ny, Ny C
V be two sets of nodes, arl; C E be a set of edges iiG. LetW,Y, Z be their corresponding
sets of variablesW = U,cny, X(v), Z = Uecp,0(e)). We say thaty; edge-separate¥y, and
Ny in D if there is no path betweeNy;, and Ny in the JG graph whose edges ifi; are removed.
In this case we also say th&lt’ is separatedrom Y givenZ in D, and write(W|Z|Y)p. Edge-
separation in a regular join-graph is defined relative to its separators.

THEOREM4 Any edge-labeled join-graph decompositibn= (JG, x, v, §) of a belief network
B = (X,D,G, P)is an |-map ofP relative to edge-separation. Namely, any edge separatidn in
corresponds to conditional independencein

Proof: Let MG be the moral graph aBN. SinceM G is an I-map ofP, it is enough to prove that
JG is an I-map ofM G. Let Ny and Ny be disjoint sets of nodes ad; be a set of edges G,
andW, Z. Y be their corresponding sets of variablesWifG. We will prove:

(Nw|Nz|Ny) g = (WI|Z|Y)mc

by contradiction. Since the sel¥, Z, Y may not be disjoint, we will actually prove thatV —
Z\|Z|Y — Z)mq holds, this being equivalent @0V |Z]Y) yc-
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SupposingW — Z|Z|Y — Z) y¢ is false, then there exists a path= 71,72, .. ., V-1, 0 = n
in MG that goes from some variable= v; € W — Z to some variablg = ~,, € Y — Z without
intersecting variables i@. Let N, be the set of all nodes iiG that contain variable € X, and
let us consider the set of nodes:

S = U?:lN , — Nz

We argue thats forms a connected sub-graph Jiiz. First, the running intersection property
ensures that every,,,< = 1,...,n, remains connected iiG after removing the nodes iV
(otherwise, it must be that there was a path between the two disconnedethfihe original/ G,
which implies that ay; is part of Z, which is a contradiction). Second, the fact that v;11),i =
1,...,n—1,is an edge in the moral graghl G implies that there is a conditional probability table
(CPT) on bothy; and~;+1,7 = 1,...,n — 1 (and perhaps other variables). From property 1 of the
definition of the join-graph, it follows that for all = 1,...,n — 1 there exists a node in JG that
contains bothy; and~; 1. This proves the existence of a path in the mutilated join-graph (JG with
Nz pulled out) from a node itVy containinga: = +; to the node containing bothy and~, (V,,
is connected), then from that node to the one containing hetind 3 (V,, is connected), and
so on until we reach a node Ny containings = ~,,. This shows tha{ Ny | Nz| Ny) j¢ is false,
concluding the proof by contradiction. O

Interestingly however, deleting variables from edge labels or removiggssflom edge-labeled
join-graphs whose clusters are fixed will not increase the indeperdecaptured by edge-labeled
join-graphs. That s,

Proposition 2 Any two (edge-labeled) join-graphs defined on the same set of clusitaring (/,
X, V), express exactly the same set of independencies relative to edatsmp and this set of
independencies is identical to the one expressed by node separation pnirtied graph of the
join-graph.

Proof: This follows by looking at the primal graph of the join-graph (obtained hynezting any
two nodes in a cluster by an arc over the original variables as nodeg}paedving that any edge
separation in a join-graph corresponds to a node separation in the prapaland vice-versa. O

Hence, the issue of minimizing computational over-counting due to cyclesepfmebe unre-
lated to the problem of maximizing independencies via minimal I-mapness. Nelesshto avoid
over-counting as much as possible, we still prefer join-graphs that minimitescrelative to each
variable. That is, we prefeninimaledge-labeled join-graphs.

Relationship with region graphs Our description of join-graphs is inspired by a graphical models
perspective for probabilistic reasoning. We use the graphical steuctfuthe problem to build
join-graphs, and have the guiding principle that we should not ovemtdoformation (because
BP is exact on trees where there is no over-counting, while it is inaccarnatgaphs with loops
where there is over-counting). This leads to the tree-ness condition \sjpkeceto every variable,
which in some cases means that the separator between neighboring ¢dustsrect subset of their
intersection. Since, as observed when the clusters are big enoughveva r@ee-decomposition
with exact computation, and since IBP operates on clusters with singletatidias that can be
connected in very loopy networks, moving from clusters of one functiolanger size clusters
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while reducing the “loopiness” of the cluster graph seems like a reasoinalilon to improve the
accuracy. This is the intuition from mini-buckets, where improvement in acguran be proven
under certain conditions.

There is a strong relationship between our join-graphs and the regiphgyoé (Yedidia et al.,
2000, 2001, 2005). Their approach was inspired by advances irtisttjghysics, when it was
realized that computing the partition function is essentially the same combinatmidém that
expresses probabilistic reasoning. As a result, variational methodsphgsics could have coun-
terparts in reasoning algorithms. It was proved in (Yedidia et al., 20@,)28at belief propagation
on loopy networks can only converge (when it does so) to stationaryspoirthe Bethe free en-
ergy. The Bethe approximation is only the simplest case of the more gerikvahk(1951) cluster
variational method. The idea is to group the variables together in clusterseafodm exact com-
putation in each cluster. One key question is then how to aggregate the,rasdItsow to account
for the variables that are shared between clusters. Again, the ideadngihéng should be counted
exactly once is very important. This led to the proposal of region graptdidié et al., 2001, 2005)
and the associated counting numbers for regions. They are givenassidlp canonical version
of graphs that can support Generalized Belief Propagation (GBPjithigs. The join-graphs ac-
complish the same thing. The edge-labeled join-graphs can be descritegglasgraphs where the
regions are the clusters and the labels on the edges. The tree-neis®anith respect to every
variable ensures that there is no over-counting. A very similar appradésmibased on join-graphs
appeared independently from ours in (McEliece & Yildirim, 2002), fromirdarmation theoretic
perspective.

4.2 Algorithm IJGP

Applying CTE iteratively to minimal edge-labeled join-graphs yields our algoritterative Join-
Graph Propagation (IJGPylescribed in Figure 13. One iteration of the algorithm applies message-
passing in a topological order over the join-graph, forward and Batlen node: sends a message
(or messages) to a neighbor nadié operates on all the CPTs in its cluster and on all the messages
sent from its neighbors excluding the ones received frofirst, all individual functions that share
no variables with the eliminator are collected and sent t#ll the rest of the functions ammbined
in a product and summed over the eliminator betweamdw.

Based on the results in (Lauritzen & Spiegelhalter, 1988) and (Lark@ssk, & Dechter, 2001)
it can be shown that:

THEOREM5 1. If IJGP is applied to a join-tree decomposition it reduces to join-tree cluster-
ing and it therefore is guaranteed to compute the exact beliefs in one iteration.

2. The time complexity of one iteration of IJGP@Kdeg - (n + N) - d¥"*!) and its space
complexity isO(N - d’), where deg is the maximum degree of a node in the join-graph, n
is the number of variables, N is the nhumber of nodes in the graph decitopo d is the
maximum domain size;* is the maximum cluster size afids the maximum label size.

For proof see properties of CTE in (Kask et al., 2005).

One question that we did not answer in this section is why propagating thagessseratively
helps. Why is IJGP upon convergence superior to IJGP with one iteratidrs@perior to MC?
One clue can be provided when considering deterministic constraint nestwhich can be viewed
as “extreme probabilistic networks”. It is known that constraint propagalgorithms, which are
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Algorithm Iterative Join Graph Propagation (IJGP)

Input An arc-labeled join-graph decompositiodG, x, ¢, 0), JG = (V, E) for B = (X, D, G, P). Evi-
dence variablesar(e).
Output An augmented graph whose nodes are clusters containing the origingl®B the messages received
from neighbors. Approximations d?(X;le), VX, € X.

Denote byh.,,.) the message from vertexto v, ne, (u) the neighbors ofi in JG excludingw.
cluster(u) = ¥(u) U {huw|(v,u) € E}.
clustery,(u) = cluster(u) excluding message fromto u.

e One iteration of [JGP:
For every node in JG in some topological ordetf and back, do

1. Process observed variables:
Assign relevant evidence to al] € ¢ (u) x(u) := x(u) —var(e), Vu € V
2. Compute individual functions:
Include inHy, .,y each function irtluster, (u) whose scope does not contain variablegim (u, v).
Denote byA the remaining functions.
3. Compute and send tov the combined function: hu,v) = 3_ i uey [ sea f-
Sendh(,,.) and the individual function#/,, ., to nodev.

Endfor
e Compute an approximation of P(X;|e):

For everyX; € X letw be a vertex inJG such thatX; € x(u).
CO[anneP(Xi’ e) =« Zx(u)—{Xi}(HfE(:luster(u) f)

Figure 13: Algorithm lterative Join-Graph Propagation (IJGP).

analogous to the messages sent by belief propagation, are guaranteesidme and are guaran-
teed to improve with convergence. The propagation scheme presengedidrss like constraint
propagation relative to the flat network abstractiodPofwhere all non-zero entries are normalized
to a positive constant), and propagation is guaranteed to be more adourtitat abstraction at
least. It is precisely these issues that we address in Section 4.4.

Next we will demonstrate that the well-known algorithm IBP is a special cRkE.

4.3 The Special Case of Iterative Belief Propagation

Iterative belief propagation (IBP) is an iterative application of Pearl'sidtigm, that was defined for
poly-trees (Pearl, 1988), to any Bayesian network. We will descriBea8an instance of join-graph
propagation over dual join-graph

DEFINITION 12 (dual graphs, dual join-graphs) Given a set of functiong’ = {f1, ..., f;} over
scopesSy, ..., S, the dual graph off’ is a graphDG = (V, E, L) that associates a node with
each function, namely = F' and an edge connects any two nodes whose function’s scope share a
variable, E' = {(f;, f;)|Si NS; # ¢} . L is a set of labels for the edges, each edge being labeled
by the shared variables of its nodds= {l/;; = S; N 5;|(4,j) € E}. Adual join-graptis an edge-
labeled edge subgraph &G that satisfies the connectedness propertsnidimal dual join-graph

is a dual join-graph for which none of the edge labels can be further redwhile maintaining the
connectedness property.
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Figure 14: a) A belief network; b) A dual join-graph with singleton labelsAdaual join-graph
which is a join-tree.

Interestingly, there may be many minimal dual join-graphs of the same dyath.gk&/e will
define Iterative Belief Propagation on any dual join-graph. Each sedds a message over an edge
whose scope is identical to the label on that edge. Since Pearl’s algoetiuis smessages whose
scopes are singleton variables only, we highlight minimal singleton-labé&jalnagraphs.

Proposition 3 Any Bayesian network has a minimal dual join-graph where each edgbkdted by
a single variable.

Proof: Consider a topological ordering of the nodes in the acyclic directed grhfite Bayesian
networkd = X1, ..., X,,. We define the following dual join-graph. Every node in the dual gph
associated witlp; is connected to nodg;, j < i if X; € pa(X;). We label the edge between
andp; by variableX;, namelyl;; = {X;}. Itis easy to see that the resulting edge-labeled subgraph
of the dual graph satisfies connectedness. (Take the original acyafib@ and add to each node

its CPT family, namely all the other parents that precede it in the orderinge Giadready satisfies
connectedness so is the minimal graph generated.) The resulting labgdadsgaedual graph with
singleton labels. O

Example 5 Consider the belief network on 3 variabled, B,C with CPTs 1P(C|A, B),
2.P(B|A) and 3P(A), given in Figure 14a. Figure 14b shows a dual graph with singleton la-
bels on the edges. Figure 14c shows a dual graph which is a join-treeharh belief propagation
can solve the problem exactly in one iteration (two passes up and downé)e tre

For completeness, we present IBP algorithm in Figure 15. The algorithrspeaal case of
IJGP. It is easy to see that one iteration of IBP is time and space linear in thefsize belief
network. It is also easy to show that when IBP is applied to a minimal singlebmield dual graph
it coincides with Pearl’s belief propagation applied directly to the acyclic lgrapresentation.
Also, when the dual join-graph is a tree IBP converges after one itergtimpasses, up and down
the tree) to the exact beliefs.

4.4 The Inference Power of IJGP

Here we will shed some light on the 1IJGP’s behavior by making connectighsive well-known

concept of arc-consistency from constraint networks (Dechted3R0 We show that: (a) if a
variable-value pair is assessed as having a zero-belief, it remainscabetief in subsequent it-
erations; (b) that any variable-value zero-beliefs computed by IJ@Ra@rect; (c) in terms of
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Algorithm IBP
Input: An edge-labeled dual join-graphG = (V, E, L) for a Bayesian networl = (X, D, G, P). Evi-
dencee.
Output: An augmented graph whose nodes include the original CPTs and thagesseceived from neigh-
bors. Approximations oP(X;le), VX; € X. Approximations ofP(F;le), VF; € B.
Denote by:h,, the message from to v; ne(u) the neighbors ofi in V; ne,(u) = ne(u) — {v}; luo the
label of (u,v) € E; elim(u,v) = scope(u) — scope(v).
e One iteration of IBP
For every nodev in D.J in a topological order and back, do:
1. Process observed variables
Assign evidence variables to the eaghand remove them from the labeled edges.
2. Compute and send tov the function:

=Y e I RH

elim(u,v) {h} i€ney (u)}

Endfor
e Compute approximations of P(F;le), P(X;le):
For everyX; € X letu be the vertex of family&; in DJ,
P(Fi,e) = a(th,uem(i) hif) - pu;
P(Xi,e) = aZscope(u)—{Xi} P(Fi,e).

Figure 15: Algorithm Iterative Belief Propagation.

zero/non-zero beliefs, IJGP converges in finite time. We have also entigiiiogestigated the hy-
pothesis that if a variable-value pair is assessed by IBP or IJGP agjlapositive but very close to
zero belief, then it is very likely to be correct. Although the experimentallt®@shown in this pa-
per do not contradict this hypothesis, we have seen examples in more experiments (Dechter,
Bidyuk, Mateescu, & Rollon, 2010) that invalidate it.

4.4.1 1JGPAND ARC-CONSISTENCY

For any belief network we can define a constraint network that captigessignments with strictly
positive probability. We will show a correspondence between IJGP ajplitne belief network and

an arc-consistency algorithm applied to the constraint network. Sinamasistency algorithms are
well understood, this correspondence not only proves the target claitsiay provide additional

insight into the behavior of IJGP. It justifies the iterative application of bgrepagation, and it

also illuminates its “distance” from being complete.

DEFINITION 13 (Constraint Satisfaction Problem) A Constraint Satisfaction Problem (CSP) is a
triple (X, D, C), whereX = {X;,..., X,,} is a set of variables associated with a set of discrete-
valued domaind = {D;, ..., D,,} and a set of constraints' = {C1, ..., C,, }. Each constraint’;

is a pair (S;, R;) whereR; is arelationR; C Dg, defined on a subset of variabl§s C X and Dy,

is a Cartesian product of the domains of variablgs The relationR; denotes all compatible tuples
of Dg, allowed by the constraint. A projection operatocreates a new relatiorss; (R;) = {x|r €

Dg; and3y,y € Dg,\s, andz Uy € R;}, whereS; C S;. Constraints can be combined with the
join operator X, resulting in a new relation; X R; = {z|rs,(z) € R; andns,(z) € R;}.
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A solution is an assignment of values to all the variabtes- (x4, ...,x,),2; € D;, such that
VC; € C,xg, € R;. The constraint network represents its set of solutiohs(;.

Given a belief networki3, we define a flattening of the Bayesian network into a constraint
network calledfiat(B), where all the zero entries in a probability table are removed from the-corr
sponding relation. The networkat(B) is defined over the same set of variables and has the same
set of domain values ds.

DEFINITION 14 (flat network) Given a Bayesian network = (X, D, G, P), the flat network
flat(B) is a constraint network, where the set of variablesXisand for everyX; € X and its
CPT P(X;|pa(X;)) € B we define a constrain®r, over the family ofX;, F; = {X;} Upa(X;) as
follows: for every assignment= (z;, Tpq(x,)) t0 Fi, (74, Tpa(x,)) € R, iff P(x|zp4(x,)) > 0.

THEOREM6 Given a belief networl8 = (X, D, G, P), whereX = {X;,..., X, }, for any tuple
r = (x1,...,7,): Pg(x) > 0 < x € sol(flat(B)), wheresol( flat(B)) is the set of solutions of
the flat constraint network.

Proof: PB( ) > 0 L P(x|zpex,) > 0 Vi€ {1,...,n}, P(xiapx,) >0 Vie
{L,....n}, (@i Zpacx,)) eRF @xesol(flat( ). O

Constraint propagatioris a class of polynomial time algorithms that are at the center of con-
straint processing techniques. They were investigated extensively path¢hree decades and the
most well known versions ac-, path- andi-consistencyDechter, 1992, 2003).

DEFINITION 15 (arc-consistency)(Mackworth, 1977) Given a binary constraint network
(X, D, C), the network is arc-consistent iff for every binary constrdit € C, every value € D;
has avalue: € D; s.t. (v,u) € R;;.

Note that arc-consistency is defined for binary networks, namely thioredanvolve at most
two variables. When a binary constraint network is not arc-consistesre tre algorithms that
can process it and enforce arc-consistency. The algorithms rembwesviasom the domains of
the variables that violate arc-consistency until an arc-consistent netevgenerated. There are
several versions of improved performance arc-consistency algoritiomever we will consider a
non-optimal distributed version, which we cadlktributed arc-consistency

DEFINITION 16 (distributed arc-consistency algorithm) The  algorithm  distributed  arc-
consistency is a message-passing algorithm over a constraint netlaidh node is a variable,
and maintains a current set of viable valugs. Letne(i) be the set of neighbors of; in the
constraint graph. Every nod&; sends a message to any nakle € ne(i), which consists of the
values inX;'s domain that are consistent with the currebt, relative to the constrainfz;; that

they share. Namely, the message tNasends taX;, denoted b)Djf, is:
D] «— 7j(R;; X D;) 1)
and in addition node computes:

D; — D;N (MkEne(i) Dlzf) (2)
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Clearly the algorithm can be synchronized into iterations, where in eacliotervery node
computes its current domain based on all the messages received simfatsfineighbors (eq. 2),
and sends a new message to each neighbor (eq. 1). Alternativeliipeguaand 2 can be combined.
The messagg; sends taX; is:

Di — TFj(Rji X D I>QkEne(i) D}Lﬂ) (3)

Next we will define a join-graph decomposition for the flat constraint ngtwo that we can
establish a correspondence between the join-graph decomposition pési@anetwork3 and the
join-graph decomposition of its flat netwoyat(55). Note that for constraint networks, the edge
labeling# can be ignored.

DEFINITION 17 (join-graph decomposition of the flat network) Given a join-graph decomposi-
tion D = (JG,x,v,0) of a Bayesian network3, the join-graph decompositio®;,;, =
(JG, X,V pa) Of the flat constraint networkflat(B) has the same underlying graph structure
JG = (V,E) as D, the same variable-labeling of the clusteys and the mapping)s;,; maps
each cluster to relations corresponding to CPTs, nangly 1) 4. (v) iff CPT p; € ¢(v).

The distributed arc-consistency algorithm of Definition 16 can be appliecetiih-graph de-
composition of the flat network. In this case, the nodes that exchangagessare the clusters
(namely the elements of the détof JG). The domain of a cluster df is the set of tuples of the
join of the original relations in the cluster (namely the domain of clustisn<izcy ., () £). The
constraints are binary, and involve clusterdothat are neighbors. For two clusterandv, their
corresponding values, andt, (which are tuples representing full assignments to the variables in
the cluster) belong to the relatidd,, (i.e., (t,,t,) € R,.) if the projections over the separator (or
labelingf) between. andv are identical, namelyg(, ) tu = To((u,v))to-

We define below the algorithmelational distributed arc-consisten¢RDAC), that applies dis-
tributed arc-consistency to any join-graph decomposition of a constraintork. We call it re-
lational to emphasize that the nodes exchanging messages are in fachsetatéw the original
problem variables, rather than simple variables as is the case for asistemty algorithms.

DEeFINITION 18 (relational distributed arc-consistency algorithm: RDAC over ajoin-graph)
Given a join-graph decomposition of a constraint network,Rgtand R; be the relations of two
clusters 2; and ; are the joins of the respective constraints in each cluster), having thesspp
and S, such thatS; N S; # (. The messagR; sends taz; denotedh; ;) is defined by:

h(i,j) TSNS (Ri) (4)

wherene(i) = {j]5; N S; # 0} is the set of relations (clusters) that share a variable with Each
cluster updates its current relation according to:

Ri — Ri X (Mycne(iy Pi) (5)
Algorithm RDAC iterates until there is no change.

The equations 4 and 5 can be combined, just like in equation 3. The mesaa@e sends to
R; becomes:
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hii gy < msins; (Ri M (Miene) M) (6)

To establish the correspondence with IJGP, we define the algorithmRI¥E that applies
RDAC in the same order of computation (schedule of processing) as IJGP.

DEFINITION 19 (IJGP-RDAC algorithm) Given the Bayesian netwoR = (X, D, G, P), let
Dot = (JG, x, Y piat, 0) be any join-graph decomposition of the flat netwgikt(5). The al-
gorithm IJGP-RDAC is applied to the decompositibn,,; of flat(B), and can be described as
IJGP applied taD, with the following modifications:

1. Instead of [, we usex.
2. Instead ofy , we user.

3. At end end, we update the domains of variables by:
D —D;n 71—Xz'((MvEne(u) h(v,u)) X (NRep(u) R)) (7)

whereu is the cluster containind;.

Note that in algorithm IJGP-RDAC, we could first merge all constraints it eagsteruy into
a single constraink,, =Xpc,,,) . From our construction, IJGP-RDAC enforces arc-consistency
over the join-graph decomposition of the flat network. When the join-graph; is a join-tree,
IJGP-RDAC solves the problem namely it finds all the solutions of the canstratwork.

Proposition 4 Given the join-graph decompositiaiy;o; = (JG, X, Yfiat,6), JG = (V, E), of
the flat constraint networlflat(B), corresponding to a given join-graph decompositibnof a
Bayesian networl8 = (X, D, G, P), the algorithm 1IJGP-RDAC applied t®,,; enforces arc-
consistency over the join-grapgby;,;.

Proof: IJGP-RDAC applied to the join-graph decompositiby,, = (JG, X, Vfiat,0), JG =
(V, E), is equivalent to applying RDAC of Definition 18 to a constraint network tizest verticed”
as its variables anfX () Rlu € V'} asits relations. O

Following the properties of convergence of arc-consistency, weluam that:

Proposition 5 Algorithm IJGP-RDAC converges (m - r) iterations, wheren is the number of
edges in the join-graph andis the maximum size of a separatog,,,, ., between two clusters.

Proof: This follows from the fact messages (which are relations) between dusteiGP-RDAC
change monotonically, as tuples are only successively removed frotionslan separators. Since
the size of each relation on a separator is boundeddand there are: edges, no more thad(m-r)
iterations will be needed. O

In the following we will establish an equivalence between IJGP and IJBRERIn terms of
zero probabilities.
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Proposition 6 When 1IJGP and 1IJGP-RDAC are applied in the same order of computatien,
messages computed by IJGP are identical to those computed by IJ@GB-RDerms of zero / non-
zero probabilities. That ish(, ) () # 0in IGP iffz € h(, . in IJGP-RDAC.

Proof: The proofis by induction. The base case is trivially true since mesgagd3GP are initial-
ized to a uniform distribution and messageis IJGP-RDAC are initialized to complete relations.
The induction step. Suppose thlf{thP is the message sent fromto v by 1JGP. We will show

that if h(;/SF (x) # 0, thenz € h/CT P4 wheren()C"~ P4 is the message sent by 1JGP-
RDAC fromu to v. Assume that the claim holds for all messages receivedfbgm its neighbors.
Let f € cluster,(u) in IJGP andR; be the corresponding relation in IJGP-RDAC, arigk an as-
signment of values to variables éim(u, v). We haveh(’5" (z) # 0 3 i 17 f(2) #

& dt, Hf f($7 t) # 0« 3t Vf, f(‘rv t) #0& 3V, 7Tscope(Rf)(x t) € Rf < 3t Telim(u,v) (NRf

IJGP—RDAC IJGP—RDAC
Tscope(Ry) (17, t)) h(u v) =Te h(“uv) - 0

Next we will show that IJGP computing marginal probabilRy X; = x;) = 0 is equivalent to
IJGP-RDAC removing:; from the domain of variabl&;.

Proposition 7 1JGP computes’(X; = z;) = 0 iff IIGP-RDAC decides that; ¢ D;.

Proof: According to Proposition 6 messages computed by IJGP and IJGP-RBAQ@ertical in
terms of zero probabilities. Let € cluster(u) in IJGP andR; be the corresponding relation in
IJGP-RDAC, and be an assignment of values to variablesc{m)\ X;. We will show that when
IJGP computes’(X; = x;) = 0 (upon convergence), then IJIGP-RDAC computest D;. We
haveP(Xi = l‘l) = ZX\Xi Hf f(x,) = 0 & Vi, Hf f(xi,t) = 0 < Vi, E|f, f(l‘i,t) =0&
Vt, HRf»Wscope(Rf)(iﬂiat) ¢ Rf < Vi, (:L‘Z',t) ¢ (MRf Rf(:xi,t)) Sz & DN WXi(MRf Rf(l‘i, t))
& x; € D;. Since arc-consistency is sound, so is the decision of zero probabilitigs.

Next we will show thatP(X; = x;) = 0 computed by IJGP is sound.

THEOREM7 Whenever IJGP find®(X; = z;) = 0, then the probability?(X;) expressed by the
Bayesian network conditioned on the evidence is 0 as well.

Proof: According to Proposition 7, whenever IJGP finldgX; = x;) = 0, the valuex; is removed
from the domainD; by IJGP-RDAC, therefore valug; € D; is a no-good of the networKlat(55),
and from Theorem 6 it follows tha®z(X; = z;) =0. O

In the following we will show that the time it takes IJGP to find BIX; = ;) = 0 is bounded.

Proposition 8 1JGP finds allP(X; = ;) = 0 in finite time, that is, there exists a numbersuch
that noP(X; = z;) = 0 will be found afterk iterations.

Proof: This follows from the fact that the number of iterations it takes for IJGP topuge P(X; =
x;) = 0 is exactly the same number of iterations IJGP-RDAC takes to rempfrem the domain
D; (Proposition 6 and Proposition 7), and the fact the IJGP-RDAC runtimeuisdex (Proposition
5. O

Previous results also imply that IJGP is monotonic with respect to zeros.
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Priorfor X | #iter |Bel(X, = 1) Bel(X, = 2): Bel(X, = 3)
X L P(X)
1 1 45 45 1
2 45 :
4 ; 2 149721 49721 .00545
3 .49986 .49986 .00027
100 1e-129
He i X DX P (Hl %0 X)) 200 le-260
1:1 : 2 1
CPTforH |1:2:1 1 300 5 S 0
1:3:3 1
True
L 0 belief 0 0 !

Figure 16: Example of a finite precision problem.

Proposition 9 Whenever IJGP findB(X; = ;) = 0, it stays 0 during all subsequent iterations.

Proof: Since we know that relations in [JGP-RDAC are monotonically decreasitigeadgorithm
progresses, it follows from the equivalence of IJGP-RDAC and I@@Bposition 6) that IJGP is
monotonic with respect to zeros. O

4.4.2 A HNITE PRECISIONPROBLEM

On finite precision machines there is the danger that an underflow can bgrétéel as a zero
value. We provide here a warning that an implementation of belief propagsttimnd not allow
the creation of zero values by underflow. We show an example in Figunh&fe IBP’s messages
converge in the limit (i.e., in an infinite number of iterations), but they do noilstalin any finite
number of iterations. If all the node€$;, are set to value 1, the belief for any of the variables as a
function of iteration is given in the table in Figure 16. After about 300 iteratitime finite precision

of our computer is not able to represent the valueBei(X; = 3), and this appears to be zero,
yielding the final updated beligf5, .5, 0), when in fact the true updated belief should(Be0, 1).
Notice that(.5,.5,0) cannot be regarded as a legitimate fixed point for IBP. Namely, if we would
initialize IBP with the valueg.5, .5, 0), then the algorithm would maintain them, appearing to have
a fixed point, but initializing IBP with zero values cannot be expected to beecto When we
initialize with zeros we forcibly introduce determinism in the model, and IBP wilkgisvmaintain

it afterwards.

However, this example does not contradict our theory because, mathdipafizd(X; = 3)
never becomes a true zero, and IBP never reaches a quiescentseagxample shows that a close
to zero belief network can be arbitrarily inaccurate. In this case the inrmcrseems to be due to
the initial prior belief which are so different from the posterior ones.

4.4.3 ACCURACY OFIBP ACROSSBELIEF DISTRIBUTION

We present an empirical evaluation of the accuracy of IBP’s prediatiothé range of belief distri-
bution from 0 to 1. These results also extend to IJGP. In the previous sewtoproved that zero
values inferred by IBP are correct, and we wanted to test the hypothasthis property extends to
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Figure 18: 10x10 grids, 100 instances, w*=15.

e small beliefs (namely, that are very close to zero). That is, if IBP inferssterior belief close to
zero, then it is likely to be correct. The results presented in this papertsesipport the hypothe-
sis, however new experiments presented in (Dechter et al., 2010) shbivighnot true in general.
We do not have yet a good characterization of the cases when the agigaghconfirmed.

To test this hypothesis, we computed the absolute error of IBP per intefJald]. For a given
interval [a, b], where0 < a < b < 1, we use measures inspired from information retrieiRecall
Absolute ErrorandPrecision Absolute Errar

Recallis the absolute error averaged over all the exact posterior beliefathiatd the interval
[a, b]. ForPrecision the average is taken over all the approximate posterior belief values tetnpu
by IBP to be in the intervala, b]. Intuitively, Recall([a,b]) indicates how far the belief computed
by IBP is from the exact, when the exact is[inb]; Precision([a,b])indicates how far the exact is
from IBP’s prediction, when the value computed by IBP igirb].

Our experiments show that the two measures are strongly correlated. dVehals the his-
tograms of distribution of belief for each interval, for the exact and fdét, Bhich are also strongly
correlated. The results are given in Figures 17 and 18. The left Y axiesponds to the histograms
(the bars), the right Y axis corresponds to the absolute error (the.lines)

We present results for two classes of problems: coding networks ahadegwork. All problems
have binary variables, so the graphs are symmetric about 0.5 and wenonlytse interval [0, 0.5].
The number of variables, number of iterations and induced width w* ategbfor each graph.
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Coding networks IBP is famously known to have impressive performance on coding neswork
We tested on linear block codes, with 50 nodes per layer and 3 paress.nBadjure 17 shows the
results for three different values of channel noise: 0.2, 0.4 and @6ndise 0.2, all the beliefs
computed by IBP are extreme. The Recall and Precision are very smalg ofder ofl0~!!. So,

in this case, all the beliefs are very smalbkmall) and IBP is able to infer them correctly, resulting
in almost perfect accuracy (IBP is indeed perfect in this case for therroit rate). When the noise
is increased, the Recall and Precision tend to get closer to a bell shdjpatiimg higher error for
values close to 0.5 and smaller error for extreme values. The histogransghalsdhat less belief
values are extreme as the noise is increased, so all these factorstdoccam overall decrease
in accuracy as the channel noise increases. These networks arplexavith a large number of
e-small probabilities and IBP is able to infer them correctly (absolute error if}sma

Grid networks  We present results for grid networks in Figure 18. Contrary to the dasmding
networks, the histograms show higher concentration of beliefs arountiOviever, the accuracy is
still very good for beliefs close to zero. The absolute error peaks tid3@nd maintains a plateau,
as evidence is increased, indicating less accuracy for IBP.

4.5 Bounded Join-Graph Decompositions

Since we want to control the complexity of join-graph algorithms, we will defioa decomposi-
tions having bounded cluster size. If the number of variables in a clusteuisded by, the time
and space complexity of processing one cluster is exponential in

Given a join-graph decompositian = (JG, x, ¥, 0), the accuracy and complexity on the (it-
erative) join-graph propagation algorithm depends on two differenthwigoinwidth of D (defined
asmaz,cv|x(v)|) (this determines the complexity of processing one cluster) and treewidtty of
(which may affect the speed of convergence of iterative join-grappagation) as defined next.

DEFINITION 20 (external and internal widths) Given an edge-labeled join-graph decomposition
D = (JG, x,v,0) ofanetworkB = (X, D, G, P), the internal width oD is maz,cv |x(v)|, while
the external width oD is the treewidth of/ G as a graph.

Since we want thg G of the join-graph to be as close as possible to a tree, and since a tree has
a treewidth 1, we may try to find a join-gragh of bounded cluster size whose external width is
minimized. While we will not attempt to optimally solve this task, we will propose one nafitnio
generating i-bounded join-graph decompositions. Clearli, i§ a tree-decomposition its external
width is 1 and its internal width equals its treewidth. As another example, anreuijmal dual-
graph-based join-graph decomposition has an internal width equal to tkimmoma scope of each
function,m, and external widthw* which is the treewidth of5.

Using this terminology we can now state our target decomposition more cleavign @igraph
G, and a bounding parametewe wish to find a join-graph decompositi@n of G whose internal
width is bounded by and whose external width is minimized. The boumbntrols the complexity
of join-graph processing while the external width provides some measiissagcuracy and speed
of convergence, because it measures how close is the join-graph teteegin

We can consider two classes of algorithms. One clapatritition-based It starts from a given
tree-decomposition and then partitions the clusters until the decompositiolubssbounded by
1. An alternative approach grouping-basedlit starts from a minimal dual-graph-based join-graph
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Algorithm Join-Graph Structuring( i)
1. Apply procedure schematic mini-buckigt(

2. Associate each resulting mini-bucket with a node in the join-graph, thebles of the
nodes are those appearing in the mini-bucket, the original functionsage ifthe mini-
bucket.

3. Keep the edges created by the procedure (called out-edges) ehth&h by the regular
separator.

4. Connect the mini-bucket clusters belonging to the same bucket inim lohan-edges
labeled by the single variable of the bucket.

Figure 19: Algorithm Join-Graph Structurin(

Procedureéschematic Mini-Bucket()

1. Order the variables fronX; to X,, minimizing (heuristically) induced-width, and assot
ciate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. Forj =ntoldo:
Partition the functions ibucket(X ;) into mini-buckets having at mostvariables.
For each mini-bucketnb create a new scope-function (messageyherescope(f) =
{X|X € mb} — {X;} and place scope(f) in the bucket of its highest variable. Maintgin
an edge betweemb and the mini-bucket (created later) pf

Figure 20: Procedure Schematic Mini-Buckgt(

decomposition (where each cluster contains a single CPT) and groupsrelindo larger clusters
as long as the resulting clusters do not exceed the given bound. In btithde@ne should attempt
to reduce the external width of the generated graph-decomposition. aditiqm-based approach
inspired by the mini-bucket idea (Dechter & Rish, 1997) is as follows.

Given a bound, algorithmJoin-Graph Structuring(ijapplies the procedur8chematic Mini-
Bucket(i) described in Figure 20. The procedure only traces the scopes afrtbioins that would
be generated by the full mini-bucket procedure, avoiding actual cotigutalhe procedure ends
with a collection of mini-bucket trees, each rooted in the mini-bucket of thievérsable. Each of
these trees is minimally edge-labeled. Tharedgedabeled with only one variable are introduced,
and they are added only to obtain the running intersection property betwaeches of these trees.

Proposition 10 Algorithm Join-Graph Structuring(i) generates a minimal edge-labeledgoaph
decomposition having bourid

Proof: The construction of the join-graph specifies the vertices and edgesijofribgraph, as well
as the variable and function labels of each vertex. We need to demons#tat tiie connectedness
property holds, and 2) that edge-labels are minimal.

Connectedness property specifies that for any 2 verticasd v, if verticesu andwv contain
variable X, then there must be a pathwy, ..., w,,, v betweenu andv such that every vertex on
this path contains variabl&. There are two cases here. @l andv correspond to 2 mini-buckets
in the same bucket, or 2) andv correspond to mini-buckets in different buckets. In case 1 we
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P(GIF.E)

G: (GFE)
E: (EE}‘ (EF)

%/—/ P(FIC,D)
F: (FCD) * (BF)

o
D: (DB) ™ (CD
C: (CAB) *(CB)

B: (BA) “(AB) (B)

Iy
AR (A
(@ ()

Figure 21: Join-graph decompositions.

have 2 further cases, 1a) variab¥eis being eliminated in this bucket, or 1b) variabteis not
eliminated in this bucket. In case 1a, each mini-bucket must cortaand all mini-buckets of the
bucket are connected as a chain, so the connectedness propestylhadse 1b, vertexesandv
connect to their (respectively) parents, who in turn connect to theémpsretc. until a bucket in
the scheme where variahl¢ is eliminated. All nodes along this chain connect variakleso the
connectedness property holds. Case 2 resolves like case 1b.

To show that edge labels are minimal, we need to prove that there are ne wjttieespect to
edge labels. If there is a cycle with respect to variablethen it must involve at least one in-edge
(edge connecting two mini-buckets in the same bucket). This means vakiahlest be the variable
being eliminated in the bucket of this in-edge. That means vari&liknot contained in any of the
parents of the mini-buckets of this bucket. Therefore, in order for thkedp exist, another in-edge
down the bucket-tree from this bucket must contdin However, this is impossible as this would
imply that variableX is eliminated twice. O

Example 6 Figure 21a shows the trace of procedure schematic mini-bucket(3ieagp the prob-
lem described in Figure 2a. The decomposition in Figure 21b is createdebglgorithm graph
structuring. The only cluster partitioned is that Bfinto two scopes (FCD) and (BF), connected by
an in-edge labeled with F.

Example 7 Figure 22 shows a range of edge-labeled join-graphs. On the left egtreenhave a
graph with smaller clusters, but more cycles. This is the type of graphw&Rs on. On the right
extreme we have a tree decomposition, which has no cycles but has diggters. In between,
there could be a number of join-graphs where maximum cluster sizee#maded for number of
cycles. Intuitively, the graphs on the left present less complexity for j@ipkgalgorithms because
the cluster size is small, but they are also likely to be less accurate. Thagoaythe right side are
computationally more complex, because of larger cluster size, but &g tix be more accurate.
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ABCDE

CDE

GHI

more accuracy

less complexity

Figure 22: Join-graphs.

Absolute error Relative error KL distance Time
IBP 1JGP IBP 1JGP IBP 1JGP IBP 1JGP
#it | #evid 1=2 1=5 1=8 =2 1=5 =8 1=2 1=5 1=8 1=2 =5 1=8

0 [ 0.02988| 0.03055| 0.02623| 0.02940| 0.06388| 0.15694| 0.05677| 0.07153| 0.00213| 0.00391| 0.00208| 0.00277| 0.0017| 0.0036| 0.0058| 0.0295
1 5 |0.06178| 0.04434| 0.04201| 0.04554| 0.15005| 0.12340| 0.12056| 0.11154| 0.00812| 0.00582| 0.00478| 0.00558| 0.0013| 0.0040| 0.0052| 0.0200
10 |0.08762| 0.05777| 0.05409| 0.05910| 0.23777| 0.18071| 0.14278| 0.15686| 0.01547| 0.00915| 0.00768| 0.00899| 0.0013| 0.0040| 0.0036| 0.0121
0 [ 0.00829| 0.00636| 0.00592| 0.00669| 0.01726| 0.01326| 0.01239| 0.01398| 0.00021| 0.00014| 0.00015| 0.00018| 0.0066| 0.0145| 0.0226| 0.1219
5 5 |0.05182| 0.00886| 0.00886| 0.01123| 0.12589| 0.01967| 0.01965| 0.02494| 0.00658| 0.00024| 0.00026| 0.00044| 0.0060| 0.0120| 0.0185| 0.0840
10 | 0.08039| 0.01155| 0.01073| 0.01399| 0.21781| 0.03014| 0.02553| 0.03279| 0.01382| 0.00055| 0.00042| 0.00073| 0.0048| 0.0100| 0.0138| 0.0536
0 [ 0.00828| 0.00584| 0.00514( 0.00495| 0.01725| 0.01216| 0.01069| 0.01030| 0.00021| 0.00012| 0.00010| 0.00010| 0.0130{ 0.0254| 0.0436| 0.2383
10 5 ]0.05182| 0.00774| 0.00732| 0.00708| 0.12590| 0.01727| 0.01628| 0.01575| 0.00658| 0.00018| 0.00017| 0.00016| 0.0121| 0.0223| 0.0355| 0.1639
10 | 0.08040| 0.00892| 0.00808| 0.00855| 0.21782| 0.02101| 0.01907| 0.02005| 0.01382| 0.00028| 0.00024| 0.00029| 0.0109| 0.0191| 0.0271| 0.1062

0 0.04044| 0.04287| 0.03748| 0.08811| 0.09342| 0.08117 0.00403| 0.00435| 0.00369 0.0159( 0.0173| 0.0552
MC| 5 0.05303| 0.05171| 0.04250 0.12375| 0.11775| 0.09596 0.00659| 0.00636| 0.00477 0.0146( 0.0158| 0.0532
10 0.06033| 0.05489| 0.04266 0.14702| 0.13219| 0.10074 0.00841| 0.00729| 0.00503 0.0119| 0.0143| 0.0470

Table 4: Random networks: N=50, K=2, C=45, P=3, 100 instances16:*

5. Experimental Evaluation

As we anticipated in the summary of Section 3, and as can be clearly seeryribe §tructuring
of a bounded join-graph, there is a close relationship between the minirahgsadgorithm MC(i)
and 1JGP(i). In particular, one iteration of IJGP(i) is similar to MC(i). MCdemessages up and
down along the clusters that form a set of trees. IJGP has additiona¢ctons that allow more
interaction between the mini-clusters of the same cluster. Since this is a cyditustiliterating is
facilitated, with its virtues and drawbacks.s

In our evaluation of 1JGP(i), we focus on two different aspects: émpgivity of parametric
IJGP(i) to its i-bound and to the number of iterations, and (b) comparisadG (i) with publicly
available state-of-the-art approximation schemes.

5.1 Effect of i-bound And Number of Iterations

We tested the performance of IJGP(i) on random networks, on M-byitis gon the two bench-
mark CPCS files with 54 and 360 variables, respectively and on codingretwOn each type
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Random networks, N=50, K=2, P=3, evid=5, w*=16 Random networks, N=50, K=2, P=3, evid=5, w*=16
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Figure 23: Random networks: KL distance

Random networks, N=50, K=2, P=3, evid=5, w*=16
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Figure 24: Random networks: Time

of networks, we ran IBP, MC(i) and IJGP(i), while giving IBP and IJ3Phe same number of
iterations.

We use the partitioning method described in Section 4.5 to construct a joih-grajpletermine
the order of message computation, we recursively pick an edge (uh)itsat node u has the fewest
incoming messages missing.

For each network except coding, we compute the exact solution and oeniEaaccuracy
using the absolute and relative error, as before, as well as the KL @tkHbeibler) distance -
Peract(X = a)-log(Pegact(X = a)/Papprozimation (X = a)) averaged over all values, all variables
and all problems. For coding networks we report the Bit Error Rate (BeRputed as described
in Section 3.2. We also report the time taken by each algorithm.

The random networks were generated using parameters (N,K,C,Pk Wherthe number of
variables, K is their domain size, C is the number of conditional probability tgklBF's) and P
is the number of parents in each CPT. Parents in each CPT are pickedmigrahd each CPT
is filled randomly. In grid networks, N is a square number and each CPT id fdledomly. In
each problem class, we also tested different numbers of evidencéleari®\s before, the coding
networks are from the class of linear block codes, wiaeiethe channel noise level. Note that we
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Absolute error Relative error KL distance Time
IBP JGP IBP 1JGP IBP 1JGP IBP 1JGP
#it | #evid 1=2 =5 =8 =2 1=5 =8 =2 1=5 =8 1=2 =5 =8

0 [ 0.03524] 0.05550] 0.04292| 0.03318| 0.08075| 0.13533| 0.10252| 0.07904| 0.00289| 0.00859| 0.00602| 0.00454| 0.0010| 0.0053| 0.0106| 0.0426
1 5 |0.05375| 0.05284| 0.04012| 0.03661| 0.16380| 0.13225| 0.09889| 0.09116| 0.00725| 0.00802| 0.00570| 0.00549| 0.0016| 0.0041| 0.0092| 0.0315
10 | 0.07094| 0.05453| 0.04304| 0.03966| 0.23624| 0.14588| 0.12492| 0.12202| 0.01232| 0.00905| 0.00681| 0.00653| 0.0013| 0.0038| 0.0072| 0.0256
0 [0.00358] 0.00393| 0.00325| 0.00284| 0.00775| 0.00849| 0.00702| 0.00634| 0.00005| 0.00006| 0.00007| 0.00010| 0.0049| 0.0152| 0.0347( 0.1462
5 5 | 0.03224] 0.00379| 0.00319| 0.00296| 0.11299| 0.00844| 0.00710| 0.00669| 0.00483| 0.00006| 0.00007| 0.00010| 0.0053| 0.0131| 0.0309| 0.1127
10 | 0.05503| 0.00364| 0.00316| 0.00314| 0.19403| 0.00841| 0.00756| 0.01313| 0.00994| 0.00006| 0.00009| 0.00019| 0.0036| 0.0127| 0.0271| 0.0913
0 [ 0.00352| 0.00352| 0.00232| 0.00136| 0.00760| 0.00760| 0.00502| 0.00293| 0.00005| 0.00005| 0.00003| 0.00001| 0.0090{ 0.0277| 0.0671| 0.2776
10 5 |0.03222| 0.00357| 0.00248| 0.00149| 0.11295| 0.00796| 0.00549| 0.00330| 0.00483| 0.00005| 0.00003| 0.00002| 0.0096| 0.0246| 0.0558| 0.2149
10 | 0.05503| 0.00347| 0.00239| 0.00141| 0.19401| 0.00804| 0.00556| 0.00328| 0.00994| 0.00005| 0.00003| 0.00001| 0.0090| 0.0223| 0.0495| 0.1716

0 0.05827| 0.04036| 0.01579 0.13204( 0.08833| 0.03440 0.00650[ 0.00387| 0.00105 0.0106( 0.0142] 0.0382
MC| 5 0.05973| 0.03692| 0.01355 0.13831| 0.08213| 0.03001 0.00696| 0.00348| 0.00099 0.0102| 0.0130| 0.0342
10 0.05866| 0.03416| 0.01075 0.14120| 0.07791| 0.02488 0.00694| 0.00326| 0.00075 0.0099| 0.0116| 0.0321

Table 5: 9x9 grid, K=2, 100 instances, w*=12.

Grid network, N=81, K=2, evid=5, w*=12 Grid network, N=81, K=2, evid=5, w*=12
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Figure 25: Grid 9x9: KL distance

are limited to relatively small and sparse problem instances because duatmrameasures are
based on comparing against exact figures.

Random network results with networks of N=50, K=2, C=45 and P=3 are given in Tabled4 an
Figures 23 and 24. For IJGP(i) and MC(i) we report 3 different valoki-bound: 2, 5, 8. For
IBP and IJGP(i) we report results for 3 different numbers of iteratidn®, 10. We report results
for 3 different numbers of evidence: 0, 5, 10. From Table 4 and Ei@3a we see that IJGP(i)
is always better than IBP (except when i=2 and number of iterations i®etames by an order
of magnitude, in terms of absolute error, relative error and KL distarigfe rérely changes after 5
iterations, whereas IJGP(i)’s solution can be improved with more iteratigr® (L6-20). As theory
predicted, the accuracy of IJGP(i) for one iteration is about the samatsfthiC(i). But IJGP(i)
improves as the number of iterations increases, and is eventually better @@nkbyl as much as
an order of magnitude, although it clearly takes more time, especially wherbthend is large.

Figure 23a shows a comparison of all algorithms with different numbersrativas, using the
KL distance. Because the network structure changes with differentrids) we do not necessarily
see monotonic improvement of IJGP with i-bound for a given number of iteisf@as is the case
with MC in this case). Figure 23b shows how IJGP converges with more itesatioa smaller
KL distance than IBP. As expected, the time taken by IJGP (and MC) vaqementially with the
i-bound (see Figure 24).
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Absolute error Relative error KL distance Time
BP | JGP BP | JGP BP | 1JGP BP | JGP
#it_| #evid [i=2 [ =5 | =8 [ =2 [ =5 [ i=8 =2 [ =5 | =8 [i=2 [ =5 | =8
CPCS54
0 [0.01324] 0.03747| 0.03183] 0.02233 0.02716 | 0.08966 | 0.07761] 0.05616 | 0.00041 [ 0.00583] 0.00512] 0.00378] 0.0097 [ 0.0137] 0.0146[ 0.0275
1 5 |0.02684| 0.03739| 0.03124| 0.02337| 0.05736 | 0.09007 | 0.07676| 0.05856 | 0.00199 | 0.00573| 0.00493| 0.00366| 0.0072 | 0.0094| 0.0087| 0.0169
10 | 0.03915| 0.03843| 0.03426| 0.02747| 0.08475| 0.09156 | 0.08246 | 0.06687 | 0.00357 | 0.00567| 0.00506| 0.00390| 0.005 | 0.0047| 0.0052| 0.0115,
0 [0.00031| 0.00016| 0.00123| 0.00110| 0.00064 | 0.00033 | 0.00255| 0.00225| 7.75e-7 [ 0.00000| 0.00002| 0.00001| 0.0371 | 0.0334[ 0.0384[ 0.0912
5 5 | 0.01874| 0.00058| 0.00092| 0.00098| 0.04067 | 0.00124 | 0.00194 | 0.00203| 0.00161 | 0.00000| 0.00001| 0.00001| 0.0337 | 0.0215| 0.0260| 0.0631
10 | 0.03348| 0.00101| 0.00139| 0.00144| 0.07302 | 0.00215 | 0.00298 | 0.00302 | 0.00321 | 0.00001| 0.00003| 0.00002| 0.0290 | 0.0144| 0.0178| 0.0378,
0 [ 0.00031| 0.00009| 0.00014] 0.00015] 0.00064 | 0.00018 | 0.00029| 0.00031| 7.75e-7 [ 0.0000 | 0.00000| 0.00000| 0.0736 | 0.0587[ 0.0667| 0.1720
10 | 5 |0.01874| 0.00037| 0.00034| 0.00038| 0.04067 | 0.00078| 0.00071 | 0.00080 | 0.00161 | 0.00000| 0.00000| 0.00000| 0.0633 | 0.0389| 0.0471| 0.1178
10 | 0.03348| 0.00058| 0.00051| 0.00057| 0.07302| 0.00123 | 0.00109 | 0.00122| 0.00321| 4.0e-6 | 3.0e-6 | 4.0e-6 | 0.0575 | 0.0251| 0.0297| 0.0723,
0 0.02721| 0.02487| 0.01486 0.05648 | 0.05128| 0.03047 0.00218| 0.00171| 0.00076 0.0144( 0.0125| 0.0333
MC 5 0.02702| 0.02522| 0.01760: 0.05687 | 0.05314| 0.03713 0.00201| 0.00186| 0.00098| 0.0103( 0.0126| 0.0346
10 0.02825| 0.02504| 0.01600: 0.06002 | 0.05318| 0.03409 0.00216( 0.00177| 0.00091, 0.0094( 0.0090| 0.0295
CPCS360
1 10 | 0.26421| 0.14222| 0.13907| 0.14334| 7.78167 | 2119.20 | 2132.78 | 2133.84 | 0.17974| 0.09297| 0.09151| 0.09255| 0.7172 | 0.5486| 0.5282| 0.4593
20 | 0.26326| 0.12867| 0.12937| 0.13665| 370.444 | 28720.38| 30704.93| 31689.59| 0.17845 | 0.08212| 0.08269| 0.08568| 0.6794 | 0.5547| 0.5250| 0.4578
10 [ 10 [0.01772[ 0.00694] 0.00121] 0.00258] 1.06933| 6.07399 | 0.01005 | 0.04330 [ 0.017718| 0.00203[ 0.00019| 0.00116| 7.2205 | 4.7781[ 4.5191| 3.7906
20 |0.02413| 0.00466| 0.00115| 0.00138| 62.99310| 26.04308| 0.00886 | 0.01353 | 0.02027 | 0.00118| 0.00015| 0.00036| 7.0830 | 4.8705| 4.6468| 3.8392
20 [ 10 [0.01772| 0.00003| 3.0e-6 | 3.0e-6 | 1.06933 | 0.00044| 8.0e-6 | 7.0e-6 | 0.01771| 5.0e-6 0.0 0.0 [ 14.4379| 9.5783| 9.0770| 7.6017
20 |0.02413(0.00001| 9.0e-6 | 9.0e-6 | 62.9931 | 0.00014 | 0.00013| 0.00004 | 0.02027 | 0.0 0.0 0.0 | 13.6064| 9.4582| 9.0423| 7.4453
MC| 10 0.03389[ 0.01984{ 0.01402 0.65600 [ 0.20023 | 0.11990 0.01299[ 0.00590( 0.00390 2.8077] 2.7112| 2.5188
20 0.02715| 0.01543| 0.00957 0.81401| 0.17345| 0.09113 0.01007| 0.00444| 0.00234 2.8532| 2.7032| 2.5297

Table 6;: CPCS54 50 instances, w*=15; CPCS360 10 instances, w*=20.

CPCS360, evid=10, w*=20 CPCS360, evid=10, w*=20
0.20 6e-6
—=—— GP1it —8— 1JGP 20 iterations
0.18 - o 1JGP 10t (at convergence)
——-¥—— WGP20it 5e-6
0.16 — g — MC
— . — IBP1it
014 ——0—— IBP 10‘ it 4e-6
8 012 ———— IBP20it 8
8§ 010 £ 36
‘: ‘\‘,__-‘A_W—S.\. =
g 0.08 %
:_41 )_(l 2e-6
0.06
0.04 le-6
0.02 - [ B .
0.00 v v — = ¥
o 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
i-bound i-bound
a) Performance vs. i-bound b) Fine granularity for KL

Figure 26: CPCS360: KL distance

Grid network  results with networks of N=81, K=2, 100 instances are very similar to thbse o
random networks. They are reported in Table 5 and in Figure 25, wherean see the impact
of having evidence (0 and 5 evidence variables) on the algorithms. [JG¥heergence gives the
best performance in both cases, while IBP’s performance deteriok@ttesnore evidence and is
surpassed by MC with i-bound 5 or larger.

CPCS network results with CPCS54 and CPCS360 are given in Table 6 and Figure 2érand
even more pronounced than those of random and grid networks. Witemee is added, 1IIGP(i)
is more accurate than MC(i), which is more accurate than IBP, as canh@déigure 26a.

Coding network results are given in Table 7. We tested on large networks of 400 varjatitas
treewidth w*=43, with IJGP and IBP set to run 30 iterations (this is more thaognto ensure
convergence). IBP is known to be very accurate for this class ofilgmaband it is indeed better
than MC. However we notice that IJGP converges to slightly smaller BER BRreven for small
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Bit Error Rate
i-bound
o 2 4 6 8 10 IBP

0.22( 1JGP| 0.00005 0.00005 0.00005 0.00005 0.00005/ 0.00005
MC | 0.00501] 0.00800 0.00586 0.00462 0.00392
0.28( IJGP| 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064
MC |0.02170 0.02968 0.02492 0.02048 0.01840
0.32(1JGP| 0.00238 0.00238 0.00238 0.00238 0.00238 0.00242
MC | 0.04018 0.05004 0.04480 0.03878 0.03558
0.40| 1JGP| 0.01202 0.01188 0.011941 0.01210 0.01192 0.01220
MC | 0.08726 0.09762 0.09272 0.08766 0.08334
0.51(1JGP| 0.07664 0.07498 0.07524 0.07578 0.07554/ 0.07816
MC | 0.15396 0.16048 0.15710 0.15452 0.15180
0.65(1JGP| 0.19070 0.19056 0.19016 0.19030 0.19056/ 0.19142
MC | 0.21890 0.22056 0.21928 0.21904 0.21830
Time
IJGP| 0.36262 0.41695 0.86213 2.62307 9.23610 0.019752
MC |0.25281] 0.21816 0.31094 0.74851 2.33257|

Table 7: Coding networks: N=400, P=4, 500 instances, 30 iteratiors43v*

values of the i-bound. Both the coding network and CPCS360 show ttabgita of IJGP for large
size problems. Notice that here the anytime behavior of IJGP is not clear.

In summary, we see that IJGP is almost always superior to both IBP anij M1d(is sometimes
more accurate by an order of several magnitudes. One should not@®Ehaahnot be improved
with more time, while MC(i) requires a large i-bound for many hard and lar¢gorks to achieve
reasonable accuracy. There is no question that the iterative applichtiiBRis instrumental to its
success. In fact, IJGP(2) in isolation appears to be the most costieffeariant.

5.2 Comparison of IJGP with Other Algorithms

In this section we provide a comparison of IJGP with state-of-the-art pulai@ilable schemes.
The comparison is based on a recent evaluation of algorithms perforntieel dncertainty in Al
2008 conference We will present results on solving the belief updating task (also called tke tas
of computing posterior node marginals - MAR). We first give a brief oswnof the schemes that
we experimented with.

1. EDBP - Edge Deletion for Belief Propagation

EDBP (Choi & Darwiche, 2006a), (Choi & Darwiche, 2006b) is anragpmation algorithm
for Belief Updating. It solves exactly a simplified version of the originaligbean, obtained
by deleting some of the edges of the problem graph. Edges to be deletsfieanted based on
two criteria : quality of approximation and complexity of computation (tree-widtluction).
Information loss from lost dependencies is compensated for by intraglacixiliary network
parameters. This method corresponds to Iterative Belief Propagati®) (#Ben enough
edges are deleted to yield a polytree, and corresponds to generalizgidBRise.

2. TLSBP - A truncated Loop series Belief propagation algorithm

TLSBP is based on the loop series expansion formula of (Chertkov &@halky2006) which
specifies a series of terms that need to be added to the solution output bytHER thee exact

5. Complete results are available at http://graphmod.ics.uci.edu/uai®84fva/Report
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solution can be recovered. This series is basically a sum over all so-galteralized loops in
the graph. Unfortunately, because the number of these generalizedcaoe prohibitively
large, the series is of little value. The idea in TLSBP is to truncate the seriescoymbosing
all generalized loops into simple and smaller loops, thus limiting the number of lodyes to
summed. In our evaluation, we used an implementation of TLSBP available feoauthors
(Gomez, Mooji, & Kappen, 2007). The implementation can handle binary mksxamly.

3. EPIS - Evidence Pre-propagation Importance Sampling

EPIS (Yuan & Druzdzel, 2003) is an importance sampling algorithm for Belpefating. Itis
well known that sampling algorithms perform poorly when presented with eigliévidence.
However, when samples are weighted by an importance function, goooxapgtion can be
obtained. This algorithm computes an approximate importance function usipyg lbedief
propagation and-cutoff heuristic. We used an implementation of EPIS available from the
authors. The implementation works on Bayesian networks only.

4. 1JGP - Iterative Join-Graph Propagation

In the evaluation, IJGP(i) was first run with2, until convergence, then witl+3, until con-
vergence, etc. untik treewidth (wheri-bound=treewidth, the join-graph becomes a join-tree
and IJGP becomes exact). As preprocessing, the algorithm perfoiidobSed variable do-
main pruning by converting O-probabilities in the problem to a SAT problempanfibrming
singleton-consistency enforcement. Because the problem size may redlstantially, in
some cases, this preprocessing step may have a significant impact on tlvetiplexity of
IJGP, amortized over the increasiinbound. However, for a givelbound, this step improves
the accuracy of IJGP only marginally.

5. SampleSearch

SampleSearch (Gogate & Dechter, 2007) is a specialized importance sasghiege for
graphical models that contain zero probabilities in their CPTs. On suclhigeapnodels,
importance sampling suffers from the rejection problem in that it generdsege@number
of samples which have zero weight. SampleSearch circumvents the rejeatidem by
sampling from the backtrack-free search space in which every assigrisaenple) is guar-
anteed to have non-zero weight. The backtrack-free search spamesisucted on the fly by
interleaving sampling with backtracking style search. Namely, when a samplepssed
to be rejected because its weight is zero, the algorithm continues insteadysiigmsatic
backtracking search, until a non zero weight sample is found. For tleation version,
the importance distribution of SampleSearch was constructed from the afitd@P with
i-bound of 3. For more information on how the importance distribution is cottsiiufrom
the output of IJGP, see (Gogate, 2009).

The evaluation was conducted on the following benchmarks (for more detailthe UAIOS
Evaluation web page):

1. WCSPs - Weighted CSPs, 97 instances, Markov networks (18 instaece used).

2. bn20 networks - Two-layer Noisy-OR Bayesian networks, 18 insfgruinary variables, up
to 55 variables, tree-width 24-27.
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WCSPsbn20| Grids| Linkage| PromedasuaiO6-mpe uaiO6-pe Relationa
IJGP V VIV V[V v v v
EDBP | v | V[V [ VvV | V v v v
TLSBP N Y V v
EPIS VoV v v v
SampleSearch / VoV Vv Vv Vv V v

Table 8: Scope of our experimental study.
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Figure 27: Score as a function of KL distance.

3. Grids - from 12x12 to 50x50, 320 instances, treewidth 12-50.
4. Linkage networks - 22 instances, tree-width 20-35, Markov netswirknstances were used).

5. Promedas - real-world medical diagnosis, 238 instances, tree-wiglih arkov networks
(46 instances were used).

6. uai06-mpe - from UAI-06, 57 instances, Bayesian networks.
7. uai06-pe - from UAI-06, 78 instances, Bayesian networks.

8. Relational Bayesian networks - constructed from the Primula tool, 2&dnicess, binary vari-
ables, large networks with large tree-width, but with high levels of determi(B@énmstances
were used).

Table 8 shows the scope of our experimental study,/ Mdicates that the solver was able to
handle the benchmark type and therefore evaluated on it while a lack/afidicates otherwise.

We measure the performance of the algorithms in terms of a KL-distance $ased Formally,
the score of a solver on a problem instance is equabtsv9%!¢ where avgkld is the average KL
distance between the exact marginal (which was computed using the UC&Adheer (Chavira &
Darwiche, 2008)) and the approximate marginal output by the solversdiveer does not output
a solution, we consider its KLD to bso. A score lies betweefi and 1, with 1 indicating that
the solver outputs exact solution whiléndicating that the solver either does not output a solution
or has infinite average KL distance. Figure 27 shows how the scorevdmha a function of KL
distance.
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Approximate Mar Problem Set WCSPs
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Figure 28: Results on WCSPs networks. EPIS and TLSBP are not plattetli®e they cannot
handle WCSPs.

In Figures 28-35 we report the results of experiments with each of th@gmosets. Each
solver has a timeout of 20 minutes on each problem instance; when solvinglam, each solver
periodically outputs the best solution found so far. Using this, we can canfau each solver, at
any point in time, the total sum of its scores over all problem instances intiayar set, called
SumsScore(t). On the horizontal axis, we have the time and on the verticatlaiSumScore(t).
The higher the curve of a solver is, the better (the higher the score).

In summary, we see that IJGP and EDBP are the best algorithms, with |3@fhghhe best
performance in more cases (EDBP is best on two benchmark classess/@&BN20 while [JGP
is better on five benchmark classes Linkage, Promedas, UAI-PE, UME-Ehd Relational). EPIS
and SampleSearch, which are importance sampling schemes, are ofter iofefGP and EDBP.
In theory, the accuracy of these importance sampling schemes should imptiogiene. However,
the rate of improvement is often unknown in practice. On the hard benckrtteakwe evaluated
on, we found that this rate is quite small and therefore the improvement ichamiiscerned from
the Figures. We discuss the results in detail below.

Note that only the bn20, grids, promedas and Relational Bayesian berichinage all variables
bi-valued. As mentioned earlier, TLSBP works only on binary networksiftg functions on two
variables) and therefore it was not evaluated on WCSPs, Linkage mastwai06-mpe and uai06-pe
benchmarks.

The WCSP benchmark set has 97 instances. However, exact margmalsly available for
18 instances; we use only these 18 instances in our calculations; this isditatéhe maximum
SumScore that an algorithm can reach is 18. The results are shown ie RGuEDBP reaches
a SumScore of 17 after almost 3 minutes of cpu time while IJGP reaches a Sentbd@ after
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Approximate Mar Problem Set bn2o

4 6 8 10 12 14 16
Time in minutes
SampleSearch =—f— EDBP -3 EPIS -4~
1JGP_==3¢-- TLSBP 6

20

Figure 29: Results on BN20 networks. All solvers except IJGP quiakhwerge to the maximum
possible score of 18 and are therefore indistinguishable in the Figure.
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Figure 30: Results on Grid networks.

20

about 3 minutes. The SumScores of both IJGP and EDBP remain unchartged to 20 minute
interval. After looking at the raw results, we found that IJGP’s scorg ze&0 on 5 instances out
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Approximate Mar Problem Set Linkage
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Figure 31: Results on Linkage networks. EPIS and TLSBP are not plbteduse they cannot
handle WCSPs.

of 18. This was because the singleton consistency component implementbd @AT solver did

not finish in 20 minutes on these instances. Although the singleton consistiepogenerally helps
to reduce the practical time complexity of IJGP on most instances, it adverifetys it on these
WCSP instances.

On the BN20 instances (see Figure 29), we see that all solvers ed@ptréach the maximum
possible SumScore of 18 (or very close to it) after about 6 minutes of cpu tisR’s score on
the other hand decreases as time increases. It seems that on thesesnsigineri-bounds were
counter productive, decreasing the accuracy of IJGP (this doegolate any theorem since the
decreased accuracy with higher i-bound is likely, but not guarante® do not have a clear
explanation for these results and they seem to be an outlier. Note howeaveéh¢hdecrease is
minuscule since the score goes from 17.85to 17.7.

Our third domain is that of grid Bayesian networks. A grid Bayesian netigseks x s grid,
where there are two directed edges from a node to its neighbors rigdbamd The upper-left node
is a source, and the bottom-right node is a sink. The sink node is the egidede. The deter-
ministic ratiop is a parameter specifying the fraction of nodes that are deterministic, thdtdsg
values are determined given the values of their parents. The evaluatiolnrbark set consists of 30
instances having = 50%,75% and90% with exact marginals available on 27 instances only. The
results on grid networks are shown in Figure 30. We see that EPIS is shedrorming scheme
with IJGP being the second best followed by SampleSearch, EDBP ar8FteSpectively. Unlike
the BN20 and WCSP instances, we clearly see that IJGP’s SumScorasiesisteadily with time.

The linkage instances are generated by converting linkage analysis wataNtarkov network
using the Superlink tool (Fishelson & Geiger, 2003). Exact marginals\agable only on 5 out
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Approximate Mar Problem Set Promedas
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Figure 32: Results on Promedas networks. EPIS is not plotted becaasmdtdhandle Promedas
benchmarks, which are Markov networks.
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Figure 33: Results on UAI-MPE networks. TLSBP is not plotted becausanihot handle UAI-

MPE benchmarks.
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Approximate Mar Problem Set uai06-pe
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Figure 34: Results on UAI-PE networks. TLSBP is not plotted becausitat handle UAI-PE

benchmarks.
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Figure 35: Results on relational networks

of the submitted 22 instances. The results are shown in Figure 31. Aftat abe minute of cpu-
time, IJGP’s SumScore is close to 5 which remains steady thereafter while EBIBPeaches a
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SumScore of 2 in 20 minutes. SampleSearch is the second best perforimemgesehile EDBP is
third best.

The Promedas instances are Noisy-OR binary Bayesian network$ (FB&#). These instances
are characterized by extreme marginals. Namely, for a given variablmdiginals are of the form
(1 — €, ¢) wheree is a very small positive constant. Exact marginals are available only ont46 ou
of the submitted 238 instances. On these structured problems (see Figune 32e that EDBP is
the best performing scheme reaching a SumScore very close to 46 afte7abinutes of cpu time
while TLSBP and IJGP are able to reach only a SumScore of about 40 in 2@e®in

The UAI-PE and UAI-MPE instances were also used in the UAI 2006 atialu of exact solvers
(see (Bilmes & Dechter, 2006) for details). Exact marginals are availad® &JAI-MPE instances
and 58 UAI-PE instances. The results for UAI-MPE and UAI-PE ingtarare shown in Figures
33 and 34 respectively. 1JGP is the best performing scheme on bothrbaric sets reaching a
SumsScore very close to the maximum possible value in both cases after aboutit2s of cpu
time. EDBP and SampleSearch are second best in both cases.

Finally, our last benchmark category is that of relational networks. dimssances are generated
by grounding the relational Bayesian networks using the primula tool ({€h&arwiche, & Jaeger,
2006). Exact marginals are available only on 30 out of the submitted 25haestaFrom Figure
35, we observe that IJGP’'s SumScore steadily increases with time amgseagalue very close to
the maximum possible score of 30 after about 16 minutes of cpu time. Samplke$etre second
best performing scheme. EDBP, TLSBP and EPIS perform quite pootiiyese instances reaching
the SumScore of 10, 13 and 13 respectively after 20 minutes of cpu time.

6. Related Work

There are numerous lines of research devoted to the study of beliedgatipn algorithms, or
message-passing schemes in general. Throughout the paper we mtiemeteand compared with
other related work, especially in the experimental evaluation section. \Wédngie a short summary
of the developments in belief propagation and present some related schatwvesre not mentioned
before. For additional information see also (Koller, 2010)

About a decade ago, Iterative Belief Propagation (IBP) (Pearl, )1@&®&ived a lot of interest
from the information theory and coding community. It was realized that two @foist error-
correcting decoding algorithms were actually performing belief propagatioetworks with cy-
cles. The LDPC code (low-density parity-check) (Gallager, 1963)pagh introduced long time
ago, is now considered one of the most powerful and promising schemtesftdn performs im-
pressively close to Shannon’s limit. Turbo codes (Berrou, Glavieuxh&majshima, 1993) are
also very efficient in practice and can be understood as an instaneéiedfgyropagation (McEliece
etal., 1998).

A big step towards understanding the behavior and performance of Bifnade through con-
cepts from statistical physics. It was shown in (Yedidia et al., 2001) BRti$ strongly related
to the Bethe-Peierls approximation of Variational (Gibbs) free energycitorfayraphs. The Bethe
approximation is a particular case of the more general Kikuchi approximat®neralized Be-
lief Propagation (Yedidia et al., 2005) is an application of the Kikuchi agpration that works
with clusters of variables, on structures called region graphs. Anolferitam that employs the
region-based approach is Cluster Variation Method (CVM) (Pelizzol@520rhese algorithms are
mostly concerned with selecting a good region-graph structure to adootingé over-counting (and
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over-over-counting, etc.) of evidence. We view generalized beligfggation more broadly as any
belief propagation over nodes which are clusters of functions. Within teig WGP and GBP as
defined in (Yedidia et al., 2001) as well as CVM are special realizatiorB#.G

Belief Propagation on Partially Ordered Sets (PBP) (McEliece & Yildirim, 2092)so a gen-
eralized form of Belief Propagation that minimizes the Bethe-Kikuchi Varialitnee energy, and
that works as a message-passing algorithm on data structures calletlypartiared sets, which
has junction graphs and factor graphs as examples. There is one-tsorspondence between
fixed points of PBP and stationary points of the free energy. PBP incliglspetial cases many
other variants of belief propagation. As we noted before, IJGP is bigdica same as PBP.

Expectation Propagation (EP) (Minka, 2001) is a an iterative approximaltgmmithm for com-
puting posterior belief in Bayesian networks. It combines assumed-ddiltdting (ADF), an
extension of the Kalman filter (used to approximate belief states using expastatich as mean
and variance), with IBP, and iterates until these expectations are consisteughout the network.
TreeEP (Minka & Qi, 2004) deals with cyclic problem by reducing the proldgeaph to a tree sub-
graph and approximating the remaining edges. The relationship betweardEFB#® is discussed
in (Welling, Minka, & Teh, 2005).

Survey Propagation (SP) (Braunstein et al., 2005) solves hard da8<f8AT) problems using a
message-passing algorithm on a factor graph consisting of variabldsarsg ©iodes. SP is inspired
by an algorithm called Warning Propagation (WP) and by BP. WP can deteifwitree-problem is
SAT, and ifitis then it can provide a solution. BP can compute the numbetisfigag assignments
for a tree-problem, as well as the fraction of the assignments where bleaisarue. These two
algorithms are used as heuristics to define the SP algorithm, that is shown torbeeffiment
than either of them on arbitrary networks. SP is still a heuristic algorithm witguarantee of
convergence. SP was inspired by the new concept of “cavity methot#itistecal physics, and can
be interpreted as BP where variables can not only take the values tratsey lfut also the extra
“don’t care” value. For a more detailed treatment se@zhtd & Montanari, 2009).

7. Conclusion

In this paper we investigated a family of approximation algorithms for Bayesstnanks, that
could also be extended to general graphical models. We started withdmunfdrence algorithms
and proposed Mini-Clustering (MC) scheme as a generalization of Mink@&ado arbitrary tree
decompositions. Its power lies in being an anytime algorithm governed by adjsstable i-bound
parameter. MC can start with small i-bound and keep increasing it as Idhis @agven more time,
and its accuracy usually improves with more time. If enough time is given to it, itdsageed to
become exact. One of its virtues is that it can also produce upper and bownads, a route not
explored in this paper.

Inspired by the success of iterative belief propagation (IBP), we drt&MC into an iterative
message-passing algorithm called Iterative Join-Graph Propagat{®R)(IIDGP operates on gen-
eral join-graphs that can contain cycles, but it is sill governed by auitd parameter. Unlike IBP,
IJGP is guaranteed to become exact if given enough time.

We also make connections with well understood consistency enforcingthatge for constraint
satisfaction, giving strong support for iterating messages, and givaighininto the performance
of IJGP (IBP). We show that: (1) if a value of a variable is assesse@aradizero-belief in any
iteration of IJGP, then it remains a zero-belief in all subsequent iteratf@hthat IJGP converges
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in a finite number of iterations relative to its set of zero-beliefs; and, mostriapity (3) that the
set of zero-beliefs decided by any of the iterative belief propagationadstis sound. Namely any
zero-belief determined by IJGP corresponds to a true zero conditioolaalpility relative to the
given probability distribution expressed by the Bayesian network.

Our experimental evaluation of IJGP, IBP and MC is provided, and |J6&ges as one of the
most powerful approximate algorithms for belief updating in Bayesian n&swvor
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