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Abstract

Global information is used to simplify and speed the construction of a geometric

problem and ensure that it has unique solution. The combinatorial nature of this

problem would typically lead to use of a backtracking procedure in its solution.

1 Introduction

We develop an approach that can be used to more efficiently construct the following geometric
problem and others like it. The solution to the problem is a solution hexagon, which is a
hexagon having side dimension n and that can be viewed as being the result of gluing together
6n2 unit-edged equilateral triangles. The nodes of the solution hexagon are defined to be
those locations on or within the hexagon at which the vertices of the unit-edged triangles
are located. Each of the nodes is colored with one of a set of k colors. Each triangle vertex
has the color of the node at which it is located. Accordingly, all triangle vertices that are
associated with the same node will have the same color.

The solution hexagon is partitioned into pieces by cutting along some of the triangle edges.
Therefore, each piece consists of one or more triangles that are glued together along their
edges. The resulting set of puzzle pieces are presented as a hexagon problem by assembling
them into a hexagon that differs from the original solution hexagon. In particular, at least
one (and possibly even all) of the nodes in the hexagon problem will have associated triangle
vertices which do not all have the same color.

It is required that there is only one hexagon solution into which the pieces of the hexagon
problem can be reassembled. Also, it is desirable that the problem be relatively hard to solve
using a straightforward approach, even though it may contain relatively few pieces.

Figure 1 is an example of a hexagon problem and its solution, for n = 1 and k = 4. For
ease of reference, we use a different symbol for each of the colors: ⊙, ◦, ∗, •.



Figure 1: Example problem/solution
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2 Related Problems

In the traditional jigsaw problem, puzzle pieces have four sides, each of which has a male,
female, or neutral edge (usually edges on the puzzle border). The male edges are distinct in
shape, and each has a mating female counterpart. When correctly put together, the top of
the ensemble of puzzle pieces typically displays a picture.

If there were a simple way to index the male and female shapes, the puzzle solution
could be rapidly obtained by evaluating the index of each puzzle male edge and then, for
each female edge, evaluating its index and attaching it to its mate. This approach was used
decades ago [1, 2], but it is difficult to quickly determine with assurance that two scanned
pieces are really mates. Not having the ability to index shapes, a common initial approach
is to segregate the pieces by their pictorial content or color and also by their having border
edges, which constitute a small fraction of the set of puzzle pieces. The global approach of
border segregation has recently been used to aid in automatic solution of apictorial jigsaw
puzzles [3, 4].

In pure packing puzzles, each puzzle piece typically has only straight edges and its top
does not have part of a big picture. Often, the piece shapes are from a small set (sometimes
singleton) of allowable shapes. The problem is to place the pieces so that the ensemble fits
in a desired outline.

Edge-mating puzzles add a constraint to the pure packing puzzle. There is a small picture
or design that straddles each edge common to adjoining pieces. There are only a very few
(perhaps only one) distinct such designs. In contrast to jigsaw puzzles, the problem is not
of finding the one possible mate for each edge but, rather, of finding the correct mate from
the many feasible matching candidates so that all mating requirements can simultaneously
be satisfied while the ensemble fits in a desired outline. The term “edge-matching” is often
used to describe edge-mating, but sometimes alludes to the problem in which the mate of a
partial design is an exact replica of that partial design.

Here, we concern ourselves with vertex-matching. In general, all of these problems are
NP-complete [5].
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3 Global Information

To illustrate its construction, we consider a somewhat larger hexagon problem. Figure 2
shows a hexagon problem (with n = 2 and k = 4) having ten pieces, where piece 4 is a
large trapezoid (consisting of five triangles), piece 1 is a small trapezoid (consisting of three
triangles), and each of the other pieces is a rhombus (consisting of two triangles).

We are interested in creating hexagon problems that have unique solutions and that are
not easily solved. Given such a problem, it is possible to find its solution by using local
matching information. This straightforward approach may be efficient when there are very
few vertices having particular colors to enable rapid vertex matches or pairs of colors that
occur on ends of very few edges to enable rapid edge matches. Otherwise, we expect that
relying on solely the application of local matching information will require a process that
involves backtracking, which typically takes exponential-time.

Creating such a problem with guaranteed unique solution is not straightforward. How-
ever, the use of global information can greatly simplify the task of creating the problem, and
guarantee solution uniqueness during the creation of the problem.

Figure 2: Hexagon problem with n = 2
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We can add a requirement that some or all unit-distant symbols differ. In constructing
this problem, there are few positions of the combinatorial set of possibilities consistent with
that requirement. We can reduce the combinatorial set of possibilities by applying the unit-
distant requirement conjunctively to different symbols.

In general, a hexagon contains 6n nodes on its perimeter, 6 of which correspond to two
triangular vertices each, and 6n−6 of which correspond to three triangular vertices each. The
remaining nodes each correspond to six triangular vertices. There is a total of 18n2 triangular
vertices, and so the hexagon has 3n2

− 3n + 1 internal nodes, and thus 3n2 + 3n + 1 nodes
altogether.
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4 Constraining Patterns

We begin our construction of a uniquely solvable problem by analyzing the distribution of
symbols.

For our problem, n = 2, and so there are 72 vertices among 19 nodes, consisting of 6
corner nodes (each has 2 vertices), 6 midside nodes (each has 3 vertices), and 7 internal
nodes (each has 6 vertices).

Our illustrative problem has the following symbol frequency: 22 ⊙, 22 ◦, 19 •, and 9 ∗.
Because a symbol X that appears in a node cannot be in a second node located a unit

distance away, and because there are only seven internal nodes – six nodes in a hexagonal
pattern surrounding a central node – any symbol X can be in at most 3 internal nodes.

If symbol X is in exactly three internal nodes (each corresponding to six vertices, i.e.,
instances of X) then three of the corner nodes and all of the midside nodes are eliminated
from containing X, and there can be at most a total of 24 instances of X. This limit of 24
can be achieved in one way, plus its rotations, as shown in Figure 3.

If symbol X is in exactly two internal nodes then, by an exhaustive evaluation of all
possibilities, there are at most a total of 20 instances of X.

If symbol X is in exactly one internal node then either that internal node is the center
node or it is not. If it is a non-center node then it can be seen that at most 18 instances of X
can occur. However, if it is the center node then there is a unique way to have 24 instances
of X, as shown in Figure 4.

Figure 3: X in 3 internal nodes
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Figure 4: X in center node
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Thus, a symbol cannot occur in more than 24 vertices, nor can it occur in exactly 23
vertices. There are only two placement patterns (plus their rotations) enabling a symbol
to occur in exactly 24 vertices and there is only one placement pattern (plus its rotations)
enabling a symbol to occur in exactly 22 vertices. Using these three placement patterns, it
is easy to enumerate all feasible placement patterns that enable a symbol to occur in exactly
21, 20, or 19 vertices.

We now consider allowable patterns that combine the use of different symbols with the
given frequencies.

4



Figure 5: Placing 22 ⊙’s and 22 ◦’s
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There are only 3 ways (plus rotations) of placing the 22 ⊙’s and 22 ◦’s, as shown in
Figure 5. Of these, case 2 is a mirror of case 1. If there are 19 •’s they must be: center
node (6) + 3 midside nodes (each with 3) + 2 corner nodes (each with 2). The 9 ∗’s use
the other 3 midside nodes. As seen in Figure 6, case 3 is impossible as the 2 corners used by
•’s restrict 4 midsides.

Figure 6: Placing 19 •’s
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5 Subpattern Frequencies

We can reduce the number of feasible cases by making use of the disparity of frequencies for
some subpatterns. The existence of any such disparity is guaranteed to diminish the feasible
set cardinality by at least half. As shown in Figure 7, we label with (A) those triangles
whose vertex symbols are ∗ ◦ ⊙ in clockwise order, and label with (B) triangles having
those symbols in counter-clockwise order. We note that case 1 has two type-A triangles and
three type-B triangles, while case 2 has three type-A triangles and two type-B triangles. In
construction of the puzzle, we are now assured that the puzzle pieces will yield only one
solution hexagon. We shall choose case 1 for our puzzle.
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Figure 7: Cases labeled with type-A/B triangles
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6 Ensuring a Unique Arrangement

During the puzzle construction, we wish to ensure that there is only one arrangement of the
pieces (modulo piece equality) that yields the solution. We do this by iteratively arranging
a unique placement within the solution hexagon of a puzzle piece.

In constructing the puzzle, we note that a rhombus (1) containing type-A and type-B
triangles with ◦’s at the narrow ends can be placed in only one location. That leaves only
one location for placing another rhombus (2) containing a type-A triangle with a ◦ at a
narrow end, as shown in Figure 8.

Then a rhombus (3) containing a type-B triangle with a ◦ at a narrow end can be located
in only one place, which then leaves a rhombus (4) containing type-B triangle with a ∗ at a
narrow end with only one possible placement. Figure 9 shows the result.

Figure 8: Solution hexagon
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Figure 9: Solution hexagon
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It is easy to see that a rhombus (5) containing ∗ at both narrow ends can now be placed
only at the lower right of the solution hexagon. There is only one location for the base of a
large trapezoid (6) with •’s 3 units apart, and the placement of such a trapezoid is uniquely
determined by the order of symbols in its base. We choose to place the large trapezoid on
the periphery. The results obtained thus far are shown in Figure 10.
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Figure 10: Solution hexagon
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Figure 11: Solution hexagon
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At this point, there are nine remaining triangles, which can be used to form 3 rhombi,
each consisting of two triangles, plus one trapezoid, consisting of three triangles. By choosing
the trapezoid to have a ⊙ in its upper right corner, the rightmost space must be used by a
rhombus (7), the leftmost space must be used by a rhombus (8). See Figure 11.

The remaining space must be for a rhombus (9 and the trapezoid (10). The placement
of these last two pieces will be uniquely determined by the symbols at the narrow ends of
the rhombus. The complete solution hexagon is shown in Figure 12. The problem can be
presented by rearranging the pieces within the hexagon, as shown for example in Figure 13.

Figure 12: Final Solution
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Figure 13: Hexagon problem
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