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Abstract

Several techniques for estimating the reliability of estimated error rates and for estimating the signi�cance of

observed di�erences in error rates are explored in this paper. Textbook formulas which assume a large test

set, i.e., a normal distribution, are commonly used to approximate the con�dence limits of error rates or as

an approximate signi�cance test for comparing error rates. Expressions for determining more exact limits

and signi�cance levels for small samples are given here, and criteria are also given for determining when

these more exact methods should be used. The assumed normal distribution gives a poor approximation to

the con�dence interval in most cases, but is usually useful for signi�cance tests when the proper mean and

variance expressions are used. A commonly used �2� signi�cance test uses an improper expression for �,

which is too low and leads to a high likelihood of Type I errors. Common machine learning methods for

estimating signi�cance from observations on a single sample may be unreliable.



1 Introduction

There is a substantial body of literature on estimating classi�er error rates, and a clear consensus

that some type of resampling technique is necessary to obtain unbiased estimates. In the companion

paper [32] we dealt with methods for estimating a classi�er's accuracy and the bias and variance

of the estimates obtained from various methods. In this paper, we deal with con�dence intervals,

i.e., the range of likely values of a classi�er's true error rate given an estimated value, and with

signi�cance tests for the di�erence in the estimated error rates of alternative classi�ers for the

same population. The thesis of both papers is that \. . . the traditional machinery of statistical

processes is wholly unsuited to the needs of practical research . . . the elaborate mechanism built on

the theory of in�nitely large samples is not accurate enough for simple laboratory data. Only by

systematically tackling small sample problems on their merits does it seem possible to apply accurate

tests to practical data." | R. A. Fisher [14] (1925)

Among the signi�cant �ndings reported in this paper are: (1) that the traditional formulas for error

rate con�dence intervals commonly found in introductory statistics textbooks assume an asymp-

totically large sample and are not accurate enough for machine learning research (an alternative

formula is given), (2) that textbook formulas for signi�cance tests are generally accurate enough,

provided that the proper expression for the variance is used, (3) that there are many pitfalls in

estimating the variance, leading to common mistakes in signi�cance testing, and (4) that the com-

mon practice in machine learning research of estimating signi�cance from observations on a single

sample is unreliable.

Throughout this paper, the terms error and error rate (meaning misclassi�cation rate) will be used

interchangeably. The term bias, rather than error, is used to refer to a systematic di�erence between

an error rate estimate and the true error (non-zero average di�erence). Also, the function E(�)

denotes the expected (mean) value of a random variable, �(�) the cumulative standard (zero mean,

unity variance) normal distribution, Pf�g a probability, and ff�g a probability density function.

1.1 Hypothesis Testing

In this section we provide a brief tutorial on the statistical inference issues relating to con�dence

intervals and signi�cance tests, and on their common foundation, statistical hypothesis testing. We

also give a short outline of the organization of the paper.

Given a classi�er and an estimate of its error, the true error might be substantially higher or lower

than the estimate. In view of this, the point estimate (single value) is of little utility unless its

reliability is also somehow indicated. One way to do this is to give the standard deviation of the

estimate's sampling distribution. Another way is to specify a con�dence interval, a region which

contains the relatively plausible values of the true error. When the sampling distribution is skewed

(asymmetric), as is usually the case for error rates, a correctly de�ned con�dence interval is more

informative than the standard deviation.

Given two unbiased estimators, if one has a lower variance it has a greater power to discriminate

between di�erent classi�ers and is the preferred estimator for that reason. If two unbiased estimators

have equal power, the least expensive method is preferred. An unbiased estimator may sometimes

be less powerful than a biased estimator if the bias is the same for all of the classi�ers being

compared and the biased estimator has lower variance than the unbiased estimator.

The reliability and power of the various estimators have received relatively little attention in the
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machine learning literature, as compared to the literature on estimating error rates. In the �rst

paper [32], we were concerned with the applications of statistical inference for estimation: using

sample characteristics to infer population characteristics, such as inferring a classi�er and estimating

its true error. The topics dealt with in this paper concern a di�erent aspect of statistical inference,

hypothesis testing: using sample information to answer questions about the population and the

inferred classi�er.

One such question is whether the classi�er correctly predicts the classes. The various methods for

estimating error can be thought of as alternative methods for assessing the truth of the hypothesis

that the classi�er's predictions are correct. If we knew or assumed that the population data were

free of any measurement, observation, or labeling errors, then the occurrence of a single prediction

error would serve to refute the hypothesis. If we know or can reasonably assume that the population

data are imperfect, as is typically the case, then a single prediction error is not su�cient to refute

the hypothesis (it could be that the prediction is right and the data are wrong). In the latter

circumstance, we must accept or reject the hypothesis based on an inference regarding the strength

of the contradictory evidence relative to the reliability of our data.

Another hypothesis that we frequently wish to test is that the true errors of two alternative classi�ers

are di�erent, i.e., that one classi�er predicts more accurately than the other. This question is

more conveniently posed as a test of the null hypothesis that the true errors are equal. Again,

typically we must accept or reject the hypothesis based on an inference regarding the strength of

the contradictory evidence relative to the reliability of our data.

Thus, the ability to answer the following two questions is particularly important: (1) how reliable

is our estimated error, e.g., within what interval is the true error to be found with a 95% (or 99%)

likelihood? and (2) given another classi�er having a di�erent estimated error, how con�dent can

we be that its true error is di�erent from that of the �rst classi�er?

We deal with the �rst of these questions, con�dence intervals, in Section 2, dealing separately with

traditional, textbook methods in Section 2.1 and with more exact methods derived from Bayesian

analysis in Section 2.2 (a brief tutorial on the Bayesian methods is provided in Appendix A).

We deal with the second question, signi�cance tests, in Section 3; presenting �rst, in Section 3.1,

a common mistake which confuses the con�dence level of a signi�cance test with the con�dence

interval for an estimate. Sections 3.2 and 3.3 present more correct formulations: a traditional,

textbook method for independent error estimates and a paired comparison method appropriate

when estimates are not independent. Section 3.4 discusses the particular di�culties encountered in

single-sample signi�cance tests and illustrates the tendency to over-estimate signi�cance inherent

in common approaches to applying such tests. Section 3.5 discusses an argument proposed as a

justi�cation for single-sample tests, which we call the \dataset equals population" fallacy.

Section 4 briey describes a related topic, over�tting avoidance

1

, also known as pruning or the

subset selection problem. Section 5 discusses ongoing e�orts in machine learning to formulate

more robust approaches to choosing classi�ers, i.e., methods which are more trustworthy than

traditional signi�cance tests. A summary of our signi�cant �ndings and recommended methods is

given in Section 6.

We present empirical data regarding signi�cance tests in Appendix B. Section B.1 presents an

extended example, comparing nearest neighbor and three nearest neighbor classi�ers, which also

1

The apparent error can be made arbitrarily low by considering very complex, ad hoc classi�ers. This is called

over�tting [48], described by Cart [10] as inferring classi�ers that are larger than the information in the data warrant,

and by ID3 [39] as increasing the classi�er's complexity to accomodate a single noise-generated special case.
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illustrates several pitfalls in designing and analyzing such experiments (notably, use of biased error

estimates and improper expressions for the variance). Section B.2 summarizes experiments using

Cart-style decision trees which test the generality of results in Section B.1. Section B.3 discusses

experiments using iterated paired cross-validation as a possible single-sample signi�cance test.

2 Con�dence Intervals

As we have said, a classi�er's true error might be somewhat higher or lower than the estimated rate,

�. We quantify this by specifying a con�dence interval (�

a

; �

b

) such that this interval is expected to

contain the true error (�) with high likelihood (in at least 95% of our experiments, for instance).

Typically, we also balance the risk on either side of the interval, i.e.,

Pf�

a

< � < �

b

j �g � 0:95 Pf� � �

a

j �g � 0:025 Pf� � �

b

j �g � 0:025

These equations can be solved only if we specify a probability relationship between the true error

and our observations. All of the con�dence intervals given here assume that the number of errors

is binomially distributed, i.e., that the probability of m misclassi�ed items in a random sample of

size N from a distribution with a true error of � is given by:

Pfm j �;Ng =

N !

m! (N�m)!

�

m

(1��)

N�m

(1)

such that the expected number of errors is E(m) = N� and the variance is Var(m) = N�(1��).

This assumption is commonly made (e.g., [10, 27, 53, 54]), even though cross-validation methods

are somewhat di�erent from the simple random sampling scheme from which the binomial is de-

rived. Cart [10, pp. 78,307-308] notes that this binomial assumption works reasonably well, but

is heuristic when applied to cross-validation.

Kohavi [27] gives a proof that k-fold cross-validation is unbiased and binomial if the classi�er

induction method is stable under cross-validation (i.e., the k induced classi�ers all make the same

predictions). Commonly used induction methods such as decision trees should be reasonably stable,

except in pathological cases, and stability should increase with the number of folds, k. Empirical

data (Kohavi [27] and the companion paper [32], for instance) show that k-fold cross-validation

estimates have a small bias that decreases rapidly with increasing k and increasing sample size N ,

and that their variance is nearly independent of k (a corollary prediction under stability [27]).

We performed a simple experiment as a further check that the binomial assumption is reasonable

for 10-fold cross-validation of small samples: 1,000 samples of size N=100 leading to discriminant

classi�ers with virtually identical true error (�=0:0203� 0:0001) were accumulated by repeatedly

simulating samples from a population having two equally likely classes, each normally distributed

on a single attribute, with the same standard deviation (�) and with 2:053� distance between the

class means, until 1,000 classi�ers in the target range were obtained (many simulated samples led

to classi�ers with true errors outside the narrow target, which were not included). The number

of errors in 10-fold cross-validation of these selected samples was compared to the frequencies

expected for a binomial with N =100 and � =0:0203. The di�erences were small (�

2

=9:05, with

7 degrees of freedom, which is not statistically signi�cant). Thus, for independent classi�ers which

have identical true errors, our assumption that Equation 1 describes the distribution of their 10-fold

cross-validation error rates seems valid. We note that this says nothing about the error distribution

when the classi�ers are not independent or when their true errors di�er.
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2.1 Limits from a Normal Distribution Approximation

Throughout this section, � is a classi�er's true error, M the test set size, m the number of errors

on the test set, and � =m=M the estimated error. For k-fold cross-validation, take m to be the

total number of errors on the k test sets and M to be the sample size, N .

Approximate con�dence intervals for error rates are often derived by assuming that the binomial

distribution of the integer number of errors (m) is approximately a normal distribution, with mean

M� and variance M�(1��). Or, equivalently, that � is normally distributed with mean � and

variance �(1��)=M . See e.g., [4, pp. 340-341] or [27].

This normal approximation to the discrete binomial is valid (Hodges & Lehman [22, p. 187])

whenever M� (1��)� 10, but can be quite misleading for small samples or low error rates. Since

the usual goal is to achieve the smallest possible error, it is questionable whether these textbook

limits are an adequate approximation to a good (less than 5% error) classi�er's (1��) con�dence

limits unless the test set is very large. In much machine learning research, test set sizes of 200 or

less are the rule, and this is certainly borderline regarding validity of the normal approximation

when the error is low. Breiman, et al. [10, p. 308], for instance, report that noticeably more than

5% of the data fall outside �2

p

�(1��)=M limits.

Somewhat di�erent guidelines for the validity of the normal approximation are given by di�erent

authors: Anderson & Sclove [4, p. 322] give this criterion as M� � 5 and M(1� �) � 5, while

Mendenhall, et al. [33, p. 326] give the rule of thumb that the approximation is valid provided that

0 < � � 2

p

�(1��)=M < 1 and also that, in estimating the probability of an error of � or less, we

use the area under the normal curve below �+0:5=M (i.e., a continuity correction). Note that the

various guidelines are all functions of two variables (M and �), not solely of the test set size M . The

controlling factor is the number of errors observed, m, and we note that the binomial is symmetric

and bell-shaped when m �M=2, but increasingly skewed as m! 0 or m! M .

The rule given by Hodges & Lehman is the more conservative, but requires about twice the min-

imum sample size than is implied by Anderson's rule (2:5� Mendenhall's minimum). The more

conservative guidelines are more precise in the crucial tail of the distribution. This is illustrated in

Figure 1: in Figures 1a and 1b, we see that the normal approximation is good in an overall sense

under either rule, but better in the critical tail of the distribution under the more conservative rule.

The x-axes ranges shown in Figure 1 include the absurdity of a negative number of errors. Use

of the normal approximation implies that such a thing is possible; in fact, under the more liberal

guidelines, that it has an appreciable (about 1 in 40) likelihood.

It is clearly inappropriate to use these approximate limits without �rst applying the tests for

determining whether they are applicable, yet this is commonly the case. Three likely causes for

this are that many texts and handbooks omit or do not stress criteria for applicability, that methods

for estimating con�dence limits when the normal approximation is not valid are beyond the scope

of introductory texts, so the user is given no alternative limits, and that the �2� 95% con�dence

limits rule is ingrained and its underlying assumptions are rarely recalled or questioned.
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Figure 1: Liberal vs. Conservative Guidelines
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2.1.1 Textbook Con�dence Limits

A commonly used expression for the approximate (1��) con�dence interval is derived by Anderson

and Sclove [4, pp. 340-341]:

Pfa < mg � (�=2) � �

 

a+ 0:5�M�

p

M�(1��)

!

= �(�z)

Pfm < bg � (1��=2)� �

 

b� 0:5�M�

p

M�(1��)

!

= �(z)

where (a; b) is the approximate (1��) interval for m. Note that the interval is centered at M�,

that the empirical variance M�(1��) has been substituted for the theoretical binomial variance

M�(1��), and also that a `continuity correction' of 0.5 has been made. Letting z = �

�1

(1��=2)

(e.g., z = 1:96 for 95% con�dence) and solving for a=M and b=M gives

� � � �

�

0:5

M

+ z s

�

where s =

q

� (1� �)=M (2)

Equation 2 is commonly given in introductory texts [4, 10, 22, 42], and henceforth we refer to these

limits as the textbook limits. The 0:5=M `continuity correction' term is often omitted.

2.1.2 An Alternative Normal Approximation

Kohavi [27] describes an alternative derivation of (1��) con�dence limits from the normal approx-

imation to the binomial (assuming a reasonably large test set

2

):

j��� j

p

�(1��)=M

< �

�1

(1��=2)

2

Kohavi provides no speci�c guidelines for applicability. From this assumption and the assumption of approximate

normality, guidelines similar to those discussed at the beginning of this section likely also apply here.
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Figure 2: Textbook and Alternative Limits Compared
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Note that, in contrast to the textbook limits, this formulation does not substitute the empirical

variance �(1��)=M for the theoretical �(1��)=M , nor does it apply a continuity correction. Letting

z = �

�1

(1��=2) and solving for � gives

� �

�

�+

k

1

2M

�

� zs

0

s

0

=

s

�(1��)

M

+ k

2

k

1

=

(1�2�)z

2

1+z

2

=M

(3)

k

2

=

�

z

2(M+z

2

)

�

2

"

1� 4� (1��)

 

2 +

z

2

M

!#

The numeric di�erences between these alternative limits and the textbook limits of Equation 2 are

on the order of 1=M , and lie in the sign and magnitude (k

1

) of the 1=2M term, which emerges

naturally here in solving the quadratic equation, and in the k

2

adjustment in the s

0

term.

The qualitative di�erences between the limits are profound. First, even though the normal approx-

imation implicitly allows absurd negative error rates, these alternative con�dence intervals never

include the absurd values, even for very small samples where the guidelines for the textbook approx-

imation are not met

3

. Secondly, both the midpoint and the width of the intervals are signi�cantly

di�erent, even for moderately large samples when the more conservative guidelines are met. The

alternative intervals are shifted upwards relative to the textbook intervals

4

, as shown in Figure 2.

2.2 More Exact Con�dence Limits

The binomial distribution (Equation 1) expresses the probability, Pfm j M; �g, of m errors given

the test set size, M , and true error, � . Con�dence intervals for � require that one be able to answer

such questions as how likely is it that � is less than some particular value x, givenM andm? That is,

what is Pf� < x jM;mg, the posterior distribution of �? This posterior distribution depends on the

likelihood of �nding various values of � , regardless ofm=M . This a priori, unconditional probability

3

Mendenhall's criteria for applicability of the textbook approximation share this feature. Note that this does not

mean that the alternative intervals are necessarily accurate. The inclusion of absurd values by the textbook formulas

in a particular case is a strong clue that the textbook intervals are not accurate in that case, but the absence of such

absurdities does not guarantee correctness.

4

Above 50% error they are shifted downwards (the midlines cross at 50%), but this has no practical signi�cance.
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Figure 3: The Je�reys Beta Distribution
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function ff�g is known as the prior distribution or simply the prior of � . The relationship between

the prior and posterior distributions is given by Bayes' Theorem

5

:

Pf� < x jM;mg =

Z

x

0

Pfm jM; �gff�gd�

�

Z

1

0

Pfm jM; �gff�gd�

or by the derivative of this expression evaluated at x=� , the posterior density function:

ff� jM;mg = Pfm jM; �gff�g

�

Z

1

0

Pfm jM; �gff�gd�

Note that we use Pf�g and ff�g generically to denote a probability or a probability density, respec-

tively, without any intent to suggest that di�erent arguments have the same distribution.

For a binomial proportion � , Je�reys' prior, ff�g = Be(�; 0:5; 0:5), has been shown to be the

best choice for estimating con�dence intervals in the absence of problem-speci�c knowledge (see

Appendix A for a discussion of this prior, the uniform prior, and other priors). Je�reys' prior gives

a Je�reys' Beta distribution, illustrated in Figure 3, as the posterior of � :

Pf� < x jM;mg = I(x;m+0:5;M�m+0:5)�

Z

x

0

Be(�;m+0:5; N�m+0:5) d� (4)

where Be(�; u; v) =

�(u)�(v)

�(u+ v)

�

u�1

(1� �)

v�1

is the Beta probability distribution and I(�; u; v) the Incomplete Beta function, with parameters u

and v. �(x) is the Gamma function, a generalization of the factorial. See Appendix A and the cited

sources for information on these functions. The (1��) interval can be found by solving (inverting)

the Incomplete Beta function as shown in Figure 3b. For this particular Beta distribution, the

posterior mean (�) and variance (�

2

) of the true error are �= (m+0:5)=(M+1) and �

2

= �(1�

�)=(M+2), and the mode (most likely value) is

mode =

8

>

<

>

:

0 if m = 0

(m� 0:5)=(M � 1) if 0 < m < M

1 if m = M

5

See Appendix A. Iversen [21] provides a fairly non-formal introduction to Bayesian analysis. More formal

treatments can be found in Box & Tiao [7] or Hartigan [19].
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Note the apparent paradox that, while the expected value of the estimated error �=m=M is equal

to the true error, E(m=M j �) = � , the expected value of the true error given m=M is slightly

di�erent from m=M , E(� jm;M)=(m+0:5)=(M+1). See the appendix for more discussion of this

point. The variance �

2

is larger than s

2

= �(1��)=M for low error rates, m=M <0:1, and for very

high error rates, m=M>0:9, and is less than s

2

for 0:15 < m=M < 0:85 (provided that M�4).

Precise numeric inversion of the Incomplete Beta function can be very di�cult in practice; see the

appendix, where we also give a very accurate approximation to the inverse function. A reasonably

close and computationally simpler approximation to the Beta distribution's 95% con�dence limits is

given by Center(M;m)�Half-width(M;m), where we have found the following empirical formulas

for Center(M;m) and Half-width(M;m):

Center(M;m) = A

M

+ (1� 2A

M

) � (5)

Half-width(M;m) =

(

Center(M;m) if m � 1

2B

M

q

�(1��) otherwise

where A

M

=

1:96

p

0:5

M + 3

and B

M

=

1:96

2

p

M + 2:5

We have compared these formulas to our precise numeric solutions for the inverse function at

M = 10; 20 . . .200 and m = 0; 1 . . .M=2. The largest absolute di�erence found was 0.017 at

M = 10 and m = 3, and the absolute di�erence appeared to be < 0:27=M .

For m � 2 this expression is similar in form to the textbook and alternative limits, but has a

di�erent center and width:

textbook: � �

�

1

2M

+ 1:96 s

�

(see Equation 2) (6)

alternative:

�

� +

k

1

2M

�

� 1:96 s

0

(see Equation 3)

approx. Beta:

�

� +

g(M;m)

2M

�

� 1:96 s

00

where g(M;m) = 2(M�2m)A

M

and s

00

=

q

�(1��)=(M+2:5)

The di�erences between the three expressions are on the order of 1=M , and lie in the sign and

magnitude of the 1=2M terms and in the magnitude of the half-width terms. The alternative and

approximate Beta limits are compared in Figure 4 (and see Figure 2).

The preceding discussions illustrate the important point that the con�dence interval for an error

rate varies according to the prior ff�g, that is, according to one's knowledge, beliefs, prejudices, or

assumptions as to the likely values of � prior to having inferred a classi�er or estimated its error.

We note that the textbook and alternative limits implicitly assume a uniform prior. The con�dence

interval also depends very strongly on the test set size M , such that the interval becomes narrower

as M increases and, importantly, such that the particular assumed prior becomes less important

as M increases. For small samples, however, the inuence of the assumed prior is very strong.

Given the wide diversity possible even among the textbook methods, reported con�dence intervals

for error rates are of little use unless the method used to calculate them is explicitly stated (and,

preferably, the underlying assumptions, as well).

For small samples, we recommend the approximate limits from the Beta distribution using Je�reys'

prior given in Equation 5.
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Figure 4: Alternative and Approximate Beta Limits Compared
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3 Signi�cance Tests

Having established the range of plausible values for the true error given an estimate, we now shift

focus to the second question posed in the introduction: given alternative classi�ers for a population

and estimates of their error, how con�dent can we be in asserting that one classi�er predicts more

accurately than the other?

The null hypothesis for comparing error rates is the hypothesis that the classi�ers' true errors

are equal. The level of signi�cance � is the probability, given that the null hypothesis is true,

of obtaining the observed di�erence or a more extreme value (in a two-sided test, a di�erence

having greater magnitude). The level of signi�cance is commonly expressed as its converse, (1��),

the con�dence level. If the con�dence level is su�ciently high (typically 95%), we reject the null

hypothesis and assert that the true errors are di�erent. If the con�dence level is lower than our

critical value, we accept the null hypothesis and assert that the true errors are equal. There is a

risk associated with either assertion:

� In Type I error we reject the null hypothesis when it is true (wrongly assert that the true

errors are di�erent). � is a measure of the Type I risk.

� In Type II error we accept the null hypothesis when it is false (wrongly assert that the true

errors are equal). The Type II risk is neither � nor (1��), because the assessment of �

explicitly assumes the proposition being asserted; see [22, pp. 370-376] for a discussion of this

point. The Type II risk is usually not assessed.

The null hypothesis asserts only that the true errors are equal. In order to assess �, it is necessary

to specify either the value or probability distribution of this common true error (�) and, typically,

neither of these is known. Any value obtained for � is thus conditional on whatever assumptions are

made concerning � and its distribution. All subsequent use of the symbol � should be understood

to represent a conditional estimate of signi�cance.

9



3.1 A Common Mistake

A common mistake in testing signi�cance is to check whether one estimated error is outside the

con�dence interval of the other. This kind of comparison is invited by tabulated results such as

\Method A: 58:1� 0:7%, Method B: 57:3� 0:7%". The di�erence of 0.8% between methods A and

B may be signi�cant at the 95% level, or it may not be, depending on the experimental conditions

(e.g., if the experiments used independent data, the di�erence is not signi�cant even at a lower

90% level).

Comparing the higher estimate to the upper bound for the lower (by analogy to Cart's 1-SE

rule [10, pp. 78-80], which was developed for a more specialized use) is logically inappropriate for

the following reasons:

1. It is a one-sided test | a one-sided test is appropriate only if it is known that one classi�er

has a lower true error than the other. If that were known, of course, there would be no point

in making the comparison unless one were willing to accept a slightly higher error in exchange

for, say, reduced complexity (which, to be fair to Cart, is part of the context in which their

1-SE rule was proposed).

2. If the textbook con�dence interval is used, this interval is too narrow for low error rates,

which leads to a high likelihood of Type I error. The problem is particularly severe when the

samples are small and the continuity correction is not used.

3. Even if the improved con�dence interval given in the previous section is used, this is still

not the proper formulation for this signi�cance test, because the quantity being tested is the

di�erence between the estimates. The variance of the di�erence of two random variables is

the sum of their variances less twice their covariance. A very unique relationship between the

two estimates is implied by the 1-SE rule

6

. While this relationship might be assumed to hold

in 1-SE's narrow context (it seems a reasonable heuristic there), that is certainly not a valid

assumption for all contexts.

In addition to the inappropriate analogy to the 1-SE rule, this mistake might also arise from

confusing the 95% con�dence interval or con�dence limits with the 95% con�dence level for the

di�erence in two estimates.

The 1-SE rule was developed in the narrow context of selecting which members of a set of trees

(derived by di�erently pruning a larger tree) have error rates comparable to the candidate which

appears to be best, and should be evaluated for their complexity. The errors of this series of

related trees are not independent, and it is di�cult to know the distribution of the di�erences in

estimated rates. Including a pruned tree in the set to be studied when its estimated error is within

1 standard deviation of the lowest rate found is a heuristic which should be judged empirically in

the narrow domain for which it was intended

7

. The di�culty arises when something like the 1-SE

6

Cart applies the 1-SE rule in a series of n correlated estimates. Here, we restrict attention to n = 2. Under the

null hypothesis, the two estimates, �

1

and �

2

, are drawn from the same distribution, assumed normal with mean �

and variance �

2

= �(1� �)=M . The di�erence between the two estimates is then also normal, with mean zero and

variance s

2

= 2�

2

(1 � �), where � is their correlation coe�cient. The normalized absolute di�erence, j �

1

� �

2

j =s,

is less than Z

�=2

= �

�1

(1� �=2) with con�dence level 1� �. For a k-SE (absolute di�erence < k�) rule, we have

Z

�=2

= k

p

2(1 � �), i.e., the con�dence level for this rule is a function of the correlation �. Or, assuming that the

Cart authors intended a uniformly high con�dence level, their choice of a constant k implies a very restricted range

of relatively high values for �, e.g., k = 1 implies � � 0:9 for 95% con�dence or � � 0:8 for 90% con�dence.

7

See Section 5 and the cited sources regarding the search for more robust classi�er selection methods.
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Table 5: Exact vs. Approximate Signi�cance Levels

Normal
Approx.

Level

< 90%
[90,95)
[95,99)
[99,100]

Nominal 99% Test for N=10

Exact Level from the Binomial
<90%  [90,95)   [95,99)   [99,100]

    66        2            0            0     
      0        0            0            0
      4        1          12            0
      1        1          10          24

Approx.
Level

< 90%
[90,95)
[95,99)
[99,100]

Nominal 95% Test for N=10

<90%  [90,95)   [95,99)   [99,100]

    66        2            0            0     
      0        0            0            0
      4        1          12            0
      1        1          10          24

Approx.
Level

< 90%
[90,95)
[95,99)
[99,100]

Conspicuous Errors for N=10

<90%  [90,95)   [95,99)   [99,100]

    66        2            0            0     
      0        0            0            0
      4        1          12            0
      1        1          10          24
*I

*II

Sample
Size 

N

10
20
30
50
100

Decision Accuracy
Nominal Level

90%   95%   99%

Conspicuous Errors
Type        Type
*I             *II

  94%   94%   90%
  97      93       96
  97      94       96
  98      96       98
  98      97       99

     4.1%           0    
     1.8               0
     1.2               0
     0.8               0
     0.5               0

rule (speci�cally the +1:645-SE and �2-SE rules), where SE =

p

�(1��)=M , is used as a one- or

two-sided signi�cance test.

3.2 A Textbook Signi�cance Test

An approximate (1��) con�dence level test for the di�erence between independent error estimates

(�

1

=m

1

=M

1

and �

2

=m

2

=M

2

) is given [4, pp 412-415] by: �� 2�(�Z), where Z =j�

1

��

2

j =s.

Here, s

2

=�

0

(1��

0

)(1=M

1

+1=M

2

), where �

0

=(m

1

+m

2

)=(M

1

+M

2

) is a weighted average error, M

i

is the test set size for estimate i, and m

i

is the number of errors found in test set i. When the null

hypothesis is true, this textbook normal approximation is fairly good even when the underlying

binomial distribution of the two estimates is far from normal. The approximation is poorer when

the sample sizes are unequal and one of them is small.

The likelihood of various values of (�

1

��

2

) under the null hypothesis can be calculated directly from

the binomial probabilities for (M

1

; �

0

) and (M

2

; �

0

). This provides a means for estimating (1��) for

small test sets, even when the normal approximation is not good. We have compared con�dence

levels calculated in this way to those calculated from the textbook formula, as summarized in

Table 5 for equal sample sizes. Partitioning the 121 m

1

and m

2

combinations for N = 10 as

in a test at the 99% level, the approximate level leads to a di�erent decision regarding the null

hypothesis than would be made using the exact binomial calculation in 12 cases

8

, i.e., the decisions

agree in 90% of the cases. At the 90% and 95% levels for N = 10, only 7 decisions are reversed, a

94% decision accuracy. Similar results were found for other sample sizes with increasing decision

accuracy as the sample size increased. Table 5 also highlights conspicuous errors, i.e., those where

the approximate test asserts signi�cance at the 95% level or above when the binomial calculation

is less than 90%, or where the approximate test asserts non-signi�cance at the 90% level when the

binomial level is 95% or greater. The percentage of conspicuous errors is low and decreases rapidly

with increasing sample size (it appears to be O(N

�1

)). The di�erences between the approximate

and exact levels are predominantly in the direction of increased Type I risk.

Thus, the Type I risk is slightly higher than the nominal level when the textbook approximation

is used. If we keep in mind that even the `exact' calculations are conditional on our assumptions

8

Summing the cases in the lower left and upper right submatrices of the 99% partitioning in Table 5.
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that m

i

is binomially distributed with true error �

0

, then the textbook formula seems accurate

enough

9

for most purposes, provided that the signi�cance levels are reported as being only approx-

imate (strictly, we should report simply that we accept or reject the null hypothesis, based on an

approximate test at the 0.05 level).

3.3 Paired Comparison Signi�cance Tests

The methods in Section 3.2 are conditional on several assumptions in addition to normality and the

null hypothesis: that the classi�ers and their error estimates are independent (i.e., inferred from

independent data) and that the estimates are binomially distributed. As pointed out in Section 3.1,

these methods are not appropriate when the classi�ers and estimates are not independent. In this

section we present a method which is appropriate whether or not the independence and binomial

assumptions hold. In this and following sections, ter denotes a classi�er's true error (the rate

which would be observed were the classi�er tested on the entire population), and subscripts 1 and

2 denote any two competing classi�ers, e.g, a nearest neighbor (1-nn) classi�er and a 3 nearest

neighbors (3-nn) classi�er.

Under the null hypothesis, the statistic t=x=s(x) is distributed approximately as Student's t, where

x = ter

2

�ter

1

and s(x) is the estimated standard deviation of x. The method for estimating

s(x) and the number of degrees of freedom (dof) of the appropriate Student's t distribution depend

on the experimental conditions (see [42, pp. 348-377], for instance). In the simplest experiments,

ter

2

and ter

1

are each based on classi�ers inferred from � equal-size random samples from the

population, and there are ��1 degrees of freedom. When two di�erent, independent sets of samples

are used to infer the two types of classi�ers, then s(x) =

q

(s

2

1

+s

2

2

)=�, where s

1

and s

2

are the

unbiased

10

standard deviations of the ter's. When both classi�er types are inferred from the same

set of samples, a paired t-test is more appropriate, s(x)=s(x)=

p

�, where s

2

(x)=

P

i

(x

i

�x)

2

=(��1),

and x

i

=ter

2;i

� ter

1;i

is the observed di�erence for the i

th

of � samples.

An extended example of a paired comparison is given in Appendix B.1, testing whether 3-nn clas-

si�ers are signi�cantly more accurate than 1-nn classi�ers. Similar tests comparing unpruned and

pre-pruned (stopped) decision trees using nominal attributes data are discussed in Appendix B.2.

In a paired test, the paired classi�ers and their error rates are not independent, since they are

inferred from the same data. Assuming that the correlation is positive, the paired variance is

lower than would be calculated using the unpaired formula

11

. It is crucially important that the

variance be calculated properly; for example, in the 3-nn vs. 1-nn example given in Appendix B.1,

mis-applying the unpaired formula to a paired comparison resulted in making the wrong decision

regarding signi�cance in 7 of 35 cases.

It is also very important that the error rate estimator be suitable for the comparisons being made.

The 632b bootstrap estimator [13], for example, may be highly biased for nearest neighbors, and

the bias is di�erent for 3-nn than for 1-nn (see [24] [27] and [50] regarding the breakdown of 632b

for nearest neighbors). In our comparison of 3-nn and 1-nn, use of this estimator would have led

to the wrong decision regarding signi�cance in half of the cases, and would have led to the wrong

conclusion regarding the sign of the di�erence in 60% of the cases.

9

That is, the textbook formula is robust (approximately correct, even under departures from normality).

10

The unbiased standard deviation of � observations of a random variable x is given by s

x

=

p

P

i

(x

i

��x)

2

=(��1).

11

The paired variance is (s

2

1

+ s

2

2

� 2s

1

s

2

�)=�, where � is the correlation coe�cient. In the unlikely event that �

were negative, the paired variance would actually be higher than would be calculated from the unpaired formula.
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Figure 6: Single-Sample Estimates of Variance

a.  The Heuristic Rule for SE
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b.  Paired Cross-Validation Estimate
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3.4 Single-Sample Tests for Signi�cance

In the analysis in Section 3.3, we assumed that we have the luxury of drawing many independent

random samples from the population under study. In most real situations, there is but one small

sample. In such a case, we can certainly infer two di�erent classi�ers and estimate the error of each

(though the classi�ers and their error estimates are hardly independent), but we cannot obtain from

this single sample any direct measurement of the variance of the estimated error rates in general,

nor of the variance of their di�erence, in particular. Can we, then, test whether the di�erence is or

is not signi�cant?

One approach would be to assume a value for the sampling variance. Weiss & Indurkhya [53, 54],

for instance, adopt this approach in a �2-SE test for pruned vs. unpruned decision trees. When two

error rates (�

1

and �

2

, with variances s

2

1

and s

2

2

) are not independent, the variance of the di�erence

between the rates is given by s

2

(x) = s

2

1

+s

2

2

�2s

1

s

2

�, where � is the correlation coe�cient of the

two rates, and the lack of independence means that � 6=0. Under the null hypothesis, �

1

� �

2

� �,

s

2

1

� s

2

2

� s

2

, and s

2

(x)� 2s

2

(1��). Since it is not at all clear how to obtain valid estimates of

s

2

and � from a single sample [10, p. 307], any heuristic for s

2

(x) must tacitly assume particular

values for s

2

and �. The �2-SE test assumes that s

2

=�(1��)=N and �=+0:5.

Is SE a reasonable estimate of the sampling standard deviation, s(x)? In our nearest neighbor

comparisons, we used 20 independent samples for each paired comparison. Let �

1;i

and �

3;i

represent

the 10-cv estimates for 1-nn and 3-nn, respectively, for the i

th

sample,

�

i

= (�

1;i

+�

3;i

)=2 x

i

= (�

3;i

��

1;i

) SE

2

i

= �

i

(1��

i

)=N

and s

2

(x) = the variance of x

i

. Figure 6a is a scatter plot of SE

i

versus s(x) for each of 40 di�erent

tests (varying the sample size and population inherent error). SE

i

is highly variable and, as shown

by the rms SE = (meanfSE

2

i

g)

1=2

values, is a biased estimator of s(x). The rms SE values are well

�t by a simple power function of s(x), which is shown as the smooth curve in Figure 6a. Because

SE

i

is an optimistically biased estimate of s(x), the �2SE

i

test entails a signi�cantly greater Type

I risk than the intended 0.05 level.

Examination of the data indicates that the assumption ��+0:5 is reasonable, but optimistically

biased in this case, (i.e., s

2

1

+s

2

3

�s

1

s

3

� 0:76s

2

(x)). An unbiased estimate of s

2

(x) (for these data)
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is given by s

2

1

+s

2

3

�1:25s

1

s

3

, or � � 0:375. The magnitude of the bias, s(x)� rms SE, increases as

SE increases. The individual SE

i

estimates are also highly variable, and their variance about rms

SE is approximately proportional to N

�1

.

While it is possible to infer a heuristic rule for estimating s(x) given SE

i

from the power function

in Figure 6a, we caution that the data underlying Figure 6a are all very similar and very simple |

while the shape of the curve probably captures a general, qualitative relationship, the coe�cients of

a particular �tted function might not adequately describe the relationship for situations involving

more complex data.

It is sometimes suggested that one might simply raise the threshold for rejecting the null hypothesis

when using this SE

i

heuristic formula (e.g., j t j> 2:5, rather than j t j> 2:0, for 95% con�dence).

If this is done, however, we feel that it would be misleading to report a 95% signi�cance level or

that j t j> 2:5. Rather, the result should simply be stated as apparently (heuristically) signi�cant

without quantifying it. How is the value 2.5 to be justi�ed? Why not 4.0? Reporting a level or

t-value under these circumstances would lend the analysis an undeserved aura of rigor.

A less biased estimate of s(x) can be obtained from a single sample if a paired cross-validation

is done. Though the data in Figure 6a are paired comparisons, the cross-validations for each

sample are unpaired, because the cross-validation for 3-nn was done separately from that for 1-nn,

using a di�erent random partitioning. If only one partitioning is done, and the 1-nn and 3-nn

error rates for the j

th

train/test combination are paired (�

1;j

; �

3;j

), then the weighted variance of

�

j

=(�

3;j

��

1;j

) provides a single-sample estimator for the sampling variance of the k-cv estimate,

SS

2

�

P

j

(�

j

�x)

2

m

j

=(k�1)N , where x =

P

j

m

j

�

j

=N . Figure 6b shows the individual and rms

values of SS for 20 samples each for the 40 population/sample size combinations (as in Figure 6a).

This estimator is less biased than SE, but biased nonetheless

12

, and more variable than SE.

There are many other problems with these single-sample approaches, all deriving from the fallacy

that conclusions about the di�erences between inference methods based on observations from a

single sample are representative of the di�erences for the problem population at hand. Even for a

single population and a �xed sample size, classi�er error rates and the di�erences in paired error

rates are so variable from one sample to another that we cannot draw a reliable inference even as

to the sign of the di�erence from only one sample.

We illustrate this last point in Figure 7, where we show the paired di�erences for 20 samples of

the same size from the same population (N=100, inherent error 40%, where the average di�erence

is negative and signi�cant at the 95% level). In these �gures we plot the paired di�erence in ter

along the horizontal axis, and the paired di�erence of estimated error along the vertical axis. Only

leave-one-out (loo) and Weiss' loo* estimator are shown, 10-fold cross-validation (10-cv) is very

similar to both of these, but even more variable and less correlated. We can see that even here,

where the average ter di�erence is strongest, the di�erence in estimated rates is poorly correlated

with the di�erence in ter, highly variable, and apt to reverse the sign of the di�erence. loo* is

less variable

13

and less likely to reverse the sign or be grossly wrong as to the magnitude than loo

or 10-cv, but still poorly correlated with the di�erence in ter. Regardless of how we approach

estimating s(x), single-sample tests are apt to be misleading if we cannot be con�dent that at least

the sign of the single-sample di�erence is correct. In the case of 3-nn vs. 1-nn (and, by analogy,

pruned vs. unpruned decision trees), we cannot be sure of even that much, even for a population

and sample size where the average di�erence is highly signi�cant.

12

This estimator is biased because, for any pair (�

p

; �

q

)q 6=p, 89% of the items in the two training sets are identical.

These values simply are not free to vary as widely within a single sample as they would be from sample to sample.

13

And, therefore, SE=�(1��)=N is not an appropriate estimate of loo*'s variance.
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Figure 7: Single-Sample Di�erences Between 1-nn and 3-nn
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b.   LOO*  vs.  TER
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It is known [32] that iterating the k-fold cross-validation of a sample many (typically 100) times

signi�cantly reduces the variance of the k-cv estimate for smaller k values, though at higher com-

putational cost and with an increasing pessimistic bias as k decreases. This has naturally led to

speculation that pairing the interated train/test partitioning of k-cv for competing classi�ers might

give both a lower variance for the estimated di�erence and a more reliable estimate of that variance.

Appendix B.3 gives details of experiments which iterated paired cross-validation 100 times (k-

cv*) for 3-nn and 1-nn using both 2-cv* and 10-cv*. These methods did not lead to more reliable

variance estimates or to more reliable `signi�cance' tests, despite the lower variance of 2-cv*. These

methods also hold several pitfalls for the unwary user:

1. 2-cv* is strongly biased, and the bias may be di�erent for di�erent classi�ers, which renders

the comparison meaningless. This is certainly the case for 1-nn and 3-nn for very small

samples and low error rates (see Appendix B.3 and Weiss [50]). This di�ering bias causes

both the apparent di�erence between classi�ers and the paired cross-validation estimate of

the variance of the di�erence to be exaggerated.

2. Though the variance of k-cv* iterated m times is lower than that of uniterated k-cv, it is not

reduced by a factor of 1=m, as would be the case for m independent estimates. The variance

of the k-cv* di�erence, S

2

(x), is lower than the variance, S

2

(x), of the mk individual test

set di�erences, S(x)=

p

m � S(x) � S(x), but we know of no analysis that predicts where

in this range S(x) is to be found in a particular case. It appears to vary with the problem

population and with the classi�ers being compared. There is a tempting trap here: by using

the incorrect formula S(x)=

p

m one could, by making m su�ciently large, `prove' signi�cance

for any case.

We have con�rmed empirically (see Appendix B.2) that these concerns regarding the variance and

lack of predictive correlation of error estimates also apply for decision trees using nominal attributes.

Bailey & Elkan [5] have also noted this problem of high variation and poor correlation and suggested

that it might be problematic as to the current machine learning approaches to comparing inference

methods. Our experiments show that their misgivings are absolutely correct.

We know of no reliable method for projecting a measure of the internal (within-sample) variance

of an error estimate to predict the sampling variance of the error rate. Nor do we believe such a
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method possible. The repeated internal estimates are not independent, nor are they free to vary

as widely as the estimated error itself, even if the true error remained constant from sample-to-

sample. This latter observation is the driving force behind the well-known m�1 degrees-of-freedom

correction in for an unbiased estimate of the variance of a set ofm independent observations. When

observations are not independent; when we add the complications of possibly biased estimators,

looking at the di�erence between classi�ers, and possibly iterating the estimation many times, it is

unlikely that any simple a priori correction will give an unbiased estimate of the sampling variance.

Thus, assertions from observations on a single sample such as \classi�er X predicts this population

more accurately than classi�er Y, and the di�erence in accuracy is signi�cant at the 95% con�dence

level" are very apt to be wrong on one or on both accounts.

3.5 The \Dataset Equals Population" Fallacy

Despite the problems raised in the last section (high variance, lack of correlation, and biased

estimates of sampling variance), there is a persistent e�ort to somehow justify single-sample `sig-

ni�cance' tests. The motivations are understandable, the honest desire to do the best we can with

what we have or the necessity to present some statement of signi�cance to support our claims.

However, we feel that these single-sample statements of signi�cance should not be presented as

though they were even approximate statistical tests of signi�cance at a certain (e.g., 95%) con�dence

level. They are merely heuristic, and they typically entail a conspicuously higher Type I risk than

is suggested by the nominal `con�dence level'.

Perhaps the most egregious arguments are the \dataset equals population and sampling variance

is irrelevant" hypotheses, sometimes described as `conditional signi�cance'. Certainly, if we take

the counter-factual position that the dataset `de�nes' the population, then the sampling variance

is irrelevant and all of the concerns we have raised disappear. If we take this specious argument

literally, however, the whole business of resampling to estimate error and pruning to avoid over�tting

is absurd. Under this hypothesis, the apparent accuracy of the classi�er trained using the entire

dataset IS the true accuracy, and the classi�er-induction branch of machine learning research is

largely out of business.

Of course, the proponents probably do not intend for this hypothesis to be taken that literally.

Perhaps what they really propose is that we simply ignore the biases of SE and the paired cross-

validation estimates of variance. Thus, the `signi�cance level' is contingent on the particular dataset

(and �2-SE is also contingent on the � = +0:5 assumption). In our opinion, signi�cance claims of

this kind should be clearly indicated as contingent, and the assumptions clearly stated.

These `contingent signi�cance' claims simply ignore the high variance and lack of predictive correla-

tion of error estimates, i.e., they ignore the fact that the claimed signi�cance may not be replicable.

For example, given two classi�ers trained on the Iris data, if someone had returned to the Gasp�e

peninsula and measured another 150 owers, then by testing the classi�ers on this independent

data we might well reach the opposite conclusion as to which classi�er performs better than we

reached using only Andersen's [3, 38] data.

There is currently great interest in machine learning in �nding classi�er selection methods that are

more robust than traditional `signi�cance' tests (see Section 5). We hope that these methods will,

when they have matured, obviate the need for heuristic contingent signi�cance claims.

16



4 Pruning, or the Subset Selection Problem

All of the signi�cance tests we have presented have focused on comparing the error rates of the

�nal classi�ers produced by di�erent algorithms, rather than on the internal selection processes by

which an algorithm arrives at its �nal classi�er. In machine learning, probably the most familiar

of these processes is decision tree post-pruning. Post-pruning is but one facet of a more general

process known as subset selection, which also embraces processes as diverse as selection of splits

during decision tree construction, stepwise discriminant analysis, and stepwise forward selection or

backward elimination in �tting a logistic regression model. For an overview of subset selection and

pruning, see the monograph by Miller [34], the Cart [10] and C4.5 [40] texts, and the articles by

John, et al. [26], Mingers [35, 36], Scha�er [43, 44, 45, 46], and Weiss [51, 52, 53, 54].

Over�tting avoidance (pruning) is controversial. It has long been recognized that the \signi�cance"

tests used have a limited theoretical foundation and that they are biased [2, 34]. In machine learning,

Scha�er [45] has described pruning as simply a form of bias. In applied statistics, Miller [34]

cites descriptions of pruning or subset selection as `unclean', `distasteful', `�shing expeditions', or

`torturing the data until they confess'.

Miller describes the available methods for empirical model selection as being based largely on folk-

lore, with a dearth of respectable theory, or even of trustworthy advice. The so-called signi�cance

tests are part of that folklore. A related bit of folklore concerns variable interactions

14

; a common

heuristic excludes the interaction of two variables if neither variable taken alone is to be included,

on the empirical grounds that such relationships, e.g., parity, are rare. In machine learning, this

exclusion is structurally, rather than heuristically, a part of common (Cart [10] and ID3 [39]) de-

cision tree algorithms. This exclusion renders it very di�cult, if not impossible, to learn concepts

similar to the exclusive-or. One consequence of this problem has been the adoption of various forms

of look-ahead in decision tree algorithms. Another consequence has been a blanket condemnation

of forward inclusion (stopping, or pre-pruning) methods and widespread adoption of post-pruning

(backward elimination from an almost-certainly over�tted model). Look-ahead, the consideration

of multivariate decisions, has much to recommend it. Trying to rationally prune a deliberately

over�tted model is more questionable.

In agreement with Miller, we do not consider pruning or subset selection to be a well-posed question

of statistical signi�cance and, for that reason and because of the great variety of the pruning

methods that have been proposed and the controversies they have sometimes stirred, detailed

consideration of these topics is not within the scope of this paper. The so-called signi�cance tests

typically used in pruning are merely heuristic and, in our opinion, elaborate post-pruning schemes

may be an over-embellishment of these heuristics. We believe that the sometimes considerable

resources involved [30, 31] would perhaps be better utilized in look-ahead or in otherwise considering

multiple, more diverse models.

5 Towards More Robust Classi�er Selection

It is evident from the discussions in Sections 3 and 4 that traditional methods for choosing a classi�er

based on cross-validation estimates are very uncertain, and that many assertions of statistical

signi�cance for di�erences between competing classi�ers entail a markedly greater Type I risk

14

Two variables interact if the e�ect of changing one variable while holding the second constant depends on the

value of the second, or vice-versa.
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(wrongly asserting that the error rates are di�erent) than indicated by the nominal signi�cance

level. This is so both because of the high variance of cross-validation and because commonly used

methods for estimating variance from a single sample underestimate the sampling variance.

There is currently much research in machine learning focused on more robust methods for choosing

a classi�er. Central to all of this work is the concept of bias-variance tradeo�, i.e., of averaging

or aggregating predictions and estimates from many varied classi�ers in order to reduce variance

and, hence, increase con�dence in the predictions and estimates. Given only a single sample,

each of these constituent classi�ers is necessarily inferred from a subsample and they tend to

be increasingly biased as the subsample size decreases. On the other hand, the variance of the

averaged or aggregated classi�er tends to decrease as the subsample size decreases. Hence, the

tradeo� between variance and bias.

The conventional thinking on bias-variance tradeo�, based on analogy to model selection in regres-

sion analysis, has been centered on a bias

2

+ variance, or squared error loss, formulation. A recent

paper by Friedman [16] casts this tradeo� in terms of a 0/1-loss function, i.e., a classi�er's predic-

tion is either right or wrong, rather than smoothly varying. In this formulation, Friedman shows

that the tradeo� is sometimes counter-intuitive relative to conventional squared error tradeo�, and

that certain highly biased methods, e.g., nearest neighbor, are nonetheless often highly competitive

(see, for instance, Holte [20]).

A line of research being pursued by Breiman [8, 9] (see also [49, 57]) aggregates classi�ers rather

than averaging. In the approach known as `bagging' (bootstrap aggregation), a single instance is

held out as in leave-one-out and the remaining instances are bootstrapped (sampled with replace-

ment to provide a training set) many times. The resulting classi�ers `vote' on the classi�cation of the

holdout instance. The outcome of these `elections' varies far less from sample to sample than does

the single prediction derived from training on the entire sample. In a similar approach [9], known

as `arcing' (adaptively resample and combine), proposed by Freund & Schapire [15], a weighted

resampling is used, with an instance's weight, i.e., its likelihood of being included in a training

set, increasing as it is more frequently misclassi�ed. At termination, the classi�ers' predictions are

combined by voting.

Wolpert [56] has proposed `stacking' cross-validation, i.e., taking the output predictions from the

classifers inferred during cross-validation, together with the correct classi�cations, as input for cross-

validating another inducer. These cross-validated inducers may be nested or stacked as deeply as

desired, e.g., until the predictions converge. This idea is readily generalized to combining output

predictions from dissimilar classi�ers, e.g., neural nets and decision trees.

A related approach, but from a Bayesian point of view, is found in Raftery's [41] BIC (Bayesian In-

formation Criterion) approach, which averages logistic regression classi�ers over a small set (known

as Occam's window) of best-�tting, i.e., most likely, models.

All of these approaches, as well as earlier approaches to using multiple models (e.g., [12, 23, 28]),

seem to be useful for reducing variance and for selecting a better (more accurate) model. There is no

clear winner among these approaches nor, given Scha�er's [47] conservation law for generalization,

is it likely that any single method will be `best' for all situations.

There are many open questions at this early stage for research in utilizing multiple models. One

of these concerns aggregation methods, such as bagging, where it is not clear what the �nal model

is (i.e., how previously unseen instances are to be mapped onto a class prediction). Of more

immediate interest to the concerns of this paper is that none of these methods appears, as yet, to

have directly addressed questions of con�dence intervals and signi�cance tests, nor the issues of
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lack of independence, sample-to-sample correlation with true error, or underestimating sampling

variance which we have identi�ed in connection with cross-validation. While premature at present,

we believe that these questions will become more important as this research area matures.

6 Conclusions and Recommendations

1. The textbook formula based on the normal approximation to the binomial is not a good

approximation to the con�dence interval of an error rate estimate for small samples or low

error rates, even if a `continuity adjustment' is made. When the number of observed errors

is less than 10, the more exact limits calculated from the Beta distribution should be used.

2. The con�dence interval for a single estimate (even the more exact Beta distribution limit)

does not provide a good signi�cance test for the di�erence between two estimated error rates.

These limits, especially the �2-SE limits, have a high additional Type I risk.

3. For comparing two independent rates on small samples, the textbook normal approximation

entails a slightly greater Type I risk than the exact calculation of signi�cance level from

the binomial distribution. The textbook method is computationally simpler and its decision

accuracy is typically 90% or better and, thus, it appears to be accurate enough for most

purposes.

4. For paired comparison of classi�er inference methods, Student's t test for the average di�er-

ence over several independent samples is appropriate. The 10-cv estimator is recommended

(see also Breiman & Spector [11]) because it seems to correspond most closely to the sig-

ni�cance of the di�erences in ter. The 632b bootstrap and iterated 2-fold cross-validation

(2-cv*) methods are not recommended because they are biased, and the bias of either method

may di�er for di�erent inference methods. Weiss' loo* estimator showed no advantage in

our tests, and it is not recommended because of its high cost.

5. Paired comparison of inference methods based on a single sample may be misleading, even as

to the sign of the di�erence, because the di�erence in error estimates is highly variable and

poorly correlated with the di�erence in true error (see also Bailey & Elkan [5]), and because

commonly used heuristics for the variance of the di�erences are biased and lack rigor. Thus,

assertions such as \classi�er X predicts this population more accurately than classi�er Y, and

the di�erence in accuracy is signi�cant at the 95% con�dence level" based on observations on

a single sample are very apt to be wrong on either or on both accounts.
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Appendices

A Bayesian Analysis for Con�dence Intervals

In this appendix, we provide a review of Bayesian analysis applied to estimating con�dence intervals.

Following a brief introduction to Bayesian methods in Section A.1, Section A.2 introduces the family

of Beta distribution priors for the binomial. Section A.3 presents Je�reys' Beta prior, which has

been shown to be the best choice for estimating con�dence intervals. Section A.4 summarizes

arguments against use of the uniform prior, and presents empirical data on the prior distribution

of problems frequently used to evaluate classi�cation algorithms in machine learning research.

A.1 Bayesian Analysis for the Binomial Distribution

What is the posterior distribution of the true error � , Pf� <x jM;mg, given a test set of M items

and that the observed number of errors m is binomially distributed:

Pfm jM; �g =

M !

m! (M�m)!

�

m

(1��)

M�m

The expected value (mean) of m=M is E(m=M) = � , and its variance is �

2

= �(1��)=M . From

this, one might surmise that the expected value of � given m=M would be m=M , but this is not so

because it is possible to obtain the result m=0 when � 6=0:

Pfm = 0 jM = 10; � = 0:0g = 1:0000

Pfm = 0 jM = 10; � = 0:1g = 0:3487

Pfm = 0 jM = 10; � = 0:2g = 0:1074

.

.

.

Pfm = 0 jM = 10; � = 1:0g = 0:0000

The expected value of � given m=M (in particular, and the posterior distribution in general)

depends on the assumed prior distribution ff�g via Bayes' Theorem:

Pf� < x jM;mg =

Z

x

0

Pfm jM; �gff�gd�

�

Z

1

0

Pfm jM; �gff�gd�

ff� jM;mg = Pfm jM; �gff�g

�

Z

1

0

Pfm jM; �gff�gd�

Note that the normalizing factor (the denominator) of these expressions can also be expressed as

Pfm jMg, the prior unconditional probability of m errors in a test set of size M .

Many analysts �nd the dependence of the results on an assumed prior ff�g troubling, as it a�ords

the opportunity to interject subjective opinion into the analysis. However, as noted in the compan-

ion paper [32], the problem of drawing inferences about � (such as con�dence intervals) is ill-posed,

and it is necessary to assume some prior distribution for the kinds of problems one is likely to en-

counter. We also note that the textbook and alternative approximate con�dence intervals discussed

in the paper implicitly assume a uniform (rectangular) prior distribution for � in addition to their
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normality assumptions. This implicit uniform prior assumption is common in classical statistical

inference. Obviously, an important topic in Bayesian analysis has been the formulation of priors

which add little information to the sample information [6], i.e., non-informative priors

15

, or express

our relative ignorance of the distribution of � [17], i.e., prior densities on ignorance.

A key principle of Bayesian analysis [19, pp. 34-39] [21, pp. 59-70] is that the impact of the assumed

prior diminishes as more evidence is accumulated (as M increases) and that, for non-informative

priors, Bayesian and classical analyses should asymptotically converge to the same numerical results

(the results may be interpreted somewhat di�erently). Hartigan [17] emphasizes asymptotically

unbiased priors, i.e., those for which the associated estimator converges asymptotically to the true

value of the quantity being estimated. Bernardo [6] and Hartigan [17] both note that the choice

of the relevant prior di�ers according to the quantity of interest, e.g., according to whether one is

estimating a mean, a variance, or a binomial proportion.

For the small samples which are the topic of this paper, asymptotic convergence and unbiasedness,

while crucial properties of a prior, are not su�cient in themselves. We must also be concerned with

the relative e�ciency (rate of convergence) and non-informativeness of the prior; i.e., following

Bernardo [6], a reference prior should maximize the expected information about � to be provided

by the sample data and, thus, minimize the impact of the prior assumptions.

A.2 Beta Distributions

It is convenient if ff�g can be expressed in such a form that Bayes' Theorem is easily integrated;

such priors are sometimes called conjugate priors. The Beta distribution with parameters u and

v, Be(�; u; v), is a family of conjugate priors (sometimes called Beta or Dirichlet priors) for the

binomial which are capable of expressing, to at least a very good approximation, a very wide

variety of plausible priors for � (see Iversen [21, pp. 18-33]).

Be(�; u; v) = �

u�1

(1��)

v�1

/B(u; v)

where B(u; v) =

Z

1

0

�

u�1

(1��)

v�1

d� = �(u)�(v) /�(u+v) is the Beta function

�(z) is the Gamma function, a generalization of the factorial. For positive integers n, �(n)=(n�1)!.

In general, �(z)= (z�1)�(z�1) and, in particular, �(1=2)=

p

�. See [1, pp. 255-258,944-945] for

information on these functions. These Beta priors give a Beta distribution as the posterior:

ff� jM;mg = Be(�;m+u;M�m+v)

Pf� < x jM;mg = I(x;m+u;M�m+v) =

Z

x

0

Be(�;m+u;M�m+v) d�

where I(x;m+u;M�m+v) is the Incomplete Beta function. For this Beta distribution, the posterior

mean (expected value, �) and variance (�

2

) of the true error rate � are

� = (m+u)=(M+u+v) �

2

= �(1��)=(M+u+v+1)

and the most likely value (the mode) is

mode =

8

>

<

>

:

0 if m=0

(m+u�1)=(M+u+v�2) if 0<m<M

1 if m=M

15

Bernardo [6] terms these reference priors, emphasizing their possible use as a standard to assess the relative

importance of a particular assumed prior.
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A.3 The Je�reys' Beta Distribution

Assuming only quite general regularity conditions

16

, Bernardo [6], Hartigan [19], and Welch &

Peers [55], among many others, justify the family of prior distributions known as Je�reys' [25]

prior. Bernardo [6] shows that this prior maximizes the expected information provided by the

sample, Hartigan [17] shows that this prior is asymptotically unbiased, and Welch & Peers [55]

show that con�dence intervals generated from Je�reys' prior are asymptotically closer to providing

the targeted con�dence level than those of any other prior.

For binomial con�dence limits, Je�reys' prior is a Beta distribution, ff�g = Be(�; 1=2; 1=2), and

leads to an Incomplete Beta function as the posterior:

Pf� < x jM;mg = I(x; m+0:5; M�m+0:5) (7)

=

 

x

m+0:5

(1�x)

M�m+0:5

(m+0:5) B(m+0:5;M�m+0:5)

!  

1 +

1

X

i=0

B(m+1:5; i+1)

B(M+1; i+1)

x

i+1

!

The derivation by Welch & Peers [55] shows this solution to asymptotically provide an actual

con�dence level of (1��)�O(M

�1

) for Je�reys' prior, while other priors converge only to (1��)�

O(M

�1=2

). Thus, for su�ciently large M , we expect the Je�reys' prior intervals to be both more

accurate and more e�cient (converging more quickly) than those for any other prior

17

.

We caution that this is not a proof, since the orders of magnitude O(�) here should be quali�ed as

\in the probability sense" and, in particular, because these asymptotic results say little or nothing

about small-sample behavior. Our con�dence in the small-sample behavior of Je�reys' prior stems

from Bernardo's [6] results showing that it minimizes the contribution of the prior. Also, following

Welch & Peers [55], we emphasize that we do not wish to imply that only formal Bayesian solutions

are allowable for calculating con�dence intervals, or that they are necessarily \best". For binomial

con�dence intervals, however, they are certainly better founded than the highly questionable (e.g.,

for m = 0) assumption of normality.

For large values of M and m, the series in Equation 7 converges very slowly. Solutions to deter-

mine the con�dence interval are very sensitive to numerical precision errors, including the use of

Stirling's [1, p. 257] approximation for �(z). For m>M=2, advantage can taken of the symmetry

of the Incomplete Beta function, I(x; u; v) = 1� I(1�x; v; u). For m�0, advantage can be taken

of the recurrence relation I(x; u; v) = x I(x; u�1; v)+ (1�x) I(x; u; v�1).

For our `precise' calculations of I(�) we used IEEE-standard double oating point, a look-up table

for ln �(i + 0:5); i � 500, and Stirling's approximation for ln �(i + 0:5); i > 500. To estimate

the inverses I

�1

(�=2) and I

�1

(1��=2), we used binary search to locate x = I

�1

(y) to within

y � 1:0� 10

�8

.

Abramowitz & Stegun [1, p. 945] give an approximation for the inverse of the incomplete Beta

function which translates into the (1��) � con�dence limits for (M;m) as:

� =

a

a+ b exp(!

2

� !

1

)

where

16

Described by Bernardo [6] as \the usual regularity conditions for asymptotic normality of the posterior", these are

enumerated by Hartigan [17, pp. 1141-1142], and are principally that m is bounded, ff�g is smooth, and Pfm j M;�g

is continuous in � .

17

Hartigan [18] shows that for two-sided con�dence intervals, assuming symmetric posteriors, other priors also lead

to O(M

�1

) asymptotic accuracy. Since posteriors for the binomial are sometimes not symmetric, in particular for

m = 0, his result cannot be applied generally for the binomial.
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a = m+ 0:5 b = M �m+ 0:5

!

1

=

z

p

h+ �

h

!

2

=

�

�+

5

6

+

2

3h

�

t

t =

M � 2m

2m(M �m)

h =

4m(M �m)

M

� =

z

2

� 3

6

z = �

�1

(1� �=2) (z = 1:96; for 95% con�dence)

We found this approximation to be very accurate for 5 < m < M�5. At the extremes, m � 5 or

m � M�5, we note the symmetry of the con�dence limits, lcl(M;m; �) = 1 � ucl(M;M �m;�),

where lcl(�) is the lower and ucl(�) the upper (1��) limit, and we have found the following empirical

formulas for the 95% limits:

lcl(M;m) =

(

0 if m = 0

exp[ k

0

+ k

1

(lnm)� (1+k

2

m)(lnM) ] 0 < m � 5

k

0

= �2:03763 k

1

= 1:874143 k

2

= 0:01545

ucl(M;m) =

(

exp[ b

0

� b

1

(lnM)� b

2

(lnM)

2

+ b

3

(lnM)

3

] if m = 0

exp[A

m

� B

m

(lnM)� C

m

(lnM)

2

+D

m

(lnM)

3

] 0 < m � 5

b

0

= 0:132893 b

1

= 0:539755 b

2

= �0:093773 b

3

= 0:00657

A

m

= 0:237901+ 0:207148m� 0:05118m

2

+ 0:002488m

3

B

m

= 0:500124� 0:148240m

C

m

= 0:099266+ 0:032337m

D

m

= 0:006670+ 0:002430m

We compared the combination of these empirical formulas (form � 5 orm �M�5) and Abramowitz

& Stegun's formula (for 5 < m < M �5) to the precise calculation at M = 10; 20 . . .200 and

m = 0; 1 . . .N=2. The greatest absolute deviation found for the upper limit ucl(�) was 0.0046 at

(M = 10; m = 4), and the absolute deviation appeared to be < 0:00035 + 0:07=M . The greatest

deviation found for the the lower limit lcl(�) was 0.0033 at (M = 20; m = 5), and the absolute

deviation appeared to be < 0:00078 + 1=M

2

.

A.4 The Uniform Prior and Other Beta Distributions

The uniform prior, ff�g = 1, is a special case, ff�g = Be(�; 1; 1), of the Beta priors, nominally

expressing complete ignorance as to � . A qualitative a priori argument against the uniform prior

for classi�cation problems takes note of the following facts:

� The true error rates being estimated are those of classi�ers inferred from the sample. The

inferred classi�er always correctly predicts the class of some of the items in its training set.

Those items are members of the population, therefore the error rate tested on the entire

population cannot be 100%.

� Populations involving actual measurements and observations, as opposed to hypothetical

populations, always involve measurement, observation, and recording errors, and frequently

have missing or inconsistent data. The inherent error of these real populations is unlikely to
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be zero; even if it were zero, the inference method entails a language-intrinsic error which is

usually non-zero

18

. Therefore, it is very unlikely that the true error will be zero.

� We know, a priori, that we can construct a classi�er, the majority inducer (always predict

whichever class has the largest frequency in the sample) which makes minimal use of the

sample data and typically has an expected true error of less than 50%. Our ex post, more

informed inference methods should certainly be able to do at least this well. Therefore, true

errors larger than 50% are relatively unlikely.

Note that the expected error of the majority inducer depends crucially on the assumptions made

concerning the prior distributions of the number of classes and of the frequency of the larger class.

For a population with C classes and fraction p in the larger class, 1=C � p � 1, the expected error

is approximately

19

1 � p. If p is assumed to be uniformly distributed, then the overall expected

error of the majority inducer is 0 � E(�) � 0:5(1� 1=C) < 50%. However, if the problem domain

tends to have approximately equally frequent classes, then error rates near 1� 1=C will dominate

and the overall expected error would be greater than 50%. Conversely, in domains where one of

the classes tends to dominate, e.g., quality control or medicine where the majority of the product

is good and the majority of patients are healthy, the overall expected error would be very low.

Figure 8 summarizes some empirical data for the majority inducer gathered from 118 `real-world'

problems found in the UCI databank [38], a textbook on categorical data analysis [2], and a textbook

on multivariate statistical analysis [37]. These data do not necessarily represent the distribution

of problems likely to be found in nature, but are fairly representative of a broad range of datasets

likely to be used in evaluating classi�er induction methods. In Figure 8a we show a histogram for

the apparent error of the majority inducer on these problems and a best �tting (least squares) Beta

distribution approximation, Be(0.74,1.44). In Figure 8b we show the empirical distributions for the

number of classes, which is roughly an exponential distribution, exp(�0:83C), and for the average

error rate for a given number of classes, which is fairly described by 0:86(1� 1:39=C). The overall

average error for the data in Figure 8 is 39%.

A non-uniform Beta distribution is consistent with these qualitative observations concerning the

prior for � . Figure 9 shows some data on the relative frequency of various error rates compiled

from a study [29] of 16 data sets from several problem areas, from the survey of error rates by

Holte [20], and from the study of decision tree pruning for small samples by Weiss & Indurkhya [54].

Altogether, these data cover 35 di�erent datasets, several di�erent induction algorithms, and several

variants for some of the algorithms. While we do not purport that these data are representative

of the distribution of problems in the `real world', they are fairly representative of the datasets

frequently used to evaluate classi�cation algorithms.

As shown in Figure 9, these empirical data are consistent with a Beta distribution, Be(1; 3:67),

which is also consistent with our qualitative observations. For this prior, E(�)= 21%, �

�

= 16%,

the median is 16%, the mode is zero, less than 8% of the error rates exceed 50%, and only about

18

The inherent error is the hypothetical lowest possible error for any deterministic classi�er due to the inherent

ambiguity of the data, also known [10] as the Bayes optimal error rate. If the correct classi�er is a quadratic

discriminant, then the linear discriminant which has the lowest possible error can only approximate the correct

classi�er. Its error, though minimal for this kind of classi�er, is greater than the inherent error. We term this

hypothetical minimum error for the chosen inference method the language-intrinsic error, denoting its dependence

on the language used to represent a classi�er.

19

It is exactly 1 � p when p = 1 or p = 1=C, and slightly greater than 1 � p between these limits (because the

most frequent class in the sample is occasionally not the most frequent class in the population). The expected error

converges to 1� p quickly as either N or p increases.
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Figure 8: Majority Inducer Error Rate Distribution
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Figure 9: Empirical Error Rate Distribution

a.  Histogram
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b.  Cumulative Distribution
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Table 10: Paired t-test of ter's for 3-nn vs. 1-nn

values of t, two-sided test with 19 dof

j t j> 2:093 is signi�cant at the 95% level

t < 0 indicates 3-nn is the more accurate classi�er

Sample Population Inherent Error Rate

Size 0.1% 1% 2% 5% 10% 25% 40%

10 .9 2.3 .5 { .5 1.0 1.0 .1

20 2.0 {1.2 { .2 {1.0 {1.7 {2.9 {3.0

30 3.0 .2 { .4 {3.6 {3.7 {6.5 { .8

50 3.1 {1.7 {2.1 {3.0 {2.9 {5.4 {6.2

100 3.2 {1.0 {3.2 {4.4 {9.0 {7.3 {3.5

one-third exceed 25%. Also, the con�dence intervals are lower and narrower using this prior than

those obtained using either the uniform or Je�reys' priors. We caution that the variety and range of

the problems summarized in Figure 9 are much too sparse to accept this prior without reservation.

B Empirical Study of Signi�cance Tests

In this section we present results of empirical studies of signi�cance for classi�er error di�erences.

An extended example is given in Section B.1, studying di�erences between nearest neighbor and

three nearest neighbors classi�ers. Section B.2 summarizes a smaller experiment performed to

verify that our conclusions based on the nearest neighbors study are also applicable in the case of

pruned and unpruned decision trees for nominal attributes. Section B.3 summarizes experiments

investigating repeated cross-validation of a single sample.

B.1 A Nearest-Neighbors Example

In this and following sections, ter denotes a classi�er's true error (the rate which would be observed

were the classi�er tested on the entire population); 1-nn or subscript 1 denotes a nearest neighbor

classi�er and 3-nn or subscript 3 denotes a 3 nearest neighbors classi�er.

Are the error rates of 3-nn really di�erent from those of 1-nn and, if so, which method yields

the more accurate classi�ers? Under the null hypothesis, the statistic t = x=s(x) is distributed

approximately as Student's t, where x = ter

3

�ter

1

is the average di�erence and s(x) is the

estimated standard deviation of x.

In Table 10 we summarize t-test results of a paired test simulating 20 samples each of several di�er-

ent sizes from populations having di�erent inherent errors (two equally likely classes, each normally

distributed on a single attribute, with the same variance but di�erent class means, see [32]). As a

rule, the 3-nn classi�ers are more accurate. However, this is not the case when the inherent error

is very low (0.1%) or the sample size very small (N=10). Examination of the data in Table 10 also

suggests that there is no di�erence at all in the error rates of 1-nn and 3-nn for these populations

for a sample size of about 12 or an inherent error near 0.5%.

One explanation for these observations takes into account the data density around the critical region
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where the classes overlap. The inherent error is the relative density (fraction of the population)

in this region and the sample size reects the overall density. The product of the sample size and

inherent error is the expected number of items in this region (the number in any particular sample

is random, with a binomial distribution). When this expected number is low, especially when it is

less than one, a sample will contain little information from which to infer the placement of the class

boundaries. The smoothing e�ect of 3-nn heavily discounts the apparent information imparted by

relatively isolated instances and, in very sparse data, there is little information to spare | while

1-nn over�ts the sample, 3-nn under�ts when the data are very sparse. These observations on the

e�ects of smoothing in nearest neighbors classi�ers are consistent with Scha�er's [45] observations

that pruning (smoothing) decision trees may actually be harmful when the data are very sparse

relative to the concept to be learned.

A sample size greater than 30 seems necessary for consistent results regarding whether there is

a statistically signi�cant advantage for 3-nn over 1-nn (or vice-versa) measured over 20 samples.

The di�erences are neither more nor less real for larger or smaller samples, but there is so much

variation in the results for smaller samples that we have but little con�dence in our measurement

of the di�erences | we would need to average over a larger number of samples (i.e., classi�ers) in

order to have the same con�dence for smaller samples. While 1-nn classi�ers appear to be more

accurate than 3-nn for very small samples (10 or less), we cannot con�dently reject the hypothesis

that 1-nn and 3-nn are equally accurate for small samples.

The results in Table 10 would belie any assertion that 3-nn is universally superior to 1-nn. A

decision to use 3-nn rather than 1-nn reects an inferential bias, an a priori assumption that 1-nn

will over�t the data (and that 3-nn will not under�t). Whether our decision will result in a more

accurate classi�er depends on how appropriate this bias is to the problem at hand. If the sample

size is small or the inherent error very low, 1-nn tends to over�t but 3-nn has a stronger tendency

to under�t. Since we have shown [32] that the 1-nn classi�er in this case is entirely equivalent

to an unpruned Cart-style decision tree and that decision tree pruning and nearest neighbors

smoothing have similar e�ects, we expect that these observations are equally applicable to decision

tree pruning and other such questions as to di�erences between inference methods. The choice

of one inference algorithm over another is simply a choice (albeit many times a tacit or unawares

choice) of one set of assumptions about the data over another set of assumptions. Probably the

most crucial step in any statistical inference is matching assumptions to the problem.

In most real-world situations the biases underlying nearest neighbors smoothing and decision tree

pruning (namely that the language-intrinsic error is signi�cantly greater than zero, that the data

contain mistakes and measurement errors in addition to sampling variation, and that inference

methods that are not smoothed or pruned will over�t) are almost certainly more appropriate than

the naive counter-assumptions that classes do not overlap and reported data may be relied on as

gospel. However, we should be aware that we are relying on these assumptions, and this may have

unanticipated consequences, as in the interaction of sample size and inherent error in Table 10.

How important are the nuances of calculating s(x)? Statistical packages and recipe books typically

either give only one method for a signi�cance test on means or they give a large variety of methods

that may bewilder novice users. For illustrative purposes, Table 11 shows the results of mis-applying

the formula for unpaired observations to analyze the data from our paired experiments. All of the t

values in Table 11 are lower than their correct counterparts in Table 10, enough so that the wrong

conclusion is reached as to the signi�cance of 3-nn versus 1-nn in 7 cases out of 35. This is so

because we have overestimated s(x). The assumptions underlying the unpaired t-test formula are

inappropriate for the paired experiment at hand, and such errors will likely result if the method of
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Table 11: Unpaired Calculations Mis-Applied to Paired Observations

values of t, two-sided test with 19 dof

j t j> 2:093 is signi�cant at the 95% level

� indicates that the di�erence is signi�cant, but does not appear to be so here

Sample Population Inherent Error Rate

Size 0.1% 1% 2% 5% 10% 25% 40%

10 .7 � 1.7 .5 { .4 .8 .6 .0

20 1.7 { .9 { .1 { .4 {1.3 � {1.9 � {1.1

30 2.6 .2 { .3 {2.1 {2.3 {5.3 { .7

50 � 1.4 {1.5 � {1.2 {2.8 � {1.4 {3.1 {3.1

100 � 1.8 { .8 {2.7 {3.8 {5.6 {4.0 {2.5

data analysis is not properly matched to the experimental conditions.

The analysis in Table 10 is possible only because we have perfect knowledge of the populations and

ter's. In general, this is not the case, and we have to base our analysis on one or another method

for estimating error. In Table 12 we show results of the paired t-tests in Table 10 using several

estimators (the sets of samples are identical, only the method of estimating error changes; loo

denotes leave-one-out, 10-cv 10-fold cross-validation, 632b Efron's [13] 632 bootstrap, and loo*

Weiss' [50] hybrid estimate | see [32] for a review of these methods).

In 13 of our 40 experiments, the di�erence between the loo estimates of 1-nn and 3-nn error rates

is not signi�cant at the 95% level, though the di�erence in ter's is signi�cant. The loo estimates,

though unbiased, are more variable than the ter's, and our t-test consequently less sensitive. The

10-cv results are similar, except that 10-cv is even more variable than loo, and there are even

more cases (15/40) where we cannot reject the null hypothesis at the 95% level, even though the

ter's are signi�cantly di�erent.

loo is more variable than ter because loo averages the errors of N classi�ers, each slightly

di�erent from the reference classi�er inferred using all of the sample, being inferred from one less

instance. Let �

i

be the di�erence between ter and loo for the i

th

sample, loo

i

=ter

i

+�

i

. loo's

variance is greater than the variance of ter by the mean square of the �

i

. Similar considerations

apply to 10-cv, except that the mean square � is even larger than for loo, because we average

over fewer subsamples, each di�ering even more from the reference than for loo (since 10% of the

instances are omitted rather than only one), and because of randomness in selecting subsets.

These considerations also apply to all of the resampling estimators, with the important di�erence

that bootstrapping and iterated cross-validation average over a very large number of subsamples,

which tends to reduce the variance to a level below that of loo. For the biased estimators in

this family, the di�erence in the variances of the estimator and ter is no longer simply the mean

square �, and the estimator variance may even be lower than the variance of ter. For instance,

the apparent error (the rate observed when a classi�er is tested on the same instances used to infer

the classi�er), which has zero variance for 1-nn.

Note the anomalous results for the 632b estimator. These high t-values and signi�cance levels are

not incorrect, but they are a potential pitfall for an unwary user. The 632b error rates of the

1-nn and 3-nn classi�ers are di�erent, with a very high degree of con�dence, and the 632b rates

for 1-nn are always better than those of 3-nn. This is because 632b is biased in both cases and
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Table 12: Paired t-test of Estimate Means for 3-nn vs. 1-nn

� indicates that the ter's are signi�cantly di�erent, but the estimates do not appear to be

� indicates that the ter's are not signi�cantly di�erent, but the estimates appear to be

z indicates that the sign is opposite to the sign of the mean di�erence in ter's

Sample Population Inherent Error Rate

Size 0.1% 1% 2% 5% 10% 25% 40% 50%

loo Estimates

10 � z z

20 z z z � �

30 � � � �

50 � � � �

100 �z z �

10-cv Estimates

10 � z z

20 z z z � �

30 � � � � �

50 � � � � �

100 � z � �

632b Estimates

10 � � �z � � � �

20 �z �z �z �z z z �

30 � �z z z z �z �

50 � �z z z z z z �

100 � �z z z z z z �

loo* Estimates

10 � � �z z

20 z z z � �

30 z � � �

50 � � � � �

100 �z z �

has a di�erent bias for 1-nn than for 3-nn. Knowing that the 632b estimates di�er signi�cantly

tells us nothing about whether the ter's are di�erent. This is the great danger inherent in using

biased estimators | unless the biases are known to be the same for the cases under study, or unless

the biases are known and compensated for in each case, use of these biased estimators can (and

almost certainly will) lead to fallacies in inferences about the di�erences between cases. This is so

regardless of any apparent advantage for these estimators in terms of reduced variance.

The loo* estimator is approximately unbiased for 1-nn and 3-nn, and its t-test behavior is similar

to that of loo or 10-cv, except that loo* indicates that the advantage of 1-nn over 3-nn for very

small samples is signi�cant when the ter, loo and 10-cv di�erences are not signi�cant. Based on

the results in Table 12, we do not see any advantage for loo* over loo or 10-cv.
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Table 13: t-test for Stopped versus Unpruned Trees

Inherent Sample t-statistic

Error % Size ter app loo 10-cv 632b loo*

0.1 24 4.2 4.4 � 1.9 2.4 3.1 2.9

36 2.3 6.0 4.6 .5 3.9 3.9

48 3.9 11.2 3.5 6.1 6.1 4.7

96 1.0 1.5 � 3.0 � 3.1 � 5.1 � 4.8

5 24 2.9 3.9 2.6 2.7 2.9 3.3

36 1.1 � 7.3 � 3.3 2.0 � 3.1 � 3.3

48 .9 � 2.8 2.2 1.6 2.1 � 2.8

96 3.0 2.7 � 2.0 � 1.8 2.4 3.1

10 24 2.2 1.2 .1 .5 .4 .2

36 1.2 � 2.9 1.6 1.7 � 2.5 1.6

48 .2 1.8 { .2 .2 .9 .2

96 1.2 2.2 2.0 1.6 2.0 1.7

25 24 { .3 � 5.3 1.0 .5 1.8 1.0

36 .2 � 2.9 1.0 .1 2.0 1.0

48 .6 � 5.9 1.6 1.0 � 7.3 2.3

96 .1 2.2 .8 1.0 1.2 .9

� ter di�erence is not signi�cant, but this is

� ter di�erence is signi�cant, but this is not

B.2 A Similar Decision Tree Experiment

An experiment was conducted to verify that our nearest neighbors results also apply when pruning

decision trees derived from nominal rather than continuous attributes. Eight samples each of sizes

24, 36, 48, and 96 were drawn from noisy contact lens populations [32] with inherent error rates

of 0.1, 5, 10, and 25%. Both an unpruned and a stopped

20

decision tree were inferred from each

sample, and the various error estimates were determined for each of the trees.

In Table 13 we show t-statistics for the paired di�erences between stopped and unpruned trees,

highlighting cases where the test using one of the estimators is misleading as to the signi�cance

of the di�erence in true error. Overall, the stopped trees are less accurate, but the di�erence is

not signi�cant for higher inherent error or larger samples. For each entry in Table 13, there are 7

degrees of freedom, and j t j> 2:365 is signi�cant at the 95% level.

The data in Table 13 suggest that 632b and loo* tend to exaggerate the signi�cance of the di�erence

between stopped and unpruned trees, and that the Type I risk (falsely rejecting the null hypothesis)

when using these estimators is markedly higher than 0.05 (the value implied by a nominal 95%

test). loo and 10-cv seem to lead to correct decisions regarding the null hypothesis for inherent

error rates of 10% or more, but may sometimes overstate or understate signi�cance for lower error

rates. On the whole, 632b and loo* do not appear to have any advantage over loo or 10-cv for

these data. 10-cv is recommended for these comparisons because it has the lowest computational

cost among these four methods and also appears to have the least added Type I or Type II risk.

Breiman & Spector [11] have found 10-cv to be more e�ective than loo for pruning.

20

Split and stopped using the hypergeometric probability test [29] (an extension of Fisher's exact test [2]).
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The t-tests in Table 13 relate to the average di�erence over 8 samples. As was the case for nearest

neighbors (see Figure 7), the di�erence for a single sample is highly variable, and not trustworthy

even as to the sign of the di�erence. The SE =

p

�(1� �)=N heuristic for the standard deviation of

the paired di�erences between stopped and unpruned trees is biased. Though similar in shape to

the corresponding relationship for 3-nn vs. 1-nn (see Figure 6a), the bias is quantitatively di�erent

for these discrete attribute trees than for those continuous attribute classi�ers.

B.3 Iterating Paired Cross-Validation

In this section we discuss experiments conducted to determine whether iterating the paired cross-

validation of a single sample 100 times would markedly improve the reliability of single-sample t

tests over a single paired cross-validation.

It is known (see the companion paper [32]) that iterating k-cv can signi�cantly reduce the variance

of the estimate when k is small, but the estimates themselves are increasingly biased as k decreases.

We note that iterating k-cv does not a�ect its bias, and has little e�ect on the variance for k � 10

(no e�ect at all for leave-one-out).

This reduced variance, though desirable from the point of view of possibly increasing the power

of a t-test, presents special di�culties for the analysis. Firstly, since the estimates are biased,

the comparison can be very misleading unless the biases are the same for both classi�ers being

compared. Secondly, though the variance of the average error over m iterations is lower than the

variance of a single iteration, it is not reduced by a factor of 1=m, as would be the case for m

independent observations. The reduction in variance appears to be a function of both the dataset

and the inference method, and we know of no analytical expression for predicting the reduction in

any particular case. And so, though we can certainly iterate a paired k-fold cross-validation m times

and calculate the average, x, and standard deviation, S(x), of the mk error estimate di�erences so

obtained, we cannot, from a single sample, predict the expected standard deviation of the average,

S(x), except to note that S(x)=

p

m � S(x) � S(x).

Using the lower bound on this variance, S(x)=

p

m, would grossly exaggerate the signi�cance of the

di�erence x. Using the upper bound, S(x), would likewise understate the signi�cance. This is a

tempting trap, since one could manipulate the value of m to `prove' signi�cance or non-signi�cance,

as desired, using these incorrect expressions for the variance.

Comparing 3-nn and 1-nn for 40 di�erent cases, as in Section B.1, we simulated 100 paired 2-fold

cross-validations (2-cv*) for each of 20 samples in each case. Figure 14a shows the rms value of

S(x) over the 20 samples versus S(x) for each of the 40 cases. For N � 30, rms S(x) is roughly

proportional to S(x). We note again that we know of no method for predicting the coe�cient

(2.293 in this particular experiment) and that it is far from

p

100. For N � 20, the relationship

has a lower slope and a non-zero intercept, and the slope is actually negative for N = 10.

The anomalous results for N � 20 are in part due to the facts that the 2-cv* estimator is biased,

more so as the sample size decreases, and that the bias is di�erent for 3-nn than for 1-nn, as

shown in Table 15. The bias of 3-nn at N = 10 is very large, especially when the inherent error is

low. Judging from Figure 14a, the 3-nn rates for N = 10 are also highly variable. Weiss [50] also

observed this large bias of 2-cv* for nearest neighbors using small samples, and that the bias is

di�erent for 3-nn than for 1-nn. In fact, these observations motivated his loo* estimator.

Obviously, the 2-cv* estimator is not appropriate for comparing 1-nn and 3-nn for N � 20, and

the remainder of our analysis is restricted to N � 30, where the bias is small for both classi�ers
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Figure 14: Iterated Paired 2-Fold Cross-Validation

a.  Upper Paired 2-CV* Estimate
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b.  Paired 2-CV* Estimate  (N   30)
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c.  Contingent 2-CV* t-Test  (N   30)
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Table 15: Bias of Iterated Paired 2-Fold Cross-Validation

Sample Population Inherent Error Rate

Size 0.1% 1% 2% 5% 10% 25% 40% 50%

1-nn Bias, %

10 3.4 3.3 1.0 3.5 6.6 4.6 1.3 {3.5

20 .3 .2 .0 .9 { .9 1.5 1.1 3.0

30 { .1 .3 .1 .0 .2 3.9 .5 { .5

50 { .1 { .5 .5 .9 1.6 { .4 .7 2.4

100 .0 .2 { .2 { .2 1.0 2.3 1.6 .9

3-nn Bias, %

10 18.7 17.8 17.0 17.6 11.9 7.4 1.8 {3.6

20 1.6 2.2 3.1 4.8 2.0 4.6 3.1 2.9

30 { .0 .1 .1 .7 .9 2.7 .6 .0

50 .0 .2 { .1 .4 1.3 .6 1.2 .9

100 .1 { .0 { .1 .3 1.4 1.8 1.3 .0
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Figure 16: Iterated Paired 10-Fold Cross-Validation
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and, thus, the biases very nearly cancel. Figure 14b shows a scatter plot, S(x) vs. S(x), of these

data. Compared to the equivalent plot for uniterated 10-cv (Figure 6b in the body of the paper),

the relationship here is simpler (proportionality, rather than a power function) and less variable

than in the uniterated case.

Assuming that we somehow knew that the S(x) estimates should be reduced by a factor of 2.293,

how accurate are the signi�cance decisions that would be made using this t = 2:293x=S(x) test? In

Figure 14c, we show this estimated t versus the t value using the classi�er's true error rates (ter),

t =

b

x=�(

b

x) where

b

x = ter

3

� ter

1

and �(

b

x) is the standard deviation of

b

x for the 20 samples.

The correct signi�cance decision would be made in 88% of the cases, but the majority of the wrong

decisions are conspicuous (i.e., they assert that the classi�er's true error rates di�er at the 95%

con�dence level or greater when they are not di�erent at even the 90% level, or vice-versa).

A signi�cant fraction of the data in Figure 14c fall in the upper left and lower right quadrants,

indicating that the 2-cv* estimate of the di�erence between 3-nn and 1-nn has the opposite sign

from the di�erence in the true errors. This is a problem independent of the method for estimating

the standard deviation: the estimated di�erences are highly variable, poorly correlated with the

true di�erence, and not trustworthy even as to the sign of the di�erence. We illustrate this in

Figure 14d for the population (25% inherent error) and sample size (N = 100) where the true

di�erence averaged over 20 samples was most highly signi�cant (t = �6:85 with 19 degrees of

freedom, which is signi�cant at at least the 99.9% level). The sign of the estimated di�erence is

reversed for 4 of the 20 samples, and the correlation between the estimated di�erence and the true

di�erence is very poor. The single-sample decision accuracy for the 20 samples here is only 65%.

Despite the manifest di�culties of this approach, iterating paired cross-validation for N � 30

resulted in a simple proportionality and reduced the scatter of S(x) relative to that seen for unit-

erated 10-cv. Since 10-cv is relatively unbiased and iteration has comparatively little e�ect on its

variance, we speculated that iterating paired 10-cv might possibly give a simple proportionality

between S(x) and S(x), with a coe�cient near unity, and also reduce the scatter. Figure 16 shows

the results of this experiment (identical to that in Figure 14b except for the number of folds of the

cross-validation, and compare Figure 6b in the body of the paper). Unfortunately, the experiment

refuted the conjecture on both accounts.
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