
Faster Construction of Optimal Binary Split TreesJ. H. HesterD. S. HirschbergDepartment of Information and Computer ScienceUniversity of California, IrvineIrvine, California 92717S.-H. S. HuangDepartment of Computer ScienceUniversity of HoustonHouston, Texas 77004C. K. WongIBM T. J. Watson Research CenterP. O. Box 218Yorktown Heights, NY 10598

AbstractA binary split tree is a search structure combining features of heaps and binarysearch trees. Building an optimal binary split tree was originally conjectured tobe intractable due to di�culties in applying dynamic programming techniquesto the problem. However, two algorithms have recently been published whichgenerate optimal trees in O(n5) time, for records with distinct access probabilities.An extension allowing non-distinct access probabilities required exponential time.These algorithms consider a range of values when only a single value is possible. Adynamic programming method for determining the correct value is given, resultingin an algorithm which builds an optimal binary split tree in O(n5) time for non-distinct access probabilities and �(n4) time for distinct access probabilities.
- 2 -

IntroductionA binary split tree (BST) is a structure for storing records on which searcheswill be performed, assuming that the probabilities of access are known in advance.For every subtree T in a BST, the record with the highest access probability ofall records in T is stored in the root of T . The remaining records are distributedamong the left and right subtrees of T such that the keys of all records in the leftsubtree are less than the keys of all records in the right subtree. Each node ina BST contains the key value of the record in that node and a split value whichlexically divides the values of the keys in the left and right subtrees. A simple splitvalue is the value of the largest key in the left subtree.Under the assumption of distinct access probabilities and no failed searches,for any given set of n records, the key to be put in the root is predetermined butthe split value for the root may be chosen to divide the remaining n�1 recordsbetween the left and right subtrees in any of n possible ways. If failed searches areconsidered, the split value may be any of n+2 possibilities. For optimal BSTs, thenumber of possible divisions is n�2 if failed searches are not considered and n iffailed searches are considered. This is due to the easily proven fact that, if thereare two or more non-zero probabilities (access probabilities or failure probabilities)in any optimal subtree X, then at least one non-zero probability must be in eachof the two subtrees of X.Binary split trees were introduced by Sheil [5], who conjectured that thearbitrary removal of nodes with high access probabilities from the lexicographicordering (for placement in roots of higher subtrees) made the normal dynamicprogramming techniques inapplicable. However, Huang and Wong [1] noted thatthe keys missing from any given range must be the keys with the largest accessprobabilities in that range of keys, thus allowing a representation of the set of keysin a subtree by specifying a range of keys and a count of the number of keys missing- 3 -

from that range. This led to a �(n5) time and �(n3) space dynamic programmingalgorithm to construct optimal BSTs in a manner similar to Knuth's algorithm [3]for constructing optimal binary search trees.Shortly after Huang and Wong's �rst paper, Perl [4] presented an indepen-dently derived algorithm similar to Huang and Wong's which had the same timeand space bounds, but which also took into account probabilities of failed searches.Perl showed that the technique used by Knuth to reduce the asymptotic time com-plexity of his optimal binary tree constructer by a factor of n could not be appliedto the construction of BSTs. This paper also presented an algorithm which allowednon-distinct access probabilities by including some top-down decision making whichresulted in an exponential time algorithm.Unfortunately, the algorithms (for distinct access probabilities) presented byHuang and Wong and by Perl pick the minimum weight of subtrees resulting fromconsidering values of a variable over a range, when only one value could be correct.This adds a factor of O(n) time to the algorithm, and raises the question of whetherthe algorithms might pro�er a minimum cost value of this variable which is notattainable. If this is so, these errors may be made independently for every subtree,and the algorithms may result in a structure that is not a valid split tree. Somequick thought on the problem and a little testing gave us reason to believe that thecost corresponding to the correct value of the variable will always be better thanthe costs corresponding to all of the incorrect values, and thus the correct valuewill always be picked. We have not proven this, since the results of this paperrender the question academic.Huang and Wong [2] proposed a more generalized split tree, which relaxes theconstraint that the record with the highest access probability must be in the root.They presented an algorithm for constructing trees of this nature, which workseven in the case of non-distinct access probabilities, but requires �(n5) time.- 4 -

This paper is the result of a merger of two parallel collaborations. Huangand Wong modi�ed their earlier algorithm to remove the super
uous loop anddiscussed extending their new algorithm to handle failed accesses in a mannersimilar to the method given by Perl [4]. Independently, Hester and Hirschbergpointed out the possible error of constructing an incorrect tree and developed ananalogous algorithm, but directly incorporated Perl's method of handling failedaccesses. They also extended their algorithm to the problem of constructing anoptimal binary split tree in polynomial time in the presence of non-distinct accessprobabilities.We thus present an algorithm which calculates the value to be used (withoutthe extra loop), resulting in construction of an optimal BST for records withdistinct access probabilities in �(n4) time, while still using only �(n3) space. Thisalgorithm also constructs an optimal BST for records with non-distinct accessprobabilities in O(n5) time by saving some extra �still �(n3)� information toallow postponing top-down decisions until su�cient constraints are accumulatedto eliminate the exponential cost of these decisions.0. Definitions and Data StructuresWe are given n records indexed from 1 to n. Each record ri has a key Key(i)such that Key(i) < Key(j) for all i < j. If the records are not so ordered, wecan prepend a sort to the algorithm without adversely a�ecting its asymptoticcosts. Each record ri also has an access probability p(i). In addition, to accountfor failed searches, we are given failure probabilities q(i) for 0 � i � n which arethe probabilities of searching for a key K such that Key(i)<K <Key(i+1). Tocomplete the de�nition of the q(i)s above in a uniform fashion and to simplify thealgorithms, we de�ne Key(0) = �1, Key(n+1) =1, and p(0) = p(n+1) = 0.- 5 -

For the following de�nitions, assume that access probabilities are distinct.The next section gives modi�cations for enabling the use of non-distinct accessprobabilities.De�ne a range of records i to j to be the records whose indices are in therange i+1; i+2; . . . ; j. Let i; j; k refer to the sequence of probabilities�q(i); p(i+1); q(i+1); p(i+2); . . . ; q(j�1); p(j)	where the largest k access probabilities (p's) are left out of the sequence. Sincerecords are ordered by key value, the records with the k largest access probabilitiescould be anywhere in the sequence. A subtree T spans the sequence i; j; k if thesubtree contains all records whose access probabilities are in i; j; k , and containsno other records. A record r is said to be missing from a subtree T if the indexof r is in the range i to j and T spans i; j; k , but r's access probability is not ini; j; k . In other words, r is missing from T if it is in the range of T , but has oneof the k highest access probabilities in that range, which causes it to to be placedin the root of some higher subtree. Perl gives a simple proof that the keys missingfrom any subtree T must be the keys with the largest access probabilities that Tspans, and that these keys must be stored in an ancestor of the root of T .R[i; j; k], the root index, contains the index of the record with the maximumaccess probability over the probabilities in i; j; k . This gives the index of therecord which must be the root of any subtree spanning i; j; k .SP [i; j; k], the split index, gives the index of the record which has the key tobe used as the split value for the root of an optimal subtree spanning i; j; k . Oursplit value is the largest key among the records in the range of the left subtree.kL[i; j; k] is the number of keys missing from the left subtree of an optimalBST X which spans i; j; k and uses a split value of Key�SP [i; j; k]�. The numberof keys missing from the right subtree of X is then k+1�kL[i; j; k] (the extra +1 isto account for the fact that the root of X is missing from one of the two subtrees).- 6 -

This value is necessary for the �nal construction of the tree. For example, the rootof the left subtree of X is R�i;SP [i; j; k]; kL[i; j; k]�. Note that, for any possiblei; j; k and optimal split index l, kL[i; j; k] is simply the number of records in therange i to l with access probabilities greater than or equal to p�R[i; j; k]�. Therefore,for a �xed split index l, kL[i; j; k] is a �xed value.The previous algorithms [1, 4] assumed that the missing records could bedistributed in many ways between the left and right subtrees. For each possiblei; j; k and split index l, they executed an inner loop (contributing a factor of n tothe asymptotic time complexity of the algorithm) to consider values for kL[i; j; k]corresponding to all distributions of k+1 missing records between left and rightsubtrees. Since this value is needed for the �nal construction of the tree, it musteither be saved or re-calculated. The added calculation slows the �nal constructionby a factor of O(n), but does not a�ect the overall asymptotic complexity of thealgorithm. The previous algorithms did not save this value, but the implicationswere not obvious since they did not present the �nal procedure for constructingthe tree. Saving the information adds space to the algorithm, not a�ecting theasymptotic complexity of space required. Thus the decision to save the values isa direct time{space tradeo�, and must be made depending on the time and spaceconstraints of the individual application. Our decision to store the informationfor later use was not due to a preference to use space for reducing time, but toclarify the use of the same data in two or more sections of the algorithm. All otherarrays which were not used in the previous algorithms are a result of the additionof handling non-distinct access probabilities.We now derive recurrence relations to determine the value of kL[i; j; k]. Letthe function GTL(i; j; k; l) be the number of records, in the range of the leftsubtree of a BST T spanning i; j; k with a split index of l, which have probabilitygreater than that of the root of T . Similarly de�ne EQL(i; j; k; l) for records which- 7 -

have probability equal to that of the root of T . Finally de�ne GEL(i; j; k; l) =GTL(i; j; k; l) + EQL(i; j; k; l). Note that, when access probabilities are distinct,EQL(i; j; k; l) is either 1 or 0, depending on whether the root of T is in the range ofthe left or right subtree of T , and that GEL(i; j; k; l) is the number of records whichare missing from the left subtree. In this case, kL[i; j; k] = GEL�i; j; k;SP[i; j; k]�.Fortunately, GTL(i; j; k; l) and EQL(i; j; k; l) can be calculated in terms ofGTL(i; j; k; l�1) and EQL(i; j; k; l�1), so that only the last (in terms of l, the indexof a loop) values calculated need to be stored at any given time. If l = i, thenthe left subtree is empty and so GTL(i; j; k; l) and EQL(i; j; k; l) are both zero.Otherwise, consider a subtree X which spans i; j; k and is split at l�1. SinceT and X have the same root, moving rl from the right subtree of X to the leftsubtree of X (forming T) either has no e�ect on the two counts (if the probabilityof rl is less than that of the root of T) or adds exactly 1 to one of the two counts(depending on whether rl is greater than or equal to the root of T). This leads tothe following recurrence for GTL(i; j; k; l):GTL(i; j; k; l) =8>><>>: 0 l = iGTL(i; j; k; l�1) l 6= i; p(l) � p�R[i; j; k]�GTL(i; j; k; l�1) + 1 l 6= i; p(l) > p�R[i; j; k]�Substituting `EQ' for `GT ', ` 6=' for `�' and `=' for `>' in this recurrence givesthe recurrence for EQL(i; j; k; l). A similar recurrence could also be constructedfor GEL(i; j; k; l), which is simpler and su�cient for distinct access probabilities,but the two separate values are necessary in the next section when we relax theconstraint on access probabilities. Since only the previous values (in terms of l)are needed at any given time, our algorithm just uses the scalar variables GTL andEQL within the loops which consider possible values for i; j; k and l, but the moreverbose functional de�nition of GEL(i; j; k; l) is useful for clarity in the followingde�nitions. - 8 -

W [i; j; k] is the weight of a subtree spanning i; j; k , which is de�ned asW [i; j; k] = Xp(l)2 i;j;kp(l) + j�1Xl=i q(l)COT [i; j; k] is the cost of an optimal subtree spanning i; j; k , which is de�nedas COT [i; j; k] =W [i; j; k] + mini<l<j8>><>>: COT�i; l;GEL(i; j; k; l)�+COT�l; j; k+1�GEL(i; j; k; l)�9>>=>>;1. Non-Distinct Access ProbabilitiesThe de�nitions in the previous section permit design of a �(n4) time and�(n3) space dynamic programming algorithm for constructing optimal BSTs sim-ilar to Knuth's algorithm [3] for constructing optimal binary search trees. We nowpresent extensions of these de�nitions which lead to an algorithm that allows non-distinct access probabilities with the same space complexity and requires at mostan extra factor of O(n) time. Thus the algorithm requires O(n5) time, but this isonly an upper bound based on large numbers of equal access probabilities. Whenaccess probabilities are distinct, this algorithm requires only �(n4) time.The major problem when there may be non-distinct access probabilities isthat, during the calculation of COT, SP and kL, the root of a given subtree may beunknown, since it could be any one of a set of non-missing records with maximalaccess probabilities. It may even be unknown which records are in this set, i.e.which of the records with access probabilities equal to the root are not missing. Theprevious algorithm [4] shifted to a top-down approach at this point, which resultedin an exponential time complexity. We note that the only pieces of informationneeded during the calculation of COT, SP and kL are the weights of the subtrees,and that these weights are not dependent on which one of the records with equalaccess probabilities is the root. The only problem is in predicting from which- 9 -

subtree the root, that eventually will be picked, is missing. This is not �xed, sowe check all possible distributions of potential roots between the subtrees withoutever committing to exactly which record is the root of the current subtree. The�nal decisions will be made in a top-down fashion when the tree is constructed,at which time only the optimal subtrees are considered, and thus the exponentialwork is avoided.For the following de�nitions required by our algorithm, OBST, let T be anytree spanning i; j; k and let P be the access probability of any key that mightbe the root of T . When we compare records, saying one is greater, less, etc. thananother, we are referring to the access probabilities of those records. This alsoapplies when we compare a record to P .We re�ne the de�nition of R[i; j; k] to be the index of the rightmost possibleroot of T . This gains only a minor savings in time, but calculation of the followingarrays supplies this information at no additional cost.Let EQ[i; j; k] be the number of records with indices in the range i to jwhich are equal to P (recall that P is determined, in part, by k). Similarly, letLT [i; j; k] be the number of records which are less than P . We de�ne the functionGT(i; j; k) = j� i� �LT [i; j; k] +EQ[i; j; k]� as the number of records in the rangeof T which are greater than P . Also, we de�ne EQm(i; j; k) = k � GT(i; j; k)as the number of records with indices in the range i to j which are equal to Pand missing from T (note that k includes all records which are greater than Pand possibly some that are equal to P). Since GT(i; j; k) and EQm(i; j; k) can becalculated from other known values, they are not stored by the algorithm, but areused for notational convenience.Note that, although the value of GEL(i; j; k; l) �= GTL +EQL� was equal tothe number of records missing from the left subtree when only distinct accessprobabilities were considered, this is not true in OBST, since some unknown- 10 -

number of the records counted in EQL may not be missing. We de�ne EQmL to bethe number of records counted in EQL which are missing from the left subtree ofT . The number of missing records in the left subtree thus is represented in OBSTby the value of GTL+EQmL, which eventually will be stored in kL[i; j; k] after theoptimal value of EQmL is found.There may be many possible values of EQmL, which correspond to decisionsabout whether the roots of T and subtrees of T are chosen from the left orright of their respective subtrees. When looking for optimal splits, we boundthe possible values of EQmL and then check all values within our bounds. Thisdoes not determine a root for T , but provides constraints which are used duringthe �nal top-down construction of the tree to ensure that the root picked isconsistent with the remainder of the tree. De�ne EQR = EQ[i; j; k] � EQL andEQmR = EQm(i; j; k)+1�EQmL. Since these values can be calculated from otherknown values, they are not stored by our algorithm, but are calculated as needed.They are de�ned here for clarity in the following bounds.Bounds on EQmL:(1) (number of keys missing from left subtree)� (number of keys missing from both subtrees)(2) GTL + EQmL � k + 1 rewriting (1)(3) EQmL � EQL(�) EQmL � minfEQL; k + 1�GTLg from (2) and (3)(4) EQR � EQmR(5) EQR � EQm(i; j; k) + 1� EQmL rewriting (4)(6) EQmL � 0(��) EQmL � maxf0;EQm(i; j; k) + 1� EQRg from (5) and (6)Thus, for any l splitting T (and the values of EQL and GTL corresponding to thatsplit), (�) and (��) give usmaxf0;EQm(i; j; k) + 1�EQRg � EQmL � minfEQL; k + 1�GTLg- 11 -

Note that, any time there is only one possible root, these bounds restrictEQmL to either 1 or 0, depending on whether the single possible root of T is in theleft or right subtree of T . Thus, the extra factor of n on the time of this algorithmis only an upper bound; the algorithm is o(n5) �approaching �(n4)� when thereare few records with equal access probabilities, and is �(n4) when records havedistinct access probabilities.The calculation of W [i; j; k] is complicated by the fact that, when a recordwith index j such that p(j)=P is being considered by the dynamic programmingprocesses, it is sometimes unclear whether record j is present or missing fromthe subtree. It is simple enough when EQm(i; j; k) = 0, since record j must bepresent if j=P and no records equal to P are missing from the subtree. WhenEQm(i; j; k) > 0, we do not know which of the records that are equal to P aremissing, but we do know their weight and how many of them there are. Thuswe avoid making any decision about whether record j is missing by subtractingp(j).EQm(i; j; k) (= the total weight of the records which are equal to P and missingfrom the subtree) from W �i; j; k�EQm(i; j; k)� (= the weight of the subtree withnone of the records equal to P missing).We construct the tree in a natural top-down fashion based on the values ofR, SP, kL and Key as before, but the choice of the root for each subtree is made inpostorder, after the subtrees below it have been fully constructed. A global arrayof
ags is used to indicate which records have been allocated as roots so far, andthe choice of the root for a subtree is restricted to any record in the range of thesubtree which has the correct access probability and has not already been allocatedas a root of some lower subtree. We search backwards from the rightmost possibleroot in the range, which may save a little time, but still yields an O(n) search foreach root, making the time required to construct the tree (after the arrays have- 12 -

been set up) O(n2). Thus the total time for the algorithm is dominated by theO(n5) time required to calculate COT, SP, and kL.2. The Algorithm OBSTWe now present the algorithm OBST for calculating an optimal BST whenthere may be non-distinct access probabilities. The output of OBST is the variableTree, which points to the root of an optimal BST for the given input. The inputvalue n and input functions Key, p and q are global to all procedures. The internalarrays R, W, COT, SP, kL, EQ, LT and FLAG are also global to all procedures.

- 13 -

OBST(n;Key; p; q;Tree):/� calculate optimal BST for non-distinct access probabilities �/beginInitR()InitW()Compute()for i 1 until n doFLAG[i] `free'Tree Build Tree(0; n+1; 0)endInitR(): /� initialize R, EQ, and LT �/for i 0 until n� 1 do beginR[i; i+1; 0] i+ 1 , R[i; i+1; 1] 0EQ[i; i+1; 0] 1 , EQ[i; i+1; 1] 0LT [i; i+1; 0] 0 , LT [i; i+1; 1] 0for j i+ 2 until n+ 1 do beginif p(j) > p�R[i; j�1; 0]� then begin /� new root �/R[i; j; 0] jEQ[i; j; 0] 1end else if p(j) = p�R[i; j�1; 0]� then begin /� rightmost root �/R[i; j; 0] jEQ[i; j; 0] EQ[i; j�1; 0] + 1end else begin /� less than root �/R[i; j; 0] R[i; j�1; 0]EQ[i; j; 0] EQ[i; j�1; 0]endLT [i; j; 0] j � i� EQ[i; j; 0]for k 1 until j � i� 1 doCheckR(i; j; k)endend
- 14 -

CheckR(i; j; k): /� check general conditions for R, EQ, and LT �/if p(j) > p�R[i; j�1; k�1]� then begin /� missing �/R[i; j; k] R[i; j�1; k�1]EQ[i; j; k] EQ[i; j�1; k�1]LT [i; j; k] LT [i; j�1; k�1]end else if p(j) > p�R[i; j�1; k]� then begin /� new root �/R[i; j; k] jEQ[i; j; k] 1LT [i; j; k] LT [i; j�1; k] + EQ[i; j�1; k]end else if p(j) = p�R[i; j�1; k]� then begin /� rightmost root �/R[i; j; k] jEQ[i; j; k] EQ[i; j�1; k] + 1LT [i; j; k] LT [i; j�1; k]end else begin /� less than root �/R[i; j; k] R[i; j�1; k]EQ[i; j; k] EQ[i; j�1; k]LT [i; j; k] LT [i; j�1; k] + 1endInitW(): /� initialize W �/beginW [n; n+1; 0] q(n)W [n; n+1; 1] q(n)for i 0 until n� 1 do beginW [i; i+1; 0] q(i) + p(i+1)W [i; i+1; 1] q(i)for j i + 2 until n+ 1 do beginW [i; j; 0] W [i; j�1; 0] + q(j�1) + p(j)for k 1 until j � i doif p(j) > p�R[i; j�1; k�1]� then /� missing �/W [i; j; k] W [i; j�1; k�1] + q(j�1)else if p(j) < p�R[i; j�1; k]� or EQm(i; j; k) = 0 then/� less than root �//� or no records equal to root missing �/W [i; j; k] W [i; j�1; k] + q(j�1) + p(j)else /� equal to root and maybe missing �/W [i; j; k] W �i; j; k�EQm(i; j; k)��p(j).EQm(i; j; k)endendend - 15 -

Compute(): /� initialize COT, SP, and kL �/beginfor i 0 until n do beginCOT [i; i+1; 0] W [i; i+1; 0]COT [i; i+1; 1] W [i; i+1; 1]endfor d 2 until n+ 1 dofor i 0 until n+ 1� d do beginj i + dfor k 0 until d� 1 doFind Min(i; j; k)COT [i; j; d] W [i; j; d]endendFind Min(i; j; k): /� �nd optimal COT, SP, and kL given i; j; k �/beginGTL 0EQL 0minc 1for l i+ 1 until j � 1 do beginif p(l) > p�R[i; j; k]� thenGTL GTL + 1if p(l) = p�R[i; j; k]� thenEQL EQL + 1for EQmL maxf0;EQm(i; j; k) + 1�EQRg/� recall that EQR = EQ[i; j; k]� EQL �/until minfEQL; k + 1�GTLg do begintry COT [i; l;GTL+EQmL]+COT�l; j; k+1� (GTL+EQmL)�if try < minc then beginminc tryminl lmink GTL + EQmLendendendCOT [i; j; k] minc+W [i; j; k]SP [i; j; k] minlkL[i; j; k] minkend - 16 -

BUILD TREE(i; j; k):/� return pointer to root of optimal subtree spanning i; j; k �/beginif i = n or k = j� i or R[i; j; k] = 0 or (j = n+1 and k = j� i�1) thennode null pointerelse beginnode pointer to a new tree nodenode.SPLIT Key�SP[i; j; k]�if i � j � 1 then beginnode.LEFT NULLnode.RIGHT NULLendelse beginnode.LEFT BUILD TREE�i;SP [i; j; k]; kl[i; j; k]�node.RIGHT BUILD TREE�SP [i; j; k]; j; k+1�kl[i; j; k]�endx R[i; j; k]while p(x) 6= p�R[i; j; k]� or FLAG[x] 6= `free' dox x� 1FLAG[x] `used'node.KEY Key(x)endreturn nodeend Conclusions and Open QuestionsAn algorithm has been presented for constructing optimal binary split treesin �(n4) time when access probabilities are distinct, and O(n5) time when ac-cess probabilities are non-distinct. Taking into account the added complexity ofchoosing split values and assuming the necessity of an extra O(n) time to allownon-distinct access probabilities, the e�ciency of this algorithm is comparable tothat of Knuth's O(n3) algorithm for �nding an optimal binary search tree. SincePerl [4] showed that the technique used by Knuth [3] to obtain an O(n) speedupfor optimal binary search trees �reducing the time to O(n2)� cannot be applied tooptimal BSTs, an open question arises as to whether or not there is some other- 17 -

technique (perhaps similar to Knuth's) that can be applied to BSTs to reduce thetime of the algorithm presented here. One technique worth consideration is theQuadrangle Inequality presented by Yao [6].Another open question is that of the relative value of the algorithm presentedhere with that of the �(n5) algorithm presented by Huang and Wong [2] for gen-eralized split trees (which handles equi-probable keys). They show by simulationthat optimum generalized split trees can have faster expected search times thanoptimum split trees, but that the di�erence appears never to be great. However,there is no theoretic evidence to that e�ect.References1. S.-H. S. Huang and C. K. Wong, Optimal binary split trees,J. Algorithms 5 (1984) 69{79.2. S.-H. S. Huang and C. K. Wong, Generalized Binary Split Trees, ActaInformatica 21 (1984) 113{123.3. D. E. Knuth, \The Art of Computer Programming," Vol. 3, \Sorting andSearching," pp. 433{439, Addison{Wesley, Reading, Mass., 1973.4. Y. Perl, Optimum split trees, J. Algorithms 5 (1984) 367{374.5. B. A. Sheil, Median split trees: A fast lookup technique for frequentlyoccurring keys, Comm. ACM 21 (1978) 947{958.6. F. F. Yao, E�cient Dynamic Programming Using Quadrangle Inequalities,The 12th Annual ACM Symposium on Theory of Computing Los Angeles,Calif., (April 28{30, 1980) 429{435.- 18 -

