Faster Construction of Optimal Binary Split Trees

J. H. Hester
D. S. Hirschberg

Department of Information and Computer Science

University of California, Irvine

Irvine, California 92717

S.-H. S. Huang

Department of Computer Science

University of Houston

Houston, Texas 77004

C. K. Wong
IBM T. J. Watson Research Center
P. O. Box 218
Yorktown Heights, NY 10598

ABSTRACT

A Dbinary split tree is a search structure combining features of heaps and binary
search trees. Building an optimal binary split tree was originally conjectured to
be intractable due to difficulties in applying dynamic programming techniques
to the problem. However, two algorithms have recently been published which
generate optimal trees in O(n®) time, for records with distinct access probabilities.
An extension allowing non-distinct access probabilities required exponential time.
These algorithms consider a range of values when only a single value is possible. A
dynamic programming method for determining the correct value is given, resulting
in an algorithm which builds an optimal binary split tree in O(n®) time for non-

distinct access probabilities and ©(n?) time for distinct access probabilities.

INTRODUCTION

A binary split tree (BST) is a structure for storing records on which searches
will be performed, assuming that the probabilities of access are known in advance.
For every subtree T in a BST, the record with the highest access probability of
all records in T is stored in the root of T. The remaining records are distributed
among the left and right subtrees of T such that the keys of all records in the left
subtree are less than the keys of all records in the right subtree. Each node in
a BST contains the key value of the record in that node and a split value which
lexically divides the values of the keys in the left and right subtrees. A simple split

value is the value of the largest key in the left subtree.

Under the assumption of distinct access probabilities and no failed searches,
for any given set of n records, the key to be put in the root is predetermined but
the split value for the root may be chosen to divide the remaining n—1 records
between the left and right subtrees in any of n possible ways. If failed searches are
considered, the split value may be any of n+2 possibilities. For optimal BSTs, the
number of possible divisions is n—2 if failed searches are not considered and n if
failed searches are considered. This is due to the easily proven fact that, if there
are two or more non-zero probabilities (access probabilities or failure probabilities)
in any optimal subtree X, then at least one non-zero probability must be in each

of the two subtrees of X.

Binary split trees were introduced by Sheil [5], who conjectured that the
arbitrary removal of nodes with high access probabilities from the lexicographic
ordering (for placement in roots of higher subtrees) made the normal dynamic
programming techniques inapplicable. However, Huang and Wong [1] noted that
the keys missing from any given range must be the keys with the largest access
probabilities in that range of keys, thus allowing a representation of the set of keys

in a subtree by specifying a range of keys and a count of the number of keys missing

from that range. This led to a ©(n®°) time and ©(n?) space dynamic programming
algorithm to construct optimal BSTs in a manner similar to Knuth’s algorithm [3]

for constructing optimal binary search trees.

Shortly after Huang and Wong’s first paper, Perl [4] presented an indepen-
dently derived algorithm similar to Huang and Wong’s which had the same time
and space bounds, but which also took into account probabilities of failed searches.
Perl showed that the technique used by Knuth to reduce the asymptotic time com-
plexity of his optimal binary tree constructer by a factor of n could not be applied
to the construction of BSTs. This paper also presented an algorithm which allowed
non-distinct access probabilities by including some top-down decision making which

resulted in an exponential time algorithm.

Unfortunately, the algorithms (for distinct access probabilities) presented by
Huang and Wong and by Perl pick the minimum weight of subtrees resulting from
considering values of a variable over a range, when only one value could be correct.
This adds a factor of O(n) time to the algorithm, and raises the question of whether
the algorithms might proffer a minimum cost value of this variable which is not
attainable. If this is so, these errors may be made independently for every subtree,
and the algorithms may result in a structure that is not a valid split tree. Some
quick thought on the problem and a little testing gave us reason to believe that the
cost corresponding to the correct value of the variable will always be better than
the costs corresponding to all of the incorrect values, and thus the correct value
will always be picked. We have not proven this, since the results of this paper

render the question academic.

Huang and Wong [2] proposed a more generalized split tree, which relaxes the
constraint that the record with the highest access probability must be in the root.
They presented an algorithm for constructing trees of this nature, which works

even in the case of non-distinct access probabilities, but requires O(n>) time.

This paper is the result of a merger of two parallel collaborations. Huang
and Wong modified their earlier algorithm to remove the superfluous loop and
discussed extending their new algorithm to handle failed accesses in a manner
similar to the method given by Perl [4]. Independently, Hester and Hirschberg
pointed out the possible error of constructing an incorrect tree and developed an
analogous algorithm, but directly incorporated Perl’s method of handling failed
accesses. They also extended their algorithm to the problem of constructing an
optimal binary split tree in polynomial time in the presence of non-distinct access

probabilities.

We thus present an algorithm which calculates the value to be used (without
the extra loop), resulting in construction of an optimal BST for records with
distinct access probabilities in ©(n?*) time, while still using only ©(n3) space. This
algorithm also constructs an optimal BST for records with non-distinct access
probabilities in O(n®) time by saving some extra (still @(n3)> information to
allow postponing top-down decisions until sufficient constraints are accumulated

to eliminate the exponential cost of these decisions.

0. DEFINITIONS AND DATA STRUCTURES

We are given n records indexed from 1 to n. Each record r; has a key Key(¢)
such that Key(i) < Key(j) for all ¢ < j. If the records are not so ordered, we
can prepend a sort to the algorithm without adversely affecting its asymptotic
costs. Each record r; also has an access probability p(¢). In addition, to account
for failed searches, we are given failure probabilities ¢(i) for 0 <i¢ <n which are
the probabilities of searching for a key K such that Key(:) < K < Key(:+1). To
complete the definition of the ¢(i)s above in a uniform fashion and to simplify the

algorithms, we define Key(0) = —oo, Key(n+1) = oo, and p(0) = p(n+1) = 0.

For the following definitions, assume that access probabilities are distinct.
The next section gives modifications for enabling the use of non-distinct access
probabilities.

Define a range of records ¢ to j to be the records whose indices are in the

range 1+1,¢+2,...,7. Let (i, 7, k) refer to the sequence of probabilities

{q(8), p(i+1),q(i+1), p(i+2), ..., q(j—1),p(j)}

where the largest k access probabilities (p’s) are left out of the sequence. Since
records are ordered by key value, the records with the k largest access probabilities
could be anywhere in the sequence. A subtree T spans the sequence <z, j, k) if the
subtree contains all records whose access probabilities are in <z, j, ky, and contains
no other records. A record r is said to be missing from a subtree T if the index
of r is in the range ¢ to j and T spans {, j, k», but r’s access probability is not in
<i,j,ky. In other words, r is missing from T if it is in the range of T', but has one
of the k highest access probabilities in that range, which causes it to to be placed
in the root of some higher subtree. Perl gives a simple proof that the keys missing
from any subtree T must be the keys with the largest access probabilities that T
spans, and that these keys must be stored in an ancestor of the root of T

R[i, j, k], the root index, contains the index of the record with the maximum
access probability over the probabilities in <7, 7, k). This gives the index of the
record which must be the root of any subtree spanning <, j, k).

SP[i, j, k], the split index, gives the index of the record which has the key to
be used as the split value for the root of an optimal subtree spanning <, j, k». Our
split value is the largest key among the records in the range of the left subtree.

krle,7,k] is the number of keys missing from the left subtree of an optimal
BST X which spans {i, j, ky and uses a split value of Key(SP 2,7, k]) The number
of keys missing from the right subtree of X is then k+1—Fkp[i, 7, k] (the extra 41 is

to account for the fact that the root of X is missing from one of the two subtrees).

This value is necessary for the final construction of the tree. For example, the root
of the left subtree of X is R[i, SP[i,j,k],kL[i,j,k]]. Note that, for any possible
i,7,k and optimal split index I, kr[z, 7, k] is simply the number of records in the
range ¢ to [with access probabilities greater than or equal to p(R[i, Js k]) Therefore,

for a fixed split index [, k[, 7, k] is a fixed value.

The previous algorithms [1, 4] assumed that the missing records could be
distributed in many ways between the left and right subtrees. For each possible
i,7, k and split index /, they executed an inner loop (contributing a factor of n to
the asymptotic time complexity of the algorithm) to consider values for ki, j, k]
corresponding to all distributions of k+1 missing records between left and right
subtrees. Since this value is needed for the final construction of the tree, it must
either be saved or re-calculated. The added calculation slows the final construction
by a factor of O(n), but does not affect the overall asymptotic complexity of the
algorithm. The previous algorithms did not save this value, but the implications
were not obvious since they did not present the final procedure for constructing
the tree. Saving the information adds space to the algorithm, not affecting the
asymptotic complexity of space required. Thus the decision to save the values is
a direct time—space tradeoff, and must be made depending on the time and space
constraints of the individual application. Our decision to store the information
for later use was not due to a preference to use space for reducing time, but to
clarify the use of the same data in two or more sections of the algorithm. All other
arrays which were not used in the previous algorithms are a result of the addition

of handling non-distinct access probabilities.

We now derive recurrence relations to determine the value of ky[i, 7, k]. Let
the function GTr(7,j,k,1) be the number of records, in the range of the left
subtree of a BST T spanning <i, j, k» with a split index of I, which have probability
greater than that of the root of T'. Similarly define EQ, (4, j, k,) for records which

have probability equal to that of the root of T. Finally define GEr(i,j,k, 1) =
GTr(i,j,k, 1)+ EQ(i,7,k,1). Note that, when access probabilities are distinct,
EQ;(1,5,k,1) is either 1 or 0, depending on whether the root of T is in the range of
the left or right subtree of T', and that GEr(¢,j, k,) is the number of records which
are missing from the left subtree. In this case, kr[i, 7, k] = GEj, (i,j, k,SPli, 7, k])

Fortunately, GTr(¢,7,k,1) and EQ;(¢,5,k,]) can be calculated in terms of
GTr(i,j,k,1=1)and EQ (1,7, k,I-1), so that only the last (in terms of [, the index
of a loop) values calculated need to be stored at any given time. If [=4, then
the left subtree is empty and so GTr(i,7,k,1) and EQ(¢,7,k,1) are both zero.
Otherwise, consider a subtree X which spans <, j, k> and is split at /—1. Since
T and X have the same root, moving r; from the right subtree of X to the left
subtree of X (forming T') either has no effect on the two counts (if the probability
of r, is less than that of the root of T') or adds exactly 1 to one of the two counts
(depending on whether r; is greater than or equal to the root of T'). This leads to

the following recurrence for GTr(¢,7,k,1):

0 =1
GTp(1,5, k1) = GTp(i,5,k,1=1) [#i, p(l) < p(Rli,j. k])
GTp(i,j, k,1=1)+1 14, p(l) > p(R[i,j, k])

Substituting ‘EQ’ for ‘GT’, ‘#’ for ‘<’ and ‘=’ for ‘>’ in this recurrence gives
the recurrence for EQr (7,7, k,1). A similar recurrence could also be constructed
for GEp(i,j,k,1), which is simpler and sufficient for distinct access probabilities,
but the two separate values are necessary in the next section when we relax the
constraint on access probabilities. Since only the previous values (in terms of [)
are needed at any given time, our algorithm just uses the scalar variables GT and
E@Q; within the loops which consider possible values for ¢, j, k and I, but the more
verbose functional definition of GEr(i,7,k,!1) is useful for clarity in the following

definitions.

Wi, j, k] is the weight of a subtree spanning <i, j, k», which is defined as

Wik = Y)+ a)

p(ES,T.k I=1
COTYi,j, k] is the cost of an optimal subtree spanning (i, j, ky, which is defined

as

COT i, 1, GEL(7,], k)]
COT[i,j, k] = W[i,j, k] + min +
1<l<y
COT(l,j, k+1—GEr(i,j, k,1)]

1. NON-DISTINCT ACCESS PROBABILITIES

The definitions in the previous section permit design of a O(n*) time and
O(n?) space dynamic programming algorithm for constructing optimal BSTs sim-
ilar to Knuth’s algorithm [3] for constructing optimal binary search trees. We now
present extensions of these definitions which lead to an algorithm that allows non-
distinct access probabilities with the same space complexity and requires at most
an extra factor of O(n) time. Thus the algorithm requires O(n®) time, but this is
only an upper bound based on large numbers of equal access probabilities. When
access probabilities are distinct, this algorithm requires only ©(n?*) time.

The major problem when there may be non-distinct access probabilities is
that, during the calculation of COT, SP and k, the root of a given subtree may be
unknown, since it could be any one of a set of non-missing records with maximal
access probabilities. It may even be unknown which records are in this set, i.e.
which of the records with access probabilities equal to the root are not missing. The
previous algorithm [4] shifted to a top-down approach at this point, which resulted
in an exponential time complexity. We note that the only pieces of information
needed during the calculation of COT, SP and kj are the weights of the subtrees,
and that these weights are not dependent on which one of the records with equal

access probabilities is the root. The only problem is in predicting from which

subtree the root, that eventually will be picked, is missing. This is not fixed, so
we check all possible distributions of potential roots between the subtrees without
ever committing to exactly which record is the root of the current subtree. The
final decisions will be made in a top-down fashion when the tree is constructed,
at which time only the optimal subtrees are considered, and thus the exponential

work 1s avoided.

For the following definitions required by our algorithm, OBST, let T be any
tree spanning ¢, j, ky and let P be the access probability of any key that might
be the root of T. When we compare records, saying one is greater, less, etc. than
another, we are referring to the access probabilities of those records. This also

applies when we compare a record to P.

We refine the definition of R[z, j, k] to be the index of the rightmost possible
root of T'. This gains only a minor savings in time, but calculation of the following

arrays supplies this information at no additional cost.

Let EQIi,j, k] be the number of records with indices in the range ¢ to j
which are equal to P (recall that P is determined, in part, by k). Similarly, let
LTIi, j, k] be the number of records which are less than P. We define the function
GT(i,j, k)=j—1i— (LT[i,j, kl+ EQ[z, j, k]) as the number of records in the range
of T which are greater than P. Also, we define EQ,,(i,7,k) = k — GT(4,j,k)
as the number of records with indices in the range 2 to j which are equal to P
and missing from T (note that k includes all records which are greater than P
and possibly some that are equal to P). Since GT(1,5,k) and EQ,,(¢,7, k) can be
calculated from other known values, they are not stored by the algorithm, but are

used for notational convenience.

Note that, although the value of GEr(i,7,k,1) (z GTr + EQL> was equal to
the number of records missing from the left subtree when only distinct access

probabilities were considered, this is not true in OBST, since some unknown

- 10 -

number of the records counted in F(@); may not be missing. We define EQ,,,; to be
the number of records counted in F(@); which are missing from the left subtree of
T. The number of missing records in the left subtree thus is represented in OBST
by the value of GTr + EQ,,, which eventually will be stored in ki, j, k] after the
optimal value of EQ),,; 1s found.

There may be many possible values of EQ),,;, which correspond to decisions
about whether the roots of T and subtrees of T are chosen from the left or
right of their respective subtrees. When looking for optimal splits, we bound
the possible values of EQ,,; and then check all values within our bounds. This
does not determine a root for 7', but provides constraints which are used during
the final top-down construction of the tree to ensure that the root picked is
consistent with the remainder of the tree. Define EQp = EQ[¢,7,k] — EQ; and
EQ..r=EQ,(t1,5,k)+1— EQ,, . Since these values can be calculated from other
known values, they are not stored by our algorithm, but are calculated as needed.
They are defined here for clarity in the following bounds.

Bounds on EQ,,:

(1) (number of keys missing from left subtree)

< (number of keys missing from both subtrees)

(2) GTp+EQu<k+1 rewriting (1)
(3) EQn. < EQg
(*) EQup <min{EQ.k+1— GTr} from (2) and (3)
(4) EQp > EQnr
(5) EQr>EQu(i,j,k)+1—EQy,; rewriting (4)
(6) EQnz =0
(%) EQup > max{0, EQ,,(i,5,k) +1— EQg} from (5) and (6)

Thus, for any [splitting T' (and the values of EQ; and GTf corresponding to that
split), (*) and (**) give us

max{0, EQ,,(i,),k) + 1 — EQp} < EQ,p <min{EQ,, k+1— GTyr}

- 11 -

Note that, any time there is only one possible root, these bounds restrict
EQ,,; to either 1 or 0, depending on whether the single possible root of T is in the
left or right subtree of T'. Thus, the extra factor of n on the time of this algorithm
is only an upper bound; the algorithm is o(n”) (approaching @(n4)> when there
are few records with equal access probabilities, and is ©(n*) when records have

distinct access probabilities.

The calculation of Wi, j, k] is complicated by the fact that, when a record
with index j such that p(j)=P is being considered by the dynamic programming
processes, it i1s sometimes unclear whether record j is present or missing from
the subtree. It is simple enough when EQ,, (7,7, k) = 0, since record j must be
present if j=P and no records equal to P are missing from the subtree. When
EQ,.(i,7,k) > 0, we do not know which of the records that are equal to P are
missing, but we do know their weight and how many of them there are. Thus
we avoid making any decision about whether record j is missing by subtracting

p(J)EQ,, (1,7, k) (= the total weight of the records which are equal to P and missing
from the subtree) from W [z 5, k—EQ,(i,7,)] (= the weight of the subtree with

none of the records equal to P missing).

We construct the tree in a natural top-down fashion based on the values of
R, SP, k1 and Key as before, but the choice of the root for each subtree is made in
postorder, after the subtrees below it have been fully constructed. A global array
of flags is used to indicate which records have been allocated as roots so far, and
the choice of the root for a subtree is restricted to any record in the range of the
subtree which has the correct access probability and has not already been allocated
as a root of some lower subtree. We search backwards from the rightmost possible
root in the range, which may save a little time, but still yields an O(n) search for

each root, making the time required to construct the tree (after the arrays have

- 12 -

been set up) O(n?). Thus the total time for the algorithm is dominated by the
O(n®) time required to calculate COT, SP, and k.

2. THE ALGORITHM OBST
We now present the algorithm OBST for calculating an optimal BST when
there may be non-distinct access probabilities. The output of OBST is the variable
Tree, which points to the root of an optimal BST for the given input. The input

value n and input functions Key, p and ¢ are global to all procedures. The internal

arrays R, W, COT, SP, kr, EQ), LT and FLAG are also global to all procedures.

- 13 -

OBST(n, Key, p, q, Tree):
/* calculate optimal BST for non-distinct access probabilities */

begin

InitR()

InitW()

Compute()

for : <~ 1 until n do

FLAG[t] « ‘free’
Tree «— Build_Tree(0,n+1,0)

end
InitR(): /* initialize R, EQ, and LT %/
for i «— 0 until n —1 do begin
R[i,i4+1,0) — ¢+ 1, R[e,i+1,1] « 0
EQ[i,14+1,0] « 1, EQ[i,14+1,1] <0
LT[i,i4+1,0] < 0, LT[i,i+1,1] <0
for j — ¢+ 2 until n+1 do begin
if p(j) > p(R[i,j—1,0]) then begin /* new root */
R[e,7,0] « j
EQ[i,7,0] — 1
end else if p(j) = p(R[i,j—l,O]) then begin /* rightmost root */
R[e,7,0] « j
EQ[i,7,0] — EQ[:,j—1,0]+ 1
end else begin /* less than root */
R[t,7,0] « R[i,7—1,0]
EQ[i,5,0] — EQ[i,j—1,0]
end
LT[i,j,0] «— j —i— EQ[i,j,0]
for k1 until j —¢2—1 do
CheckR(1,j, k)
end
end

- 14 -

CheckR(1,j,k): /* check general conditions for R, EQ, and LT /
if p(j) > p(R[i,j—l,k—l]) then begin /% missing */
R[i,j, k] — R[i,j—1,k—1]
EQ[i,j, k] — EQ[i,j—1,k—1]
LT[, j, k] — LT[i, j—1, k—1]

end else if p(j) > p(R[i,j—l,k]) then begin /* new root */
R[i,j k] — j
EQU,j k] — 1
LT[i,j,k] — LT, j—1,k] + EQ[i, j—1,k]

end else if p(j) = p(R[i,j—l, k]) then begin /* rightmost root */
Rli,j k] <

end else begin /* less than root */
R[lvjvk] — R[lvj_lvk]
LT[i,j. k] « LT[i,j—1,k +1

end
InitW(): /* initialize W/
begin
Win,n+1,0] « ¢(n)
Win,n+1,1] « ¢(n)
for i «— 0 until n —1 do begin
Wi, i+1,0] « q(¢) + p(e41)
Wi, i4+1,1] « ¢(7)
for j — ¢+ 2 until n+1 do begin
W[Z,],O] — W[Z,]—l,()] + Q(]_l) —I_p(])
for £k« 1 until j—: do
if p(j) > p(R[i,j—1,k—1]) then /* missing */
Wi, g, k] — W[i,j—1,k—=1]+q(—1)
else if p(j) < p(R[i,j—1,k]) or EQ,,(4,j,k) =0 then
/* less than root */
/* or no records equal to root missing */
W[Zvjvk] — W[Zvj_lvk] + Q(]_l) —I_p(])
else /* equal to root and maybe missing */
W[Zvjvk] — W[Zvjvk_EQm(lvjvk)] _p(]).EQm(Zvjvk)
end
end
end

- 15 -

Compute(): /* initialize COT, SP, and kj */
begin
for ¢ «— 0 until n do begin
COT[e,i+1,0] « Wi, e4+1,0]
COT[e,i+1,1] « Wi, e4+1,1]
end
for d «— 2 until n4+1 do
for i «— 0 until n+1—d do begin
je—i+d
for £« 0 until d—1 do
Find_Min(i, 5, k)
COTIi,j,d) «— Wi, j,d]
end
end

Find_Mun(i, j, k): /* find optimal COT, SP, and ky given i,7, k */
begin
GT; 0
EQp <0
MINC «— 00
for [«—i¢4+1 until j —1 do begin
if p(l) > p(R[i,j,k]) then
GT; — GTr +1
if p(l) = p(R[i,j,k]) then
EQ, «— EQ, +1
for EQ,,; — max{0, EQ,,(¢,5,k)+1— EQr}
/* recall that EQr = EQ[e, 5, k] — EQp */
until min{EQ;,k+1— GT;} do begin
try — COT[i,1, GT+ EQ,,;]+ COT[l,j.k+1—(GT1+ EQ,,1)]
if try < minc then begin
mainc < try
manl — [
mink «— GTp + EQ,,;
end
end
end
COT[i,j,k] «— minc+ W, 5, k]
SP[i,j, k] « minl
krli,j, k] < mink
end

- 16 -

BUILD_TREE(i,j,k):
/* return pointer to root of optimal subtree spanning <, j, k) */
begin
if i=nork=j—ior R[t,j,k]=00r (j=n+1land k=j—:—1) then
node «— null pointer
else begin
node «— pointer to a new tree node
node.SPLIT «— Key(SP[i,j, k])
if 7> 375—1 then begin
node. LEFT «— NULL
node. RIGHT «— NULL
end
else begin
node. LEFT «— BUILD_TREE<Z', SPi, 5, k], kili, 7, k])
node. RIGHT BUILD_TREE<SP[i,j, kl, 7, k+1—kle, 7, k])
end
x — R[i, 7, k]
while p(z) # p(R[i,], k]) or FLAG[z] # ‘free’ do
re—ax—1
FLAG[x] « ‘used’
node. KEY «— Key(x)
end
return node
end

CONCLUSIONS AND OPEN QUESTIONS

An algorithm has been presented for constructing optimal binary split trees
in O(n*) time when access probabilities are distinct, and O(n®) time when ac-
cess probabilities are non-distinct. Taking into account the added complexity of
choosing split values and assuming the necessity of an extra O(n) time to allow
non-distinct access probabilities, the efficiency of this algorithm is comparable to
that of Knuth’s O(n?) algorithm for finding an optimal binary search tree. Since
Perl [4] showed that the technique used by Knuth [3] to obtain an O(n) speedup
for optimal binary search trees (reducing the time to O(n2)> cannot be applied to

optimal BSTs, an open question arises as to whether or not there is some other

_17 -

technique (perhaps similar to Knuth’s) that can be applied to BSTs to reduce the
time of the algorithm presented here. One technique worth consideration is the
Quadrangle Inequality presented by Yao [6].

Another open question is that of the relative value of the algorithm presented
here with that of the ©(n°) algorithm presented by Huang and Wong [2] for gen-
eralized split trees (which handles equi-probable keys). They show by simulation
that optimum generalized split trees can have faster expected search times than
optimum split trees, but that the difference appears never to be great. However,

there is no theoretic evidence to that effect.

REFERENCES

1. S.-H. S. Huang anp C. K. WOoNG, Optimal binary split trees,
J. Algorithms 5 (1984) 69-79.

2. S.-H. S. Huang AND C. K. WoONG, Generalized Binary Split Trees, Acta
Informatica 21 (1984) 113-123.

3. D. E. KnuTH, “The Art of Computer Programming,” Vol. 3, “Sorting and
Searching,” pp. 433-439, Addison—Wesley, Reading, Mass., 1973.

4. Y. PERL, Optimum split trees, J. Algorithms 5 (1984) 367-374.

5. B. A. SHEIL, Median split trees: A fast lookup technique for frequently
occurring keys, Comm. ACM 21 (1978) 947-958.

6. F. F. Yao, Efficient Dynamic Programming Using Quadrangle Inequalities,
The 12th Annual ACM Symposium on Theory of Computing Los Angeles,
Calif., (April 28-30, 1980) 429-435.

- 18 -

