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1. Introductwn 

The knapsack problem considered here is the following: 

maximize ~ c,X~ 

subject to ~ a,X, < b (1) 

and X, nonnegative integers, 

where a , ,  c , ,  b are positive real numbers. I t  can be shown [6] that  this problem is NP- 
complete in the sense of Karp [4, 5]. Recently, polynomial-time appromma~e solutions to 
the special case when X, is restricted to 0, 1 have been obtained [7] In fact, polynomial- 
time approximate solutions to the general case when X, is not restricted can be obtained 
in a similar fashion. 

In this paper we follow another approach; namely, we fix the number of variables n 
and look for polynomial-time optimum solutions to the knapsack problem of n variables 
Although our a t tempt  to solve this problem in general has been unsuccessful, ~ e have 
found an algorithm for the case n = 2, which runs in polynomial time of the length of 
the input. More specifically, we shall solve the following problem: 

maximize clX~ ~ c~X2 
subject to alX~ -}- a~X2 _< b (2) 

and X1, X2 nonnegative integers 

Note that  the naive approach (test X1 = ~, X~ = [(b -- al~)/a2] as i takes on integer 
values from 0 to [b/al] ) takes time proportional to b/a~ which is exponential in the length 
of the input 
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I t  is hoped that  such a modest beginning will at tract  more attention to this problem 
and hence bring about its eventual solution. 

2. Preliminary Algorithms 

We first present an algorithm (Algorithm 1 ) which yields approximations to a given real 
number within a required accuracy with a fraction of minimal denominator. I t  solves a 
special form of (2), namely, when cl = al = 1 and c2 = a2, and motivates the procedures 
in Algorithm 2, which will be a major part  of the final algorithm. I t  will also be used in 
the proof of Theorem 2. 

ALGORITHM 1 

Given/a > 0 
(1) Imtlahze m = ~], n = 1, M = 1, N = 0. 
(2) Let ~ = - m  + n p ,  62 = M -  N p .  

(1) I f ~  > ~ , s e t m ~ - - M  + m, n ~ - N  + n 
0i)  I f ~  < ~ , s e t M * - - M  + m, N * - - N  + n. 

(3) HaLt if $~ = 0, otherwise repeat (2) untd reqmred accuracy is satisfied 

Remarks. Note that  at all times except possibly the last step, $1 and 82 are positive 
and M / N  > ~ > m/n. Consequently, M / N  > (M + m ) / ( N  + n) > m/n. 

In  (i), 61 >_ ~i2 implies that  M / N  > # >_ (M + m ) / ( N  + n) Execution of this step 
results in Sa *- 61 - ~t~. Similarly, in (it), (M + m ) / ( N  + n) > ~ > m/n and after 
execution, ~2 ~-- 6~ - ~t. 

THEOREM 1. M / N ,  m/n are the best approx~matzons to # for that szze denominator and 
the first better approximation does not occur until N + n. This can be stated formally as: 

(a ) for all v < N + n, u/v > M / N  or u/v ~ m/n, 
(b ) for all v < N, u/v > M / N  or u/v < re~n, 
(c) for all v < n, u/v > M / N  or u/v < m/n. 
PROOF. By induction on the steps of the algorithm. The theorem is obviously true at 

the initial step. Assume that  it was true at the last step. If we last had condition (i) (i.e. 
n changed), then (b) is still true since the condition u/v < m/n was eased, the conditmn 
u/v > M / N  was unchanged, and N did not change. (c) is true from previous (a) and (e) 
and the fact that  the new m/n is larger than the old m/n. Similarly if we last had con- 
dition 0i) then (b) and (c) are now true. 

We now show that  (a) is true From (b) and (c) we have that  for all v < max(n, N) ,  
u/v >_ M / N  or u/v <_ m/n ~lhe case v = max(n, N)  is trivial. ~fhus, we need only 
show that  for all v, max(n, N )  < v < N + u, u/v ~ M / N  or u/v < m/n. Assume it 
is not true, i.e there exist u, v such that  max(n, N )  < v < N + n, M / N  > u/v > m/n. 
Let v N 4- v' = ' = = = n + b, 0 < v' < n, 0 < b < N. L e t u  M + u  m + ~ . T h e n  

M / N  > (M + u ' ) / ( N  + v') = u/v = (m + a)/(n + ~) > m/n. (3) 

From the left-hand side of (3), it follows that  M / N  > u'/v'. Therefore, by condition (c), 
u'/v' < m/n, hence (m - u ' ) / (n  - v') > m/n. Again by (c), (m - u ' ) / (n  - v') >_ 
M / N .  On the other hand, the right-hand side of (3) implies that  ~/~ > m/n. ~[herefore 
by (b), a/O > M / N ,  which can be written as [M 4- (u' - m)]/[N 4- (v' - n)] > M/N.  
Combining these inequalities, we have 

M / N  = {[M + (u' - m)] + (m - u')}/{[N + (v' - n)] + (n - v')} > M / N ,  

a contradiction. [] 
COROLLARY1. For ally < N 4- n, let ~(v) = - u  4- v#. Then b(v) > ~l or ~(v) < O. 
PaooF. From Theorem l ( a ) , f o r a l l v  < N + n, u/v > M / N  or u/v <_ m/n. The 

former implies u/v > #, hence 8(v) < 0. 
For the latter ease we shall first consider v > n. We have u/v < m/n < Iz, which imphes 
-- u/v >_ ~ - m/n  ~ O. We can multiply on the left by v and on the right by n, getting 
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6 (v) _> 62 • We now consider v ~ n (which is a n o n e m p t y  case only for n > 1 ). If  m = 0, 
then  n mus t  be one. If  u = 0, then m / ( n  - 1) > (m/n)  and  hence, by  Theorem 1, 
m/(n  - 1) > ~. m /  (n - v) > m/  (n -- 1) and so m/  (n - v) > # from which follows 
tha t  5(v) > 51. The only other possibility is tha t  u and  m are positive. In  this case, 
inver t ing  the  inequal i ty  gives (v/u)~ >_ (n/m)~,  and  mul t ip ly ing  by  - 1  and  adding 
1 yields 1 - (v/u) ~ < 1 - (n/m) ~, both  positive numbers  since u/v g m/n  < ~ Since 
v < n, i t  follows tha t  u ~ m and  we can mul t ip ly  (s t rengthening the i nequah ty )  
y i e l d i n g u  - v~ < m -  n~  and  thus  5(v) > 51. [] 

Consider the problem #X < 1 (mod 1 ), where ~ is a given positive real number .  X is 
restricted to nonnegat ive  integers. Then  the sequence {N I generated by  Algori thm 1 
when applied to the n u m b e r  # has the property tha t  {#NI forms a sequence of closer ap- 
proximations to 1 (rood 1 ) from below. 

We now present  Algori thm 2, which will do the same for the problem #X < q (mod 1 ), 
where 0 < q _< 1 and  X < b . . . .  a _given positive number .  This  algori thm will be a major  
par t  of our final algorithm 

ALGORITHM 2 

G l v e n ~ u , q , b ~  (0 < q_< 1). 
(I) Ini t lahzea = 0, b = 0, c = [~l, d = l, e = 1, f = 0. 
(2) Let 5B = a -  b~ + q, 5D = --c + d/.~, 5F = e - - f / a  

Iterate testing to determine which of conditmns 0), (fi), or (hi) occurs and taking the actmn 
indicated for that condltmn. 

(i) 5B_> ~D" a~---a~-c, b~---b+d 
(ii) 5B<SD,SD~SF c~--c-~e,d<---d+f.  

(iii) 5B < 5n < ~F. e ~ c  + e , f < - - d + f .  
(3) Halt whenever b + d :> b . . . .  

Remarks.  After  execution of (i), 68 ~-- 6B -- 5D. Similarly, after (fi), 6 ,  ~-- 6~ - 6~ 
and  after (iii), 6r ¢ -  5F - 5 , .  

Note tha t  the sequence of b's (d's, f ' s )  generated by  the algori thm is str ict ly increasing 
and  the corresponding sequence of ~B's (SD'S, ~ ' S )  is strictly decreasing. 

Also note tha t  a t  all t i m e s 0  < 6 ~ < 1 ,  0 g  5 D < 1 ,  0 <  6 r _ < l ,  and  t h a t 0 _ <  - a +  
b~ < q  

For  integer/5, define 6B (/5) = a - /5# T q where a is the integer such tha t  0 < ~, (/5) < 
1. For /3  in the sequence of b's generated by  the algorithm, o~ will be the associated a- 
value. 

THEOREM 2. The sequence of b's generated by Algomthm 2 is such that b,+~ is the mm 
for which 0 < 6~(~) < 6,(b,). Formally: 

(a) for all 15 < b, 6,(~)  > 6,(b), 
(b) for all [3 < b + d, 6~(~) _> 5s(b), 

where d ~s the d-value at the next occurrence of conditwn (z ). 
PROOF. Since the above assertions are concerned with condi t ion (i), we shall prove 

them by  induc tmn on the ini t ial  step and  occurrences of condit ion (i). Ini t ia l ly ,  (a) is 
true. If ini t ia l ly (i) occurs, then  (b) is also true;  otherwise assume tha t  (b)  is no t  t rue,  
i.e. there exists ~ < b + d such tha t  0 < a -- /5# + q = 6s(~)  < 6s(b) = a -- b~ --~ q. 
We can assume ~ > b from (a) (the case /5 = b i s  t r ivial) ,  so let /5 = b - 4 - d ,  where 
0 < d <: d. Then  0 _< 6~(b) T ( a  -- a)  -- d# < 6"(b). Consequent ly ,  - 1  < - 6 ~ ( b )  
(a  - a)  - d# < 0. On the other  h a n d 0  _< 6~(d) = - ~  + d# < l determines  the 
integer ~ un ique ly ;  therefore ~ = a - a. Let d be obta ined  in  the algori thm by  d = 
d' + f ' ;  then  6v(d ' )  > 6v(d) and  6,(d ' )  > 6"(b) since d is the first d-value obta ined  in 
the algori thm with 5D (d) ~ 6~ (b). Note tha t  as far as c, d, e, f are concerned, their  genera- 
t ion is exactly like tha t  of m, n, M, N in Algori thm 1; hence Corollary 1 applies and  
d < d'  + f '  implies 

- 6 ~ ( d )  = ( a -  a) - d~ ~_ c' - d'~ = - 6 ~ ( d ' )  ( - - 6 B ( b )  or - - 6n (d )  > 0, 

ei ther of which contradicts  our assumpt ion  tha t  (b) was no t  true. 
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As for the inductive argument,  (a) follows from the previous (b) and the fact tha t  
~B (b') < 5, (b) (b' is the next b-value generated),  and (b) follows from exactly the same 
argument  used in the initial proof. [] 

COROLLARY 2. I f  b < b~,~ and for all ~ < b, 6 , (~)  > ~,(b), then b ,s rathe set of 
b-values generated by Algorithm 2. 

PROOF Assume not, i.e. there exists b ~ b . . . .  such tha t  for all ~ < /b, ~. (~) > ~, (/b) 
and b is not generated by Algorithm 2. If there are b-values b~ and b~ that  have been con- 
secutively generated by Algorithm 2 (by b2 = b~ + d)  such that  b~ < /~ < bz, then by 
Theorem 2(b)  ~t.(b) > it.(b~), which contradicts our assumption. Otherwise, b > b0 
(the last b generated by the algori thm) and b0 + do has exceeded b . . . . .  We note tha t  the 
proof of ' Iheorem 2 (b) holds for all d occurring before condition (i) recurs Then b0 < 

_< bmax< b0 + do and by q heorem 2 (b) ~ (b) > 6, (b0). Again our assumptmn has been 
contradicted [] 

3 The Knapsack Proble~ 

We are now in a position to discuss the knapsack problem with two variables We con- 
sider the following two problems first. 

Problem 1. Given #, co Find nonnegative integers i and j tha t  maximize , + ~3 
subject  to ~ + ~j < co 

Problem 2. Given g, ~- < g, co. Find nonnegative integers , and 3 tha t  maximize 
i + ~'j subject  to ~ + ~ j  < co. 

Note that  for both problems it suffices to find the optimal value of .7 since the opti- 
mal value o f ,  can be obtained by ~ = [w - ~3]. 

THEOREM 3. The solution value of 3 in Problem 1 wzll be the last b-value not exceeding 
b~ ,  that zs generated by Algorithm 2 with inputs q equal to the fractzonal part of co such that 
0 < q < I and b,~** = co/g. 

PROOF. Let 3 be the last b-value not  exceeding bm~, generated by Algorithm 2 From 
Theorem 2(b )  (as extended in proof of Corollary 2) we have:  for all ~ < bmax < 3 + d, 

fiB(fl) > 6B(3), which can be rewritten as: for all a,/3, a -- ~g + q > a -- j #  + q > 0, 
o r a - -  / 3 g +  q < 0. 

For a specified in the defimtion of ~B (/3), the first inequali ty will apply.  For  any other 
a,  one of the above two inequalities will apply.  Let  k = co - q (and thus an integer),  
then mult iplying the previous set of inequalities by  -- 1 and adding co gives: 

for a l l a , ~ ,  ( /c--  a )  + /3g < ( k - -  a)  + j g  < k + q = o~, or 
(k -- a )  -4- /3g > /k -4- q = co. (4) 

Also a - - j g + q  = ~ s ( 3 ) <  1 so ( k - - a ) + j g >  c o - - 1 ,  from whmh we see tha t  
k - -  a > co - j g  - 1 ~ - 1 since j g  < co. (k - a)  is an integer greater than --1,  thus 
greater than or equal to 0 and so by (4) we have tha t  (k --  a, .7 ) is a feasible solution 
point for Problem 1. Also from (4), we note that  for all o~, /3, either (k --  a )  + ~3g < 
(k - a)  + j g  or (k -- a )  + f~g > w, hence (k -- a, 3 ) i s  optimal. [] 

THEOREM 4. The solution value of 3 ,n Problem 2 ,s among the b-values generated by 
Algorithm 2 (using as inputs q equal to the fractwnal part of co and b~ ,  = co~g) and thus 
can be fQund b~ s,mply testing all the b-values generated to see which y~eIds the maximum 
value of i + rr3. 

We first need the following lemma: 
LEMMA 1. I f  13 > b and 8,(f3) _> ~s(b) then (p, f3) ~s not the solution to Problem 2 

for any p. 
PRoof.  We can assume tha t /3  < co/g, otherwise there would be no feasible p. Re- 

writing the assumption of the lemma, we have 

1 > 6.( /3)  = or- -  / 3 g +  q > a - -  bg-{- q = $ . ( b )  > 0. 
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Le t  k = oo -- q (k in teger ) ,  then mul t ip ly ing  the above inequa l i ty  by  --1 and adding 
oo will give 

- 1 < ( k -  a ) + ~ _ <  ( k -  a ) + b ~ _ <  ~. (5) 

N o t e  tha t  the  integer  p = (k - a )  cannot  be increased wi thou t  v io la t ing  the upper  
bound w. 

We also have  the fo l lowingmequa l i ty :  (k - a )  + ( ~ -  b)~- < (/~ - o~) d- ( / ~ -  b)tt < 
k - a. The  first pa r t  is t rue  since ~- < ~ and the  second par t  comes from (5). F r o m  this 
we see tha t  (k - a )  + ~ r  < (k - a)  + b~- and thus  (k - a, b) is a feasible solution 
which gives a greater  va lue  of the  f u n c t i o n ,  -Jr v j  t han  tha t  of (p, ~)  for the  m a x i m u m  p 
possible (and hence for all feasible p).  

PROOF OF THEOREM 4. F r o m  L e m m a  1 we see tha t  for (~, j )  to be a solution to Prob-  
lem 2 we must  have  tha t  for every  ~ < j ,  ~ (/3) > 8~ (3). Also, for (L J ) to be a solution, 
j < ~0/~; otherwise the value of i would necessarily be nega t ive  to satisfy the inequa l i ty  
and hence infeasible. By  Corol lary 2, .7 will be among  the b-values genera ted  by Algo- 
r i thm 2. 

4. A Faster Algorithm 

We now present  Algor i thm 3 (the last one in this paper) ,  which is Algor i thm 2 wi th  a 
few modificat ions tha t  will speed up its execution performance For  instance,  in Algo- 
r i thm 2, condit ion (i) would c a u s e a ~ a  + c, b ~ - - b  + d and t h u s 6 n e - - 6 n -  SD. 
Condi t ion (i) would recur unt i l  6B was reduced below 6D. ' [h is  would have  occurred 
af ter  [6B/6DJ steps. I t  is now done in one step. 

ALGORITHM 3 

Given ~, q, b ~  (0 < q < 1) 
(1) Imtia l izea = 0, b = 0, c = [ttl, d = 1, e = 1, f = 0. 
(2) Let 8~ = a - -  b t t +  q, 6D = --c + d/t, t~r = e - - f # .  

Iterate testing to determine which of conditions 0), 0i), or (hi) occurs and taking the action 
Indicated for that condition. 

(1) 6B _> t~D • a ~-- a + yc, b ~- b + ~d, where ~/ = m m  ([t~B/t~Dl,[(bm.~ -- b)/dl). 
(li) ~B < 8~ , 5D _> ~e " c~---c +'/e,  d~----d + Tf, where "y = min ([~D/~FI,[(SD-- t~)/Sp]). 

(in) ~B < ~D < ~" e* -e  + [~e/~DlC, f~'--f+ [SF/i~D]d. 
(3) HMt whenever b + d > b . . . .  

THEOREM 5 Algorithm 3 generates the solutwns to Problems 1 and 2 with inputs q 
equal to the fractwnal  part of w, bm,~ = w /#  

LEMMA 2. Let bk = b ~ kd, k = O, . .  , K ,  such that 1 > 5B(bk) > ~B(bk+l) _> O. 
Then either (~ ) none of bl , "." , bk-1 ~s a solutwn 3-value to Problem 2 or (i~ ) one of bo or 
bk ~s a solution 3-value to Problem 2. 

PROOF, Rewri t ing  the assumed iucquali t ies we have 

t > no- -  bott ~ q > " > a k -  b k # +  q> • >0.  

Mult ip ly ing  the above set of inequaht ies  by - l and adding o~ gives 

¢~-- 1 < ¢o-- q - -  n o +  bo/z < . - .  < o~-- q -  a~ ~ butt < - . .  < ~. (6) 

F r o m  the definition of b~ we have  

b ~ + l ~ -  b~tt = dtt. (7) 

Le t  ~k = W -- q -- a~, 0 < k _< K (which are integers since oo -- q ~s an in teger  and 
so is a~) and let  t = [d#]. We have .  

SUBLEMMA. ~k+l "~- i k  - -  [. 

PROOF OF SUBLEMMA. Assume tha t  for some k, z~+~ > ~, -- t + 1. T h e n  adding 
bk+~u to both sides gives 
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[d~J = ~ and so d~ - t > 0. Also, from (6), ik + b~/.t > ~ --  1 and thus i~ + b~/.t + 1 > 
.i~ Together this implies that  i ~  + b~+lg > ~, which contradicts (6). Therefore, since 
o~+~ is an integer, ~ _< i~ - t. 

Assume tha t  for some k, Z~+l < ,~ - t - 1. From (6) and (7) we have 

zk + bk~ < zk+~ -F bk+l~ _< (z~ + b~/~) "F [(d~ -- t) -- 1]. 

But this implies 1 < d# - t, which contradicts  t = Idol. This leaves ~+~ = ~k - t as the 
only possible al ternative.  

CONTINUING WITH PROOF OF LEMMA '2. If  d x  < t, then for all k, ~k + b~" = ~k+~ + 
t + bk~r = ~k+l + t + bk+l~- -- d~- > ~k+l "t- bk+l~'. Therefore {bk}, k > 0, do not maximize 
the objective function ~ -F j~r Thus (i) is true. 

I f  dTr > t, then for all k, ~k -t- bk~" < ~+l -F bk+l~- and {bkl, k < K, do not  maximize 
the objective function. Thus (i) is true 

IfdTr = t, then for all k, ~k + bk~" = i k + l +  bk+l~ 'andb0,  " , b e a l l  give the same 
value for the objective function. So either all are solution j -values to Problem 2, in which 
case (il) is true, or all are not  solutions, in which case (i) is true. 

I)ROOF OF THEOREM 5. The flows of conditions (i), (it), and (iii) in Algorithms 2 
and 3 are shown m Figure 1. 

I t  is seen tha t  the modifications simply skip over the self-loops and make (in one shot)  
all the changes in the variables tha t  would have occurred one at  a t ime 

']'he test  for |(b ..... - b ) / d  ] ensures tha t  the last b-value less than or equal to b .... 
tha t  would have occurred in Algorithm 2 does occur in Algorithm 3 and is the solution 
of Problem 1. 

As shown in Lemma 2, the skipped b's are not  needed to ensure that  the solutmn to 
Problem 2 which is generated by Algorithm 2 (see Theorem 4) is also generated by 
Algori thm 3. [] 

Next  we will show tha t  the number  of i terations in Algori thm 3 is O(log b . . . .  ). First ,  
reh~rring to Figure 2 for the flow of conditions in Algorithm 3, we have: 

LEMMA 3 Branch Z1 cannot occur more than log b,,~ t~mes. 

PROOF. Z~ occurs only if condition (iii) is followed by condition (it). Let d and f be 
values when (fit) occu r s ;d ,  f~ after ( i i i ) ;d" ,  f "  after (it). 

Then d' = d, f '  > f + d (see Algorithm 3), d '~ >_ d ~ --t- f ,  f"  = f ' ,  and thus we have 
d" > 2d. 

Thus each time Z~ occurs, d at  least doubles d is initialized at  1. After log b ..... times, 
d would have value greater than b . . . .  and the algorithm would have halted. [] 

LEMMA 4. Branches Z2 and Z3 cannot occur more than log b ~  t~mes. 

PROOF. Z1 is the only exit from (iii) and, by Lemma 3, cannot occur more than 
log bm~ times. [] 

LEMMA 5. The chain of  branches Z4 - Z6 - Z4 - Z6 cannot occur. 
PROOF. Assume it can occur. This ts equivalent to assuming that  the following se- 

(o) (b) Z I 

FLOW IN ALGORITHM 2 FLOW IN ALGORITHM 3 FLOW OF CONDITIONS 
IN ALGORITHM = 

Fie. 1 FI~ ~ 
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quence of conditions can o c c u r :  (ll) (i) (ii) 0) (li). Initially 58 < liD, 6D > 5F and 
(ii) occurs. As a result of (ii), 50' > 5D -- [(lid -- 6B)/lir]liF since (i) occurs next (see 
Algorithm 3 ). 

Also, that  (i) occurs next implies 5o' < 5, .  Furthermore, we haw; 

8 8 -  50' = 8 8 -  ( 8 0 -  [ ( l i o -  88)/li~]8~) = r ( l i o -  8,)/ l i~ll i~- ( l i ~ -  liB) < lip. 

Together this means that  after (ii) and before (i), lid was reduced below lib but just 
below 58 (see Figure 3). After (i)occurs, gin' < 8~ ~ and also 88' < liF since l i b -  liD' < lie. 
Since (li) occurs next, 5D' >__ 8F. Thus, at this point, liD' > ~F > 58'. After (ii), we have 
5o" _~ 5n' and thus (i) will occur next with 8D" < 58' < 5F. After (i), liB" < liD" and 
thus 8n" < lio" < lie. But this means (ill) and not (ii) occurs next. E3 

LEMMA 6. Branches Z4 and Z5 cannot occur more than 6 log b,,~ tzmes 
PROOF. At least one of branches Z1, Z~, or Z3 must occur for each two occurrences of 

branches Z4 or Z5 since there are no self-loops and wo cannot loop Za and Z~ for more 
than two occurrences of Z4. Since the sum of the number of occurrences of Z1, Z~, and 
Z,~ is less than 3 log b .... (Lemmas 6 and 7), Z4 and Z5 cannot occur more than 6 log 
bm~ times. [] 

THEOnEM 6. The number of sterations in A lqorzthm 3 is 0 (log b~:) .  
PROOF. I t  follows from Lemmas 3, 4, and 6. [] 
COROLLARY 3. Algorithm 3 can be used to solve Problem 1 or Problem 2 in 0 ({ log ¢o [ + 

{ log ~ I) ~terations 
PROOF. For Problem 1, the last b-value generated is the solutmn j-value. To get this 

it will take 0 (log bm~) _< 0 (] log w I + ] log ~ I ) iterations. The solution ~-value is simply 
= [oo--~3J- 
For Problem 2, we need simply look at the b-values generated (less than or equal to 

O(log b .... ) of them) and test for maximizing ~ -k r j  with j = b, ~ = [w -- #jJ. [] 
Finally, we can address the original problem: 
Problem 3. Given cl , c2, a~, a2, b. Find integers X1, X2 _> 0 so that clX1 + c2X~ is 

maximized and a~X1 -k a~X~ < b. 
COROLLARY 4. Algorithm 3 can be used to solve Problem 3 in 0(I log c~ I + I log c~ I + 

I log all -F I log a2 I + I log b I) iteratwns. 
PROOF. Without loss of generality, we can assume that cx/a~ > c2/a2. 
If  c~/a~ > cJa2,  then Problem 3 is equivalent to Problem 2 with ~r = c2/c~, 1~ = a~/al, 
= b/a~. 

If  cz/a~ = c2/a~ then Problem 3 is equivalent to Problem 1 with # and w as above. 
In  either case the algorithm will terminate in 0 (I log w [ -t- I log I~ I ) iterations and 

Ilog¢°[ < II°gb[ + Iloga,  I, [ l o g # l  -< I logal l  + [loga21- 
Since the number ~r = c~/c~ is used, the term 0 (I log c~ I + [ log c~ [ ) is also needed. 

The corollary thus follows. [] 
Since in each iteratmn multiplication of 0 (n) precision numbers is being performed 

and such a multiplication takes time 0 (n log n log log n),  it follows that  the asymptotic 
time complexity of our algorithms is 0 (n 2 log n log log n).  
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5. Concluding Remarks 

In  this paper we propose an algonthm to solve the knapsack problem with two variables. 
This algorithm originates from a well-known continued fraction method and runs in 
polynomial time of the input length. We conjecture that  for any fixed n > 2, the knapsack 
problem with n vanables may be solved in polynomial time The proof seems very 
difficult and generalization of the method used in this paper does not seem to work. I t  is 
hoped that  the modest beginning presented in this paper will draw the at tention of more 
re~,arche~ and will bring about the eventual solution of this problem 
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