
Algorithmica (1989) 4:503-510 Algorithmica
�9 1989 Springer-Verlag New York Inc.

The Set-Set LCS Problem

D. S. Hirschberg ~ and L. L. Larmore t

Abstract. An efficient algorithm is presented that solves a generalization of the Longest Common
Subsequence problem, in which both of the input strings consists of sets of symbols which may be
permuted.

Key Words. Subsequence, Common Subsequence, Dynamic programming.

1. Introduction. The Longest Common Subsequence (LCS) problem can be
described as follows: given two sequences a = {ai}l_<i<_m and fl = {bj}l_<j_<n, find
a longest sequence which is a subsequence of both a and ft. The reader is referred
to [M] and [S] for a thorough background of the LCS problem.

In this paper we discuss a generalization of the LCS problem which we call
the Set-Set LCS problem. Given a sequence of sets A = {Ai}l_<~_<p, we say that a
sequence a = {ak}~<_k<_,n is a flattening of A if a is the concatenation of strings,
the ith of which is some permutation of Ai. An instance of the Set-Set LCS
problem of size m x n consists of two sequences of subsets of some alphabet ~,
A = {A~}~<_~<p and B = {Bj}~<j<q, where the sum of the cardinalities of the A~ is
m, and the sum of the cardinalities of the Bj is n.

We define the Set-Set LCS problem to be the problem of finding a longest
common subsequence of a and fl, where a ranges over all possible flatten-
ings of A, and fl ranges over all possible flattenings of B. As an example, if A =
({comp}, {uter}, {science}, {degree}) and B = ({greedy}, {algorithm}, {cou}, {rse})
then a Set-Set LCS of A and B is (morticser).

The case where all the sets of both A and B are singletons is that of the LCS
problem. The LCS problem has been solved in time O(mn) and linear space [H],
and there is known a subquadratic-time algorithm [MP]. The case where all the
sets of just B are singletons was solved in O(mn) time in a previous paper [HL].
That case arose from the problem of computer-driven music accompaniment,
matching polyphonic performances against a solo score [BD]. In this paper we
present an O(mn)-time algorithm which solves the general Set-Set LCS problem.
This problem corresponds to the generalization of the problem of computer-driven
music accompaniment, where now the score, as well as the live performance,
may have embedded chords. Note that, in accordance with the meaning of chords,
the sets are simple sets. However, as detailed at the end of Section 3, the algorithm
can handle multisets.

1 Department of Information and Computer Science, University of California at Irvine, Irvine, CA
92717, USA.

Received August 1985; revised June 1987. Communicated by David Dobkin.

504 D.S. Hirschberg and L. L. Larmore

Notation. A capital letter denotes a set. A greek letter denotes a string.

2. Abstract Description of the Algorithm. For convenience we define Ao = B0 = ~.
We define Entries(i, j) to be the set of triples (k, F, G) such that:

(1) k is the length of 3', a common subsequence of some flattening of A1. . .Ai
and some flattening of B~.. . Bj,

(2) free set F c_ A~ is the set of symbols of A~ which are not used by 7, and
(3) free set G ~ Bj is the set of symbols of Bj not used by 3'.

We refer to such a triple as an entry. The length of the LCS of some flattening
of A I " " Ap and some flattening of BI. . . Bq is then, by definition, the largest k
such that (k, F, G) ~ Entries(p, q) for some F and G. Entries(O, 0) contains just
one entry, namely (0, 0, 0), while Entries(i, j) can be computed dynamically from
Entr ies (i - l , j) and Entries(i, j-1). The problem is that the cardinality of
Entries(i, j) could become very large, making such an algorithm exponential in
the worst case.

If e = (k, F, G)~ Entries(i- 1,j) and S is any subset of A~ n G, then e '=
(k+lSI, A i - S , G - S) is an element of Entries(i,j) and we say that e vertically
generates e'. That e '~ Entries(i,j) is shown by the following. If a is a length k
common subsequence of some flattening of A~..-Ai_~ and some flattening of
BI""Bj, where F _ A~_~ and G ~ Bj are the free sets, and /3 is a sequence
consisting of the elements of S written in any order, then o~/3 (having length
k + I Sl) is a common subsequence of 'a flattening of A~.. . A~ and a flattening of
B~...Bj, with free sets A~- S and G - S .

Similarly, if (k, F, G) ~ Entries(i , j- 1) and S___ Fc~ Bj, we say that (k, F, G)
horizontally generates (k + Isl, E - S, nj - S) ~ Entries(i,j).

LEMMA 1. I f e ~ Entries(i,j) for i + j > O, then e is generated by some element of
either Entries(i- 1,j) or Entries(i, j - 1).

PROOF. Let (k, F, G)c Entries(i,j), and let 3' be a common subsequence of
some flattening of AI" '" Ai and some flattening of BI""Bj, with free sets F ~ Ai
and G ___ Bj. Flattenings of both (Ai - F) and (Bj - G) appear as suffixes of 3', there-
fore either (A~- F) _ (B j - G) or (B j - G) _ (A~- F). The cases are symmetric,
and we consider the case that (B j - G) c (A~-F) . Let fl be the suffix of 3'
which is a flattening of S = Bj - G, and let a be the prefix of 3' such that a/3 =
3". Then c~ is a common subsequence of some flattening of A I ' " Ai and some
flattening of B I ' " B j - I , with free sets F w S and some G ' ~ Bj_~. In this case,
(k-lSl, F u S, G'), which is an element of Entries(i , j-1), generates (k, F, G).
In the symmetric case, (k, F, G) is generated by an entry of Entries(i- 1,j).

[]

The following algorithm is a dynamic programming algorithm in which the
boundary conditions are set and then the internal entries are determined:

The Set-Set LCS Problem 505

The algorithm initial description
for all i, Entries(i, O) <- {(0, A~, O)}
for all j, Entries(O,j) <-- {(0, 0, Bj)}
for i = 1 t o p

for j = 1 to q
Entries(i,j) <- {all entries vertically generated from Entries(i - 1,j)}

u {all entries horizontally generated from Entr ies(i , j -1)}

max_k~ the largest k such that (k, F, G)~ Entries(p, q) for some F, G

The above algorithm may be very t ime-consuming because of a proliferation
of triples. We will speed the algorithm by eliminating consideration of many
triples.

I f (k, F, G), (k', F', G') ~ Entries(i,j), we say that (k, F, G) dominates
(k' , F ' , G ') if the following conditions hold:

1. k>-k '.
2. I F ' - F I < - k - k ' .
3. I G ' - G l < - k - k '.

LEMMA 2. Any element o f Entries(i,j) which is not maximal with respect to the
relation "dominates" can be discarded during execution of the algorithm without
affecting the final value o f max_k.

PROOF. By downward double induction on i and j. The value of max_k is
obtained in the last step from just one maximal element of Entries(p, q), and all
other elements may be discarded with no effect. Suppose i + j < p + q, and suppose
e 'cEntr ies(i , j) is not maximal. Then e' is dominated by some maximal e~
Entries(i,j). We will show that any maximal element of Entries(i + l, j) or
Entries(i , j+ 1) which is generated by e' is also generated by e. By the inductive
hypothesis, e' can then be discarded.

Write e = (k, F, G) and e'= (k', F', G'). Suppose that e' horizontally generates
f'=(k'+lS'[, F ' - S ' , Bj+~-S') for some S ' ~ F ' nB]+I. Let S = S ' c ~ F , and let
f = (k+lSl, F-S, g+~-S), which is horizontally generated by e. Since e domi-
nates e', we know that 6 = k - k'--- 0 and that x = IF' - FI -< 6. Then y = I S ' - S[=
IS'-(S'c~F)I=IS'-FI<-x<-a. We see that z=(k+lSl)-(k'+lS'l)=S-y>-O,
Also, I (F ' - S') - (F - S) t =] (F ' - F) - (S ' - S)] -< x - y -< 8 - y = z. And also G ' -
G = 0, since S ___ S'. Thus f dominates f ' , and so either f ' is not maximal or f = f ' .

The vertical case is similar. []

I f e = (k, F, G) ~ Entries(i , j), we define the horizontal child of e to be hor(e) =
(k + I F c~ Bj+ll, F - Bj+I, Bj+I - F) , and define the vertical child of e to be ver(e) =
(k+lAi+l n GI, Ai+~- G, G-A~+l) . We define MaxEntries(i , j) to be the set of
maximal elements of Entries(i,j) under the dominance relation.

506 D.S. Hirschberg and L. L. Larmore

LEMMA 3. Any entry horizontally generates at most one maximal entry and
vertically generates at most one maximal entry.

PROOF. Let e = (k, F, G) e Entries(i,j). The only entry horizontally generated
by e which could possibly be maximal is hot(e), since it dominates any other
entry horizontally generated by e. Similarly, vet(e) dominates any other entry
vertically generated by e. []

We say that (k, F, G) strongly dominates (k', F, G) if k > k'. If S c_ Entries(i,j),
define Dom(S) c_ S to be the set obtained by deleting every element of S which
is strongly dominated by another element of S.

We now inductively define sets Chain(i, j) c Entries(i, j) by:

1. Chain(i, 0) = {(0, A,, ~)}.
2. Chain(O,j) = {(0, 0, Bs)}.
3. Chain(i , j) = Dom({ver(e)[e e Chain(i - 1,j)} w {hor(e) I e e Chain(i , j - 1)}).

We refer to entries in Chain(i , j) as weakly maximal. We observe the following
lemma.

LEMMA 4. MaxEntries(i,j) ~_ Chain(i,j).

PROOF. By double induction. For i = 0 or j = 0, the two sets are identical. For
i, j > 0 , and e e MaxEntries(i , j) must be a horizontal or vertical child of some
maximal entry, which is weakly maximal by induction. It follows that e must be
weakly maximal, since it is maximal and thus cannot be deleted by the operator
Dom. []

Making use of Lemmas 2-4, we modify the algorithm as follows:

The algorithm--using weakly maximal entries
for all i, Chain(i, 0) ~- {(0, Ai, i~)}
for all j, Chain(O,j) ~- {(0, ~, Bj)}
for i = 1 t o p

for j = 1 to q
begin

Chain(i, j) ~- 0
for all (k, F, G) ~ Chain(i , j - 1)

insert (k + I F n Bjl , F - Bj, B~- F) into Chain(i , j)
for all (k, F, G) e Chain(i - 1,j)

insert (k + IAi n G I, Ai - G, G - A~) into Chain(i,j)
delete all nonweakly maximal elements from Chain(i , j)

end
max_k~ the maximum value of k such that (k, F, G) e Chain(p, q) for

some F and G

The Set-Set LCS Problem 507

3. Efficient Implementation of the Algorithm. We now develop a logical structure
on Chain(i,j) that will help obtain an efficient implementation of the algorithm.
We begin by defining a transitive reflexive relation <~ on Entries(i,j). We say
that (k, F, G)<](k', F', G') if F _ F' and GD_ G'.

LEMMA 5.

(a) I f e, e ' s Entr ies(i , j -1) , and if e<]e', then hor(e)<lhor(e').
(b) I f e, e'~ Entries(i - 1,j), and if e<l e', then ver(e) <1 ver(e').
(c) I f e ~ Entr ies(i , j - 1) and e' ~ Entries(i- 1,j), then hor(e)<l ver(e').

PROOF. (a) hor(e) = (k, F - Bj, Bj - F) and hor(e') = (k', F' - Bj, Bj - F'). It fol-
lows from F ~ F' that F - B j c _ F ' - B j and Bj-FD_ B j - F ' , i.e., hor(e)<~hor(e').

(b) Similar to the proof of (a).
(c) Write e -- (k, F, G) and e '= (k', F', G'). Then hor(e) = (k, F - Bj, Bj - F)

and ver(e') = (k', Ai - G', G ' - Ai). We see that F _ Ai since e s Entries(i,j - 1),
and that G'c_Bj since e ' ~ E n t r i e s (i - l , j) . As a result, F - B j c _ A i - G ' and
B j - F D G' - Ai, i.e., hor(e) <] ver(e'). []

LEMMA 6. The relation <~ imposes a total order on Chain(i,j).

PROOF. It suffices to show that for any distinct f, f ' ~ Chain(i,j), either f< l f '
or f ' <l f, but not both. If f<~f' and f'<~f, then f and f ' would have the same free
sets, which implies they must be identical, else the one with the smaller value of
k would not be weakly maximal. Thus, we need only show that f and f ' are
comparable. We do this by induction on i and j.

Chain(O,j) contains just one entry, namely (0, 0, Bj), and hence is ordered.
Similarly, Chain(i, 0) contains only the entry (0, A,, 0).

Suppose i , j>0 , and f, f ' ~ Chain(i,j). Both f and f ' must be generated by
maximal entries e and e', respectively. We consider three cases. If f and f ' are
the horizontal children of e and e', respectively, then by induction, e and e' are
comparable, hence f and f ' are comparable by Lemma 5(a). I f f and f ' are the
vertical children of e and e', the proof is similar, using Lemma 5(b). I f f is the
horizontal child of e andf ' is the vertical child of e', t h e n f andf ' are comparable
by Lemma 5(c). []

COROLLARY. Chain(i,j) has cardinality at most 1 + IA, I +IBjl.

PROOF. If e = (k, F, G)~ Entries(i,j), define the signature of e to be IF[-[G[,
which must lie in the range [-[Bj[, IA,I]. Since Chain(i,j) is ordered under the
relation <~, each entry must have a different signature. []

The following small example illustrates the generation of Chain(i,j). Sets of

508 D.S. Hirschberg and L. L. Larmore

characters are indicated without the usual braces and commas. The empty set is
indicated by " - " :

comp

uter

red algorithm course
(2,mp,urse)

(0,comp,red) (2,cp,algrith) (3,p,ourse)
(5,t,s)
(6,t,os)

(4,ue,algih) (6,-,cors)
(2,ut,d) (3,u,algorihm) (4,-,corse)

The horizontally generated entries are aligned horizontally. In this example,
no entries were eliminated as a result of strong dominance. The length of the
Set-Set LCS is 6. Note that, in accord with Lemma 5(c), the horizontally generated
entries <3 the vertically generated entries.

We now develop an efficient data structure to represent the lists Chain(i,j).

Respecting Orderings. If A is a finite set, and if C is a set of subsets of A, we
say that an ordering a l , . . . , ala I of A respects C if, for each S ~ C, S = {al, �9 �9 �9 alsl}.
We remark without proof:

LEMMA 7. There exists an ordering of A which respects C if and only if C is strictly
ordered by proper inclusion.

LEMMA 8. I f A is ordered in a manner which respects C, then each element of C
may be represented by an integer in the range [0, IA]].

Notation. If a = (a l , . �9 a,) is a list of distinct items, and if S is a set, then
we let a 1' S denote the list consisting of all a, which are members of S, in the
ordering inherited from a. We let a ~ S denote the list consisting of the remaining
items of a, also in the inherited order. For example, if a = (s, h, a, d, e) and
S = {t, h, e}, then a 1' S = (h, e) and a $ S = (s, a, d).

Implementation of Chain(i,j). Let Chain(i,j)=(kl, F1, G1)<]"" "<l(kr, Fr, Gr).
Then Chain(i,j) will be represented by the following three lists:

(1) a,~, an ordering of A~ which respects { F i , . . . , F~}.
(2) /3 U, an ordering of B: which respects { G x , . . . , Gr}.
(3) y~, the list of ordered triples of integers (kl, lUll, IG, I) , . . . , (kr, IF, I, IG~I).

The values of all free sets for all weakly maximal entries in Chain(i,j) are
determined by the above information, which takes O(l&l + Injl) space.

Initialization. Chain (i, 0) is initialized by choosing t~o to be an arbitrary ordering
for At. The single element of Chain(i, 0) is represented by the triple (0, IA, I, 0).
Chain(O,j) is initialized similarly.

The Set-Set LCS Problem 509

Construction of Chain(i, j). For i, j > O, we can define

av = (c~u_ ~ ~ Bj) �9 (fl,_~.j 1' A,) R,

~,j = (~,_,,j ~ a,) �9 (~,,j-t t Bj) R,

where �9 denotes concatenation and ag denotes the reverse of list a.
We expend O(IA, I + Injl) time to compute and store an index function index,

which has the property that

ai, j - l [1 . . !] ~, Bj has length index(l) for all 1 <- I - < IAil.

Suppose e = (k, F, G) c Chain(i , j - 1) is represented by the triple (k, IFI, IGI) in
the list 7i, j-1. Then hor(e) = (k + IF n Bjl, F - Bj, Bj - F) is represented by the
triple

(k+ IFI- index(IFI), index(IFI), Injl - IFI + index(IFI))

which can be computed in constant time. Similarly, the triple representing the
vertical child of e ~ Chain(i - 1,j) can be computed in constant time. The list Y0
is obtained by considering all such horizontal and vertical children, but keeping
only those triples (k, f, g) where k is maximum for given f and g. The culling
process can be done in O(1) time for each triple culled, since the triples are
generated in monotone order with respect to the relation <3. Thus, Chain(i,j)
can be generated in O(IA, I + Injl) time altogether.

The entire algorithm thus takes O(mn) time, and the longest common sub-
sequence can be recovered by maintaining a parent pointer from each weakly
maximal entry to the entry' that generated it.

Reduced Space. If Im, I <-a and Injl <-b for all i and j, the longest common
subsequence can be found in O(bn) time or O(am) time, whichever is smaller,
by using a variation of Hirschberg's technique, from [H]. Without loss of general-
ity, am <_ bn. The weakly maximal entries, together with their parent pointers,
form a tree T rooted at (0, ~, ~) c Chain(O, 0). For e = (k, F, G) ~ Chain(i,j), we
define

depth(e) = IAll + " " + IA, I - If[.

Note that the depth of an entry must be at least as great as the depth of its parent.
We define an entry e to have middling depth if depth(parent(e)) <- n/2 < depth(e).
Note that each e whose depth exceeds n/2 has a unique ancestor in T of middling
depth, which we call Mid(e),

The Space Saving Algorithm. We run the algorithm, discarding the data structure
for Chain(i,j) as soon as all children of its elements have been computed, saving
only Chain(p, q) and also saving all weakly maximal entries of middling depth
and their parents. The space needed is O(am). In addition, for entries whose
depth exceeds n/2, we compute the middling ancestor. Finally, let best~
Chain(p, q) be the entry of maximum k, let e = Mid(best), e' =parent(e), and

510 D.S. Hirschberg and L. L. Larmore

root = (0, 0, ~). The path from best to root can be recovered by running the
algorithm recursively twice, once to recover the path from e' to root, and once
from best to e. These subproblems have size, together, at most half the size of
the original problem. Thus the total time complexity is still O(mn).

Multisets. All the methods of this paper can be applied to the more general
problem where the Ai and Bj are multisets. If L is a list (of not necessarily distinct
items) and S is a multiset, the list L t S is defined as the list whose items are
those elements of S that appear in L, in the order that they appear in L. If x e S
of multiplicity s and x appears I times in L, then L t S contains the first min{s, l}
appearances of x. We then define L ~ S to be the list consisting of the items of
L after the items of L ,~ S have been removed.

For example, if L = (a, b, e, b, a, d) and S{a, b, d, d} then L ~' S = (a, b, d) and
LJ, S = (c , b , a) .

References

[BD] J.J. Bloch and R. B. Dannenberg, Real-time computer accompaniment of keyboard perform-
ances, proc. 1985 Int. Computer Music Conf. (Aug. 1985).

[H] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences,
Comm. ACM 18, 6 (1975), 341-343.

[HL] D.S. Hirschberg and L. L. Larmore, The Set LCS problem, Algorithmica 2 (1987), 91-95.
IMP] W.J. Masek and M. S. Paterson, A faster algorithm for computing string-edit distances, J.

Comput. System Sci. 20, 1 (1980), 18-31.
[M] E.W. Myers, An O(ND) difference algorithm and its variations, Algorithmica 1 (1986),

251-266.
[S] D. Sankoff and J. B. Kruskal (eds.), Time Warps, String Edits, and Macromolecules: The

Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA, 1983.

