
A Bounded-Space Tree Traversal Algorithm

D.S. Hirschberg† and S.S. Seiden†

Abstract

An algorithm for traversing binary trees in linear time using constant extra space is presented.
The algorithm offers advantages to both Robson traversal and Lindstrom scanning. Under
certain conditions, the algorithm can be applied to the marking of cyclic list structures. The
algorithm can be generalized to handle N-trees and N-lists.

Keywords

Data structures

Introduction

Algorithms to traverse trees are in the tool chest of every good programmer. Tree traversals are

used in many diverse applications, from searching to artificial intelligence. It is therefore

important to be able to traverse trees in a time- and space-efficient manner. We present an

algorithm which is efficient in both these considerations. The algorithm visits all nodes of an n-

node tree in OP(n) time using OP(1) extra storage. We assume that the tree is represented as a

collection of nodes, each of which contains some fixed number of pointers to their children, with

no spare bits. Additionally, under certain conditions, we can use a variation of the algorithm to

mark cyclic lists.

Background

There has been a long progression of algorithms devised to traverse trees. Perhaps the simplest

of these is the basic recursive method taught to many first-year students. This method is fairly

time-efficient but quite space-wasteful. The use of an explicit stack in traversal results in a

slightly more space-efficient algorithm because there is no need to save local variables and return

addresses. However, both of these algorithms require, in the worst case, OP(n) extra storage.

More space-efficient algorithms are often required. Improvements on the basic traversal method

rely on one of two methods: pointer inversion and threading.

The pointer inversion method is due to Schorr and Waite [8] (Knuth [2] and Standish [10] also
------------------------
† Department of Information and Computer Science, University of California, Irvine, CA 92717.



credit Deutsch with independent discovery). This method uses the fields of nodes previously

traversed to store a stack in the tree itself. The Schorr-Waite-Deutsch algorithm, as originally

developed for cyclic lists, requires an extra two bits per node for traversal, but an adaptation to

the case of trees makes one of these bits unnecessary. Wegbreit [11] uses a bit stack external to

the list structure which requires OP(log n) bits on average and OP(n) bits in the worst case. A

further improvement was offered by Lindstrom [3], in the form of Lindstrom scanning, an

algorithm which requires OP(1) extra storage. However, Lindstrom scanning is unable to perform

the three standard tree traversals: preoder, inorder, and postorder. Lindstrom also devised a

marking scheme for cyclic lists which uses no space outside of the mark bit [4]. However, this

algorithm has a best case time of OP(n log n) and a worst case time of OP(n2).

The basic threading method is due to Perlis and Thorton [6]. Their method, however, requires an

extra bit for each pointer, making it an OP(n)-space algorithm. An improvement on the basic

threading method is Robson traversal [7], which threads the stack through the leftmost leaf

nodes. However, both of these algorithms require that the leaf nodes have empty fields

available. In some cases those fields may not be available. For example, expression trees

(commonly used in interpreters and compilers) have interior nodes which represent operators,

and leaves which represent variables or constants. The leaves are often stored in symbol or

constant tables, which have no empty fields for threading.

Table 1 provides a summary comparison of tree traversal algorithms.

Algorithm leaf worst uses shared cyclic notes
pointer fields space node subtrees lists
not required (bits) space

Schorr-Waite X n X X X
Wegbreit X n X X
Lindstrom scan X – cannot do pre/in/post-order
Lindstrom mark X – X X X OP(n2) worst time
Perlis-Thorton n X
Robson –
Siklòssy X n X read-only
Algorithm A X – nodes may change location
Algorithm B X – X X unordered structures only
recursive X OP(n)wds X X
explicit stack X n wds X X
Note that algorithms for cyclic lists require an additional mark bit per node.

Table 1. Algorithms for tree traversal

About the Algorithm

- 2 -



Unlike Robson’s traversal, the algorithm presented does not require leaves to have two empty
pointer fields; therefore, it will work for trees where the leaves are stored differently than interior
nodes. Unlike Lindstrom scanning, the algorithm knows whether it is visiting a node for the
first, second, or third time. Therefore, it can be used for preoder, inorder, and postorder
traversals. Furthermore, under special conditions, the algorithm also can be applied to cyclic
lists. However, it should be noted that outside pointers to nodes of the tree other than the root
may become obsolete.

Our algorithm might be useful in the following situation. Suppose we have a program which
uses a binary tree structure to store information. Leaf nodes have a structure differing from that
of internal nodes; they have no left and right pointer fields. There are no extra bits in the nodes
which might be utilized for traversal. If we run out of memory, and there is no memory that can
be reclaimed, then we wish to print out the information in the tree in both inorder and preorder,
so that we might reconstruct the tree.

The algorithm is based on the fact that the children of any node of a tree can be rearranged to be
ordered according to their addresses. This is true for many (though not all!) programming
languages and architectures. If a node has pointers, L and R, to its two children and L is a
higher-valued address than is R, the node can be ordered as follows. Exchange the pointers, L
and R, and then exchange the contents of the nodes pointed to by L and R. The result is that L
points to a different node than before but the contents of the node pointed to by the new L will be
identical to the contents of the node pointed to the old L. Similarly for R. The resulting tree is
semantically identical to the original (in structure and data content), and differs only in the
location of some tree nodes. This is possible, but not trivial, in cyclic lists or trees which have
shared subtrees, because several pointers to any node may exist. The algorithm orders the
children, so that the address of the left child is always less than the address of the right child.
When a node in the tree has only one child, the algorithm works the same as does normal pointer
inversion. However, the algorithm always traverses the left subtree of nodes with two children.
When the right subtree needs to be traversed, the left and right subtrees are exchanged, and the
left is traversed. This is the key part of the algorithm. Because the pointer to the parent is
always stored in the left pointer field, when returning to a node with two non-empty children the
algorithm always knows which pointer is to the parent. The algorithm merely has to return the
children to their proper orientation. A special pointer value, Lroot, is required to indicate the
parent of the root.

More abstractly, the algorithm rearranges the non-empty children of any node so that they are
ordered by their addresses. The first non-empty child pointer is traversed using the standard
pointer inversion technique. Each time the algorithm visits a particular node, it permutes the
non-empty child pointers cyclically, repeatedly traversing the first until the children are returned
to the original configuration. It then returns to the parent.

This procedure of child ordering (where the memory addresses of nodes are changed) permutes
values (in this case, addresses) to encode bits and is illustrative of implicit data structures [1],[5].
Child ordering can be applied to ordered trees and may invalidate outside pointers. We will also
show a variation of this procedure using pointer ordering in which the memory addresses of
nodes remain unchanged but the order of the contents is changed. This variation can be applied

- 3 -



to structures with shared subtrees and to cyclic lists, but requires the assumption that children are
unordered.

A non-leaf node, x, is presumed to have fields left and right which (at least initially) contain
pointers to the left and right sons of x. isleaf(x) evaluates to true iff x is a leaf node. Note that
isleaf(Lroot) is False. We list some of the ways in which isleaf could be implemented.
1. check whether both pointer fields of x evaluate to nil (in this case leaves have the same
structure as do non-leaf nodes).
2. check whether a tag field is set (in this case all nodes have an extra one-bit tag field).
3. check whether a data field contained within the node has value satisfying a known constraint.
4. check whether the node’s address is within a predetermined range.

The algorithm uses the following variables: c points to the current node, p points to the parent of
the current node, and t is a temporary.

ALGORITHM A

1. (Initialize)
if root = nil then goto Step 9 fi
c = root
p ← Lroot

2. (Order children)
if left(c) ≠ nil and right(c) ≠ nil

and ¬ isleaf(left(c)) and ¬ isleaf(right(c))
and right(c) < left(c) then

exchange left(c) and right(c)
exchange the contents of left(c) and the contents of right(c)

fi
preorder visit
if left(c) = nil then goto Step 4 fi
if isleaf(left(c)) then

visit left(c)
goto Step 4

fi
3. (Traverse left)

t ← left(c)
left(c) ← p
p ← c
c ← t
goto Step 2

4. (Finished traversing left subtree)
inorder visit
if right(c) = nil then goto Step 6 fi
if isleaf(right(c)) then

visit right(c)
goto Step 6

- 4 -



fi
5. (Traverse right)

if left(c) = nil or isleaf(left(c)) then
t ← right(c)
right(c) ← p
p ← c
c ← t
goto Step 2

else
exchange left(c) and right(c)
goto Step 3

fi
6. (Finished traversing right subtree)

postorder visit
if p = Lroot then goto Step 9
if left(p) = nil or isleaf(left(p)) then

7. (There had been no left subtree)
t ← c
c ← p
p ← right(c)
right(c) ← t
goto Step 6

fi
8. (There had been a left subtree)

t ← c
c ← p
p ← left(c)
left(c) ← t
if right(c) = nil or isleaf(right(c)) or t < right(c) then

goto Step 4
else

exchange left(c) and right(c)
goto Step 6

fi
9. (Done!)

The programmer is free to perform whatever operation he wants (as long as it does not alter the

tree) during the preorder, inorder, and postorder visits.

Analysis

We note that the step ‘‘Order children" does not alter the tree in such a way that the semantics of

the tree are changed. If x is a node in a tree, then the only pointer to the left child of x is left(x).

- 5 -



Likewise for the the right child. Therefore, exchanging the left and right pointers, and then their

contents, does not change the meaning of the tree.

We use LEFT(x) to denote the address of the left son of node x in the original tree as adjusted by

the ‘‘Order children" fragment. We use RIGHT(x) and PARENT(x) analogously. We define a

tree to be trivial if it is empty or consists of a single leaf node.

We show that the algorithm is correct by induction on the size of the tree. If the given tree is

empty, this is detected in Step 1, and the algorithm terminates. Otherwise, for any given node x

in the tree, we show that if the traversal of the subtrees headed by the children of x is correct,

then the traversal of the subtree headed by x is correct. By this it is meant that the following

events occur in the following order.

(i) we reach the point marked preorder visit, with c pointing to x and p pointing to the parent

of x.

(ii) the subtree headed by left(x) is traversed.

(iii) we reach the point marked inorder visit, with c and p as above.

(iv) the subtree headed by right(x) is traversed.

(v) we reach the point marked postorder visit, with c and p as above.

We consider the sequence of events that follow after the preorder visit in Step 2 of a node x.

Each of the subtrees headed by x’s two children can be either trivial or non-trivial, thus

producing four possible situations.

If x has two trivial subtrees, then Step 4 is executed, and the inorder visit performed. Finally

Step 6 is executed, and the postorder visit is performed. All values are correct.

If x has a non-trivial left subtree and a trivial right subtree then Step 3 is performed. This rotates

the values of p, c, and left(x). The old values were: p=PARENT(x), c=x, left(x)=LEFT(x). The

new values are: p=x, c=LEFT(x), left(x)=PARENT(x). Assuming the traversal of the left subtree

is correct, Step 6 will be eventually reached. Since p now contains the value x, left(p) contains

the value PARENT(x) which is non-trivial. Accordingly, Step 7 will be bypassed and Step 8 will

be performed, rotating the values of p, c, and left(x) back to their original locations. Since the

right(x) is trivial, we go to Step 4. The inorder visit is performed and then the postorder visit is

performed in Step 6. The values of p and c have been restored, as well as the values of left(x)

and right(x).

- 6 -



If x has a trivial left subtree and a non-trivial right subtree then, since left(x) is trivial, we

proceed to Step 4 where the inorder visit is performed and then to Step 5. Since the left subtree

is trivial, the first section of Step 5 is performed. This rotates the values of p, c, and right(x).

The old values were: p=PARENT(x), c=x, right(x)=RIGHT(x). The new values are: p=x,

c=RIGHT(x), right(x)=PARENT(x). Assuming the traversal of the right subtree is correct, Step

6 will be eventually reached. Since p now contains the value x, left(p) contains the value

LEFT(x) which is trivial. Therefore, Step 7 will be performed, rotating the values of p, c, and

right(x) back to their original locations, and then we proceed to Step 6. Step 6 performs the

postorder visit. Once again, all values are correct.

If x has two non-trivial subtrees then Step 3 is performed. This rotates the values of p, c, and

left(x). The old values were: p=PARENT(x), c=x, left(x)=LEFT(x). The new values are: p=x,

c=LEFT(x), left(x)=PARENT(x). Assuming the traversal of the left subtree is correct, Step 6

will be eventually reached. Since p now contains the value x, left(p) contains the value

PARENT(x) which is non-trivial. Accordingly, Step 7 will be bypassed and Step 8 will be

performed, rotating the values of p, c, and left(x) back to their original locations. Since the

neither left(x) or right(x) are trivial and the address of left(x) is less than the address of right(x)

we know that the right subtree has yet to be traversed and proceed to Step 4. The inorder visit is

performed. The values of left(x) and right(x) are exchanged in Step 5. Step 3 is then performed.

This rotates the values of p, c, and left(x). The old values were: p=PARENT(x), c=x,

left(x)=RIGHT(x). The new values are: p=x, c=RIGHT(x), left(x)=PARENT(x). Assuming the

traversal of the left subtree (which is really the right subtree) is correct, Step 6 will be eventually

reached. Since p now contains the value x, left(p) contains the value PARENT(x) which is non-

trivial. Accordingly, Step 7 will be bypassed and Step 8 will be performed, rotating the values

of p, c, and left(x) back. The old values were: p=x, c=RIGHT(x), left(x)=PARENT(x). The new

values are: p=PARENT(x), c=x, left(x)=RIGHT(x). Since neither left(x) nor right(x) are trivial

and the address of left(x) is greater than the address of right(x) we re-exchange left(x) and

right(x), returning them to their original locations, and perform the postorder visit. All values

are once again correct, and the proof is concluded.

Potential Variations

Algorithm A, in a slightly different form, can be used to mark cyclic list structures, if one is

willing to forego having a predefined order on a node’s children. That is, despite the fact that the

pointer fields within a node are ordered (there is a first pointer and a second, etc.), the fields may

- 7 -



be permuted, destroying the information inherent in their positioning.

ALGORITHM B

B1. (Initialize)
if c = nil then goto Step B6 fi
p ← nil

B2. mark(c)
if left(c) = nil or marked(left(c)) then goto B4 fi

B3. (Traverse left)
t ← left(c)
left(c) ← p
p ← c
c ← t
goto Step B2

B4. (Traverse right)
if right(c) = nil or marked(right(c)) then goto Step B5 fi
exchange left(c) and right(c)
goto Step B3

B5. (Traverse up)
if p = nil then goto Step B6 fi
t ← c
c ← p
p ← left(c)
left(c) ← t
goto Step B4

B6. (Done!)

It is easy to see that Algorithm B works correctly. We define a cycle-causing link to be a pointer

from a node to one of its ancestors, or to itself. Without the cycle-causing links, any list is

merely a tree (perhaps with shared subtrees). Algorithm B never traverses any cycle-causing

links. This is because, at any point in the traversal, all the ancestors of the current node are

marked, as is the current node itself. Algorithm B never revisits nodes which are marked. The

fact that there may be shared subtrees makes no difference, because this algorithm does not

reorder nodes. Since the pointer to the parent is always stored in the pointer to the left child, it is

always possible to correctly restore the p pointer. This also makes the use of Lroot unnecessary.

However, it is impossible to always correctly restore the original orientation of the children. The

left and right children may have been exchanged, but this cannot be determined. The algorithm

can be generalized to handle trees and lists with N children.

Marking algorithms are generally used for garbage collection. The best previous algorithm for

- 8 -



cyclic list structures using bounded space is Lindstrom marking [4]. In many situations, list

structures may be used to represent graphs. For instance, interference graphs used for register

allocation in compilers might be represented as lists. In such a situation the ordering of edges is

unimportant. Our algorithm has the the advantage of linear time in such situations.

References

[1] Frederickson, G.N. ‘‘Implicit data structures for the dictionary problem," Journal ACM
30, 1 (Jan. 1983), 80-94.

[2] Knuth D. E. The Art of Computer Programming Vol. 1, Addison-Wesley, Reading,
Massachusetts, 1973, 634 pp.

[3] Lindstrom G. ‘‘Scanning list structures without stacks or tag bits," Info. Proc. Letters 2,
(1973) 47-51.

[4] Lindstrom G. ‘‘Copying list structures using bounded workspace," Comm. ACM 17,4
(1974) 198-202.

[5] Munro, J. I. ‘‘An implicit data structure for the dictionary problem that runs in polylog
time," Proc. 25th Annual Symp. on Foundations of Computer Science, 1984, 369-374.

[6] Perlis A. J., Thorton C. ‘‘Symbol manipulation by threaded lists," Comm. ACM 3,4
(April 1960) 195-204.

[7] Robson J. M. ‘‘An improved algorithm for traversing binary trees without auxiliary
stack," Info. Proc. Letters 2, (1973) 12-14.

[8] Schorr H. and Waite W. M. ‘‘An efficient machine independent procedure for garbage
collection in various list structures," Comm. ACM 10,8 (Aug. 1967), 501-506.

[9] Siklòssy L. ‘‘Fast and read-only algorithms for traversing trees without an auxiliary
stack," IPL 1, (1972), 149-152.

[10] Standish T. A. Data Structure Techniques, Addison-Wesley, Reading, Massachusetts,
1980, 447pp.

[11] Wegbreit B. ‘‘A space-efficient list structure tracing algorithm," IEEE Trans. Comp. C-
21 9, (Sept. 1972), 1009-1010.

- 9 -


