How I entered Constraints: Some of the Early Milestones

Rina Dechter
UC-Irvine

Mechanical Heuristic generation

Observation: People generate heuristics by consulting simplified/relaxed models. Context: Heuristic search (A*) of state-space graph (Nillson, 1980) Context: Weak methods vs. strong methods Domain knowledge: Heuristic function
$\mathrm{h}(\mathrm{n})$:Heuristic underestimate the best cost from n to the solution

THE OPTIMALATY OFA-REVISITED

Himn Dusthter and Suctor Feunt

Coqnatise Sraterna Inhersingey

AEstment

This pepror exemifins the optimbllty or An in

 Sy an ur the mivit pepailar matheds of explaitine

 nimerelehts poth

 in Hr-i the optimen peith

t: Pesvietu Wouk

 trar ar colperms trienpresatian of the rine

The Simplified models Paradigm

Pearl 1983 (On the discovery and generation of certain Heuristics, 1983, AI Magazine, 22-23) : "knowledge about easy problems could serve as a heuristic in the solution of difficult problems, i.e., that it should be possible to manipulate the representation of a difficult problem until it is approximated by an easy one, solve the easy problem, and then use the solution to guide the search process in the original problem."

The implementation of this scheme requires three major steps:
a) simplification,
b) solution, and
c) advice generation.

Simplified $=$ relaxed is appealing because:

1. implies admissibility, monotonicity,
2. explains many human-generated heuristics (15-puzzle, traveling salesperson)
"We must have a simple a-priori criterion for deciding when a problem lends itself to easy solution."

Systematic relaxation ofsipips

STRIPS (Stanford Research Institute Problem Solver, Nillson and Fikes 1971) action representation:

7	2	4
5		6
8	3	1

Start State

Move(x,c1,c2)
Precond list: on($x 1, \mathrm{c} 1$), clear(c2), adj(c1,c2)
Add-list: on(x1,c2), clear(c1)
Delete-list: on(x1,c1), clear(c2)
Relaxation (Sacerdoti, 1974): Remove literals from the precondition-list:

1. clear(c2), adj(c2,c3) \rightarrow \#misplaced tiles
2. Remove clear(c2) \rightarrow manhatten distance
3. Remove $\operatorname{adj}(\mathrm{c} 2, \mathrm{c} 3) \rightarrow \mathrm{h} 3$, a new procedure that transfer to the empty location a tile appearing there in the goal

But the main question remained:
"Can a program tell an easy problem from a hard one without actually solving?" (Pearl 1984, Heuristics)

Easy = Greedily solved?

Pearl, 84: Most easy problems we encounter are solved by
"greedy" hill-climbing methods without backtracking" and that the features that make them amenable to such methods is their "decomposability"

The question now:
Can we recognize a greedily solved STRIPS problem?"

On the greedy solution of ordering/scheduling problems

Job-shop: minimizing weighted average flow-time on a single processor

$$
C(1,2, \ldots n)=\sum_{i=1} q_{i} \sum_{j=1}^{i} p_{j}
$$

Spanish treasure problem: An unknown number of chests of Spanish treasure have been buried on a random basis in n sites. For each site there is a probability p it that the chest is there and the cost of excavating a site is q_i. Find a sequence of excavations that will minimize the average cost of finding the first chest.

Greedy strategy: $\frac{q_{i}}{p_{i}}$
So, the question now: Can we characterize when does an ordering problem has a ranking function, or a greedy rule, (not necessarily using the cost function) that yields an optimal solution?

The result is in my thesis (1985) and later in a paper (1989) "On the greedy solution of ordering problems" ORSA Journal of Computing, Vol 1, No. 3, 1989. A paper which is largely un-cited and unknown

On the greedy solution... (continued)

Theorem: If P is any greedily optimized problem then an optimizing ranking function f has to agree with the ordering dictated by the cost function on pairs of elements.
Namely for every two elements a and b
$C(a, b)>C(b, a)$ iff $f(a)>f(b)$.

$$
\begin{align*}
C(\sigma)-C\left(\sigma^{i}\right) & =\left(u_{i+1} p_{i}-u_{i} p_{i+1}\right) \\
& =u_{i+1} u_{i}\left(\frac{p_{i}}{u_{i}}-\frac{p_{i+1}}{u_{i+1}}\right) . \tag{8}
\end{align*}
$$

The theory explained all known greedy rules for ordering problems.
Conclusion: "The paper provides necessary and sufficient conditions for a problem to be greedily optimized by a uniform ranking function. The virtue of these conditions is that they are easy to test and thus may be useful in mechanizing the process of generating greedy strategies by computers."

On the Greedy Solution of Ordering Problems

AVI DECHTER RINA DECHTER
Department of Management Science. California State University, Northridge, CA 91330
Cogntive Systems Laboratory. Computer Science Department, University of California Los Angeles. C. 490024

> (new paper in EJOR, 2001 "Greedy Solutions of selection and ordering Problems")

The greedy method is a well-known approach for problem solving directed mainly at the solution of optimization problems. Leading theoretical frameworks dealing with the optimality of greedy solutions (e.g., the matroid and greedoid theories) tacitly assume that the greedy algorithm is always guided by the cost function to be optimized. namely, it builds a solution by adding, in each step, an element that contributes the most to the value of the cost function. This paper studies a class of problems for which this type of a greedy algorithm does not optimize the
given cost function, but for which there exists a secondary objective function, called a greedy rule, such that given cost function, but for which there exists a secondary objective function, called a greedy rule, such that applying the greedy algorith

T
roble greedy method is a well-known approach for problem solving directed mainly at the solution of optimization problems involving the selection and/or the ordering of elements from a given set so as to maximize or minimize a given objective function. Nilsson ${ }^{[9]}$ views the greedy algorithm as an irrevocable i.e., without backtracking) search strategy that uses ocal knowledge to construct a solution in a""hill climbing" process. The greedy control strategy selects the next state so as to achieve the largest possible improve ment in the value of some measure that as pointed out by Horowitz and Sahni [4] may or may not be out objective function

Our interest in greedy methods originated in earlier research in the area of heuristic problem solving. ${ }^{21]}$ The connection between these two subjects is twofold. First, greedy schemes are probably the closest to emulate human problem-solving strategies because they require they often produce amnt of memory space and because Due to the small size of human short-term is very hard to conceive of a human conducting best first or even backtracking search both requiring reten tion of hatives.) Second greedily optimized problems (ient for natives.) Second, greedily optimized problems (i.e.. for which a greedy algorithm produces optimal solutions) has demonstrated hat man heu prics. Pear solution of hard problems are based on simplified lolution of hard problems are based on simplified models of the problem domain, which admit easy soasy problems is important particularly if the proces easy problems is important, particularly if the process of discovering heuristics is to be mechanized.

This paper is concerned exclusively with ordering problems, involving a set of elements and a cost function defined on all permutations of the elements, where the task is to order the elements so as to maximize (or minimize) the value of the cost function. Job sequenc ing on a single machine and the traveling salesman problems are two examples of this class of problems

A theoretical framework, called greedoid theory which characterizes a class of ordering problems that can be solved optimally by greedy algorithms, is due to Korte and Lovasz. ${ }^{[6]}$ The greedoid structure is a generalization of the matroid structure which provides a theoretical foundation for the optimality of the greedy algorithm on selection problems. (In contrast with ordering problems, selection problems involve a set of elements and a cost function defined on all unordered subsets of elements, where the task is to select a subset of elements which satisfies some property, so as to maximize (or minimize) the value of the cost function. The minimul known example of this class of problems. For further detais on matroids refer, for example, to Lawler ${ }^{[8]}$ or Welsh ${ }^{[12]}$)

The greedoid theory (as well as the matroid theory) considers only greedy algorithms that use the cost function to be optimized as their selection criterion, namely, which build the solution by adding, at each step, that element which results in maximum improvement in the value of that cost function. The appendix to this paper lists a number of known ordering problems for Which this greedy algorithm does not optimize the cost function, but for which there exists a secondary objective function, which we call a greedy rule, such that

Freuder, JACM 1982 : "A sufficient condition for backtrack-free search"

Whow! Backtrack-free is greedy!
I read Montanari (1974),I read mackworth, (1977)
Got absorbed...
Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free
2. Width=i and (i+1)-consistency implies backtrack-free search

If 3 -consistent no deadends
$W=2$

Figure 4.10: A tree network

Arc-consistent No dead-ends

Else, impose consistency, but it add arcs except for trees. So trees are easy.

Freuder, JACM 1982 : "A sufficient condition for backtrack-free search"

Whow! Backtrack-free is greedy!
I read Montanari (1974),I read mackworth, (1977)
Got absorbed
Sufficient condition (Freuder 82):

1. Trees (width-1) and arc-consistency implies backtrack-free
2. Width=i and (i+1)-sonsistency implies backtrack-free search

If 3 -consistent no deadends
$W=2$

Figure 4.10: A tree network

Arc-consistent No dead-ends

Else, impose consistency, but it add arcs except for trees. So trees are easy.

From width to induced-width

Dechter and Pearl, 1985:

if a problem has induced-width it can be solved by directional i-ci

Led to:

Directional-consistency,Adaptive-consistency, Join-tree clustering and treewidth Optimization (dynamic programming), Counting, all solved by a single Algorithm, with induced-width complexity.
Later, generalized to bucket-elimination for probablistic reasoning, Later to cycle-cutset.

It is all based on generalizing trees: (Macworth, Freuder, 85, Pearl 83)

Back to Automatic generation of heuristics... for CSPs

I did not abandon the general goal of heuristic generation. Just shifted to CSP where heuristic indicate existance of a solution. Or, alternatively, how many solutions are below a given node. Since trees are easy for counting, I relaxed the problem into a tree and... count (Dechter, 1985).

Results in 1985
On random 15 vars, 5 vals:

We revisited this idea with Kask, Gogate and Dechter (CP, 2004) estimated counts using GBP/IJGP.

From Then On...

(just tried to understand what was going on around me)
Backjumping and no-good learning (1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and James Allen were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990), from local to global consistency (Dechter 1992)

Neural networks (will explain)
Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (with Rish 1997) finally Generating heuristics for real (with Kask, Marinescu, 2001, 2004)
AND/OR search (with Mateescu, 2004)

From Then On...

(just tried to understand what was going on around me)
Backjumping and no-good learning (1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and James Allen were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990), from local to global consistency (Dechter 1992)

Neural networks (will explain)
Identifiability of structures (trees) from relations (with Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (with Rish 1997) finally Generating heuristics for real (with Kask, Marinescu, 2001, 2004)
AND/OR search (with Mateescu, 2004)

ON THE EXPRESSIVENESS OF NETWORKS WITH HIDDEN VARIABLES

Rina Dechter ${ }^{(1)}$

Computer Science Department
Technion -- Israel Institute of Technology
Maifa, Israel, 32000

e-mail: dechter@techsel.bitnet

Abstract

This paper investigates design issues associated with representing relations in binary networks augmented with hidden variables. The trade-off between the number of variables required and the size of their domains is discussed. We show that if the number of values available to each variable is just two, then hidden variables cannot improve the expressional power of the network, regardless of their number. However, for $k \geq 3$, we can always find a layered network using k-valued hidWe then provide a scheme for decomposing an We then provide a scheme for decomposing an
arbitrary relation, ρ, using $\frac{1 p i-2}{k-2}$ hidden variables, each having k values ($k>2$).

1. Introduction

Hidden units play a central role in connectionist model, without which the model would not represent many useful functions and relations. In the early days of the Perceptrons [Minsky 1969] it was noted that even simple functions like the XOR were not expressible in a single layer perceptron; a realization that slowed research in the area until the notion of hidden units had emerged [Rumelhart 1988a, Hinton 1988]. Nevertheless, a formal treatment of the expressiveness gained by hidden units, and systematic schemes for designing systems with hidden units within the neural network paradigm are still not available.

Our intention is to investigate formally the role of hidden units and devise systematic schemes for designing systems incorporating hidden units. Specifically, we address the following task: given a relation on n variables, called visible, we wish to design a network having $n+h$

[^0]units whose stable patterns, (relative to the visible units) coincide with the original relation. This task is central to most applications of connectionist networks, in particular to its role as associative memory. The task will be investigated for a connectionist architecture which is different from classic connectionist networks in that it is based on constraint networks. The sequential constraint network model is defined next.

A Network of binary constraints involves a set of n variables X_{1}, \ldots, X_{n}, each represented by its domain values, D_{1}, \ldots, D_{n}, and a set of constraints. A binary constraint $R_{i j}$ between two variables X_{i} and X_{j} is a subset of the cartesian product $D_{i} \times D_{j}$ that specifies which values is an assignment of values to all the variables which satisfy all the constraints, and the constraint satisfaction problems (CSP) associated with these networks is to find one ems (CSP) associated with these networks is to find one or all solutions. A binary CSP can be associated with a constraint-graph in which nodes represent variables and arcs connect pairs of variables which are constrained expliciliy. Figure la presents a constraint network where each node represents a variable having values $\{a, b, c\}$ and (where $X_{i}<X_{j}$ iff $i<j$). The domains and the constraints where $X_{i}<X_{j}$ iff $i<j$). (The domains and the constraints explicitly indicated on some of the links.)

Figure 1: An example of a binary CN
Our constraint-based connectionist architecture assumes that each unit plays the role of a variable having k states, and that the links, representing the constraints, are quantified by compatibility relations between states of adjacent units. Each unit asynchronously updates its state

On the expressiveness of networks with hidden variables

Can a relation be expressed by a binary constraint networks with hidden variables?
Yes. If no limit on number of values

And, with limit?

$$
U_{5}=\left\{\begin{array}{ccccc}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right\}
$$

With 2 values?
With 3 values?
How many hidden
Variables?

On the expressiveness of networks with hidden variables

Theorem: Relations which are not binary network decomposable cannot be binary network decomposable by adding any number of bi-valued Hidden variables.
Proof: We want to exclude $(x 1, x 2, x 3)=(0,0,0)$ using a variable $Y=\{0,1\} \ldots$

So, it is not possible that Y allows any pair but not triplets.

Reason: 3-consistent bi-valued binary networks are globally consistent
Theorem (Dechter, 1992): k-valued binary networks which are strong $(k+1)$-consistent are globally consistent.

However, No simple criterion for tractability emerged;
Semantic based tractability: row-convex constraints (van Beek 1995)
A whole major line of work by Jeavons and Cohen (1995-2007)
(Constraint book, chapter 10, 2003)

On the expressiveness of networks with hidden variables

Figure 6: A layered decomposition of $U^{*}{ }_{12}$

From Then On

(just tried to understand what was going on around me)
Backjumping and no-good learning (Dechter, 1987-88)
(Wanted to understand TMS and Logic programming)
Sat-based Nonmon-reasoning (with Ben-Eliyahu, 1990)
(answer-set programming)
(Wanted to understand default logic, logic programming)
Temporal constraint networks (with Meiri and Pearl, 1988-90)
(Understanding what Dean and Macdermoth and Allen James were doing)
Distributed constraints (with Collin and Katz, 1990)
Neural networks hyped up again.
On the expressiveness of networks with hidden variables(Dechter 1990), from local to global consistency (Dechter 1992)

Neural networks (will explain)
Identifiability of structures (trees) from relations (Dechter, Meiri and Pearl, 1990)
Learnability / PAC learning.
Bucket-elimination (Dechter, 96) (bringing treewidth/induced-width
to Bayesian networks)
Understanding probabilistic reasoning through VE
Mini-buckets, (Dechter and Rish 1997) finally Generating heuristics for real (Kask, Marinescu, 2001, 2004)
AND/OR search (Dechter and Mateescu, 2004)

Structure Identification in Relational Data *

Rina Dechter, UC-Irvine
 Judea Pearl, UCLA

*Supported in part by Air Force Office of Scientific Research, AFOSR 900136 and by NSF grant IRI9157936

$$
\begin{aligned}
& \text { Another Example } \\
& \left.\begin{array}{l}
\rho= \\
\text { (relation) }
\end{array} \begin{array}{llll}
A & B & C & D \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & \vdots & 0 & 0 \\
0 & i & 0 & 0 \\
1 & 1 & 0 & 1 \\
i & 1 & 1 & 1
\end{array}\right] \\
& \begin{array}{l}
T=\{A \rightarrow B, B A C \rightarrow D
\end{array} \\
& \text { (Horn theory }
\end{aligned}
$$

Identifying Tree Structures in Categorical Relations (Dechter, 1990, Meiri, Dechter, Pearl, 1991)

A	a	C	D	E
0	0	1	1	1
a	0	1	1	0
4	1	1	1	1
4	1	1	1	0
0	1	1	0	1
0	1	0	1	1
0	1	0	1	0
0	1	0	0	1

\square	0
4	0
1	1
0	1

E

- A tree T represents a relation p iff

$$
a=\bowtie\left(x_{i}, x_{j}\right) \in T \quad \rho x_{i} x_{j}
$$

- Convenience: storage, query processing, parallelism.

八ectifr:-3
Problem

(incite Sememe C (was)

- Given a relation p (e.g.. as a table)
- If p has a tree decomposition, find one
- If it does not, acknowledge and find a best approximation.

Theorem 8 (Dechter, 1987): Let

$n\left(x_{y}\right)=$ the number of n-tuples in p for which $X_{i}=x_{i}$.
$n\left(x_{j}, x_{j}\right)=$ number of n-tuples in p for which

$$
X_{i}=x_{i} \text { and } X_{j}=x_{j} .
$$

The MWST algorithm using the arc-weights:
$m\left(x_{i}, x_{j}\right)=\frac{1}{|\rho|} \sum_{\left(x_{i}-x_{j}\right)} \sum_{\rho_{x_{i}} x_{j}} n\left(x_{i}-x_{j}\right) \log \frac{n\left(x_{i}+x_{j}\right)}{n\left(x_{i}\right) n\left(x_{j}\right)}$
is guaranteed to produce a tree-decomposition to p if such a decomposition exists.
The decomposition is exact iff $|p|=\left|p_{T}\right|$
Complexity: $O\left[(|p|+\log n) n^{2}\right]$
Best approximation? Open problem
Qualitatiun $=$ Meiny, Decker, Pean (ANAI -60)

| A | B | C | D | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |

Example

$$
\begin{aligned}
& n(A=0)=8, n(B=1)=6, n(B=0)=2 \\
& n(B=0, C=1)=2, n(B=1, C=1)=3 \ldots
\end{aligned}
$$

$m(B, C)=-13.97$ $m B, D)=-15.95$ $m(B, E)=-16.55$

$$
m(C, D)=-16.55
$$

$$
m(C, E)=-17.13
$$

$$
m(D, E)=-15.50^{-}
$$

$$
m(A, B)=m(A, C)=
$$

$$
m(A, E)=m(A, D)=-16.63
$$

Qualitative tree decomposittion (Meiri, Decktier, Pearl, AAAI-90)

Method: Given minimull metwotk M

1. Consider all triangles $t \leqslant\left\langle\ell_{1}, e_{2}, l_{2} t\right.$

- genpratie lakeling on arcs such tRat if e_{1} is vedundarit in t $w\left(R_{1}\right) \leq w\left(\rho_{2}\right), w\left(\rho_{1}\right) \leq w\left(\rho_{3}\right)$
- if e, is redundary and en is mot $w\left(e_{4}\right)<w\left(e_{2}\right)$
(called triangle lateling)

2. Find a maximal mecight podraning treet w.r.t. w.

3. Tent if T decompone * mel(M) if rot there is wo Tree decompositio.

Identifying Structure from Relational Data (Dechter, Meiri and pearl 1988-1991)

Dechter, R., and Pearl, J., "Structure identification in relational data." In Artificial Intelligence, Vol. 58, 1992, pp. 237-270.
Meiri, I., Dechter, R., and Pearl, J., "Uncovering trees in constraint networks." (AAAI-1990), Artificial Intelligence Journal, Volume 86, 1996, pp. 245-267.
Dechter, R., "Decomposing a relation into a tree of binary relations." Journal of Computer and System Sciences, Vol. 41, 1990, pp. 2-24.
A preliminary version PODS pp. 185-189.

(a)

(b)

A	B
0	0
0	1

(c)

B	C
0	1
1	1
1	0

(d)

In Summary

- Uncovering structure from data and how to exploit hidden variables are still central scientific questions....
- As to heuristic generation nowdays...
- Simplification and solution steps combine (e.g., mini-bucket, heuritics for planning, using MDPs...)

Thanks again and Special thanks to all my students

Zeev Collin, Itay Meiri, Rachel Ben-Elyahoo, Yousri El-Fattah Dan Frost Eddie Schwalb Irina Rish Kalev Kask Bozhena Bidyuk Judea Pearl

Ugo Montanari Alan Mackworth Eugene Freuder

David Larkin
Robert Mateescu
Radu Marinescu
Vibhav Gogate
Lars Otten
Javier Larrosa

Hector Geffner

[^0]: (1) This research was supported in part by NSF grant \#IRI-

 8821444 and by an Air Force grant \#AFOSR 880177 while the author was visiting the cognitive systems lab at UCLA.

