CONSTRAINT PROCESSING

Chapter 2
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/ Figure 2.1: The 4-queens constraint network. The network has\
four variables, all with domains D, ={1, 2, 3,4}. (a) The labeled
chess board. (b) The constraints between variables.

T1 To Ta T Ry = {(13) (1 4) (24) (31) (41) (42)}

S Rz = {(12) (l 4) (21) (23) (32) (3!4)3 (431)! (43)}
L R14 — {(1*2)* (1 3) (2*1)* (2*3)* (2*4)* (3*1)* (3*2)* (3*4)
: (4,2), (4,3)}
3 Ras = {(133)? (1 4) (2?4)3 (Svl): (4v1): (432)}
4 Roy = {(12) (1 4) (21) (23) (32) (3!4)3 (431)3 (43)}

R:'_M — {(1*3)* (1 4)* (2*4)* (3*1)* (4*1)* (4*2)}
(a) (b)




/ Figure 2.2: Not all consistent instantiations are part of a solution: (a) A
consistent instantiation that is not part of a solution. (b) The placement
of the queens corresponding to the solution (2, 4, 1, 3). (¢) The
placement of the queens corresponding to the solution (3, 1, 4, 2).
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Figure 2.3: Constraint graphs of (a) the crossword puzzle
and (b) the 4-queens problem.
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Figure 2.4: The constraint graph and constraint relations of the
scheduling problem example.

Unary constraint
Dpy = {1:00, 3:00}
Binary constraints
° Ryriray: {(1:00,2:00), (1:00,3:00), (2:00,1:00),
(2:00,3:00), (3:00,1:00), (3:00,2:00)}
Repy 13y {(2:00,1:00), (3:00,1:00),
(3:00,2:00)}
. Rero syt {(1:00,2:00), (1:00,3:00), (2:00,1:00),

(2:00,3:00), (3:00,1:00), (3:00,2:00)}
0‘0 Rirs.ray: £(1:00,2:00),  (1:00,3:00),
(2:00,3:00)}
Reps 15y {(2:00,1:00), (3:00,1:00),

(3:00,2:00)} /




Figure 2.6: Constraint graphs of 3 instances of the Radio
frequency assignment problem in CELAR’s benchmark
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Figure 2.7: Scene labeling constraint network
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Figure 2.8: The interaction graph of theory ¢ = {(-C), (Av Bv
C),(mAv Bv E),(-Bv Cv D)}.
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Figure 2.9: A combinatorial circuit: Mis a multiplier, A is an adder.
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/Properties of binary constraint networks: \

Figure 2.10: (a) A graph R to be colored by two colors, (b) an equivalent
representation R’ having a newly inferred constraint between x, and x.

\ Equivalence and deduction with constraints (composition) /
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Relations vs networks

~

Can we represent the relations
x1,x2,x3 = (0,0,0)(0,1,1)(1,0,1)(1,1,0)
X1,x2,x3,x4 = (1,0,0,0)(0,1,0,0) (0,0,1,0)(0,0,0,1)
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Relations vs networks

\

Can we represent the relations
x1,x2,x3 = (0,0,0)(0,1,1)(1,0,1)(1,1,0)
X1,x2,x3,x4 = (1,0,0,0)(0,1,0,0) (0,0,1,0)(0,0,0,1)

Most relations cannot be represented by

networks:
Number of relations 2*(n”"k)
Number of networks: 2*((k*2)(n2))

/
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The minimal and projection \
networks

The projection network of a relation is obtained
by projecting it onto each pair of its variables
(yielding a binary network).
Relation = {(1,1,2)(1,2,2)(1,2,1)}

What is the projection network?

What is the relationship between a relation and
its projection network?

{(1,1,2)(1,2,2)(2,1,3)(2,2,2)}, solve its

k projection network? /
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Projection network (continued)

Theorem: Every relation is included in
the set of solutions of its projection
network.

Theorem: The projection network is the
tightest upper bound binary networks
representation of the relation.

\_ /
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Projection network

\_

Theorem 2.3.8 For cvery relation p, p C sol(P(p)).

Theorem 2.3.9 The projection network P(p) is the tightest upper bound network repre-
sentation of p; there is no binary network R', s.t. p C sol(R') C sol(P(p)).

/
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The Minimal Network

(partial order between networks)

~

\_

Theorem 2.3.15 For every binary network R s.t. p = sol(R), M(p)

P(p).

Definition 2.3.10 Given two binary networks, R’ and R, on the same sel of vartables
T1y s Tny, R’ 15 at least as tight as R iff for every @ and 5, R, C R;.

Definition 2.3.14 Let {Ry,.. R} be the set of all networks equivalent to Ro and lel
p = 50l(Ro). Then the minimal network M of Ry is defined by M(Ro) = Ni_,R,.

/
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/Figure 2.11: The 4-queens constraint network:

(a) The constraint graph. (b) The minimal binary constraints.
(c) The minimal unary constraints (the domains).

~

J[12_ {(2*4)* (3*1)}
M= {(2.1), (3,4)}
M= {(2,3), (3,2)}
J[ZS_ {(1*4)* (4*1)}
Moy = {(1,2), (4,3)}
Msy= {(1,3), (4,2)}
(a) (b)

— (1,3}
— {14}
— {14}
— {1,3}
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Minimal network

The minimal network is perfectly explicit for
binary and unary constraints:

Every pair of values permitted by the minimal
constraint is in a solution.
Binary-decomposable networks:

A network whose all projections are binary
decomposable

The minimal network repesenst fully binary-

decomposable networks.

Ex: (x,y,x,t) = {(a,a,a,a)(a,b,b,b,)(b,b,a,c)} is binary
representable but what about its projection on x,y,z? /
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