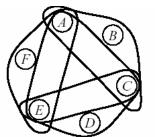
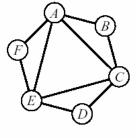


Graph concepts reviews: Hyper graphs and dual graphs

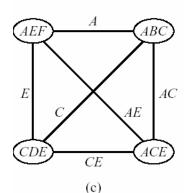
- **A hypergraph** is H = (V,S), $V = \{v_1, ..., v_n\}$ and a set of subsets **Hyperegdes**: $S = \{S_1, ..., S_l\}$.
- **Dual graphs** of a hypergaph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in V. The arc is labeled by the shared vertices.
- A primal graph of a hypergraph H = (V,S) has V as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.
- if all the constraints of a network *R* are binary, then its hypergraph is identical to its primal graph.

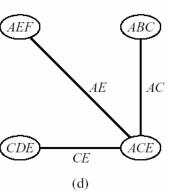


(a)



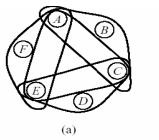
(b)

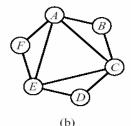


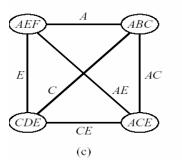


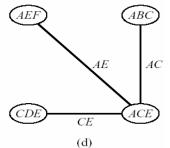
Acyclic Networks

- The running intersection property (connectedness): An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.
- **Join graph**: An arc subgraph of the dual graph that satisfies the connectedness property.
- **Join-tree:** a join-graph with no cycles
- **Hypertree:** A hypergraph whose dual graph has a join-tree.
- Acyclic network: is one whose hypergraph is a hypertree.









Solving acyclic networks

- Algorithm *acyclic-solving* applies a tree algorithm to the join-tree. It applies directional relational arcconsistency from leaves to root.
- **Complexity**: acyclic-solving is *O(r I log I)* steps, where *r* is the number of constraints and *I* bounds the number of tuples in each constraint relation

Example

- Constraints are:
- $R_{ABC} = R_{AEF} = R_{CDE} = \{(0,0,1), (0,1,0), (1,0,0)\}$
- $R_{ACE} = \{ (1,1,0) (0,1,1) (1,0,1) \}.$
- d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
 - When processing R_{ABC}, its parent relation is R_{ACE};

 $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{ABC}) = \{(0,1,1)(1,0,1)\}$

processing R_{AEF} we generate relation

 $R_{ACE} = \pi_{ACE} (R_{ACE} \otimes R_{AEF}) = \{(0,1,1)\}$

- processing R_{CDE} we generate:
- R_{ACE} = \pi_{ACE} (R_{ACE} x R_{CDE}) = {(0,1,1)}.
- A solution is generated by picking the only allowed tuple for R_{ACE}, A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is only D=0, and then similarly extending the assignment to F=0 and B=0, to satisfy R_{AEF} and R_{ABC}.

Recognizing acyclic networks

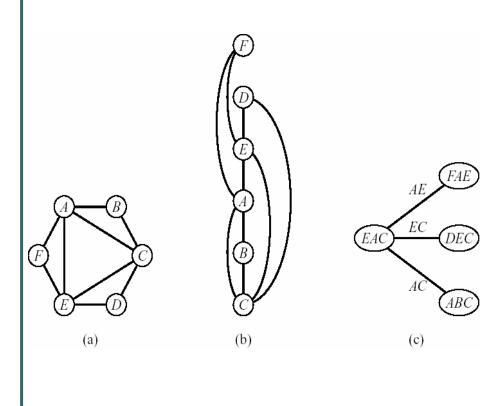
Dual-based recognition:

- Perform maximal spanning tree over the dual graph and check connectedness of the resulting tree.
- Dual-acyclicity complexity is O(e^3)

Primal-based recognition:

- Theorem (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
- A chordal primal graph is conformal relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.

Primal-based recognition



- Check chordality using max-cardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables.

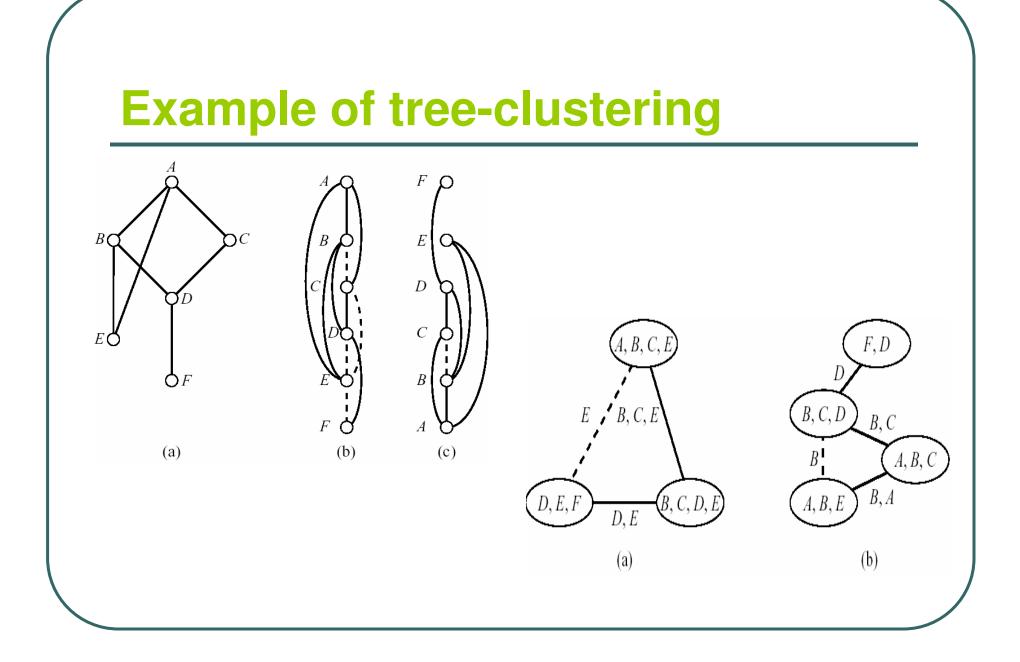
Tree-based clustering

- Convert a constraint problem to an acyclicone: group subset of constraints to clusters until we get an acyclic problem.
- Hypertree embedding of a hypergraph H = (X,H) is a hypertree S = (X, S) s.t., for every h in H there is h_1 in S s.t. h is included in h_1.
- This yield algorithm join-tree clustering

Join-tree clustering

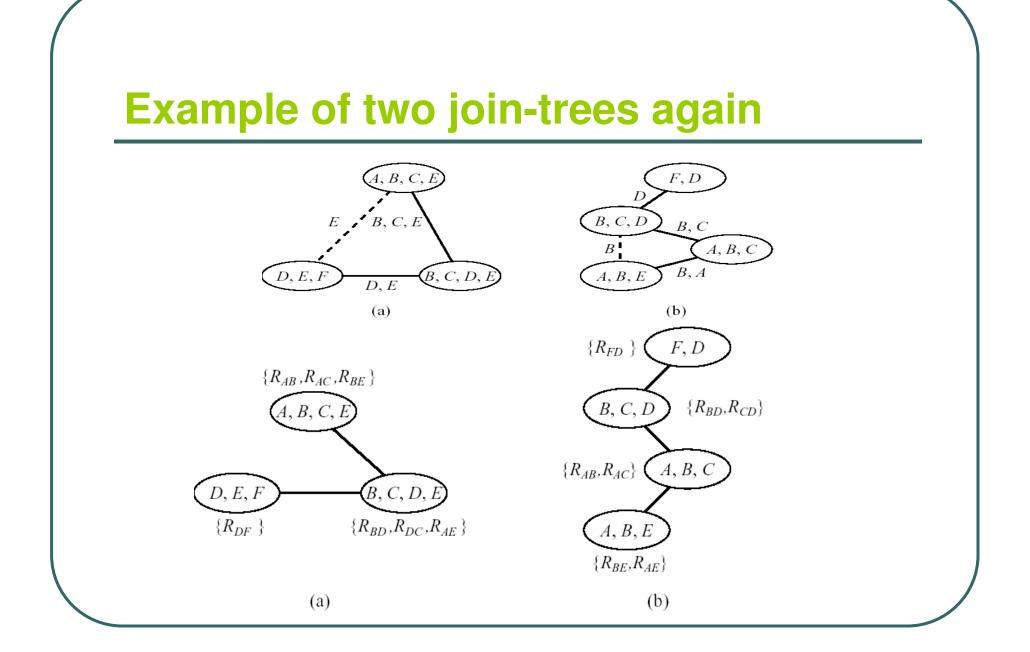
- **Input**: A constraint problem R = (X,D,C) and its primal graph G = (X,E).
- Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C '})
- 1. Select an $d = (x_1,...,x_n)$
- 2. Triangulation(create the induced graph along \$d\$ and call it G^{*}:)
- for j=n to 1 by -1 do

- $E \leftarrow E \cup \{(i,k) | (i,j) \text{ in } E,(k,j) \text{ in } E \}$
- 3. Create a join-tree of the induced graph G^*:
- a. Identify all maximal cliques (each variable and its parents is a clique).
 - Let C_1,...,C_t be all such cliques,
- b. Create a tree-structure T over the cliques:
- Connect each C_{i} to a C_{j} (j < I) with whom it shares largest subset of variables.
- 4. Place each input constraint in one clique containing its scope, and let
- P_i be the constraint subproblem associated with C_i.
- 5. Solve P_i and let {R'}_i \$ be its set of solutions.
- 6. Return C' = {R'}_1,..., {R'}_t
- the new set of constraints and their join-tree, T.
- Size of maximal clique 1 is the Induced width.



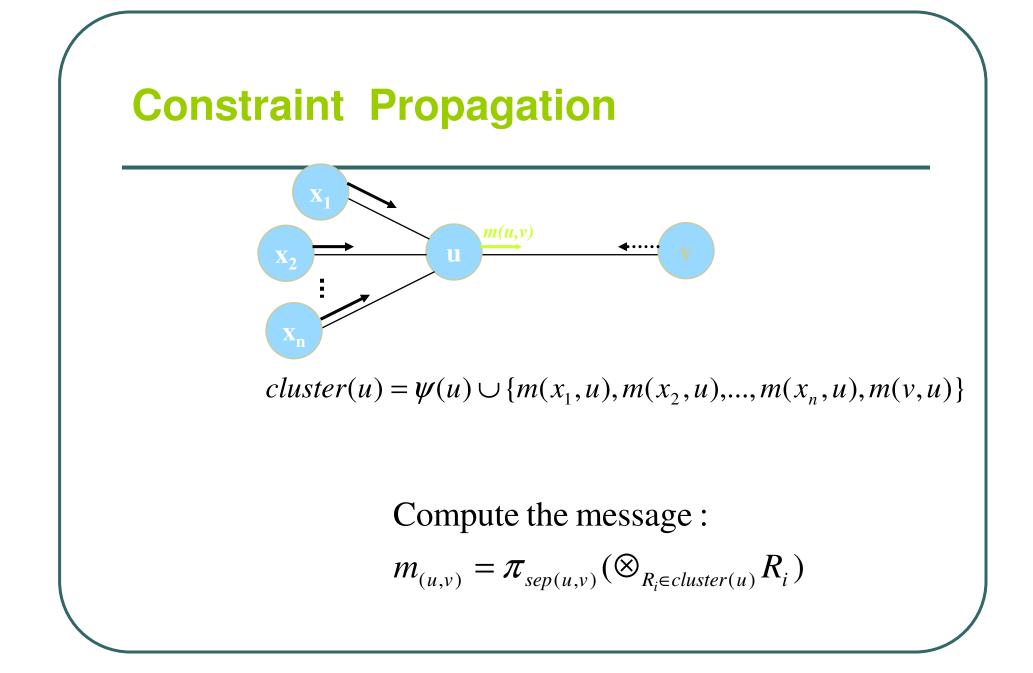
Unifying tree-decompositions

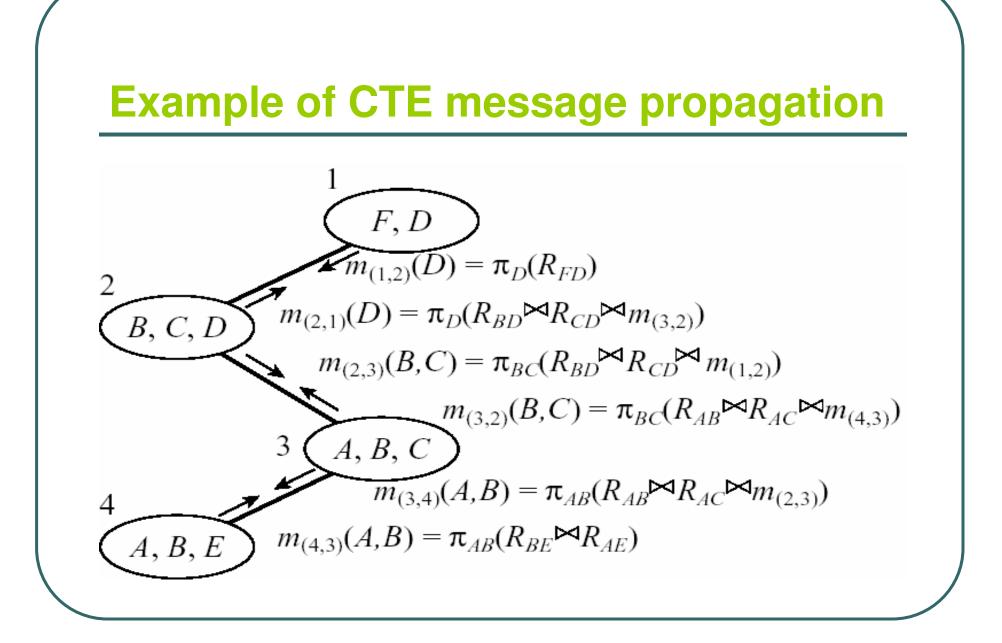
- A tree-decomposition of R = (X, D, C) is a triple $\langle T, \chi, \psi \rangle$ where $T = \langle V, E \rangle$ is a tree, and χ and ψ are sets of functions.
 - For each constraint R_i ∈ C there is at least one vertex v in T such that R_i ∈ Ψ(v) and scope(R_i) ⊆ X(v)
 For each variable x in X, the set {v ∈ V | x ∈ X(v)}
 - For each variable x in X, the set $\{v \in V \mid x \in \mathcal{X}(v \in V \mid x \in V \mid x \in \mathcal{X}(v \in V \mid x \in \mathcal{X}(v \in V \mid x \in V \mid x \in \mathcal{X}(v \in V \mid x \in V \mid$
- tree-width = max number of vars in a cluster
- hyper-width = is max functions in a cluster
- the separator of u and v: the intersection between variables in u and v.



Cluster Tree Elimination

- Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition
- Basic idea:
 - Each node sends one message to each of its neighbors
 - Node u sends a message to its neighbor v only when u received messages from all its other neighbors

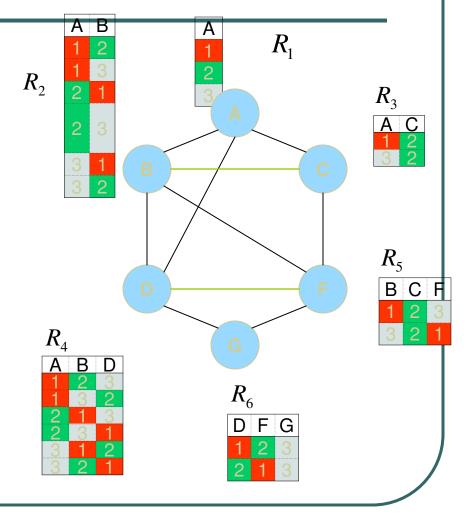


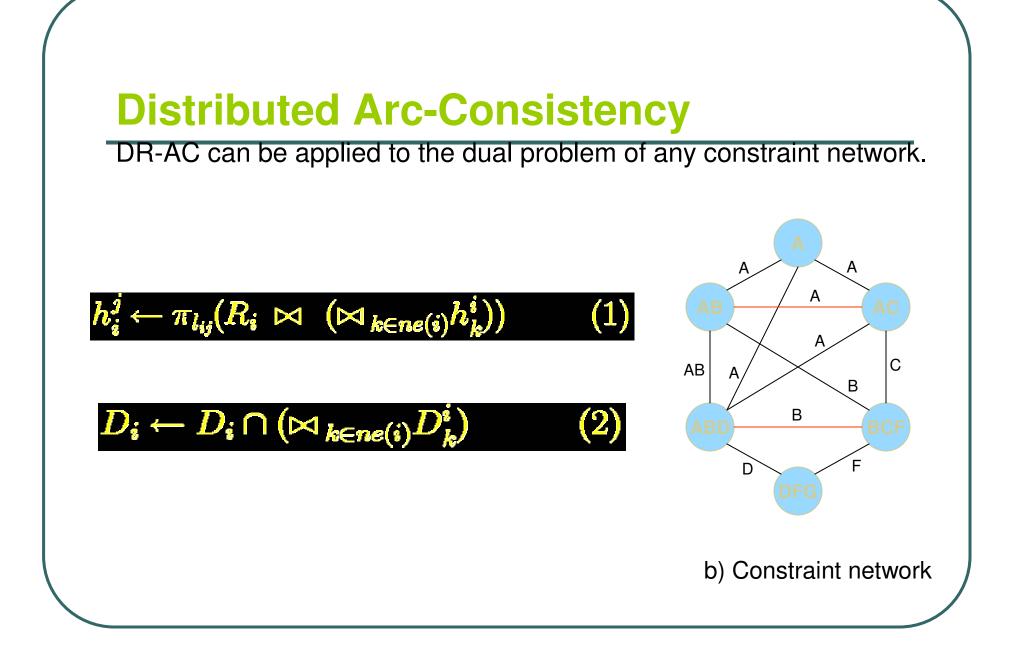


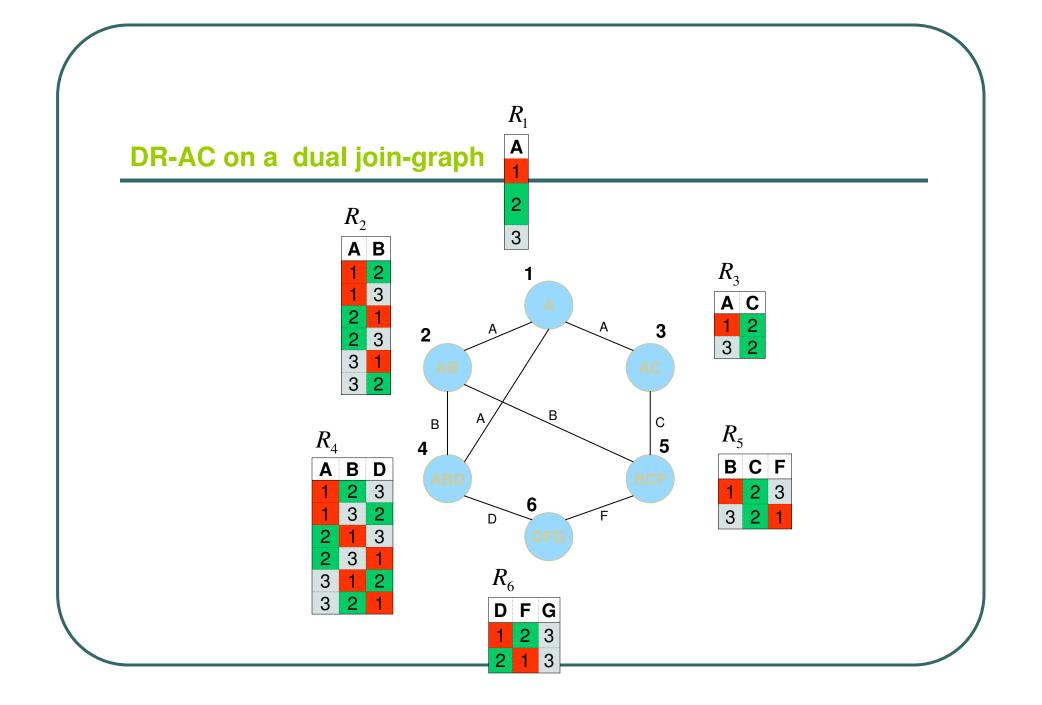
Distributed relational arc-consistency example

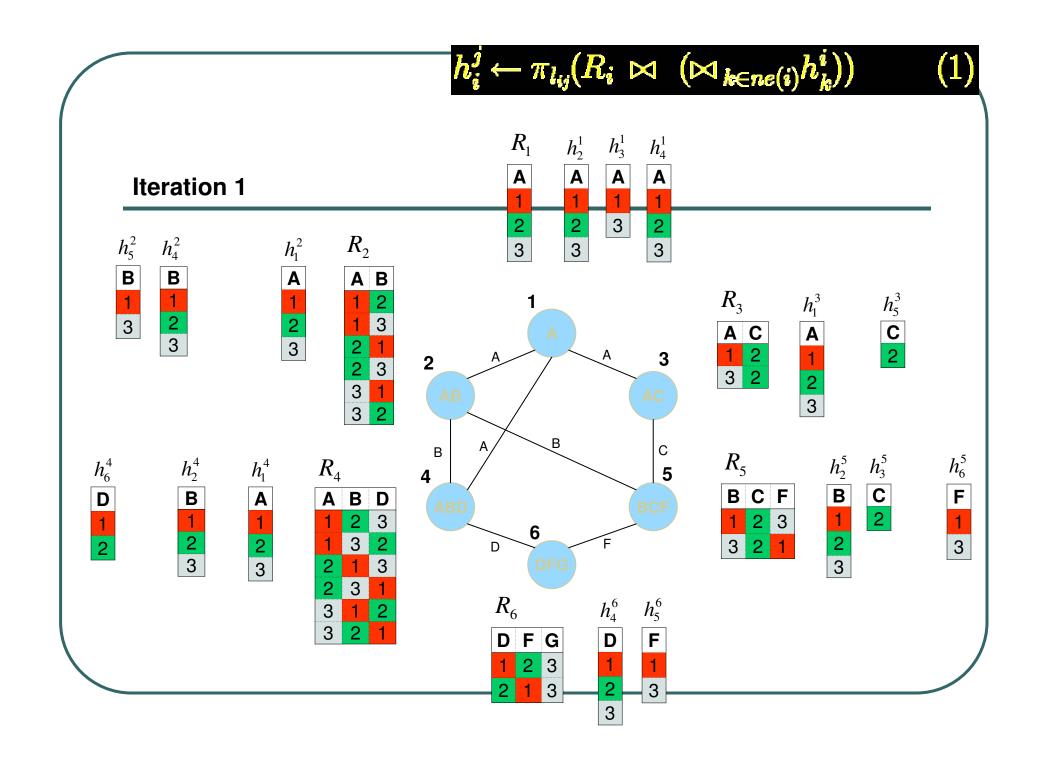
The message that R2 sends to R1 is

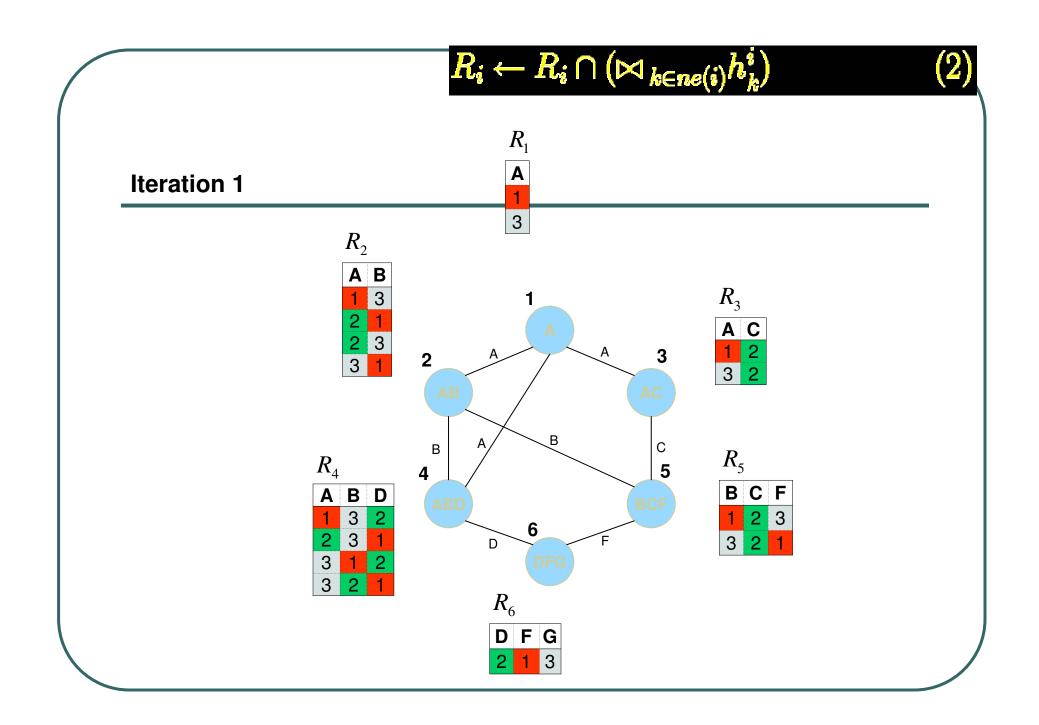
R1 updates its relation and domains and sends messages to neighbors

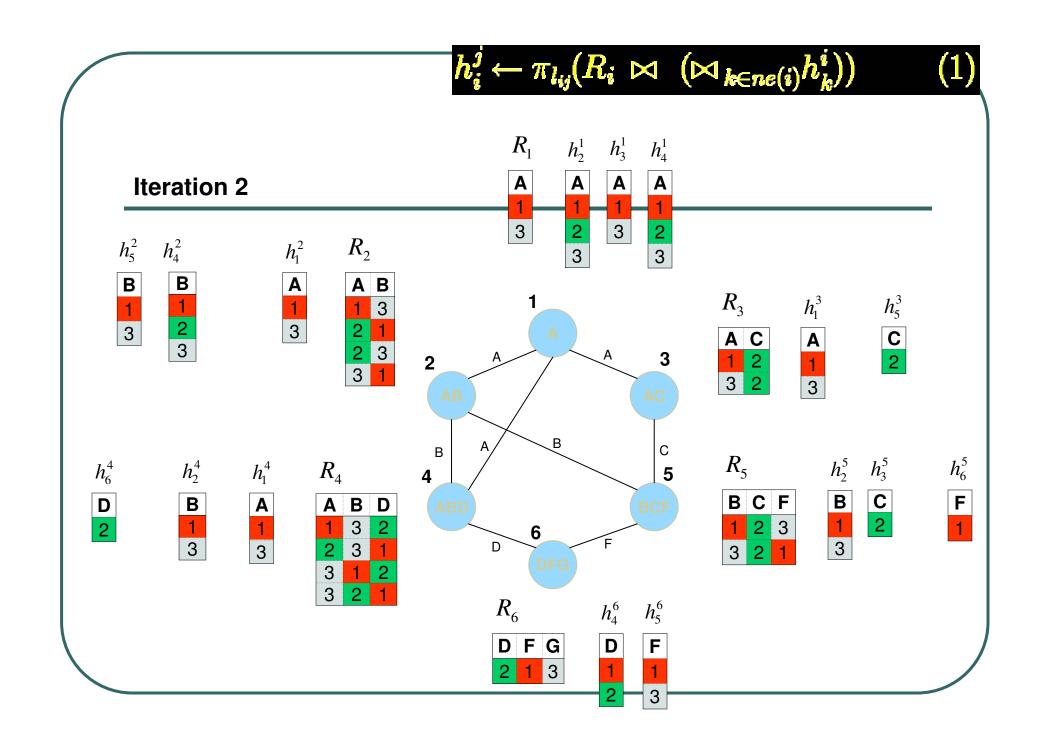


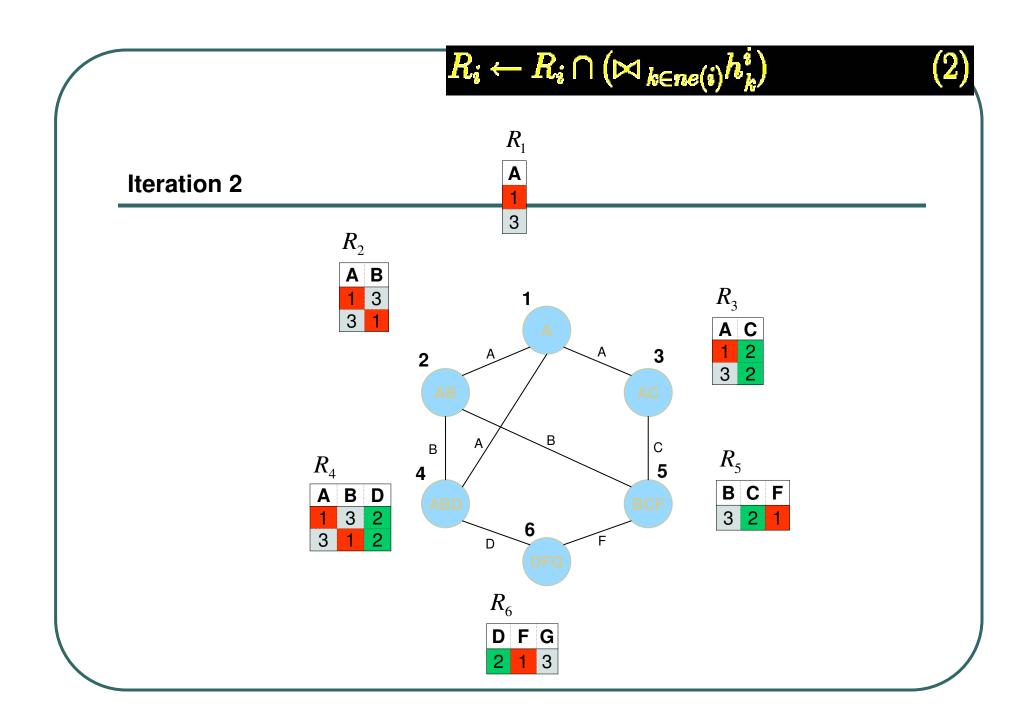


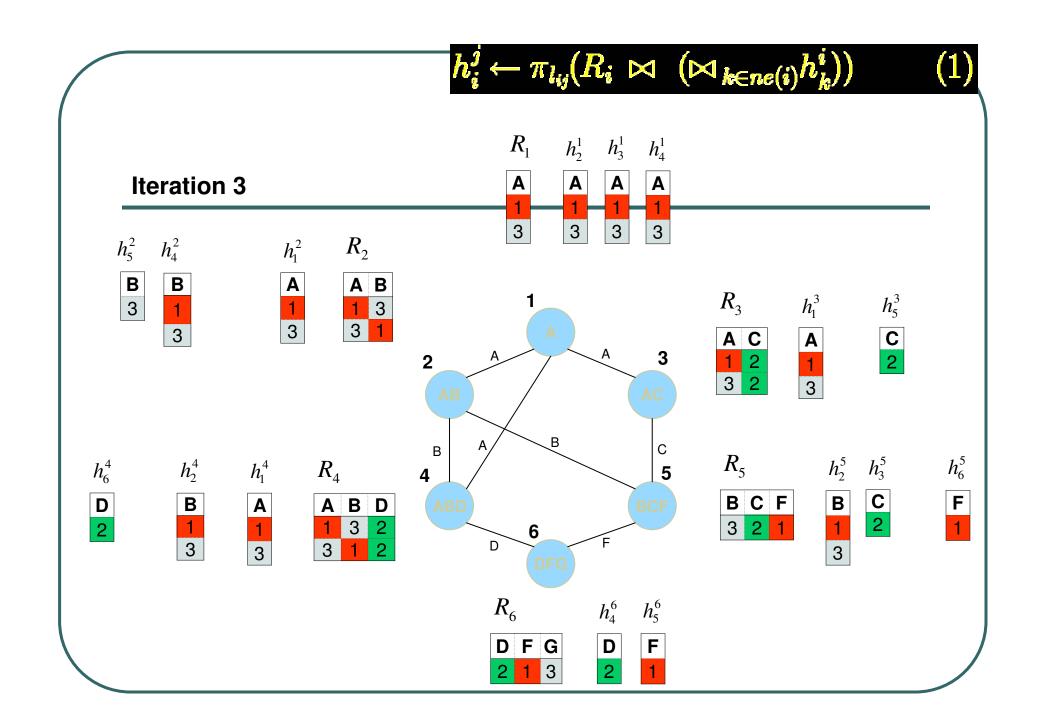


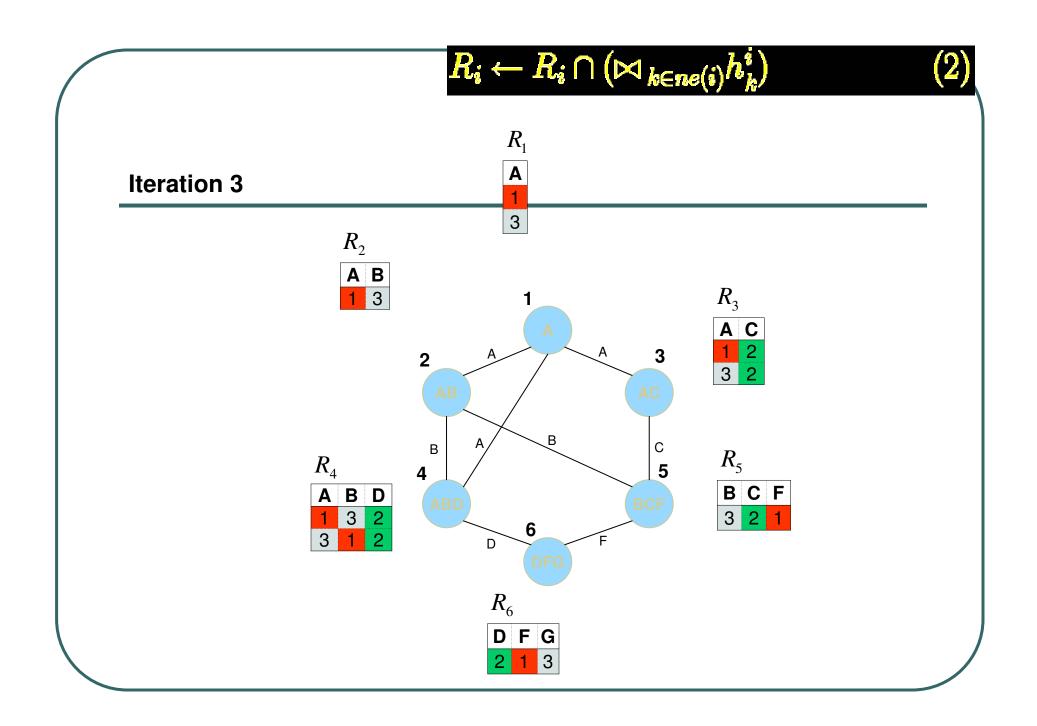


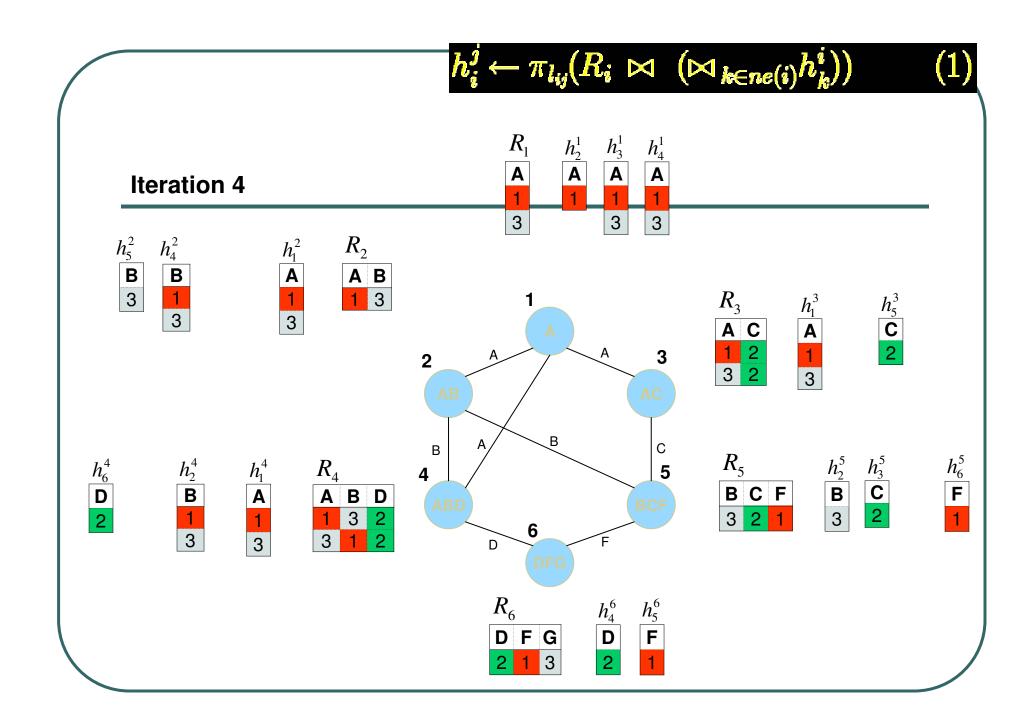


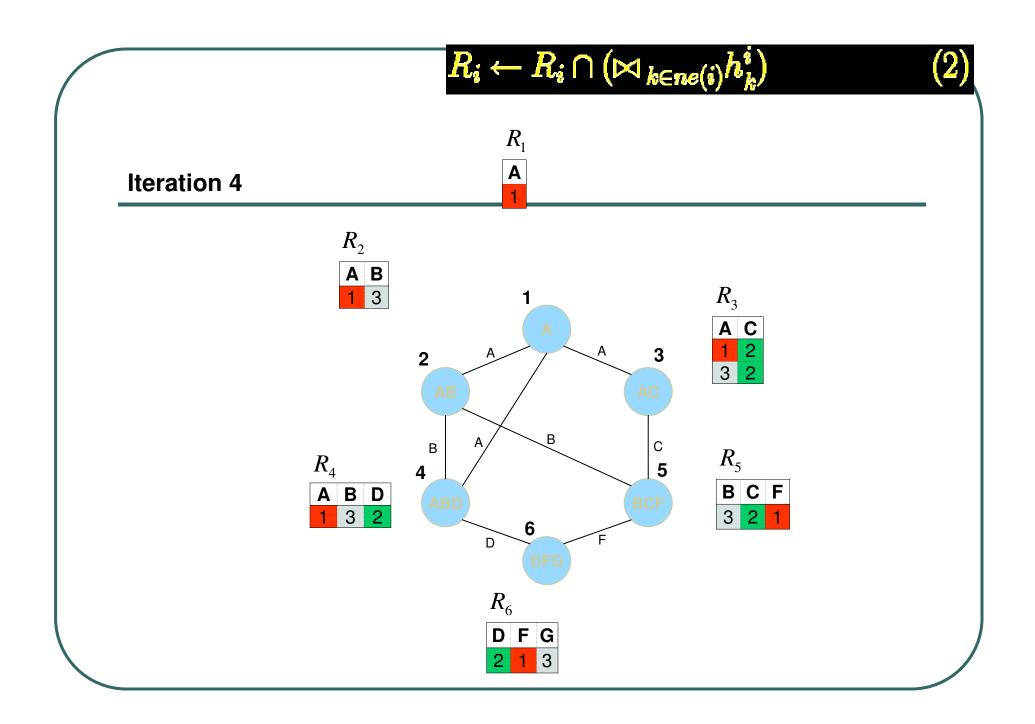


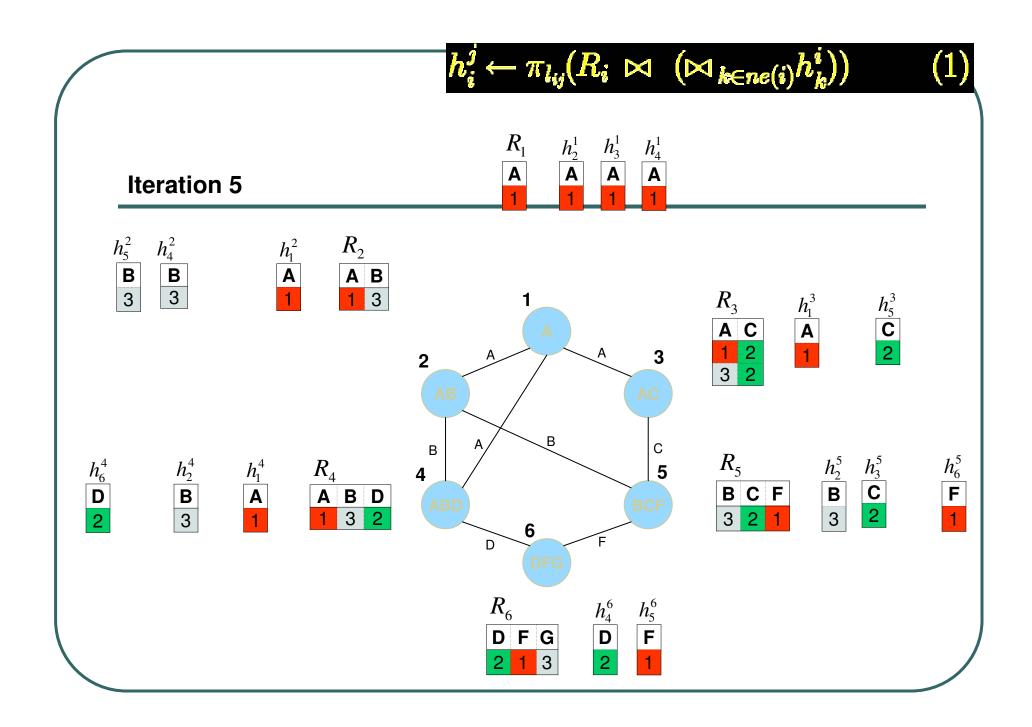


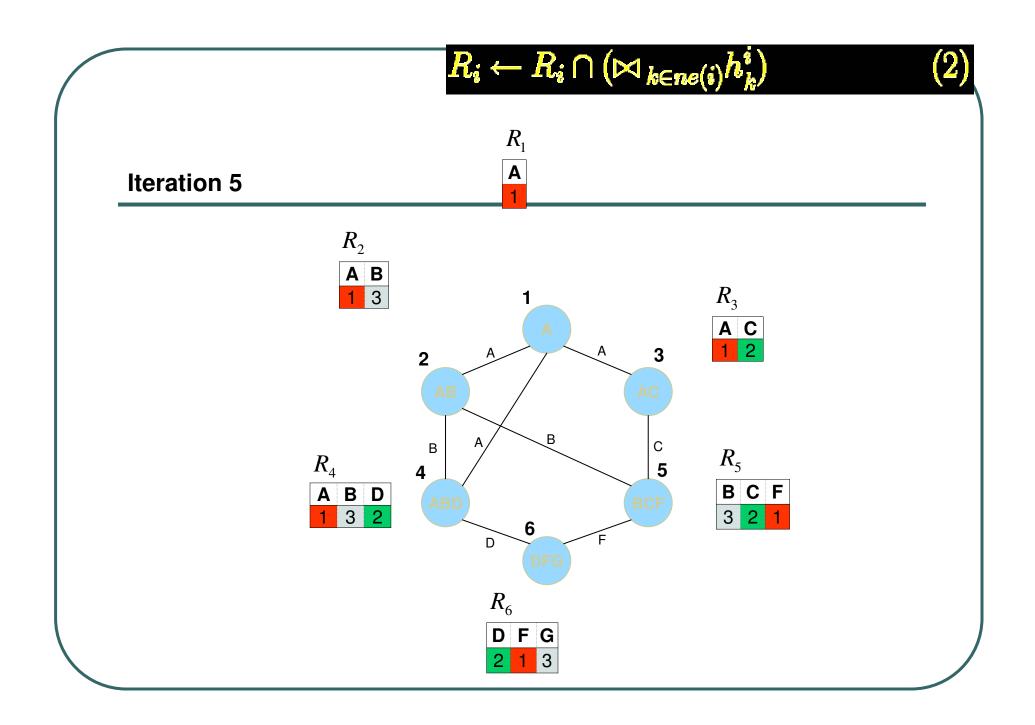












Cluster Tree Elimination - properties

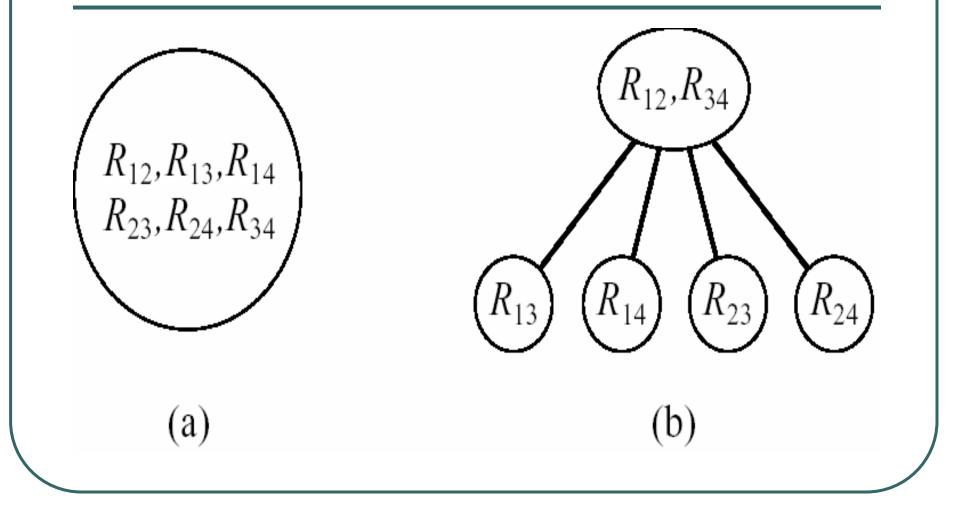
- Correctness and completeness: Algorithm CTE is correct, i.e. it computes the exact joint probability of every single variable and the evidence.
- Time complexity:
- $O(deg \times (n+N) \times d^{w^{*}+1})$
- Space complexity:

 $O(N \times d^{sep})$

deg = the maximum degree of a node n = number of variables (= number of CPTs) N = number of nodes in the tree decomposition d = the maximum domain size of a variable w^* = the induced width sep = the separator size

Time and space by hyperwidth: $O(Nt^{2hw})$, time O(N t^{tw}) space

Join-tree clustering is a restricted treedecomposition

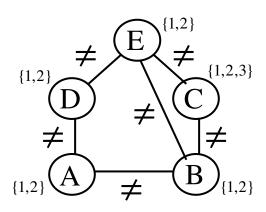


Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
 - The variables are the clicue of the triangulated graph
 - The functions are those placed in the initial partition

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

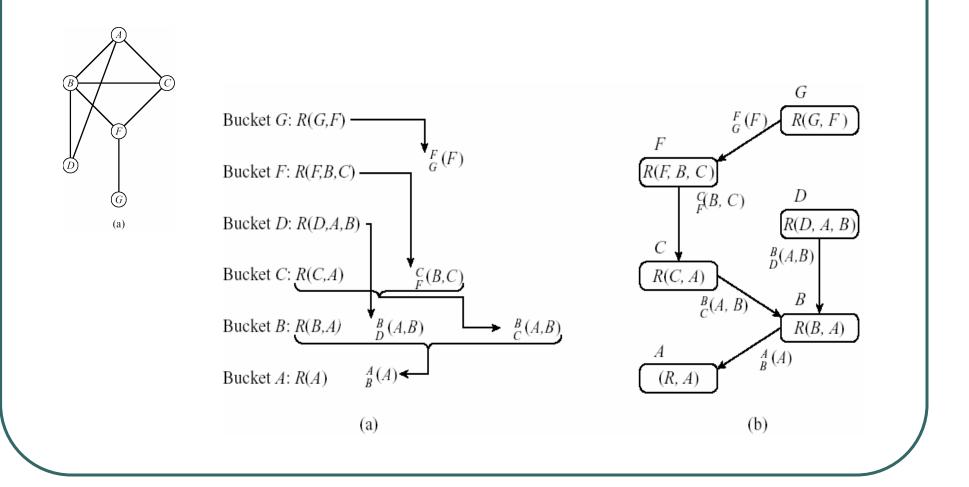


 $Bucket(E): E \neq D, E \neq C, E \neq B$ $Bucket(D): D \neq A \parallel R_{DCB}$ $Bucket(C): C \neq B \parallel R_{ACB}$ $Bucket(B): B \neq A \parallel R_{AB}$ $Bucket(A): R_{A}$

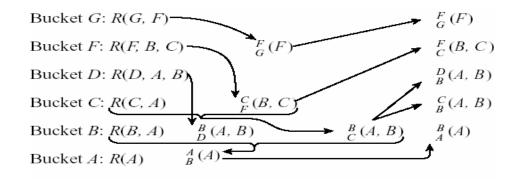
Bucket(A): $A \neq D$, $A \neq B$ Bucket(D): $D \neq E \parallel R_{DB}$ Bucket(C): $C \neq B$, $C \neq E$ Bucket(B): $B \neq E \parallel R^{D}_{BE}, R^{C}_{BE}$ Bucket(E): $\parallel R_{E}$

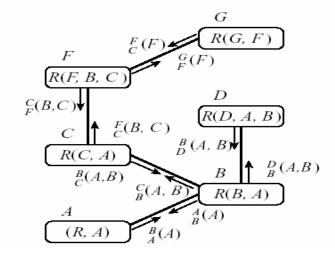
Complexity : $O(n exp(w^{*}(d)))$, $w^{*}(d)$ - *induced width along ordering d*

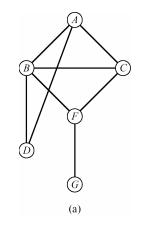
From bucket-elimination to bucket-tree propagation



The bottom up messages







Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- **Bucket trees**: each bucket is a node and it is connected to a bucket to which its message is sent.
- Theorem: A bucket-tree is a tree-decomposition
- Therefore, CTE adds a bottom-up message passing to bucket-elimination.