
����������	�
�����������
����������	�
�����������

��������	��������	��������	��������	��������	��������	��������	��������	

Graph concepts reviews:
Hyper graphs and dual graphs
� A hypergraph is H = (V,S) , V= {v1,..,vn}

and a set of subsets Hyperegdes:
S={S1, ..., Sl }.

� Dual graphs of a hypergaph: The nodes
are the hyperedges and a pair of nodes
is connected if they share vertices in V.
The arc is labeled by the shared
vertices.

� A primal graph of a hypergraph H =
(V,S) has V as its nodes, and any two
nodes are connected by an arc if they
appear in the same hyperedge.

� if all the constraints of a network R are
binary, then its hypergraph is identical to
its primal graph.

Acyclic Networks
� The running intersection property

(connectedness): An arc can be
removed from the dual graph if the
variables labeling the arcs are shared
along an alternative path between the
two endpoints.

� Join graph: An arc subgraph of the
dual graph that satisfies the
connectedness property.

� Join-tree: a join-graph with no cycles
� Hypertree: A hypergraph whose dual

graph has a join-tree.
� Acyclic network: is one whose

hypergraph is a hypertree.

Solving acyclic networks

� Algorithm acyclic-solving applies a tree algorithm to
the join-tree. It applies directional relational arc-
consistency from leaves to root.

� Complexity: acyclic-solving is O(r l log l) steps, where
r is the number of constraints and l bounds the number
of tuples in each constraint relation

Example
� Constraints are:
� R_{ABC} = R_{AEF} = R_{CDE} = {(0,0,1) (0,1,0)(1,0,0)}
� R_{ACE} = { (1,1,0) (0,1,1) (1,0,1) }.

� d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
• When processing R_{ABC}, its parent relation is R_{ACE};

• processing R_{AEF} we generate relation

• processing R_{CDE} we generate:
• R_{ACE} = \pi_{ACE} (R_{ACE} x R_{CDE}) = {(0,1,1)}.

� A solution is generated by picking the only allowed tuple for R_{ACE},
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is
only D=0, and then similarly extending the assignment to F=0 and B=0, to
satisfy R_{AEF} and R_{ABC}.

)}1,0,1)(1,1,0{()(=⊗= ABCACEACEACE RRR π

)}1,1,0{()(=⊗= AEFACEACEACE RRR π

Recognizing acyclic networks

� Dual-based recognition:
• Perform maximal spanning tree over the dual graph

and check connectedness of the resulting tree.
• Dual-acyclicity complexity is O(e^3)

� Primal-based recognition:
• Theorem (Maier 83): A hypergraph has a join-tree iff

its primal graph is chordal and conformal.
• A chordal primal graph is conformal relative to a

constraint hypergraph iff there is a one-to-one
mapping between maximal cliques and scopes of
constraints.

Primal-based recognition

� Check chordality using
max-cardinality ordering.

� Test conformality
� Create a join-tree:

connect every clique to
an earlier clique sharing
maximal number of
variables.

Tree-based clustering
� Convert a constraint problem to an acyclic-

one: group subset of constraints to clusters
until we get an acyclic problem.

� Hypertree embedding of a hypergraph H =
(X,H) is a hypertree S = (X, S) s.t., for every
h in H there is h_1 in S s.t. h is included in
h_1.

� This yield algorithm join-tree clustering

Join-tree clustering
� Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).
� Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C ‘})
� 1. Select an d = (x_1,...,x_n)
� 2. Triangulation(create the induced graph along d and call it G^*:)
� for j=n to 1 by -1 do
� E � E U {(i,k)| (i,j) in E,(k,j) in E }
� 3. Create a join-tree of the induced graph G^*:
� a. Identify all maximal cliques (each variable and its parents is a clique).
� Let C_1,...,C_t be all such cliques,
� b. Create a tree-structure T over the cliques:
� Connect each C_{i} to a C_{j} (j < I) with whom it shares largest subset of variables.
� 4. Place each input constraint in one clique containing its scope, and let
� P_i be the constraint subproblem associated with C_i.
� 5. Solve P_i and let {R'}_i $ be its set of solutions.
� 6. Return C' = {R'}_1,..., {R'}_t
� the new set of constraints and their join-tree, T.

� Size of maximal clique - 1 is the Induced width.

Example of tree-clustering

Unifying tree-decompositions
� A tree-decomposition of R = (X, D, C) is a triple

where is a tree, and and are sets of
functions .
• For each constraint there is at least one vertex v

in T such that and
• For each variable x in X, the set

induces a connected subtree of T. (This is the
connectedness property.)

� tree-width = max number of vars in a cluster
� hyper-width = is max functions in a cluster
� the separator of u and v: the intersection between

variables in u and v.

>< ψχ ,,T
>=< EVT ,

CRi ∈
)(vRi ψ∈)()(vRscope i χ⊆

)}(|{ vxVv χ∈∈

ψχ

Example of two join-trees again

Cluster Tree Elimination

� Cluster Tree Elimination (CTE) works by passing
messages along a tree-decomposition

� Basic idea:
• Each node sends one message to each of its neighbors
• Node u sends a message to its neighbor v only when u

received messages from all its other neighbors

)(
:message theCompute

)(),(),(iuclusterRvusepvu Rm
i∈

⊗= π

Constraint Propagation

u v

x1

x2

xn

m(u,v)

)},(),,(),...,,(),,({)()(21 uvmuxmuxmuxmuucluster n∪=ψ

Example of CTE message propagation

2
1

3

A

23
2
C

1
A

12

32

13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R

2R

4R

3R

5R

6R

Distributed relational arc-consistency
example

A

B C

D F

G

The message that R2 sends to R1 is

R1 updates its relation and domains and
sends messages to neighbors

Distributed Arc-Consistency

b) Constraint network

DR-AC can be applied to the dual problem of any constraint network.

A

AB AC

ABD BCF

DFG

A

AB

A

A

A
B

C

B

D F

A

2

1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

DR-AC on a dual join-graph

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

2
1

3

A2
1

3

A

2
1

3

A
1
3

A

2
1

3

B
1
3

B

2
1

3

A
1
2

D

1
3

F

2
1

3

D

2
C

2
1

3

B

2
C

1
3

F

2
1

3

A

2
1

3

B

Iteration 1

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

1
3

A

23
2
C

1
A12

32
13

3
B

1
A

1
3
F

23
2
C

1
B

132
213
1

2
D

23

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 1

1
3

A

23
2
C

1
A12

32
13

3
B

1
A

1
3
F

23
2
C

1
B

132
213
1

2
D

23

3
B

1
A

3
G

1
F

2
D

1
3

A

1
3

A

2
1

3

A
1
3

A

1
3

A
2
D

1
3

F

2
1
D

2
C

1
3

B

2
C

1
F

2
1

3

A

1
3

B

2
1

3

B

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

Iteration 2

1
3

B

1
3

A

23
2
C

1
A13

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

Iteration 2

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

1
3

A

1
3

A

1
3

A

3
B

1
3

A
2
D

1
F

2
D

2
C

1
3

B

2
C

1
F

1
3

A
1
3

A
1
3

A

23
2
C

1
A13

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1
3

B

1
3

B

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 3

1
3

A

23
2
C

1
A

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 3

1
3

A

1
3

A

1
A

3
B

1
3

A
2
D

1
F

2
D

2
C

3
B

2
C

1
F

1
3

A
1
3

A
1
3

A

23
2
C

1
A

3
B

1
A

1
F

23
CB

213
2
D

3
B

1
A

3
G

1
F

2
D

1
3

B

1
3

B

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 4

1
A

23
2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 4

1
A

1
A

1
A

3
B

3
B

3
B

1
A

2
D

1
F

2
D

2
C

3
B

2
C

1
F

1
A

1
A

1
A

23
2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

2
1h

3
1h

1
3h1

2h 1
4h

3
5h

2
4h2

5h

4
1h4

6h 4
2h

6
5h6

4h

5
2h 5

3h 5
6h

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 5

1
A

2
C

1
A

3
B

1
A

1
F

23
CB

2
D

3
B

1
A

3
G

1
F

2
D

1R

2R

4R

3R

5R

6R

A

AB AC

ABD BCF

DFG

B

4 5

3

6

2

B

D F

A

A

A

C

1

Iteration 5

Cluster Tree Elimination - properties

� Correctness and completeness: Algorithm CTE is correct, i.e. it
computes the exact joint probability of every single variable and
the evidence.

� Time complexity: O (deg × (n+N) × d w*+1)

� Space complexity: O (N × d sep)
where deg = the maximum degree of a node

n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size

Time and space by hyperwidth: time O(N t^tw) space),(2hwNtO

Join-tree clustering is a restricted tree-
decomposition

Adaptive-consistency as tree-
decomposition

� Adaptive consistency is a message-passing along a
bucket-tree

� Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.
• The variables are the clicue of the triangulated graph
• The funcions are those placed in the initial partition

Bucket Elimination
Adaptive Consistency (Dechter and Pearl, 1987)

 d ordering along widthinduced -(d)
 ,

*

*

w
(d)))exp(w O(n :Complexity

≠
≠≠

≠

≠

≠

E

D

A

C

B

}2,1{

}2,1{}2,1{

}2,1{ }3,2,1{

:)(
AB :)(
BC :)(
AD :)(

BE C,E D,E :)(

ABucket
BBucket
CBucket
DBucket
EBucket

≠
≠
≠

≠≠≠

�

�

�

�

�

:)(
EB :)(

EC , BC :)(
ED :)(

BA D,A :)(

EBucket
BBucket
CBucket
DBucket
ABucket

≠
≠≠

≠
≠≠

�

�

�

�

�

|| RD
BE ,

|| RE

|| RDB

|| RDCB

|| RACB

|| RAB

RA

RC
BE

From bucket-elimination to bucket-tree propagation

The bottom up messages

Adaptive-consistency as tree-
decomposition

� Adaptive consistency is a message-passing along a
bucket-tree

� Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

� Theorem: A bucket-tree is a tree-decomposition
� Therefore, CTE adds a bottom-up message passing to

bucket-elimination.

