Tree Decomposition methods

Chapter 9

Graph concepts reviews:
 Hyper graphs and dual graphs

- A hypergraph is $H=(V, S), V=\left\{V_{1}, . ., V_{n}\right\}$ and a set of subsets Hyperegdes: $S=\left\{S_{1}, \ldots, S_{1}\right\}$.
- Dual graphs of a hypergaph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in V . The arc is labeled by the shared vertices.
- A primal graph of a hypergraph $H=$ (V, S) has V as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.
- if all the constraints of a network R are binary, then its hypergraph is identical to its primal graph.

(a)

(c)

(b)

(d)

Acyclic Networks

- The running intersection property (connectedness): An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.
- Join graph: An arc subgraph of the dual graph that satisfies the connectedness property.
- Join-tree: a join-graph with no cycles
- Hypertree: A hypergraph whose dual graph has a join-tree.

(a)

(c)

(b)

(d)
- Acyclic network: is one whose hypergraph is a hypertree.

Solving acyclic networks

- Algorithm acyclic-solving applies a tree algorithm to the join-tree. It applies directional relational arcconsistency from leaves to root.
- Complexity: acyclic-solving is $O(r / \log l)$ steps, where r is the number of constraints and $/$ bounds the number of tuples in each constraint relation

Example

- Constraints are:
- $\quad R _\{A B C\}=R _\{A E F\}=R _\{C D E\}=\{(0,0,1)(0,1,0)(1,0,0)\}$
- $\quad R_{-}\{A C E\}=\{(1,1,0)(0,1,1)(1,0,1)\}$.
- $d=\left(R _\{A C E\}, R _\{C D E\}, R _\{A E F\}, R _\{A B C\}\right)$.
- When processing $R _\{A B C\}$, its parent relation is $R _\{A C E\}$;

$$
R_{A C E}=\pi_{A C E}\left(R_{A C E} \otimes R_{A B C}\right)=\{(0,1,1)(1,0,1)\}
$$

- processing $R _\{A E F\}$ we generate relation

$$
R_{A C E}=\pi_{A C E}\left(R_{A C E} \otimes R_{A E F}\right)=\{(0,1,1)\}
$$

- processing R_\{CDE\} we generate:
- R_\{ACE $\}=1$ ip $\{A C E\}\left(R _\{A C E\} \times R _\{C D E\}\right)=\{(0,1,1)\}$.
- A solution is generated by picking the only allowed tuple for R_\{ACE\}, $A=0, C=1, E=1$, extending it with a value for D that satisfies $R \overline{\{C D E\}}$, which is only $D=0$, and then similarly extending the assignment to $F=\overline{0}$ and $B=0$, to satisfy $R _\{A E F\}$ and $R _\{A B C\}$.

Recognizing acyclic networks

- Dual-based recognition:
- Perform maximal spanning tree over the dual graph and check connectedness of the resulting tree.
- Dual-acyclicity complexity is $\mathrm{O}\left(\mathrm{e}^{\wedge} 3\right)$
- Primal-based recognition:
- Theorem (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
- A chordal primal graph is conformal relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.

Primal-based recognition

(a)

(b)

- Check chordality using max-cardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables.

Tree-based clustering

- Convert a constraint problem to an acyclicone: group subset of constraints to clusters until we get an acyclic problem.
- Hypertree embedding of a hypergraph $H=$ (X,H) is a hypertree $S=(X, S)$ s.t., for every h in H there is $h _1$ in S s.t. h is included in h_1.
- This yield algorithm join-tree clustering

Join-tree clustering

- Input: A constraint problem $R=(X, D, C)$ and its primal graph $G=(X, E)$.
- Output: An equivalent acyclic constraint problem and its join-tree: $T=\left(X, D,\left\{C^{\prime}\right\}\right)$
- 1. Select an $d=\left(x _1, \ldots, x _n\right)$
- 2. Triangulation(create the induced graph along $\$ \mathrm{~d} \$$ and call it $\mathrm{G}^{\wedge *}$:)
- for $\mathrm{j}=\mathrm{n}$ to 1 by -1 do
- $\quad E \leftarrow E \cup\{(i, k) \mid(i, j)$ in $E,(k, j)$ in $E\}$
- 3. Create a join-tree of the induced graph $\mathbf{G}^{\wedge *}$:

5. $\overline{\text { Solve }} \mathrm{P}$ i and let $\left\{R^{\prime}\right\}$ i $\$$ be its set of solutions
6. Return ${ }^{\prime}=\left\{R^{\prime}\right\}$ 1,... $\left\{R^{\prime}\right\}$.

- 6. Return $\mathrm{C}^{\prime}=\left\{\mathrm{R}^{\prime}\right\}$ _1,..., $\left\{\mathrm{R}^{\prime}\right\} _\mathrm{t}$
- the new set of constraints and their join-tree, T.
- Size of maximal clique - 1 is the Induced width.

Example of tree-clustering

(a)

(b)

Unifying tree-decompositions

- A tree-decomposition of $\mathrm{R}=(\mathrm{X}, \mathrm{D}, \mathrm{C})$ is a triple $\langle T, \chi, \psi\rangle$ where $T=\langle V, E\rangle$ is a tree, and χ and ψ are sets of functions .
- For each constraint $R_{i} \in C$ there is at least one vertex v in T such that $R_{i} \in \psi(v)$ and $\operatorname{scope}\left(R_{i}\right) \subseteq \chi(v)$
- For each variable x in X , the set $\{v \in V \mid x \in \mathcal{X}(v)\}$ induces a connected subtree of T . (This is the connectedness property.)
- tree-width = max number of vars in a cluster
- hyper-width = is max functions in a cluster
- the separator of \mathbf{u} and \mathbf{v} : the intersection between variables in u and v.

Example of two join-trees again

(a)

(a)

(b)

Cluster Tree Elimination

- Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition
- Basic idea:
- Each node sends one message to each of its neighbors
- Node u sends a message to its neighbor v only when u received messages from all its other neighbors

Constraint Propagation

$$
\operatorname{cluster}(u)=\psi(u) \cup\left\{m\left(x_{1}, u\right), m\left(x_{2}, u\right), \ldots, m\left(x_{n}, u\right), m(v, u)\right\}
$$

Compute the message :

$$
m_{(u, v)}=\pi_{\operatorname{sep}(u, v)}\left(\otimes_{R_{i} \in \operatorname{cluster}(u)} R_{i}\right)
$$

Example of CTE message propagation

Distributed relational arc-consistency example

The message that $R 2$ sends to $R 1$ is

R1 updates its relation and domains and sends messages to neighbors

Distributed Arc-Consistency

DR-AC can be applied to the dual problem of any constraint network.


```
Di\leftarrow Di}\cap(\mp@subsup{凶}{k\inne(i)}{}\mp@subsup{D}{k}{i}
(1)
(2)
```


b) Constraint network

DR-AC on a dual join-graph

R_{1}
\mathbf{A}
1

$h_{i}^{j} \leftarrow \pi_{l_{j}}\left(R_{i} \bowtie\left(\bowtie_{k \in n e(i)} h_{k}^{i}\right)\right)$

$R_{i} \leftarrow R_{i} \cap\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)$

$h_{i}^{j} \leftarrow \pi_{l y}\left(R_{i} \bowtie\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)\right)$

$R_{i} \leftarrow R_{i} \cap\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)$

$h_{i}^{j} \leftarrow \pi_{l i j}\left(R_{i} \bowtie\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)\right)$

$R_{i} \leftarrow R_{i} \cap\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)$

$h_{i}^{j} \leftarrow \pi_{l y}\left(R_{i} \bowtie\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)\right)$

$\left.R_{i} \leftarrow R_{i} \cap\left(\bowtie_{k \in n e(0)}\right)_{k}^{i}\right)$

Iteration 4

$h_{i}^{j} \leftarrow \pi_{l y}\left(R_{i} \bowtie\left(\bowtie_{k \in n e(\mathrm{j})} h_{k}^{i}\right)\right)$

$$
\begin{aligned}
& \begin{array}{ccc|c|c|}
R_{1} & h_{2}^{1} & h_{3}^{1} & h_{4}^{1} \\
\hline \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \\
\hline 1 & 1 & 1 & 1 \\
\hline
\end{array} \\
& \begin{array}{c|c|c|c|}
\hline h_{5}^{2} & h_{4}^{2} & h_{1}^{2} & R_{2} \\
\hline \mathbf{B} & \mathbf{B} & \mathbf{A} & \begin{array}{|c|c|}
\hline \mathbf{A} & \mathbf{B} \\
\hline 3 & 3
\end{array} \\
\hline
\end{array} \\
& \\
& \begin{array}{r}
h_{5}^{3} \\
\hline \mathbf{C} \\
2 \\
\hline
\end{array}
\end{aligned}
$$

꾼ㄴ
$\left.R_{i} \leftarrow R_{i} \cap\left(\bowtie_{k \in n e(0)}\right)_{k}^{i}\right)$

Iteration 5

R_{1}
\mathbf{A}
1

Cluster Tree Elimination - properties

- Correctness and completeness: Algorithm CTE is correct, i.e. it computes the exact joint probability of every single variable and the evidence.
- Time complexity: $O\left(\operatorname{deg} \times(n+N) \times d^{w^{*}+1}\right)$
- Space complexity:
$O\left(N \times d^{s e \rho}\right)$
where $\quad d e g=$ the maximum degree of a node
$n=$ number of variables (= number of CPTs)
$N=$ number of nodes in the tree decomposition
$d=$ the maximum domain size of a variable
$w^{*}=$ the induced width
sep $=$ the separator size
Time and space by hyperwidth: $O\left(N t^{2 h w}\right)$, time $\mathrm{O}\left(\mathrm{Nt}^{\wedge} \mathrm{tw}\right)$ space

Join-tree clustering is a restricted treedecomposition

(a)

(b)

Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
- The variables are the clicue of the triangulated graph
- The funcions are those placed in the initial partition

Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

$\operatorname{Bucket}(E): \mathrm{E} \neq \mathrm{D}, \mathrm{E} \neq \mathrm{C}, \mathrm{E} \neq \mathrm{B}$
$\operatorname{Bucket}(D): \mathrm{D} \neq \mathrm{A} \| R_{D C B}$
$\operatorname{Bucket}(C): \mathrm{C} \neq \mathrm{B} \| R_{A C B}$
$\operatorname{Bucket}(B): \mathrm{B} \neq \mathrm{A} \| R_{A B}$
$\operatorname{Bucket}(A): \quad R_{A}$
$\operatorname{Bucket}(A): \mathrm{A} \neq \mathrm{D}, \mathrm{A} \neq \mathrm{B}$
$\operatorname{Bucket}(D): \mathrm{D} \neq \mathrm{E} \quad \| R_{D B}$
$\operatorname{Bucket}(C): \mathrm{C} \neq \mathrm{B}, \mathrm{C} \neq \mathrm{E}$
$\operatorname{Bucket}(B): \mathrm{B} \neq \mathrm{E} \quad \| R_{B E}^{D}, R_{B E}^{C}$
$\operatorname{Bucket}(E): \quad \| R_{E}$

Complexity : $O\left(n \exp \left(w^{*}(d)\right)\right)$,

Bucket $(\mathrm{D}): \mathrm{D} \neq \mathrm{A} \| R_{D C B}$
Bucket $(\mathrm{C}): \mathrm{C} \neq \mathrm{B} \| R_{A C B}$
Bucket(B): $\mathrm{B} \neq \mathrm{A} \| R_{A B}$
Bucket(A):

$w^{*}(\mathrm{~d})$ - induced width along ordering d

From bucket-elimination to bucket-tree propagation

(b)

The bottom up messages

Bucket $G: R(G, F) \longrightarrow{\underset{G}{F}}_{F}^{F}(F)$
Bucket F : $R(F, B, C$
Bucket $D: R(D, A, B)$

Bucket $A: R(A)$

(a)

Adaptive-consistency as treedecomposition

- Adaptive consistency is a message-passing along a bucket-tree
- Bucket trees: each bucket is a node and it is connected to a bucket to which its message is sent.
- Theorem: A bucket-tree is a tree-decomposition
- Therefore, CTE adds a bottom-up message passing to bucket-elimination.

