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Graph concepts reviews:
Hyper graphs and dual graphs
� A hypergraph is H = (V,S) , V= {v1,..,vn} 

and a set of subsets Hyperegdes: 
S={S1, ..., Sl }.

� Dual graphs of a hypergaph: The nodes 
are the hyperedges and a pair of nodes 
is connected if they share vertices in  V. 
The  arc is labeled by the shared 
vertices. 

� A primal graph of a hypergraph H = 
(V,S) has V as its nodes, and any two 
nodes are connected by an arc if they 
appear in the same hyperedge.

� if all the constraints of a network R are 
binary, then its hypergraph is identical to 
its primal graph.



Acyclic Networks
� The running intersection property 

(connectedness): An arc can be 
removed from the dual graph if the 
variables labeling the arcs are shared 
along an alternative path between the 
two endpoints. 

� Join graph: An arc subgraph of the 
dual graph that satisfies the 
connectedness property. 

� Join-tree: a join-graph with no cycles
� Hypertree: A hypergraph whose dual 

graph has a join-tree.
� Acyclic network: is one whose 

hypergraph is a hypertree.



Solving acyclic networks

� Algorithm acyclic-solving applies a tree algorithm to 
the join-tree. It applies directional relational arc-
consistency from leaves to root.

� Complexity: acyclic-solving is O(r l  log l) steps, where 
r is the number of constraints and l bounds the number 
of tuples in each constraint relation



Example
� Constraints are: 
� R_{ABC} = R_{AEF} = R_{CDE} = {(0,0,1) (0,1,0)(1,0,0)}
� R_{ACE} = { (1,1,0) (0,1,1) (1,0,1) }.

� d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}). 
• When processing R_{ABC}, its parent relation is R_{ACE}; 

• processing R_{AEF} we generate relation 

• processing R_{CDE} we generate: 
• R_{ACE} = \pi_{ACE} ( R_{ACE} x R_{CDE} ) = {(0,1,1)}. 

� A solution is generated by picking the only allowed tuple for R_{ACE}, 
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is 
only D=0, and then similarly extending the assignment to F=0 and B=0, to 
satisfy R_{AEF} and R_{ABC}.

)}1,0,1)(1,1,0{()( =⊗= ABCACEACEACE RRR π

)}1,1,0{()( =⊗= AEFACEACEACE RRR π



Recognizing acyclic networks

� Dual-based recognition: 
• Perform maximal spanning tree over the dual graph 

and check connectedness of the resulting tree.
• Dual-acyclicity complexity is O(e^3)

� Primal-based recognition: 
• Theorem (Maier 83): A hypergraph has a join-tree iff

its primal graph is chordal and conformal.
• A chordal primal  graph is conformal relative to a 

constraint hypergraph iff there is a one-to-one 
mapping between maximal cliques and scopes of 
constraints.



Primal-based  recognition

� Check chordality using 
max-cardinality ordering.

� Test conformality
� Create a join-tree: 

connect every clique to 
an earlier clique sharing 
maximal number of 
variables.



Tree-based clustering
� Convert a constraint problem to an acyclic-

one: group subset of constraints to clusters 
until we get an acyclic problem.

� Hypertree embedding of a hypergraph H = 
(X,H) is a hypertree S = (X, S)  s.t., for every 
h in H there is h_1 in S s.t. h is included in  
h_1.

� This yield algorithm join-tree clustering



Join-tree clustering
� Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).
� Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C ‘})
� 1. Select an d = (x_1,...,x_n)
� 2. Triangulation(create the induced graph along $d$ and call it G^*: )
� for  j=n to 1 by -1 do 
� E � E U {(i,k)| (i,j) in E,(k,j) in E }
� 3. Create a join-tree of the induced graph G^*:
� a.  Identify all maximal cliques (each variable and its parents is a clique).
� Let C_1,...,C_t be all such cliques,  
� b.  Create a tree-structure T over the cliques:
� Connect each C_{i} to a C_{j}  (j < I)  with whom it shares largest subset of variables. 
� 4. Place each input constraint in one clique containing its scope, and let
� P_i be the constraint subproblem associated with C_i.
� 5. Solve P_i and let {R'}_i $ be its set of solutions.
� 6.  Return C' = {R'}_1,..., {R'}_t
� the new set of constraints and their join-tree, T.

� Size of maximal clique - 1 is the Induced width.



Example of tree-clustering



Unifying tree-decompositions
� A tree-decomposition of  R = (X, D, C) is a triple        

where                    is a tree, and      and are sets of 
functions . 
• For each constraint                   there is at least one vertex v 

in T such that                     and                          
• For each variable x in X, the set                               

induces a connected subtree of T. (This is the 
connectedness property.)

� tree-width = max number of vars in a cluster
� hyper-width = is max functions in a cluster
� the separator of u and v: the intersection between 

variables in u and v.
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Example of two join-trees again



Cluster Tree Elimination

� Cluster Tree Elimination (CTE) works by passing 
messages along a tree-decomposition

� Basic idea:
• Each node sends one message to each of its neighbors
• Node u sends a message to its neighbor v only when u

received messages from all its other neighbors



)(
:message  theCompute
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Constraint  Propagation
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Example of CTE message propagation
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Distributed Arc-Consistency

b) Constraint network

DR-AC can be applied to the dual problem of any constraint network.
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Cluster Tree Elimination - properties

� Correctness and completeness: Algorithm CTE is correct, i.e. it 
computes the exact joint probability of every single variable and 
the evidence.

� Time complexity: O ( deg × (n+N) × d w*+1 )

� Space complexity: O ( N × d sep)
where deg = the maximum degree of a node

n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size

Time and space by hyperwidth: time O(N t^tw) space),( 2hwNtO



Join-tree clustering is a restricted tree-
decomposition



Adaptive-consistency as tree-
decomposition

� Adaptive consistency is a message-passing along a 
bucket-tree

� Bucket trees: each bucket is a node and it is 
connected to a bucket to which its message is sent.
• The variables are the clicue of the triangulated graph
• The funcions are those placed in the initial partition



Bucket Elimination
Adaptive Consistency (Dechter and Pearl, 1987)
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From bucket-elimination to bucket-tree propagation



The bottom up messages



Adaptive-consistency as tree-
decomposition

� Adaptive consistency is a message-passing along a 
bucket-tree

� Bucket trees: each bucket is a node and it is 
connected to a bucket to which its message is sent.

� Theorem: A bucket-tree is a tree-decomposition
� Therefore, CTE adds a bottom-up message passing to 

bucket-elimination.


