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1 Introduction

The research of Judea Pearl in the area of causality has been very much acclaimed.

Here we highlight his contributions for the use of graphical languages to represent

and reason about causal knowledge.1

The concept of causation seems to be fundamental to our understanding of the

world. Philosophers like J. Carroll put it in these terms: ”With regard to our total

conceptual apparatus, causation is the center of the center” [Carroll 1994]. Perhaps

more dramatically, David Hume states that causation together with resemblance

and contiguity are ”the only ties of our thoughts, ... for us the cement of the

universe” [Hume 1978]. In view of these observations, the need for an adequate

language to talk about causation becomes clear and evident.

The use of graphical languages was present in the early times of causal modelling.

Already in 1934, Sewall Wright [Wright 1934] represented the causal relation among

several variables with diagrams formed by points and arrows (i.e., a directed graph),

and noted that the correlations observed between the variables could be associated

with the various paths between them in the diagram. From this observation he

obtained a method to estimate the strength of the causal connections known as

The Method of Path Coefficients, or simply Path Analysis.

With the development of the research in the field, the graphical representation

gave way to a mathematical language, in which causal relations are represented by

equations of the form Y = α+βX+e. This movement was probably motivated by an

increasing interest in the quantitative aspects of the model, or by the rigorous and

formal appearance offered by the mathematical language. However it may be, the

consequence was a progressive departure from our basic causal intuitions. Today

people ask whether such an equation represents a functional or a causal relation

[Reiss 2005]. Sewall Wright and Judea Pearl would presumably answer: ”Causal,

of course!”.

2 The Identification Problem

We explore the feasibility of inferring linear cause-effect relationships from various

combinations of data and theoretical assumptions. The assumptions are represented

1This contribution is a simplified version of a joint paper with Judea Pearl in UAI 2002. A

great deal of technicality was removed, and new discussion was added, in the hope that the reader

will be able to easily follow and enjoy the argument.
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Figure 1. (a) a bow-pattern; and (b) a bow-free model.

in the form of an acyclic causal diagram, which contains both arrows and bidirected

arcs [Pearl 1995; Pearl 2000a]. The arrows represent the potential existence of di-

rect causal relationships between the corresponding variables, and the bidirected

arcs represent spurious correlations due to unmeasured common causes. All inter-

actions among variables are assumed to be linear. Our task is to decide whether the

assumptions represented in the diagram are sufficient for assessing the strength of

causal effects from non-experimental data, and, if sufficiency is proven, to express

the target causal effect in terms of estimable quantities.

This decision problem has been tackled in the past half century, primarily by

econometricians and social scientists, under the rubric ”The Identification Prob-

lem” [Fisher 1966] - it is still unsolved. Certain restricted classes of models are

nevertheless known to be identifiable, and these are often assumed by social scien-

tists as a matter of convenience or convention [Duncan 1975]. A hierarchy of three

such classes is given in [McDonald 1997]: (1) no bidirected arcs, (2) bidirected arcs

restricted to root variables, and (3) bidirected arcs restricted to variables that are

not connected through directed paths.

In a further development [Brito and Pearl 2002], we have shown that the identifi-

cation of the entire model is ensured if variables standing in direct causal relationship

(i.e., variables connected by arrows in the diagram) do not have correlated errors;

no restrictions need to be imposed on errors associated with indirect causes. This

class of models was called ”bow-free”, since their associated causal diagrams are

free of any ”bow-pattern” [Pearl 2000a] (see Figure 1).

Most existing conditions for identification in general models are based on the

concept of Instrumental Variables (IV) [Pearl 2000b; Bowden and Turkington 1984].

IV methods take advantage of conditional independence relations implied by the

model to prove the identification of specific causal-effects. When the model is not

rich in conditional independence relations, these methods are not informative. In

[Brito and Pearl 2002] we proposed a new graphical criterion for identification which

does not make direct use of conditional independence, and thus can be successfully

applied to models in which the IV method would fail.

The result presented in this paper is a generalization of the graphical version
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of the method of instrumental variables, offered by Judea Pearl [Pearl 2000a], to

deal with several parameters of the model simultaneously. The traditional method

of instrumental variables involves conditions on the independence of the relevant

variables and on the rank of a certain matrix of correlations [McFadden ]. The first

of these is captured by the notion of d-separation. As for the second, since we know

from [Wright 1934] that correlations correspond to paths in the causal diagram,

we can investigate which structural properties of the model give rise to the proper

conditions of the IV method. The results are graphical criteria that allow us to

conclude the identification of some parameters from consideration of the qualitative

information represented in the causal diagram.

3 Linear Models and Identification

A linear model for the random variables Y1, . . . , Yn is defined by a set of equations

of the form:

(1) Yj =
∑

i

cjiYi + ej , j = 1, . . . , n

An equation Y = cX + e encodes two distinct assumptions: (1) the possible

existence of (direct) causal influence of X on Y ; and, (2) the absence of causal

influence on Y of any variable that does not appear on the right-hand side of the

equation. The parameter c quantifies the (direct) causal effect of X on Y . That

is, the equation claims that a unit increase in X would result in c units increase

of Y , assuming that everything else remains the same. The variable e is called an

error or disturbance; it represents unobserved background factors that the modeler

decides to keep unexplained; this variable is assumed to have a normal distribution

with zero mean.

The specification of the equations and the pairs of error-terms (ei, ej) with non-

zero correlation defines the structure of the model. This structure can be represented

by a directed graph, called causal diagram, in which the set of nodes is defined by

the variables Y1, . . . , Yn, and there is a directed edge from Yi to Yj if Yi appears on

the right-hand side of the equation for Yj . Additionally, if error-terms ei and ej are

assumed to have non-zero correlation, we add a (dashed) bidirected edge between

Yi and Yj . Figure 2 shows a model with the respective causal diagram.

In this work, we consider only recursive models, which are defined by the restric-

tion that cji = 0, for all i ≥ j. This simply means that the directed edges in the

causal diagram do not form cycles.

The set of parameters of the model, denoted by Θ, is formed by the coefficients

cij and the non-zero entries of the error covariance matrix Ψ, [Ψij ] = cov(ei, ej).

Fixing the structure and assigning values to the parameters Θ, the model deter-

mines a unique covariance matrix Σ over the observed variables Y1, . . . , Yn, given

by (see [Bollen 1989], page 85):

(2) Σ(Θ) = (I − C)−1Ψ[(I − C)−1]′
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Figure 2. A simple linear model and its causal diagram.

where C is the matrix of coefficients cji.

Conversely, in the Identification Problem, after fixing the structure of the model,

one attempts to solve for Θ in terms of the observed covariance Σ. This is not

always possible. In some cases, no parametrization of the model is compatible with

a given Σ. In other cases, the structure of the model may permit several distinct

solutions for the parameters. In these cases, the model is called non-identified.

However, even if the model is non-identified, some parameters may still be

uniquely determined by the given assumptions and data. Whenever this is the

case, the specific parameters are said to be identified.

Finally, since the conditions we seek involve the structure of the model alone,

and do not depend on the numerical values of the parameters Θ, we insist only on

having identification almost everywhere, allowing few pathological exceptions. The

concept of identification almost everywhere can be formalized as follows.

Let h denote the total number of parameters in the model. Then, each vector

Θ ∈ ℜh defines a parametrization of the model. For each parametrization Θ, the

model G generates a unique covariance matrix Σ(Θ). Let Θ(λ1, . . . , λn) denotes the

vector of values assigned by Θ to the parameters λ1, . . . , λn.

Parameters λ1, . . . , λn are identified almost everywhere if

Σ(Θ) = Σ(Θ′) implies Θ(λ1, . . . , λn) = Θ′(λ1, . . . , λn)

except when Θ resides on a subset of Lebesgue measure zero of ℜh.

4 Graph Background

DEFINITION 1.

1. A path in a graph is a sequence of edges such that each pair of consecutive

edges share a common node, and each node appears only once along the path.

2. A directed path is a path composed only by directed edges, all of them oriented
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in the same direction. If there is a directed path going from X to Y we say

that Y is a descendant of X.

3. A path is closed if it has a pair of consecutive edges pointing to their common

node (e.g., . . .→ X ← . . . or . . .↔ X ← . . .). In this case, the common node

is called a collider. A path is open if it is not closed.

DEFINITION 2. A path p is blocked by a set of nodes Z (possibly empty) if either

1. Z contains some non-collider node of p, or

2. at least one collider of p and all of its descendants are outside Z.

The idea is simple. If the path is closed, then it is naturally blocked by its colliders.

However, if a collider, or one of its descendants, belongs to Z, then it ceases to be

an obstruction. But if a non-collider of p belongs to Z, then the path is definitely

blocked.

DEFINITION 3. A set of nodes Z d-separates X and Y if Z simultaneously blocks

all the paths between X and Y . If Z is empty, then we simply say that X and Y

are d-separated.

The significance of this definition comes from a result showing that if X and Y

are d-separated by Z in the causal diagram of a linear model, then the variables X

and Y are conditionally independent given Z [Pearl 2000a]. It is this sort of result

that makes the connection between the mathematical and graphical languages, and

allows us to express our conditions for identification in graphical terms.

DEFINITION 4. Let p1, . . . , pn be unblocked paths connecting the variables Z1, . . . , Zn

and the variables X1, . . . , Xn, respectively. We say that the set of paths p1, . . . , pn is

incompatible if we cannot rearrange their edges to form a different set of unblocked

paths p′1, . . . , p
′

n between the same variables.

A set of disjoint paths (i.e., paths with no common nodes) consists in a simple

example of an incompatible set of paths.

5 Instrumental Variable Methods

5.1 Identification of a Single Parameter

The method of Instrumental Variables (IV) for the identification of causal effects is

intended to address the situation where we cannot attribute the entire correlation

between two variables, say X and Y , to their causal connection. That is, part of the

correlation between X and Y is due to common causes and/or correlations between

disturbances. Figure 3 shows examples of this situation.

In the simplest cases, like in Figure 3a, we can find a conditioning set W such

that the partial correlation of X and Y given W can indeed be attributed to the

causal relation. In this example, if we take W = {W} we eliminate the source
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Figure 3. Models with spurious correlation between X and Y .

of spurious correlation. The causal effect of X on Y is identified and given by

c = σXY.W.

There are cases, however, where this idea does not work, either because the

spurious correlation is originated by disturbances outside the model (Figure 3b),

or else because the conditioning itself introduces spurious correlations (Figure 3c).

In situations like these, the IV method asks us to look for a variable Z with the

following properties [Bowden and Turkington 1984]:

IV-1. Z is not independent of X.

IV-2. Z is independent of all error terms that have an influence on Y that is not

mediated by X.

The first condition simply states that there is a correlation between Z and X.

The second condition says that the only source of correlation between Z and Y

is due to a covariation bewteen Z and X that subsequently affects Y through the

causal connection X
c
→ Y .

If we can find a variable Z with these properties, then the causal effect of X on

Y is identified and given by c = σZY /σZX .

Using the notion of d-separation we can express the conditions (1) and (2) of

the IV method in graphical terms, thus obtaining a criterion for identification that

can be applied directly to the causal diagram of the model. Let G be the graph

representing the causal diagram of the model, and let Gc be the graph obtained

after removing the edge X
c
→ Y from G (see Figure 4). Then, Z is an instrumental

variable relative to X
c
→ Y if:

1. Z is not d-separated from X in Gc.

2. Z is d-separated from Y in Gc.

Using this criterion, it is easy to verify that Z is an instrumental variable relative

to X
c
→ Y in the models of Figure 3b and c.
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Figure 4. The causal diagram G of a linear model and the graph Gc.

5.2 Conditional Instrumental Variables

A generalization of the method of instrumental variables is offered through the use

of conditioning. A conditional instrumental variable is a variable Z that may not

have the properties (IV-1) and (IV-2) above, but after conditioning on a subset W

these properties do hold. When such pair (Z,W) is found, the causal effect of X

on Y is identified and given by c = σZY.W/σZX.W.

Again, we obtain a graphical criterion for a conditional IV using the notion of

d-separation. Variable Z is a conditional instrumental variable relative to X
c
→ Y

given W, if

1. W contains only non-descendants of Y .

2. W does not d-separate Z from X in Gc.

3. W d-separates Z from Y in Gc.

5.3 Identification of Multiple Parameters

So far we have been concerned with the identification of a single parameter of the

model, but in its full version the method of instrumental variables allows to prove

simultaneously the identification of several parameters in the same equation (i.e.,

the causal effects of several variables X1, . . . , Xk on the same variable Y ).

Following [McFadden ], assume that we have the equation

Y = c1X1 + . . . + ckXk + e

in our linear model. The variables Z1, . . . , Zj , with j ≥ k, are called instruments if

1. The matrix of correlations between the variables X1, . . . , Xk and the variables

Z1, . . . , Zj is of maximum possible rank (i.e., rank k).

2. The variables Z1, . . . , Zj are uncorrelated with the error term e.
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Figure 5. The causal diagram G of a linear model and the graph Ḡ.

Next, we develop our graphical intuition and obtain a graphical criterion for

identification that corresponds to the full version of the IV method.

Consider the model in Figure 5a. Here, the variables Z1 and Z2 do not qualify

as instrumental variables (or even conditional IVs) with respect to either X1

c1→ Y

or X2

c2→ Y . But, following ideas similar to the ones developed in the previous

sections, in Figure 5b we show the graph obtained by removing edges X1 → Y and

X2 → Y from the causal diagram. Observe that now both d-separation conditions

for an instrumental variable hold for Z1 and Z2. This leads to the idea that Z1 and

Z2 could be used together as instruments to prove the identification of parameters

c1 and c2. Indeed, next we give a graphical criterion that is sufficient to guarantee

the identification of a subset of parameters of the model.

Fix a variable Y , and consider the edges X1

c1→ Y, . . . ,Xk
ck→ Y in the causal

diagram G of the model. Let Ḡ be the graph obtained after removing the edges

X1 → Y, . . . ,Xk → Y from G. The variables Z1, . . . , Zk are instruments relative to

X1

c1→ Y, . . . ,Xk
ck→ Y if

1. There exists an incompatible set of unblocked paths p1, . . . , pk connecting the

variables Z1, . . . , Zk to the variables X1, . . . , Xk.

2. The variables Zi are d-separated from Y in Ḡ.

3. Each variable Zi is not d-separated from the corresponding variable Xi in Ḡ.
2

THEOREM 5. If we can find variables Z1, . . . , Zk satisfying the conditions above,

then the parameters c1, . . . , ck are identified almost everywhere, and can be computed

by solving a system of linear equations.

2Notice that this condition is redundant, since it follows from the first condition.
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Figure 6. More examples of the new criterion.

Figure 6 shows more examples of application of the new graphical criterion.

Model (a) illustrates an interesting case, in which variable X2 is used as the in-

strumental variable for X1 → Y , while Z is the instrumental variable for X2 → Y .

Finally, in model (b) we have an example in which the parameter of edge X3 → Y

is non-identified, and still the graphical criterion allows to show the identfication of

c1 and c2.

6 Wright’s Method of Path Coefficients

Here, we describe an important result introduced by Sewall Wright [Wright 1934],

which is extensively explored in our proofs.

Given variables X and Y in a recursive linear model, the correlation coefficient

of X and Y , denoted by ρXY , can be expressed as a polynomial on the parameters

of the model. More precisely,

(3) σXY =
∑

p

T (p)

where the summation ranges over all unblocked paths p between X and Y , and each

term T (p) represents the contribution of the path p to the total correlation between

X and Y . The term T (p) is given by the product of the parameters of the edges

along the path p. We refer to Equation 3 as Wright’s equation for X and Y .

Wright’s method of path coefficients for identification consists in forming Wright’s

equations for each pair of variables in the model, and then solving for the parameters

in terms of the observed correlations. Whenever there is a unique solution for a

parameter c, this parameter is identified.

7 Proof of Theorem 1

7.1 Notation

Fix a variable Y in the model. Let X = {X1, . . . , Xn} be the set of all non-

descendants of Y which are connected to Y by an edge. Define the following set of

edges incoming Y :
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(4) Inc(Y ) = {(Xi, Y ) : Xi ∈ X}

Note that for some Xi ∈ X there may be more than one edge between Xi and Y

(one directed and one bidirected). Thus, |Inc(Y )| ≥ |X|. Let λ1, . . . , λm, m ≥ k,

denote the parameters of the edges in Inc(Y ).

It follows that edges X1

c1→ Y, . . . ,Xk
ck→ Y all belong to Inc(Y ), because

X1, . . . , Xk are clearly non-descendants of Y . We assume that λi = ci, for i =

1, . . . , k, while λk+1, . . . , λm are the parameters of the remaining edges of Inc(Y ).

Let Z be any non-descendant of Y . Wright’s equation for the pair (Z, Y ) is given

by:

(5) σZY =
∑

p

T (p)

where each term T (p) corresponds to an unblocked path p between Z and Y . The

next lemma proves a property of such paths.

LEMMA 6. Any unblocked path between Y and one of its non-descendants Z must

include exactly one edge from Inc(Y ).

Lemma 6 allows us to write equation 4 as:

(6) σZY =
m

∑

j=1

aj · λj

Thus, the correlation between Z and Y can be expressed as a linear function

of the parameters λ1, . . . , λm, with no constant term. In addition, we can say

something about the coefficients aj . Each term in Equation 5 corresponds to an

unblocked path that reaches Y through some egge, say Xj

λj

→ Y . When we group

the terms together according to the parameter λj and factor it out, we are, in a

sense, removing the edge Xj → Y from those paths. Thus, each coefficient aj in

Equation 6 is a sum of terms associated with unblocked paths between Z and Xj .

7.2 Basic Linear Equations

We have just seen that the correlations between the instrumental variables Zi and

Y can be written as a linear function of the parameters λ1, . . . , λm:

(7) ρZiY =
m

∑

j=1

aij · λj

Next, we prove an important result

LEMMA 7. The coefficients ai,k+1, . . . , aim in Equation 7 are all identically zero.

Proof. The fact that Zi is d-separated from Y in Ḡ implies that ρZiY = 0 in

any probability distribution compatible with Ḡ. Hence, the expression for ρZiY

must vanish when evaluated in the causal diagram Ḡ. But this implies that each
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coefficient aij in Equation 7 is identically zero, when the expression is evaluated in

Ḡ.

Next, we show that the only difference between the expression for ρZiY on the

causal diagrams G and Ḡ are the coefficients of the parameters λ1, . . . , λk.

Recall from the previous section that each coefficient aij is a sum of terms asso-

ciated with paths which can be extended by the edge
λj

→ Y to form an unblocked

path between Z and Y .

Fixing j > k, we observe that the insertion of edges x1 → Y, . . . ,Xk → Y in

Ḡ does not create any new such path (and clearly does not eliminate any existing

one). Hence, for j > k, the coefficients aij in the expression for ρZiY in the causal

diagrams G and Ḡ are exactly the same, namely, identically zero. ⊓⊔

The conclusion from Lemma 7 is that the expression for ρZiY is a linear function

only of parameters λ1, . . . , λk:

(8) ρZiY =
k

∑

j=1

aij · λj

7.3 System of Equations Φ

Writing Equation 8 for each instrumental variable Zi, we obtain the following system

of linear equations on the parameters λ1, . . . , λk:

(9) Φ =











ρZ1Y = a11λ1 + . . . , a1kλk

. . .

ρZkY = ak1λ1 + . . . , akkλk

Our goal now is to show that Φ can be solved uniquely for the parameters λi, and

so prove the identification of λ1, . . . , λk. Next lemma proves an important result in

this direction.

Let A denote the matrix of coefficients of Φ.

LEMMA 8. Det(A) is a non-trivial polynomial on the parameters of the model.

Proof. The determinant of A is defined as the weighted sum, for all permutations

π of 〈1, . . . , k〉, of the product of the entries selected by π. Entry aij is selected by a

permutation π if the ith element of π is j. The weights are either 1 or -1, depending

on the parity of the permutation.

Now, observe that each diagonal entry aii is a sum of terms associated with

unblocked paths between Zi and Xi. Since pi is one such path, we can write

aii = T (pi) + âii. From this, it is easy to see that the term

(10) T ∗ =
k

∏

j=1

T (pj)
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appears in the product of permutation π = 〈1, . . . , n〉, which selects all the diagonal

entries of A.

We prove that det(A) does not vanish by showing that T ∗ is not cancelled out

by any other term in the expression for det(A).

Let τ be any other term appearing in the summation that defines the determinant

of A. This term appears in the product of some permutation π, and has as factors

exactly one term from each entry aij selected by π. Thus, associated with such factor

there is an unblocked path between Zi and Xj . Let p′1, . . . , p
′

k be the unblocked paths

associated with the factors of τ .

We conclude the proof observing that, since p1, . . . , pk is an incompatible set,

its edges cannot be rearranged to form a different set of unblocked paths between

the same variables, and so τ 6= T ∗. Hence, the term T ∗ is not cancelled out in the

summation, and the expression for det(A) does not vanish. ⊓⊔

7.4 Identification of λ1, . . . , λk

Lemma 8 gives that det(Q) is a non-trivial polynomial on the parameters of the

model. Thus, det(Q) only vanishes on the roots of this polynomial. However,

[Okamoto 1973] has shown that the set of roots of a polynomial has Lebesgue

measure zero. Thus, the system Φ has unique solution almost everywhere.

It just remains to show that we can estimate the entries of the matrix of coeffi-

cients A from the data. But this is implied by the following observation.

Once again, coefficient aij is given by a sum of terms associated with unblocked

paths between Zi and Xj . But, in principle, not every unblocked path between Zi

and Xj would contribute with a term to the sum; just those which can be extended

by the edge Xj → Y to form an unblocked path between Zi and Y . However, since

the edge Xj → Y does not point to Xj , every unblocked path between Zi and Xj

can be extended by the edge Xj → Y without creating a collider. Hence, the terms

of all unblocked paths between Zi and Xj appear in the expression for aij , and by

the method of path coefficients, we have aij = ρZiXj
.

We conclude that each entry of matrix A can be estimated from data, and we

can solve the system of linear equations Φ to obtain the parameters λ1, . . . , λk.
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Seeing and Doing: The Pearlian Synthesis

PHILIP DAWID

1 Introduction

It is relatively recently that much attention has focused on what, for want of a better term,

we might call “statistical causality”, and the subject has developed in a somewhat haphaz-

ard way, without a very clear logical basis. There is in fact a variety of current conceptions

and approaches [Campaner and Galavotti 2007; Hitchcock 2007; Galavotti 2008]—here we

shall distinguish in particular agency, graphical, probabilistic and modular conceptions of

causality—that tend to be mixed together in an informal and half-baked way, based on

“definitions” that often do not withstand detailed scrutiny. In this article I try to unpick this

tangle and expose the various different strands that contribute to it. Related points, with a

somewhat different emphasis, are made in a companion paper [Dawid 2009].

The approach of Judea Pearl [2009] cuts through this Gordian knot like the sword of

Alexander. Whereas other conceptions of causality may be philosophically questionable,

definitionally unclear, pragmatically unhelpful, theoretically skimpy, or simply confused,

Pearl’s theory is none of these. It provides a valuable framework, founded on a rich and

fruitful formal theory, by means of which causal assumptions about the world can be mean-

ingfully represented, and their implications developed. Here we will examine both the rela-

tionships of Pearl’s theory with the other conceptions considered, and its differences from

them. We extract the essence of Pearl’s approach as an assumption of “modularity”, the

transferability of certain probabilistic properties between observational and interventional

regimes: so, in particular, forging a synthesis between the very different activities of “see-

ing” and “doing”. And we describe a generalisation of this framework that releases it from

any necessary connexion to graphical models.

The plan of the paper is as follows. In § 2, I describe the agency, graphical and proba-

bilistic conceptions of causality, and their connexions and distinctions. Section 3 introduces

Pearl’s approach, showing its connexions with, and differences from, the other theories.

Finally, in § 4, I present the generalisation of that approach, emphasising the modularity

assumptions that underlie it, and the usefulness of the theory of “extended conditional in-

dependence” for describing and manipulating these.

Disclaimer I have argued elsewhere [Dawid 2000, 2007a, 2010] that it is important to dis-

tinguish arguments about “Effects of Causes” (EoC, otherwise termed “type”, or “generic”

causality”), from those about “Causes of Effects” (CoE, also termed “token”, or “indi-

vidual” causality); and that these demand different formal frameworks and analyses. My

concern here will be entirely focused on problems of generic causality, EoC. A number of
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the current frameworks for statistical causality, such as Rubin’s “potential response mod-

els” [Rubin 1974, 1978], or Pearl’s “probabilistic causal models” [Pearl 2009, Chapter 7],

are more especially suited for handling CoE type problems, and will not be discussed fur-

ther here. There are also numerous other conceptions of causality, such as mechanistic

causality [Salmon 1984; Dowe 2000], that I shall not be considering here.

2 Some conceptions of causality

There is no generally agreed understanding of what “causality” is or how it should behave.

There are two conceptions in particular that are especially relevant for “statistical causal-

ity”: Agency Causality and Probabilistic Causality. The latter in turn is closely related to

what we might term Graphical Causality.

2.1 Agency causality

The “agency” or “manipulability” interpretation of causality [Price 1991; Hausman 1998;

Woodward 2003] depends on an assumed notion of external “manipulation” (or “interven-

tion”), that might itself be taken as a primitive—at any rate we shall not try and explicate it

further here. The basic idea is that causality is all about how an external manipulation that

sets the value of some variable (or set of variables) X will affect some other (unmanipu-

lated) “response variable” (or set of variables) Y . The emphasis is usually on comparison

of the responses ensuing from different settings x for X: a version of the “contrastive” or

“difference-making” understanding of causality. Much of Statistical Science—for exam-

ple, the whole subfield of Experimental Design—aims to address exactly these kinds of

questions about the comparative effects of interventions on a system, which are indeed a

major object of all scientific enquiry.

We can define certain causal terms quite naturally within the agency theory [Woodward

2003]. Thus we could interpret the statement

“X has no effect on Y ”1

as holding whenever, considering regimes that manipulate only X , the resulting value of Y

(or some suitable codification of uncertainty about Y , such as its probability distribution)

does not depend on the value x assigned to X . When this fails, X has an effect on Y ; we

might then go on to quantify this dependence in various ways.

We could likewise interpret

“X has no (direct) effect on Y , after controlling for W ”

as the property that, considering regimes where we manipulate both W and X , when we

manipulate W to some value w and X to some value x, the ensuing value (or uncertainty)

for Y will depend only on w, and not further on x.

Now suppose that, explicitly or implicitly, we restrict consideration to some collection

V of manipulable variables. Then we might interpret the statement

1Just as “zero” is fundamental to arithmetic and “independence” is fundamental to probability, so the concept

of “no effect” is fundamental to causality.
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“X is a direct cause of Y (relative to V)”

(where V might be left unmentioned, but must be clearly understood) as the negation of

“X has no direct effect on Y , after controlling for V \ {X, Y }”.2

It is important to bear in mind that all these assertions relate to properties of the real

world under the various regimes considered: in particular, they can not be given purely

mathematical definitions. And in real world problems there are typically various ways of

manipulating variables, so we must be very clear as to exactly what is intended.

EXAMPLE 1. Ideal gas law

Consider the “ideal gas law”:

(1) PV = kNT

where P is the absolute pressure of the gas, V is its volume, N is the number of molecules

of gas present, k is Boltzmann’s constant, and T is the absolute temperature. For our

current purposes this will be supposed to be universally valid , no matter how the values of

the variables in (1) may have come to arise.

Taking a fixed quantity N of gas in an impermeable container, we might consider inter-

ventions on any of P , V and T . (Note however that, because of the constraint (1), we can

not simultaneously and arbitrarily manipulate all three variables.)

An intervention that sets V to v and T to t will lead to the unique value p = kNt/v for

P . Because this depends on both v and t, we can say that there is a direct effect of each of

V and T on P (relative to V = {V, P, T}). Similarly, P has a direct effect on each of V

and T .

What if we wish to quantify, say, “the causal effect of V on P ”? Any attempt to do

this must take account of the fact that the problem requires additional specification to be

well-defined. Suppose the volume of the container can be altered by applying a force to

a piston. Initially the gas has V = v0, P = p0, T = t0. We wish to manipulate V to a

new value v1. If we do this isothermally, i.e. by sufficiently slow movement of the piston

that, through flow of heat through the walls of the container, the temperature of the gas

always remains the same as that of the surrounding heat bath, we will end up with V = v1,

P = p1 = v0p0/v1, T = t1 = t0. But if we move the piston adiabatically, i.e. so fast that

no heat can pass through the walls of the container, the relevant law is PV γ = constant,

where γ = 5/3 for a monatomic gas. Then we get V = v1, P = p∗1 = p0(v0/v1)
γ ,

T = t∗1 = p∗1v1/kN .

2.2 Graphical causality

By graphical causality we shall refer to an interpretation of causality in terms of an under-

lying directed acyclic graph (DAG) (noting in passing that other graphical representations

are also possible). As a basis for this, we suppose that there is a suitable “causal ambit”3 A

of variables (not all necessarily observable) that we regard as relevant, and a “causal DAG”

2Neapolitan [2003, p. 56] has a different and more complex interpretation of “direct cause”.
3The importance of the causal ambit will become apparent later.
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D over a collection V ⊆ A. These ingredients are “known to Nature”, though not neces-

sarily to us: D is “Nature’s DAG”. Given such a causal DAG D, for X, Y ∈ V we interpret

“X is a direct cause of Y ” as synonymous with “X is a parent of Y in D”, and similarly

equate “cause” with “ancestor in D”. One can also use the causal DAG to introduce further

graphically defined causal terms, such as “causal chain”, “intermediate variable”, . . .

The concepts of causal ambit and causal DAG might be regarded as primitive notions,

or attempts might be made to define them in terms of pre-existing understandings of causal

concepts. In either case, it would be good to have criteria to distinguish a putative causal

ambit from a non-causal ambit, and a causal DAG from a non-causal DAG.

For example, we typically read [Hernán and Robins 2006]:

“A causal DAG D is a DAG in which:

(i). the lack of an arrow from Vj to Vm can be interpreted as the absence of a direct causal effect of Vj

on Vm (relative to the other variables on the graph)

(ii). all common causes, even if unmeasured, of any pair of variables on the graph are themselves on the

graph.4

If we start with a DAG D over V that we accept as being a causal DAG, and interpret

“direct cause” etc. in terms of that, then conditions (i) and (ii) will be satisfied by definition.

However, this begs the question of how we are to tell a causal from a non-causal DAG.

More constructively, suppose we start with a prior understanding of the term “direct

cause” (relative to V)—for example, though by no means necessarily,5 based on the agency

interpretation described in § 2.1 above. It appears that we could then use the above defini-

tion to check whether a proposed DAG D is indeed “causal”. But while this is essentially

straightforward so far as condition (i) is concerned (except that there is no obvious rea-

son to require a DAG representation), interpretation and implementation of condition (ii)

is more problematic. First, what is a “common cause”? Spirtes et al. [2000, p. 44] say

that a variable X is a common cause of variables Y and Z if and only if X is both a direct

cause of Y and a direct cause of Z — but in each case relative to the set {X,Y, Z}, so

that this definition is not dependent on the causal ambit V . Neapolitan [2003, p. 57] has

a different interpretation, which apparently is relative to an essentially arbitrary set V —

but then states that that problems can arise when at least one common cause is not in V , a

possibility that seems to be precluded by his definition.

As another attempt at clarification, Spirtes and Scheines [2004] require “that the set

of variables in the causal graph be causally sufficient, i.e. if V is the set of variables in

the causal graph, that there is no variable L not in V that is a direct cause (relative to

V ∪ {L}) of two variables in V”. If “L 6∈ V is not a direct cause of V ∈ V” is interpreted

in agency terms, it would mean that V would not respond to manipulations of L, when

holding fixed all the other variables in V . But whatever the interpretation of direct cause,

such a “definition” of causal sufficiency is ineffective when the range of possible choices

4The motivation for this requirement is not immediately obvious, but is related to the defensibility of the causal

Markov property described in § 2.3 below.
5See § 2.2 below.
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for the additional variable L is entirely unrestricted—for then how could we ever be sure

that it holds, without conducting an infinite search over all unmentioned variables L? That

is why we posit an appropriate clearly-defined “causal ambit” A: we can then restrict the

search to L ∈ A.

It seems to me that we should, realistically, allow that “causality” can operate, in parallel,

at several different levels of granularity. Thus while it may or may not be possible to

describe the medical effects of aspirin treatment in terms of quantum theory, even if we

could, it would be a category error to try and do so in the context of a clinical trial. So there

may be various different causal descriptions of the world, all operating at different levels,

each with its associated causal ambit A of variables and various causal DAGs D over sets

V ⊆ A. The meaning of any causal terms used should then be understood in relation to the

appropriate level of description.

The obvious questions to ask about graphical causality, which are however not at all easy

to answer, are: “When can a collection A of variables be regarded as a causal ambit?”, and

“When can a DAG be regarded as a causal DAG?”.

In summary, so long as we start with a DAG D over V that we are willing to accept as a

causal DAG (taken as a primitive concept), we can take V itself as our causal ambit, and use

the structure of D to define causal terms. Without having a prior primitive notion of what

constitutes a “causal DAG”, however, conditions such as (i) and (ii) are unsatisfactory as a

definition. At the very least, they require that we have specified (but how?) an appropriate

causal ambit A, relevant to our desired level of description, and have a clear pre-existing

understanding (i.e. not based on the structure of D, since that would be logically circular)

of the terms “direct causal effect”, “common cause” (perhaps relative to a set V).

Agency causality and graphical causality

It is tempting to use the agency theory as a basis for such prior causal understanding. How-

ever, graphical causality does not really sit well with agency causality. For, as seen clearly

in Example 1, in the agency intepretation it is perfectly possible for two variables each to

have a direct effect on the other—which could not hold under any DAG representation.

Similarly [Halpern and Pearl 2005; Hall 2000] there is no obvious reason to expect agency

causality to be a transitive relation, which would again be a requirement under the graphical

conception. For better or worse, the agency theory does not currently seem to be endowed

with a sufficiently rich axiomatic structure to guide manipulations of its causal properties;

and however such a general axiomatic structure might look, it would seem unduly restric-

tive to relate it closely to DAG models.

2.3 Probabilistic causality

Probabilistic Causality [Reichenbach 1956; Suppes 1970; Spohn 2001] depends on the

existence and properties of a probability distribution P over quantities of interest. At its

(over-)simplest, it equates causality with probability raising: “A is a cause of B” (where

A and B are events) if P (B | A) > P (B). This is more usefully re-expressed in its null

form, and referred to random variables X and Y : X is not a cause of Y if the distribu-

tion of Y given X is the same as the marginal distribution of Y ; and this is equivalent to
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probabilistic independence of Y from X: Y ⊥⊥X . But this is clearly unsatisfactory as it

stands, since we could have dependence between X and Y , Y 6⊥⊥X , with, at the same time,

conditional independence given some other variable (or set of variables) Z: Y ⊥⊥X | Z. If

Z can be regarded as delimiting the context in which we are considering the relationship

between X and Y , we might still regard X and Y as “causally unrelated”. Thus probabilis-

tic causality is based on conditional (in)dependence properties of probability distributions.

However there remain obvious problems in simply equating the non-symmetrical relation

of cause-and-effect with the symmetrical relation of probabilistic (in)dependence, and with

clarifying what counts as an appropriate conditioning “context” variable Z, so that addi-

tional structure and assumptions (e.g. related to an assumed “causal order”, possibly but

not necessarily temporal) are required to complete the theory.

Most modern accounts locate probabilistic causality firmly within the graphical concep-

tion — so inheriting all the features and difficulties of that approach. It is assumed that

there is a DAG D, over a suitable collection V of variables, such that

(i). D can be interpreted as a causal DAG; and, in addition,

(ii). the joint probability distribution P of the variables in V is Markov over D, i.e. its

probabilistic conditional independence (CI) properties are represented by the same

DAG D, according to the “d-separation” semantics described by Pearl [1986], Verma

and Pearl [1990], Lauritzen et al. [1990].

In particular, from (ii), for any V ∈ V , V is independent of its non-descendants, nd(V ), in

D, given its parents, pa(V ), in D. Given the further interpretation (i) of D as a causal DAG,

this can be expressed as “V is independent of its non-effects, given its direct causes in V”—

the so-called causal Markov assumption. Also, (ii) implies that, for any sets of variables X

and Y in D, X ⊥⊥Y | an(X) ∩ an(Y ) (where an(X) denotes the set of ancestors of X in

D, including X itself): again with D interpreted as causal, this can be read as saying “X and

Y are conditionally independent, given their common causes in V”. In particular, marginal

independence (where X ⊥⊥Y is represented in D) holds if and only if an(X)∩an(Y ) = ∅,

i.e. (using (i)) “X and Y have no common cause” (including each other) in V; in the

“if” direction, this has been termed the weak causal Markov assumption [Scheines and

Spirtes 2008]. Many workers regard the causal and weak causal Markov assumptions as

compelling—but this must depend on making the “right” choice for V (essentially, through

appropriate delineation of the causal ambit.)

Note that this conception of causality involves, simultaneously, two very different ways

of interpreting the DAG D (see Dawid [2009] for more on this). The d-separation seman-

tics by means of which we relate D to conditional independence properties of the joint

distribution P , while clearly defined, are somewhat subtle: in particular, the arrows in D

are somewhat incidental “construction lines”, that only play a small rôle in the semantics.

But as soon as we also give D an interpretation as a “causal DAG” we are into a completely

different way of interpreting it, where the arrows themselves are regarded as directly car-

rying causal meaning. Probabilistic causality can thus be thought of as the progeny of a

shotgun wedding between two ill-matched parties.
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Causal discovery

The enterprise of Causal Discovery [Spirtes et al. 2000; Glymour and Cooper 1999;

Neapolitan 2003] is grounded in this probabilistic-cum-graphical conception of causality.

There are many variations, but all share the same basic philosophy. Essentially, one anal-

yses observational data in an attempt to identify conditional independencies (possibly in-

volving unobserved variables) in the distribution from which they arise. Some of these

might be discarded as “accidental” (perhaps because they are inconsistent with an a priori

causal order); those that remain might be represented by a DAG. The hope is that this dis-

covered conditional independence DAG can also be interpreted as a causal DAG. When,

as is often the case, there are several Markov equivalent DAG representations of the dis-

covered CI relationships, which, moreover, cannot be causally distinguished on a priori

grounds (e.g. in terms of an assumed causal order), this hope can not be fully realised; but

if we can assume that one of these, at least, is a causal DAG, then at least an arrow common

to all of them can be interpreted causally.

2.4 A spot of bother

Spirtes et al. [2000] and Pearl [2009], among others, have stressed the fundamental im-

portance of distinguishing between the activities of Seeing and Doing. Seeing involves

passive observation of a system in its natural state. Doing, on the other hand, relates to the

behaviour of the system in a disturbed state brought about by external intervention. As a

simple point of pure logic, there is no reason for there to be any relationship between these

two types of behaviour of a system.

The probabilistic interpretation of causality relates solely to the seeing regime, whereas

the agency account focuses entirely on what happens in doing regimes. As such these two

interpretations inhabit totally unrelated universes. There are non-trivial foundational diffi-

culties with the probabilistic (or other graphical) interpretations of causality (what exactly

is a causal DAG? how will we know when we have got one?); on the other hand agency

causality, while less obviously problematic and perhaps more naturally appealing, does not

currently appear to offer a rich enough theory to be very useful. Even at a purely technical

level, agency and probabilistic causality have very little in common. Probabilistic causality,

through its close ties with conditional independence, has at its disposal the well-developed

theoretical machinery of that concept, while the associated graphical structure allows for

ready interpretation of concepts such as “causal pathway”. Such considerations are how-

ever of marginal relevance to agency causality, which need not involve any probabilistic or

graphical connexions.

From the point of view of a statistician, this almost total disconnect between the causal

theories relating to the regimes of seeing and doing is particularly worrying. For one of

the major purposes of “causal inference” is to draw conclusions, from purely observational

“seeing” data on a system, about “doing”: how would the system behave were we to inter-

vene in it in certain ways? But not only is there no necessary logical connexion between

the behaviours in the different regimes, the very concepts and representations by which we

try to understand causality in the different regimes are worlds apart.
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3 The Pearlian Synthesis

Building on ideas introduced by Spirtes et al. [2000], Pearl’s approach to causality, as laid

out for example in his book [Pearl 2009],6 attempts to square this circle: it combines the two

apparently incommensurable approaches of agency causality and probabilistic causality7

in a way that tries to bring together the best features of both, while avoiding many of their

individual problems and pitfalls.

Pearl considers a type of stochastic model, described by a DAG D over a collection V of

variables, that can be simultaneously interpreted in terms of both agency and probabilistic

causality. We could, if we wished, think of V as a “causal ambit”, and D as a “causal

DAG”, but little is gained (or lost) by doing so, since the interpretations of any causal terms

we may employ are provided internally by the model, rather than built on any pre-existing

causal conceptions.

In its probabilistic interpretation, such a DAG D represents the conditional indepen-

dence properties of the undisturbed system, which is supposed Markov with respect to D.

In its agency interpretation, the same DAG D is used to describe precisely how the sys-

tem responds, probabilistically, to external interventions that set the values of (an arbitrary

collection of) its variables. Specifically, such a disturbed probability distribution is sup-

posed still Markov with respect to D, and the conditional distribution of any variable V in

V , given its parents in D, is supposed the same in all regimes, seeing or doing (except of

course those that directly set the value of V itself, say at v, for which that distribution is

replaced by the 1-point distribution at v). The “parent-child” conditional distributions thus

constitute invariant “modular components” that (with the noted exception) can be trans-

ferred unchanged from one regime to another.

We term such a causal DAG model “Pearlian”. Whether or not a certain DAG D indeed

supplies a Pearlian DAG model for a given system can never be a purely syntactical ques-

tion about its graphical structure, but is, rather, a semantic question about its relationship

with the real world: do the various regimes actually have the probabilistic properties and

relationships asserted? This may be true or false, but at least it is a meaningful question,

and it is clear in principle how it can be addressed in purely empirical fashion: by observing

and comparing the behaviours of the system under the various regimes.8 A Pearlian DAG

6We in fact shall deal only with Pearl’s earlier, fully stochastic, theory. More recently (see the second-half of

Pearl [2009], starting with Chapter 7), he has moved to an interpretation of DAG models based on deterministic

functional relationships, with stochasticity deriving solely from unobserved exogenous variables. That interpre-

tation does however imply all the properties of the stochastic theory, and can be regarded as a specialisation of it.

We shall not here be considering any features (such as the possibility of counterfactual analysis) dependent on the

additional structure of Pearl’s deterministic approach, since these only become relevant when analysing “causes

of effects”—see Dawid [2000, 2002] for more on this.
7We have already remarked that probabilistic causality is itself the issue of an uneasy alliance between two

quite different ways of interpreting graphs. Further miscegenation with the agency conception of causality looks

like a eugenically risky endeavour!
8For this to be effective, the variables in V should have clearly-defined meanings and be observable in the

real-world. Some Pearlian models incorporate unobservable latent variables without clearly identified external

referents, in which case only the implications of such a model for the behaviour of observables can be put to

empirical test.
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model thus has the great virtue, all too rare in treatments of causality, of being totally clear

and explicit about what is being said—allowing one to accord it, in a principled way, ac-

ceptance or rejection, as deemed appropriate, in any given application. And when a system

can indeed be described by a Pearlian DAG, it is straightforward to learn (not merely qual-

itatively, but quantitatively too), from purely observational data, about the (probabilistic)

effects of any interventions on variables in the system.

3.1 Justification

The falsifiability of the property of being a Pearlian DAG (unlike, for example, the some-

what ill-defined property of being a “causal DAG”) is at once a great strength of the the-

ory (especially for those with a penchant for Karl Popper’s “falsificationist” Philosophy

of Science), and something of an Achilles’ heel. For all too often it will be impossible,

for a variety of pragamatic, ethical or financial reasons, to conduct the experiments that

would be needed to falsify the Pearlian assumptions. A lazy reaction might then simply

be to assume that a DAG found, perhaps by “causal discovery”, to represent observational

conditional independencies, but without any interventions having been applied, is indeed

Pearlian—and so also describes what would happen under interventions. While this may

well be an interesting working hypothesis to guide further experimental investigations, it

would be an illogical and dangerous point at which to conclude our studies. In particular,

further experimental investigations could well result in rejection of our assumed Pearlian

model.

Nevertheless, if forced to make a tentative judgment on the Pearlian nature, or other-

wise, of a putative DAG model9 of a system, there are a number of more or less reasonable,

more or less intuitive, arguments that can be brought to bear. As a very simple example, we

would immediately reject any putative “Pearlian DAG” in which an arrow goes backwards

in time,10 or otherwise conflicts with an accepted causal order. As another, if an “obser-

vational” regime itself involves an imposed physical randomisation to generate the value

of some variable X , in a way that might possibly take account of variables Z temporally

prior to X , we might reasonably regard the conditional distribution of some later variable

Y , given X and Z, as a modular component, that would be the same in a regime that in-

tervenes to set the value of X as it is in the (observational) randomisation regime.11 Such

arguments can be further extended to “natural experiments”, where it is Nature that im-

posed the external randomisation. This is the case for “Mendelian randomisation” [Didelez

and Sheehan 2007], which capitalises on the random assortment of genes under Mendelian

genetics. Other natural experiments rely on other causal assumptions about Nature: thus

the “discontinuity design” [Trochim 1984] assumes that Nature supplies continuous dose-

response cause-effect relationships. But all such justifications are, and must be, based on

(what we think are) properties of the real world, and not solely on the internal structure of

9Assumed, for the sake of non-triviality, already to be a Markov model of its observational probabilistic

properties.
10Assuming, as most would accept, that an intervention in a variable at some time can not affect any variable

whose value is determined at an earlier time.
11See Dawid [2009] for an attempted argument for this, as well as caveats as to its general applicability.
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the putative Pearlian DAG. In particular, they are founded on pre-existing ideas we have

about causal and non-causal processes in the world, even though these ideas may remain

unformalised and woolly: the important point is that we have enough, perhaps tacit, shared

understanding of such processes to convince both ourselves and others that they can serve as

external justification for a suggested Pearlian model. Unless we have sufficient justification

of this kind, all the beautiful analysis (e.g. in Pearl [2009]) that develops the implications

of a Pearlian model will be simply irrelevant. To echo Cartwright [1994, Chapter 2], “No

causes in, no causes out”.

4 Modularity, extended conditional independence and

decision-theoretic causality

Although Pearlian causality as described above appears to be closely tied to graphical rep-

resentation, this is really an irrelevance. We can strip it of its graphical clothing, laying

bare its core ingredient: the property that certain conditional distributions12 are the same

across several different regimes. This modular conception provides us with yet another

interpretation of causality. When, as here, the regimes considered encompass both obser-

vation (seeing) and intervention (doing), it has the great advantage over other theories of

linking those disparate universes, thus supporting causal inference.

The modularity assumption can be conveniently expressed formally in the algebraic lan-

guage of conditional independence, suitably interpreted [Dawid 1979, 2002, 2009], mak-

ing no reference to graphs. Thus let F be a “regime indicator”, a non-stochastic parameter

variable, whose value indicates the regime whose probabilistic properties are under con-

sideration. If X and Y are stochastic variables, the “extended conditional independence”

(ECI) property

(2) Y ⊥⊥F | X

can be interpreted as asserting that the conditional distribution of Y , for specified regime

F = f and given observed value X = x, depends only on x and not further on the

regime f that is operating: in terms of densities we could write p(y | f, x) = p(y |

x). If F had been a stochastic variable this would be entirely equivalent to stochastic

conditional independence of Y and F given X; but it remains meaningful, with the above

interpretation, even when F is a non-stochastic regime indicator: Indeed, it asserts exactly

the modular nature of the conditional distribution p(y | x), as being the same across all the

regimes indicated by values of F . Such modularity properties, when expressed in terms of

ECI, can be formally manipulated—and, in those special cases where this is possible and

appropriate, represented and manipulated graphically—in essentially the same fashion as

for regular probabilistic conditional independence.

For applications of ECI to causal inference, we would typically want one or more of the

regimes indicated by F to represent the behaviour of the system when subjected to an inter-

vention of a specified kind—thus linking up nicely with the agency interpretation; and one

12More generally, we could usefully identify features of the different regimes other than conditional

distributions—for example, conditional expectations, or odds ratios—as modular components.
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regime to describe the undisturbed system on which observations are made—thus allowing

the possibility of “causal inference” and making links with probabilistic causality, but in a

non-graphical setting. Modularity/ECI assumptions can now be introduced, as considered

appropriate, and their implications extracted by algebraic or graphical manipulations, using

the established theory of conditional independence. We emphasise that, although the nota-

tion and technical machinery of conditional independence is being used here, this is applied

in a way that is very different from the approach of probabilistic causality: no assumptions

need be made connecting causal relationships with ordinary probabilistic conditional inde-

pendence.

Because it concerns the probabilistic behaviour of a system under interventions—a par-

ticular interpretation of agency causality—this general approach can be termed “decision-

theoretic” causality. With the emphasis now on modularity, intuitive or graphically mo-

tivated causal terms such as “direct effect” or “causal pathway” are best dispensed with

(and with them such assumptions as the causal Markov property). The decision-theoretic

approach should not be regarded as providing a philosophical foundation for “causality”,

or even as a way of interpreting causal terms, but rather as very useful machinery for ex-

pressing and manipulating whatever modularity assertions one might regard as appropriate

in a given problem.

4.1 Intervention DAGs

The assumptions that are implicit in a Pearlian model can be displayed very explicitly in

the decision-theoretic framework, by associating a non-stochastic “intervention variable”

FX with each “domain variable” X ∈ V . The assumed ECI properties are conveniently

displayed by means of a DAG, D∗, which extends the Pearlian DAG D by adding extra

nodes for these regime indicators, and extra arrows, from FX to X for each X ∈ V [Spohn

1976; Spirtes et al. 2000; Pearl 2009; Dawid 2002; Dawid 2009]. If X is the set of values

for X , then that for FX is X ∪ {∅}: the intended interpretation is that FX = ∅ (the “idle”

regime) corresponds to the purely observational regime, while FX = x ∈ X corresponds

to “setting” X at x.

To be precise, we specify the distribution of X ∈ V given its parents (pa(X), FX) in

D∗ (where pa(X) denotes the “domain” parents of X , in D) as follows. When FX = ∅,

this is the same as the observational conditional distribution of X , given pa(X); and when

FX = x it is just a 1-point distribution on x, irrespective of the values of pa(X). The

extended DAG D∗, supplied with these parent-child specifications, is the intervention DAG

representation of the problem.

With this construction, for any settings of all the regime indicators, some to idle and

some to fixed values, the implied joint distribution of all the domain variables in that regime

is exactly as required for the Pearlian DAG interpretation. But a valuable added bonus of the

intervention DAG representation is that the Pearlian assumptions are explicitly represented.

For example, the standard d-separation semantics applied to D∗ allows us to read off the

ECI property X ⊥⊥{FY : Y 6= X} | (pa(X), FX), which asserts the modular property of

the conditional distribution of X given pa(X): when FX = ∅ (the only non-trivial case) the
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conditional distribution of X given pa(X) is the same, no matter how the other variables

are set (or left idle).

4.2 More general causal models

It is implicit in the Pearlian conception that every variable in V should be manipulable (the

causal Markov property then follows). But there is no real reason to require this. We can

instead introduce intervention variables for just those variables that we genuinely wish to

consider as “settable”. The advantage of this is that fewer assumptions need be made and

justified, but useful conclusions can often still be drawn.

EXAMPLE 2. (Instrumental variable)

Suppose we are interested in the “causal effect” of a binary exposure variable X on some

response Y . However we can not directly manipulate X . Moreover the observational

relationship between X and Y may be distorted because of an unobserved “confounder”

variable, U , associated with both X and Y . In an attempt to evade this difficulty, we also

measure an “instrumental variable” Z.

To express our interest in the causal effect of X on Y , we introduce an intervention

variable FX associated with X , defined and interpreted exactly as in § 4.1 above. The

aim of our causal inference is to make some kind of comparison between the distributions

of the response Y in the interventional regimes, FX = 0 and FX = 1, corresponding

to manipulating the value of X . The available data, however, are values of (X, Y, Z)

generated under the observational regime, FX = ∅. We must make some assumptions if

we are to be able to use features of that observational joint distribution to address our causal

question, and clearly these must involve some kind of transference of information across

regimes.

A useful (when valid!) set of assumptions about the relationships between all the vari-

ables in the problem is embodied in the following set of ECI properties (the “core condi-

tions”13 for basing causal inferences on an instrumental variable):

(U, Z) ⊥⊥ FX (3)

U ⊥⊥ Z | FX (4)

Y ⊥⊥ FX | (X, U) (5)

Y ⊥⊥ Z | (X,U ;FX) (6)

X 6⊥⊥ Z | FX = ∅ (7)

Property (3) is to be interpreted as saying that the joint distribution of (U, Z) is independent

of the regime FX : i.e., it is the same in all three regimes. That is to say, it is entirely

unaffected by whether, and if so how, we intervene to set the value of X . The identity of

this joint distribution across the two interventional regimes, FX = 0 and FX = 1, can be

interpreted as expressing a causal property: manipulating X has no (probabilistic) effect

13In addition to these core conditions, precise identification of a causal effect by means of an instrumental

variable requires further modelling assumptions, such as linear regressions [Didelez and Sheehan 2007].
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on the pair of variables (U, Z). Moreover, since this common joint distribution is also

supposed the same in the idle regime, FX = ∅, we could in principle use observational

data to estimate it—thus opening up the possibility of causal inference.

Property (4) asserts that, in their (common) joint distribution in any regime, U and Z are

independent (this however is a purely probabilistic, not a causal, property).

Property (5) says that the conditional distribution of Y given (X, U) is the same in both

interventional regimes, as well as in the observational regime, and can thus be considered

as a modular component, fully transferable between the three regimes—again, I regard this

as expressing a causal property.

Property (6) asserts that this common conditional distribution is unaffected by further

conditioning on Z (not in itself a causal property).

Finally, property (7) requires that Z be genuinely associated with X in the observational

regime.

Of course, these ECI properties should not simply be assumed without some attempt at

justification: for example, Mendelian randomisation attempts this in the case that Z is an

inherited gene. But because we have no need to consider interventions at any node other

than X , less by way of justification is required than if we were to do so.

Once expressed in terms of ECI, these core conditions can be manipulated algebraically

using the general theory of conditional independence [Dawid 1979]. Depending on what

further modelling assumptions are made, it may then be possible to identify, or to bound,

the desired causal effect in terms of properties of the observational joint distribution of

(X, Y, Z) [Dawid 2007b, Chapter 11].

In this particular case, although the required ECI conditions are expressed without ref-

erence to any graphical representation, it is possible (though not obligatory!) to give them

one. This is shown in Figure 1. Properties (3)–(6) can be read off this DAG directly using

the standard d-separation semantics. (Property (7) is only represented under a further as-

sumption that the graphical representation is faithful.) We term such a DAG an augmented

DAG: it differs from a Pearlian DAG in that some, but not necessarily all, variables have

associated intervention indicators.

Figure 1. Instrumental variable: Augmented DAG representation

Just as for regular CI, it is possible for a collection of ECI properties, constituting a

321



Philip Dawid

Figure 2. Two Markov-equivalent augmented DAGs

decision-theoretic causal model, to have no (augmented) DAG representation, or more than

one. This latter is the case for Figure 2, where the direction of the arrow between U and

V is not determined. This emphasises that, even when we do have an augmented DAG

representation, we can not necessarily interpret the direction of an arrow in it as directly re-

lated to the direction of causality. Even in Figure 1 (and in spite of the natural connotation

of the term “instrument”), the arrow pointing from Z to X is not be interpreted as neces-

sarily causal, since the dependence between Z and X could be due to a “common cause”

U∗ without affecting the ECI properties (3)–(6) [Dawid 2009], and Figure 1 is merely a

graphical representation of these properties, based on d-separation semantics. In particu-

lar, one should be cautious of using an augmented DAG, which is nothing but a way of

representing certain ECI statements, to introduce graphically motivated concepts such as

“causal pathway”. The general decision-theoretic description of causality via modularity,

expressed in terms of ECI properties, where there is no requirement that the assumptions

be representable by means of an augmented DAG at all, allows us to evade some of the

restrictions of graphical causality, while still retaining a useful “agency-cum-probabilistic”

causal theory.

The concept of an “interventional regime” can be made much more general, and in par-

ticular we need not require that it have the properties assumed above for an intervention

variable associated with a domain variable. We could, for example, incorporate “fat hand”

interventions that do not totally succeed in their aim of setting a variable to a fixed value, or

interventions (such as kicking the system) that simultaneously affect several domain vari-

ables [Duvenaud et al. 2009]. So long as we understand what such regimes refer to in

the real world, and can make and justify assumptions of modularity of appropriate con-

ditional distributions as we move across regimes, we can apply the decision-theoretic ECI

machinery. And at this very general level we can even apply a variant of “causal discovery”

algorithms—so long as we can make observations under all the regimes considered.14 For

example, if we can observe (X, Y ) under the different regimes described by F , we can

readily investigate the validity of the ECI property X ⊥⊥F | Y using standard tests (e.g.

14Or we might make parametric modelling assumptions about the relationships across regimes, to fill in for

regimes we are not able to observe. This would be required for example when want to consider the effect of

setting the value of a continuous “dose” variable. At this very general level we can even dispense entirely with

the assumption of modular conditional distributions [Duvenaud et al. 2009].
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the χ2-test) for conditional independence. Such discovered ECI properties (whether or not

they can be expressed graphically) can then be used to model the “causal structure” of the

problem.

5 Conclusion

Over many years, Judea Pearl’s original and insightful approach to understanding uncer-

tainty and causality have had an enormous influence on these fields. They have certainly

had a major influence on my own research directions: I have often—as evidenced by this

paper—found myself following in his footsteps, picking up a few crumbs here and there

for further digestion.

Pearl’s ideas do not however exist in a vacuum, and I believe it is valuable both to relate

them to their precursors and to assess the ways in which they may develop. In attempting

this task I fully acknowledge the leadership of a peerless researcher, whom I feel honoured

to count as a friend.
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Effect Heterogeneity and Bias in  

Main-Effects-Only Regression Models 
 

FELIX ELWERT AND CHRISTOPHER WINSHIP 

 

1   Introduction 

The overwhelming majority of OLS regression models estimated in the social sciences, 

and in sociology in particular, enter all independent variables as main effects.  Few re-

gression models contain many, if any, interaction terms. Most social scientists would 

probably agree that the assumption of constant effects that is embedded in main-effects-

only regression models is theoretically implausible. Instead, they would maintain that 

regression effects are historically and contextually contingent; that effects vary across 

individuals, between groups, over time, and across space.  In other words, social scien-

tists doubt constant effects and believe in effect heterogeneity.   

But why, if social scientists believe in effect heterogeneity, are they willing to substan-

tively interpret main-effects-only regression models?  The answer—not that it’s been 

discussed explicitly—lies in the implicit assumption that the main-effects coefficients in 

linear regression represent straightforward averages of heterogeneous individual-level 

causal effects. 

 The belief in the averaging property of linear regression has previously been chal-

lenged. Angrist [1998] investigated OLS regression models that were correctly specified 

in all conventional respects except that effect heterogeneity in the main treatment of in-

terest remained unmodeled. Angrist showed that the regression coefficient for this 

treatment variable gives a rather peculiar type of average—a conditional variance 

weighted average of the heterogeneous individual-level treatment effects in the sample. If 

the weights differ greatly across sample members, the coefficient on the treatment vari-

able in an otherwise well-specified model may differ considerably from the arithmetic 

mean of the individual-level effects among sample members.  

In this paper, we raise a new concern about main-effects-only regression models. 

Instead of considering models in which heterogeneity remains unmodeled in only one 

effect, we consider standard linear path models in which unmodeled heterogeneity is 

potentially pervasive.  

Using simple examples, we show that unmodeled effect heterogeneity in more than one 

structural parameter may mask confounding and selection bias, and thus lead to biased 

estimates. In our simulations, this heterogeneity is indexed by latent (unobserved) group 

membership. We believe that this setup represents a fairly realistic scenario—one in 

which the analyst has no choice but to resort to a main-effects-only regression model 

because she cannot include the desired interaction terms since group-membership is un-
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observed. Drawing on Judea Pearl’s theory of directed acyclic graphs (DAG) [1995, 

2009] and VanderWeele and Robins [2007], we then show that the specific biases we 

report can be predicted from an analysis of the appropriate DAG. This paper is intended 

as a serious warning to applied regression modelers to beware of unmodeled effect het-

erogeneity, as it may lead to gross misinterpretation of conventional path models.  

We start with a brief discussion of conventional attitudes toward effect heterogeneity in 

the social sciences and in sociology in particular, formalize the notion of effect heteroge-

neity, and briefly review results of related work. In the core sections of the paper, we use 

simulations to demonstrate the failure of main-effects-only regression models to recover 

average causal effects in certain very basic three-variable path models where unmodeled 

effect heterogeneity is present in more than one structural parameter. Using DAGs, we 

explain which constellations of unmodeled effect heterogeneity will bias conventional 

regression estimates. We conclude with a summary of findings.  

 

2   A Presumed Averaging Property of Main-Effects-Only Regression  

2.1   Social Science Practice 

The great majority of empirical work in the social sciences relies on the assumption of 

constant coefficients to estimate OLS regression models that contain nothing but main 

effect terms for all variables considered.
1
 Of course, most researchers do not believe that 

real-life social processes follow the constant-coefficient ideal of conventional regression. 

For example, they aver that the effect of marital conflict on children’s self-esteem is 

larger for boys than for girls [Amato and Booth 1997]; or that the death of a spouse in-

creases mortality more for white widows than for African American widows [Elwert and 

Christakis 2006]. When pressed, social scientists would probably agree that the causal 

effect of almost any treatment on almost any outcome likely varies from group to group, 

and from person to person.  

But if researchers are such firm believers in effect heterogeneity, why is the constant-

coefficients regression model so firmly entrenched in empirical practice? The answer lies 

in the widespread belief that the coefficients of linear regression models estimate aver-

ages of heterogeneous parameters—average causal effects—representing the average of 

the individual-level causal effects across sample members. This (presumed) averaging 

property of standard regression models is important for empirical practice for at least 

three reasons.  First, sample sizes in the social sciences are often too small to investigate 

effect heterogeneity by including interaction terms between the treatment and more than a 

few common effect modifiers (such as sex, race, education, income, or place of resi-

dence); second, the variables needed to explicitly model heterogeneity may well not have 

been measured; third, and most importantly, the complete list of effect modifiers along 

which the causal effect of treatment on the outcome varies is typically unknown (indeed, 

unknowable) to the analyst in any specific application. Analysts thus rely on faith that 

                                                
1
Whether a model requires an interaction depends on the functional form of the dependent and/or 

independent variables. For example, a model with no interactions in which the independent vari-

ables are entered in log form, would require a whole series of interactions in order to approximate 

this function if the independent variables where entered in nonlog form.  
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their failure to anticipate and incorporate all dimensions of effect heterogeneity into re-

gression analysis simply shifts the interpretation of regression coefficients from 

individual-level causal effects to average causal effects, without imperiling the causal 

nature of the estimate.  

 

2.2   Defining Effect Heterogeneity 

We start by developing our analysis of the consequences of causal heterogeneity within 

the counterfactual (potential outcomes) model. For a continuous treatment T∈(-∞,∞), let 

T = t denote some specific treatment value and T = 0 the control condition. Y(t)i is the 

potential outcome of individual i for treatment T = t, and Y(0)i is the potential outcome of 

individual i for the control condition.  For a particular individual, generally only one 

value of Y(t)i will be observed.  The individual-level causal effect (ICE) of treatment 

level T = t compared to T = 0 is then defined as:  δi,t = Y(t)i –Y(0)i  (or δi, for short, if T is 

binary). 

 Since δi,t is generally not directly estimable, researchers typically attempt estimating 

the average causal effect (ACE) for some sample or population:  

  

δ t = δ i, t

i=1

N

∑ / N  

 We say that the effect of treatment T is heterogeneous if: 
  
δ i, t ≠ δ t  for at least one i.  

In other words, effect heterogeneity exists if the causal effect of the treatment differs 

across individuals. The basic question of this paper is whether a regression estimate for 

the causal effect of the treatment can be interpreted as an average causal effect if effect 

heterogeneity is present. 

 

2.3 Regression Estimates as Conditional Variance Weighted Average Causal Effects 

The ability of regression to recover average causal effects under effect heterogeneity has 

previously been challenged by Angrist [1998].
2
 Here, we briefly sketch the main result. 

For a binary treatment, T=0,1, Angrist assumed a model where treatment was ignorable 

given covariates X and the effect of treatment varied across strata defined by the values 

of X. He then analyzed the performance of an OLS regression model that properly 

controlled for confounding in X but was misspecified to include only a main effect term 

for T and no interactions between T and X. Angrist showed that the regression estimate 

for the main effect of treatment can be expressed as a weighted average of stratum-

specific treatment effects, albeit one that is difficult to interpret. For each stratum defined 

by fixed values of X, the numerator of the OLS estimator has the form δxWxP(X=x),
3

 
where δx is the stratum-specific causal effect and P(X=x) is the relative size of the stra-

tum in the sample. The weight, Wx, is a function of the propensity score, Px=P(T=1 | X), 

associated with the stratum, Wx = Px (1- Px), which equals the stratum-specific variance of 

treatment. This variance, and hence the weight, is largest if Px=.5 and smaller as Px goes 

to 0 or 1.  

                                                
2
This presentation follows Angrist [1998] and Angrist and Pischke [2009]. 

3
The denominator of the OLS estimator is just a normalizing constant that does not aid intuition.  
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If the treatment effect is constant across strata, these weights make good sense. OLS 

gives the minimum variance linear unbiased estimator of the model parameters under 

homoscedasticity assuming correct specification of the model. Thus in a model without 

interactions between treatment and covariates X the OLS estimator gives the most weight 

to strata with the smallest variance for the estimated within-stratum treatment effect, 

which, not considering the size of the strata, are those strata with the largest treatment 

variance, i.e. with the Px that are closest to .5. However, if effects are heterogeneous 

across strata, this weighting scheme makes little substantive sense: in order to compute 

the average causal effect, δ , as defined above, we would want to give the same weight to 

every individual in the sample. As a variance-weighted estimator, however, regression 

estimates under conditions of unmodeled effect heterogeneity do not give the same 

weight to every individual in the sample and thus do not converge to the (unweighted) 

average treatment effect.  

 

3   Path Models with Pervasive Effect Heterogeneity 

Whereas Angrist analyzed a misspecified regression equation that incorrectly assumed no 

treatment-covariate interaction for a single treatment variable, we investigate the ability 

of a main-effects-only regression model to recover unbiased average causal effects in 

simple path models with unmodeled effect heterogeneity across multiple parameters.  

Setup: To illustrate how misleading the belief in the averaging power of the constant-

coefficient model can be in practice, we present simulations of basic linear path models, 

shown in summary in Figure 1 (where we have repressed the usual uncorrelated error 

terms). 

 

               α          B       β 

    

      A        C 

                       γ 

Figure 1. A simple linear path model 

 

To introduce effect heterogeneity, let G = 0, 1 index membership in a latent group and 

permit the possibility that the three structural parameters α, β, and γ vary across (but not 

within) levels of G. The above path model can then be represented by two linear equa-

tions: B = AαG + εB and C = AγG + BβG + εC. In our simulations, we assume that 

A~N(0,1) and εB, and εC are iid N(0,1), and hence all variables are normally distributed. 

From these equations, we next simulate populations of N=100,000 observations, with 

P(G=1) = P(G=0) = 1/2. We start with a population in which all three parameters are 

constant across the two subgroups defined by G, and then systematically introduce effect 

heterogeneity by successively permitting the structural parameters to vary by group, 

yielding one population for each of the 2
3  

= 8 possible combinations of constant/varying 

parameters. To fix ideas, we choose the group-specific parameter values shown in Table 
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1. For simulations in which one or more parameters do not vary by group, we set the 

constant parameter(s) to the average of the group specific parameters, e.g. α = (α0 + α1)/2. 

 

       

Finally, we estimate a conventional linear regression model for the effects of A and B 

on C using the conventional default specification, in which all variables enter as main 

effects only, C = Aγ + Bβ + ε. (Note that G is latent and therefore cannot be included in 

the model.) The parameter, γ refers to the direct effect of A on C holding B constant, and 

β refers to the total effect of B on C.
4
 In much sociological and social science research, 

this main-effects regression model is intended to recover average structural (causal) 

effects, and is commonly believed to be well suited for the purpose.  

Results: Table 2 shows the regression estimates for the main effect parameters across 

the eight scenarios of effect heterogeneity. We see that the main effects regression model 

correctly recovers the desired (average) parameters, γ=1 and β=1.5 if none of the pa-

rameters vary across groups (column 1), or if only one of the three parameters varies 

(columns 2-4).  

Other constellations of effect heterogeneity, however, produce biased estimates. If αG 

and βG (column 5); or αG and γG (column 6); or αG, βG, and γG (column 8) vary across 

groups, the main-effects-only regression model fails to recover the true (average) pa-

rameter values known to underlie the simulations. For our specific parameter values, the 

estimated (average) effect of B on C in these troubled scenarios is always too high, and 

the estimated average direct effect of A on C is either too high or too low. Indeed, if we 

set γ=0 but let αG and βG vary across groups, the estimate for γ in the main-effects-only 

regression model would suggest the presence of a direct effect of A on C even though it 

is known by design that no such direct effect exists (not shown).  

Failure of the regression model to recover the known path parameters is not merely a 

function of the number of paths that vary. Although none of the scenarios in which fewer 

than two parameters vary yield incorrect estimates, and the scenario in which all three 

parameters vary is clearly biased, results differ for the three scenarios in which exactly 

two parameters vary.  In two of these scenarios (columns 5 and 6), regression fails to 

recover the desired (average) parameters, while regression does recover the correct 

average parameters in the third scenario (column 7). 

 

                                                
4
The notion of direct and indirect effects is receiving deserved scrutiny in important recent work 

by Robins and Greenland [1992]; Pearl [2001]; Robins [2003]; Frangakis and Rubin [2002]; Sobel 

[2008]; and VanderWeele [2008].  
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In sum, the naïve main-effects-only linear regression model recovers the correct (aver-

age) parameter values only under certain conditions of limited effect heterogeneity, and it 

fails to recover the true average effects in certain other scenarios, including the scenario 

we consider most plausible in the majority of sociological applications, i.e., where all 

three parameters vary across groups. If group membership is latent—because group 

membership is unknown to or unmeasured by the analyst— and thus unmodeled, linear 

regression generally will fail to recover the true average effects. 

 

4   DAGs to the Rescue 

These results spell trouble for empirical practice in sociology. Judea Pearl’s work on cau-

sality and directed acyclic graphs (DAGs) [1995, 2009] offers an elegant and powerful 

approach to understanding the problem. Focusing on the appropriate DAGs conveys the 

critical insight for the present discussion that effect heterogeneity, rather than being a 

nuisance that is easily averaged away, encodes structural information that analysts ignore 

at their peril.    

Pearl’s DAGs are nonparametric path models that encode causal dependence between 

variables: an arrow between two variables indicates that the second variable is causally 

dependent on the first (for detailed formal expositions of DAGs, see Pearl [1995, 2009]; 

for less technical introductions see Robins [2001]; Greenland, Pearl and Robins [1999] in 

epidemiology, and Morgan and Winship [2007] in sociology). For example, the DAG in 

Figure 2 indicates that Z is a function of X and Y, Z= f(X,Y,εZ), where εZ is an unob-

served error term independent of (X,Y). 

In a non-parametric DAG—as opposed to a conventional social science path model—

the term f( ) can be any function. Thus, the DAG in Figure 2 is consistent with a linear 

structural equation in which X only modifies (i.e. introduces heterogeneity into) the effect 
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of Y on Z, Z=Yξ + YXψ + εZ.
5
 In the language of VanderWeele and Robins [2007], who 

provide the most extensive treatment of effect heterogeneity using DAGs to date, one 

may call X a “direct effect modifier” of the effect of Y on Z. The point is that a variable 

that modifies the effect of Y on Z is causally associated with Z, as represented by the 

arrow from X to Z.  

 

εZ 

 

X 

         Z 

 

Y 
 

Figure 2. DAG illustrating direct effect modification of the effect of Y on Z in X 

 

Returning to our simulation, one realizes that the social science path model of Figure 1, 

although a useful tool for informally illustrating the data generation process, does not, 

generally, provide a sufficiently rigorous description of the causal structure underlying 

the simulations. Figure 1, although truthfully representing the separate data generating 

mechanism for each group and each individual in the simulated population, is not the 

correct DAG for the pooled population containing groups G = 0 and G = 1 for all of the 

heterogeneity scenarios considered above.  Specifically, in order to turn the informal 

social science path model of Figure 1 into a DAG, one would have to integrate the source 

of heterogeneity, G, into the picture. How this is to be done depends on the structure of 

heterogeneity. If only βG (the effect of B on C) and/or γG (the direct effect of A on C 

holding B constant) varied with G, then one would add an arrow from G into C.  If αG 

(the effect of A on B) varied with G, then one would add an arrow from G into B. The 

DAG in Figure 3 thus represents those scenarios in which αG as well as either βG or γG, or 

both, vary with G (columns 5, 6, and 8). Interpreted in terms of a linear path model, this 

DAG is consistent with the following two structural equations:  B = Aα0 + AGα1 + εB and 

C = Aγ0 + AGγ1 + Bβ0 + BGβ1 + εC (where the iid errors, ε, have been omitted from the 

DAG and are assumed to be uncorrelated).
6
  

In our analysis, mimicking the reality of limited observational data with weak substan-

tive theory, we have assumed that A, B, and C are observed, but that G is not observed. It 

is immediately apparent that the presence of G in Figure 3 means that, first, G is a 

confounder for the effect of B on C; and, second, that B is a “collider” [Pearl 2009] on 

                                                
5
It is also consistent with an equation that adds a main effect of X. For the purposes of this paper 

it does not matter whether the main effect is present. 
6
By construction of the example, we assume that A is randomized and thus marginally 

independent of G. Note, however, that even though G is mean independent of B and C (no main 

effect of G on either B or C), G is not marginally independent of B or C because 

var(B|G=1)≠var(B|G=0) and var(C|G=1)≠var(C|G=0), which explains the arrows from G into B and 

C. Adding main effects of G on B and C would not change the arguments presented here. 
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the path from A to C via B and G. Together, these two facts explain the failure of the 

main-effects-only regression model to recover the true parameters in panels 5, 6, and 8: 

First, in order to recover the effect of B on C, β, one would need to condition on the con-

founders A and G. But G is latent so it cannot be conditioned on. Second, conditioning on 

the collider B in the regression opens a “backdoor path” from A to C via B and G (when 

G is not conditioned on), i.e. it induces a non-causal association between A and C, 

creating selection bias in the estimate for the direct effect of A on C, γ [Pearl 1995, 2009; 

Hernán et al 2004]. Hence, both coefficients in the main-effects-only regression model 

will be biased for the true (average) parameters.  

 

         G  

                                                                

     B                         

                                                                        

 

A        C 

 
Figure 3. DAG consistent with effect modification of the effects of A on B, and B 

on C and/or A on C, in G 

 

By contrast, if G modifies neither β nor γ, then the DAG would not contain an arrow 

from G into C; and if G does not modify α then the DAG would not contain an arrow 

from G into B. Either way, if either one (or both) of the arrows emanating from G are 

missing, then G is not a confounder for the effect of B on C, and conditioning on B will 

not induce selection bias by opening a backdoor path from A to C. Only then would the 

main effects regression model be unbiased and recover the true (average) parameters, as 

seen in panels 1-4 and 7.  

In sum, Pearl’s DAGs neatly display the structural information encoded in effect het-

erogeneity [VanderWeele and Robins 2007]. Consequently, Pearl’s DAGs immediately 

draw attention to problems of confounding and selection bias that can occur when more 

than one effect in a causal system varies across sample members. Analyzing the appro-

priate DAG, the failure of main-effects-only regression models to recover average struc-

tural parameters in certain constellations of effect heterogeneity becomes predictable.  

5   Conclusion 

This paper considered a conventional structural model of a kind commonly used in the 

social sciences and explored its performance under various basic scenarios of effect het-

erogeneity. Simulations show that the standard social science strategy of dealing with 

effect heterogeneity—by ignoring it—is prone to failure. In certain situations, the main-

effects-only regression model will recover the desired quantities, but in others it will not. 

We believe that effect heterogeneity in all arrows of a path model is plausible in many, if 

not most, substantive applications. Since the sources of heterogeneity are often not theo-

rized, known, or measured, social scientists continue routinely to estimate main-effects-
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only regression models in hopes of recovering average causal effects. Our examples 

demonstrate that the belief in the averaging powers of main-effects-only regression mod-

els may be misplaced if heterogeneity is pervasive, as estimates can be mildly or wildly 

off the mark. Judea Pearl’s DAGs provide a straightforward explanation for these diffi-

culties—DAGs remind analysts that effect heterogeneity may encode structural infor-

mation about confounding and selection bias that requires consideration when designing 

statistical strategies for recovering the desired average causal effects. 
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Causal and Probabilistic Reasoning
in P-log

Michael Gelfond and Nelson Rushton

1 Introduction

In this paper we give an overview of the knowledge representation (KR) language P-

log [Baral, Gelfond, and Rushton 2009] whose design was greatly influenced by work

of Judea Pearl. We introduce the syntax and semantics of P-log, give a number of

examples of its use for knowledge representation, and discuss the role Pearl’s ideas

played in the design of the language. Most of the technical material presented in

the paper is not new. There are however two novel technical contributions which

could be of interest. First we expand P-log semantics to allow domains with infinite

Herbrand bases. This allows us to represent infinite sequences of random variables

and (indirectly) continuous random variables. Second we generalize the logical base

of P-log which improves the degree of elaboration tolerance of the language.

The goal of the P-log designers was to create a KR-language allowing natural

and elaboration tolerant representation of commonsense knowledge involving logic

and probabilities. The logical framework of P-log is Answer Set Prolog (ASP) —

a language for knowledge representation and reasoning based on the answer set se-

mantics (aka stable model semantics) of logic programs [Gelfond and Lifschitz 1988;

Gelfond and Lifschitz 1991]. ASP has roots in declarative programing, the syntax

and semantics of standard Prolog, disjunctive databases, and non-monotonic logic.

The semantics of ASP captures the notion of possible beliefs of a reasoner who

adheres to the rationality principle which says that “One shall not believe anything

one is not forced to believe”. The entailment relation of ASP is non-monotonic1,

which facilitates a high degree of elaboration tolerance in ASP theories. ASP allows

natural representation of defaults and their exceptions, causal relations (including

effects of actions), agents’ intentions and obligations, and other constructs of natural

language. ASP has a number of efficient reasoning systems, a well developed math-

ematical theory, and a well tested methodology of representing and using knowledge

for computational tasks (see, for instance, [Baral 2003]). This, together with the

fact that some of the designers of P-log came from the ASP community made the

choice of a logical foundation for P-log comparatively easy.

1Roughly speaking, a language L is monotonic if whenever Π1 and Π2 are collections of state-

ments of L with Π1 ⊂ Π2, and W is a model of Π2, then W is a model of Π1. A language which

is not monotonic is said to be nonmonotonic.
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The choice of a probabilistic framework was more problematic and that is where

Judea’s ideas played a major role. Our first problem was to choose from among

various conceptualizations of probability: classical, frequentist, subjective, etc. Un-

derstanding the intuitive readings of basic language constructs is crucial for a soft-

ware/knowledge engineer — probably more so than for a mathematician who may

be primarily interested in their mathematical properties. Judea Pearl in [Pearl 1988]

introduced the authors to the subjective view of probability — i.e. understanding

of probabilities as degrees of belief of a rational agent — and to the use of subjective

probability in AI. This matched well with the ASP-based logic side of the language.

The ASP part of a P-log program can be used for describing possible beliefs, while

the probabilistic part would allow knowledge engineers to quantify the degrees of

these beliefs.

After deciding on an intuitive reading of probabilities, the next question was

which sorts of probabilistic statements to allow. Fortunately, the question of concise

and transparent representation of probability distributions was already addressed by

Judea in [Pearl 1988], where he showed how Bayesian nets can be successfully used

for this purpose. The concept was extended in [Pearl 2000] where Pearl introduced

the notion of Causal Bayesian Nets (CBN’s). Pearl’s definition of CBN’s is pioneer-

ing in three respects. First, he gives a framework where nondeterministic causal

relations are the primitive relations among random variables. Second, he shows how

relationships of correlation and (classical) independence emerge from these causal

relationships in a natural way; and third he shows how this emergence is faithful to

our intuitions about the difference between causality and (mere) correlation.

As we mentioned above, one of the primary desired features in the design of P-log

was elaboration tolerance — defined as the ability of a representation to incorpo-

rate new knowledge with minimal revision [McCarthy 1999]. P-log inherited from

ASP the ability to naturally incorporate many forms of new logical knowledge. An

extension of ASP, called CR-Prolog, further improved this ability [Balduccini and

Gelfond 2003]. The term “elaboration tolerance” is less well known in the field of

probabilistic reasoning, but one of the primary strengths of Bayes nets as a repre-

sentation is the ability to systematically and smoothly incorporate new knowledge

through conditioning, using Bayes Theorem as well as algorithms given by Pearl

[Pearl 1988] and others. Causal Bayesian Nets carry this a step further, by allowing

us to formalize interventions in addition to (and as distinct from) observations, and

smoothly incorporate either kind of new knowledge in the form of updates. Thus

from the standpoint of elaboration tolerance, CBN’s were a natural choice as a

probabilistic foundation for P-log.

Another reason for choosing CBN’s is that we simply believe Pearl’s distinction

between observations and interventions to be central to commonsense probabilistic

reasoning. It gives a precise mathematical basis for distinguishing between the

following questions: (1) what can I expect to happen given that I observe X = x,

and (2) what can I expect to happen if I intervene in the normal operation of
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a probabilistic system by fixing value of variable X to x? These questions could

in theory be answered using classical methods, but only by creating a separate

probabilistic model for each question. In a CBN these two questions may be treated

as conditional probabilities (one conditioned on an observation and the other on an

action) of a single probabilistic model.

P-log carries things another step. There are many actions one could take to

manipulate a system besides fixing the values of (otherwise random) variables —

and the effects of such actions are well studied under headings associated with

ASP. Moreover, besides actions, there are many sorts of information one might

gain besides those which simply eliminate possible worlds: one may gain knowledge

which introduces new possible worlds, alters the probabilities of possible worlds,

introduces new logical rules, etc. ASP has been shown to be a good candidate for

handling such updates in non-probabilistic settings, and our hypothesis was that it

would serve as well when combined with a probabilistic representation. Thus some of

the key advantages of Bayesian nets, which are amplified by CBN’s, show plausible

promise of being even further amplified by their combination with ASP. This is the

methodology of P-log: to combine a well studied method for elaboration tolerant

probabilistic representations (CBN’s) with a well studied method for elaboration

tolerant logical representations (ASP).

Finally let us say a few words about the current status of the language. It is com-

paratively new. The first publication on the subject appeared in [Baral, Gelfond,

and Rushton 2004], and the full journal paper describing the language appeared

only recently in [Baral, Gelfond, and Rushton 2009]. The use of P-log for knowl-

edge representation was also explored in [Baral and Hunsaker 2007] and [Gelfond,

Rushton, and Zhu 2006]. A prototype reasoning system based on ASP computa-

tion allowed the use of the language for a number of applications (see, for instance,

[Baral, Gelfond, and Rushton 2009; Pereira and Ramli 2009]). We are currently

working on the development and implementation of a more efficient system, and on

expanding it to allow rules of CR-Prolog. Finding ways for effectively combining

ASP-based computational methods of P-log with recent advanced algorithms for

Bayesian nets is probably one of the most interesting open questions in this area.

The paper is organized as follows. Section 2 contains short introduction to ASP

and CR-Prolog. Section 3 describes the syntax and informal semantics of P-log,

illustrating both through a nontrivial example. Section 4 gives another example,

similar in nature to Simpson’s Paradox. Section 5 states a new theorem which

extends the semantics of P-log from that given in [Baral, Gelfond, and Rushton

2009] to cover programs with infinitely many random variables. The basic idea of

Section 5 is accessible to a general audience, but its technical details require an

understanding of the material presented in [Baral, Gelfond, and Rushton 2009].
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2 Preliminaries

This section contains a description of syntax and semantics of both ASP and CR-

Prolog. In what follows we use a standard notion of a sorted signature from classical

logic. Terms and atoms are defined as usual. An atom p(t) and its negation ¬p(t)

are referred to as literals. Literals of the form p(t) and ¬p(t) are called contrary.

ASP and CR-Prolog also contain connectives not and or which are called default

negation and epistemic disjunction respectively. Literals possibly preceded by de-

fault negation are called extended literals.

An ASP program is a pair consisting of a signature σ and a collection of rules of

the form

l0 or . . . or lm ← lm+1, . . . , lk, not lk+1, . . . , not ln (1)

where l’s are literals. The right-hand side of of the rule is often referred to as the

rule’s body, the left-hand side as the rule’s head.

The answer set semantics of a logic program Π assigns to Π a collection of answer

sets – partial interpretations2 corresponding to possible sets of beliefs which can be

built by a rational reasoner on the basis of rules of Π. In the construction of such

a set S, the reasoner is assumed to be guided by the following informal principles:

• S must satisfy the rules of Π;

• the reasoner should adhere to the rationality principle, which says that one

shall not believe anything one is not forced to believe.

To understand the former let us consider a partial interpretation S viewed as a

possible set of beliefs of our reasoner. A ground atom p is satisfied by S if p ∈ S,

i.e., the reasoner believes p to be true. According to the semantics of our connectives

¬p means that p is false. Consequently, ¬p is satisfied by S iff ¬p ∈ S, i.e., the

reasoner believes p to be false. Unlike ¬p, not p has an epistemic character and is

read as there is no reason to believe that p is true. Accordingly, S satisfies not l if

l 6∈ S. (Note that it is possible for the reasoner to believe neither p nor ¬p). An

epistemic disjunction l1 or l2 is satisfied by S if l1 ∈ S or l2 ∈ S, i.e., the reasoner

believes at least one of the disjuncts to be true. Finally, S satisfies the body (resp.,

head) of rule (1) if S satisfies all of the extended literals occurring in its body (resp.,

head); and S satisfies rule (1) if S satisfies its head or does not satisfy its body.

What is left is to capture the intuition behind the rationality principle. This will

be done in two steps.

DEFINITION 1 (Answer Sets, Part I). Let program Π consist of rules of the form:

l0 or . . . or li ← li+1, . . . , lm.

An answer set of Π is a consistent set S of ground literals such that:

2By partial interpretation we mean a consistent set of ground literals of σ(Π).
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• S satisfies the rules of Π.

• S is minimal; i.e., no proper subset of S satisfies the rules of Π.

The rationality principle here is captured by the minimality condition. For example,

it is easy to see that { } is the only answer set of program consisting of the single

rule p ← p, and hence the reasoner associated with it knows nothing about the

truth or falsity of p. The program consisting of rules

p(a).

q(a) or q(b)← p(a).

has two answer sets: {p(a), q(a)} and {p(a), q(b)}. Note that no rule requires the

reasoner to believe in both q(a) and q(b). Hence he believes that the two formulas

p(a) and (q(a) or q(b)) are true, and that ¬p(a) is false. He remains undecided,

however, about, say, the two formulas p(b) and (¬q(a) or ¬q(b)). Now let us consider

an arbitrary program:

DEFINITION 2 (Answer Sets, Part II). Let Π be an arbitrary collection of rules

(1) and S a set of literals. By ΠS we denote the program obtained from Π by

1. removing all rules containing not l such that l ∈ S;

2. removing all other premises containing not .

S is an answer set of Π iff S is an answer set of ΠS .

To illustrate the definition let us consider a program

p(a).

p(b).

¬p(X)← not p(X).

where p is a unary predicate whose domain is the set {a, b, c}. The last rule, which

says that if X is not believed to satisfy p then p(X) is false, is the ASP formalization

of a Closed World Assumption for a relation p [Reiter 1978]. It is easy to see that

{p(a), p(b),¬p(c)} is the only answer set of this program. If we later learn that

c satisfies p, this information can be simply added to the program as p(c). The

default for c will be defeated and the only answer set of the new program will be

{p(a), p(b), p(c)}.

The next example illustrates the ASP formalization of a more general default. Con-

sider a statement: “Normally, computer science courses are taught only by computer

science professors. The logic course is an exception to this rule. It may be taught by

faculty from the math department.” This is a typical default with a weak exception3

which can be represented in ASP by the rules:

3An exception to a default is called weak if it stops application of the default without defeating

its conclusion. Otherwise it is called strong.
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¬may teach(P,C) ← ¬member(P, cs),

course(C, cs),

not ab(d1(P,C)),

not may teach(P,C).

ab(d1(P, logic)) ← not ¬member(P,math).

Here d1(P,C) is the name of the default rule and ab(d1(P,C)) says that default

d1(P,C) is not applicable to the pair 〈P,C〉. The second rule above stops the

application of the default in cases where the class is logic and P may be a math

professor. Used in conjunction with rules:

member(john, cs).

member(mary,math).

member(bob, ee).

¬member(P,D)← not member(P,D).

course(logic, cs).

course(data structures, cs).

the program will entail that Mary does not teach data structures while she may

teach logic; Bob teaches neither logic nor data structures, and John may teach both

classes.

The previous examples illustrate the representation of defaults and their strong and

weak exceptions. There is another type of possible exception to defaults, sometimes

referred to as an indirect exception. Intuitively, these are rare exceptions that

come into play only as a last resort, to restore the consistency of the agent’s world

view when all else fails. The representation of indirect exceptions seems to be

beyond the power of ASP. This observation led to the development of a simple but

powerful extension of ASP called CR-Prolog (or ASP with consistency-restoring

rules). To illustrate the problem let us consider the following example.

Consider an ASP representation of the default “elements of class c normally have

property p”:

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

together with the rule

q(X) ← p(X).

and the facts c(a) and ¬q(a). Let us denote this program by E, where E stands for

“exception”.

It is not difficult to check that E is inconsistent. No rules allow the reasoner to

prove that the default is not applicable to a (i.e. to prove ab(d(a))) or that a

does not have property p. Hence the default must conclude p(a). The second rule

implies q(a) which contradicts one of the facts. However, there seems to exists a

342



Reasoning in P-log

commonsense argument which may allow a reasoner to avoid inconsistency, and to

conclude that a is an indirect exception to the default. The argument is based on

the Contingency Axiom for default d(X) which says that any element of class

c can be an exception to the default d(X) above, but such a possibility is very rare,

and, whenever possible, should be ignored. One may informally argue that since the

application of the default to a leads to a contradiction, the possibility of a being an

exception to d(a) cannot be ignored and hence a must satisfy this rare property.

In what follows we give a brief description of CR-Prolog — an extension of ASP

capable of encoding and reasoning about such rare events.

A program of CR-Prolog is a four-tuple consisting of

1. A (possibly sorted) signature.

2. A collection of regular rules of ASP.

3. A collection of rules of the form

l0
+
← l1, . . . , lk, not lk+1, . . . , not ln (2)

where l’s are literals. Rules of this type are called consistency restoring rules

(CR-rules).

4. A partial order, ≤, defined on sets of CR-rules. This partial order is often

referred to as a preference relation.

Intuitively, rule (2) says that if the reasoner associated with the program believes the

body of the rule, then he “may possibly” believe its head. However, this possibility

may be used only if there is no way to obtain a consistent set of beliefs by using

only regular rules of the program. The partial order over sets of CR-rules will be

used to select preferred possible resolutions of the conflict. Currently the inference

engine of CR-Prolog [Balduccini 2007] supports two such relations, denoted ≤1 and

≤2. One is based on the set-theoretic inclusion (R1 ≤1 R2 holds iff R1 ⊆ R2).

The other is defined by the cardinality of the corresponding sets (R1 ≤2 R2 holds

iff |R1| ≤ |R2|). To give the precise semantics we will need some terminology and

notation.

The set of regular rules of a CR-Prolog program Π will be denoted by Πr, and the

set of CR-rules of Π will be denoted by Πcr. By α(r) we denote a regular rule

obtained from a consistency restoring rule r by replacing
+
← by ←. If R is a set of

CR-rules then α(R) = {α(r) : r ∈ R}. As in the case of ASP, the semantics of

CR-Prolog will be given for ground programs. A rule with variables will be viewed

as a shorthand for a set of ground rules.

DEFINITION 3. (Abductive Support)

A minimal (with respect to the preference relation of the program) collection R of
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CR-rules of Π such that Πr ∪ α(R) is consistent (i.e. has an answer set) is called

an abductive support of Π.

DEFINITION 4. (Answer Sets of CR-Prolog)

A set A is called an answer set of Π if it is an answer set of a regular program

Πr ∪ α(R) for some abductive support R of Π.

Now let us show how CR-Prolog can be used to represent defaults and their indirect

exceptions. The CR-Prolog representation of the default d(X), which we attempted

to represent in ASP program E, may look as follows

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

¬p(X)
+
← c(X).

The first rule is the standard ASP representation of the default, while the second rule

expresses the Contingency Axiom for the default d(X)4. Consider now a program

obtained by combining these two rules with an atom c(a).

Assuming that a is the only constant in the signature of this program, the program’s

unique answer set will be {c(a), p(a)}. Of course this is also the answer set of the

regular part of our program. (Since the regular part is consistent, the Contingency

Axiom is ignored.) Let us now expand this program by the rules

q(X)← p(X).

¬q(a).

The regular part of the new program is inconsistent. To save the day we need to

use the Contingency Axiom for d(a) to form the abductive support of the program.

As a result the new program has the answer set {¬q(a), c(a),¬p(a))}. The new

information does not produce inconsistency, as it did in ASP program E. Instead the

program withdraws its previous conclusion and recognizes a as a (strong) exception

to default d(a).

3 The Language

A P-log program consists of its declarations, logical rules, random selection rules,

probability atoms, observations, and actions. We will begin this section with a

brief description of the syntax and informal readings of these components of the

programs, and then proceed to an illustrative example.

The declarations of a P-log program give the types of objects and functions in

the program. Logical rules are “ordinary” rules of the underlying logical language

4In this form of Contingency Axiom, we treat X as a strong exception to the default. Sometimes

it may be useful to also allow weak indirect exceptions; this can be achieved by adding the rule

ab(d(X))
+
← c(X).
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written using light syntactic sugar. For purposes of this paper, the underlying

logical language is CR-Prolog.

P-log uses random selection rules to declare random attributes (essentially ran-

dom variables) of the form a(t), where a is the name of the attribute and t is a

vector of zero or more parameters. In this paper we consider random selection rules

of the form

[ r ] random(a(t))← B. (3)

where r is a term used to name the random causal process associated with the rule

and B is a conjunction of zero or more extended literals. The name [ r ] is optional

and can be omitted if the program contains exactly one random selection rule for

a(t). Statement (3) says that if B were to hold, the value of a(t) would be selected at

random from its range by process r, unless this value is fixed by a deliberate action.

More general forms of random selection rules, where the values may be selected from

a range which depends on context, are discussed in [Baral, Gelfond, and Rushton

2009].

Knowledge of the numeric probabilities of possible values of random attributes is

expressed through causal probability atoms, or pr-atoms. A pr-atom takes the form

prr(a(t) = y|c B) = v

where a(t) is a random attribute, B a conjunction of literals, r is a causal process,

v ∈ [0, 1], and y is a possible value of a(t). The statement says that if the value of

a(t) is fixed by process r, and B holds, then the probability that r causes a(t) = y is

v. If r is uniquely determined by the program then it can be omitted. The “causal

stroke” ‘|c’ and the “rule body” B may also be omitted in case B is empty.

Observations and actions of a P-log program are written, respectively, as

obs(l). do(a(t) = y)).

where l is a literal, a(t) a random attribute, and y a possible value of a(t). obs(l)

is read l is observed to be true. The action do(a(t) = y) is read the value of a(t),

instead of being random, is set to y by a deliberate action.

This completes a general introductory description of P-log. Next we give an example

to illustrate this description. The example shows how certain forms of knowledge

may be represented, including deterministic causal knowledge, probabilistic causal

knowledge, and strict and defeasible logical rules (a rule is defeasible if it states

an overridable presumption; otherwise it is strict). We will use this example to

illustrate the syntax of P-log, and, afterward, to provide an indication of the for-

mal semantics. Complete syntax and semantics are given in [Baral, Gelfond, and

Rushton 2009], and the reader is invited to refer there for more details.
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EXAMPLE 5. [Circuit]

A circuit has a motor, a breaker, and a switch. The switch may be open or closed.

The breaker may be tripped or not; and the motor may be turning or not. The

operator may toggle the switch or reset the breaker. If the switch is closed and the

system is functioning normally, the motor turns. The motor never turns when the

switch is open, the breaker is tripped, or the motor is burned out. The system may

break and if so the break could consist of a tripped breaker, a burned out motor,

or both, with respective probabilities .9, .09, and .01. Breaking, however, is rare,

and should be considered only in the absence of other explanations.

Let us show how to represent this knowledge in P-log. First we give declarations of

sorts and functions relevant to the domain. As typical for representation of dynamic

domains we will have sorts for actions, fluents (properties of the domain which can

be changed by actions), and time steps. Fluents will be partitioned into inertial

fluents and defined fluents. The former are subject to the law of inertia [Hayes and

McCarthy 1969] (which says that things stay the same by default), while the latter

are specified by explicit definitions in terms of already defined fluents. We will also

have a sort for possible types of breaks which may occur in the system. In addition

to declared sorts P-log contains a number of predefined sorts, e.g. a sort boolean.

Here are the sorts of the domain for the circuit example:

action = {toggle, reset, break}.

inertial fluent = {closed, tripped, burned}.

defined fluent = {turning, faulty}.

f luent = inertial fluent ∪ defined fluent.

step = {0, 1}.

breaks = {trip, burn, both}.

In addition to sorts we need to declare functions (referred in P-log as attributes)

relevant to our domain.

holds : fluent× step→ boolean.

occurs : action× step→ boolean.

Here holds(f, T ) says that fluent f is true at time step T and occurs(a, T ) indicates

that action a was executed at T .

The last function we need to declare is a random attribute type of break(T ) which

denotes the type of an occurrence of action break at step T .

type of break : step→ breaks.

The first two logical rules of the program define the direct effects of action toggle.
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holds(closed, T + 1) ← occurs(toggle, T ),

¬holds(closed, T ).

¬holds(closed, T + 1) ← occurs(toggle, T ),

holds(closed, T ).

They simply say that toggling opens and closes the switch. The next rule says that

resetting the breaker untrips it.

¬holds(tripped, T + 1) ← occurs(reset, T ).

The effects of action break are described by the rules

holds(tripped, T + 1) ← occurs(break, T ),

type of break(T ) = trip.

holds(burned, T + 1) ← occurs(break, T ),

type of break(T ) = burn.

holds(tripped, T + 1) ← occurs(break, T ),

type of break(T ) = both.

holds(burned, T + 1) ← occurs(break, T ),

type of break(T ) = both.

The next two rules express the inertia axiom which says that by default, things stay

as they are. They use default negation not — the main nonmonotonic connective

of ASP —, and can be viewed as typical representations of defaults in ASP and its

extensions.

holds(F, T + 1) ← inertial fluent(F ),

holds(F, T ),

not ¬holds(F, T + 1).

¬holds(F, T + 1) ← inertial fluent(F ),

¬holds(F, T ),

not holds(F, T + 1).

Next we explicitly define fluents faulty and turning.

holds(faulty, T ) ← holds(tripped, T ).

holds(faulty, T ) ← holds(burned, T ).

¬holds(faulty, T ) ← not holds(faulty, T ).

The rules above say that the system is functioning abnormally if and only if the

breaker is tripped or the motor is burned out. Similarly the next definition says

that the motor turns if and only if the switch is closed and the system is functioning

normally.

holds(turning, T ) ← holds(closed, T ),

¬holds(faulty, T ).

¬holds(turning, T ) ← not holds(turning, T ).

The above rules are sufficient to define causal effects of actions. For instance if

we assume that at Step 0 the motor is turning and the breaker is tripped, i.e.
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action break of the type trip occurred at 0, then in the resulting state we will have

holds(tripped, 1) as the direct effect of this action; while ¬holds(turning, 1) will be

its indirect effect5.

We will next have a default saying that for each action A and time step T , in the

absence of a reason to believe otherwise we assume A does not occur at T .

¬occurs(A, T )← action(A), not occurs(A, T ).

We next state a CR-rule representing possible exceptions to this default. The rule

says that a break to the system may be considered if necessary (that is, necessary

in order to reach a consistent set of beliefs).

occurs(break, 0)
+
← .

The next collection of facts describes the initial situation of our story.

¬holds(closed, 0). ¬holds(burned, 0). ¬holds(tripped, 0). occurs(toggle, 0).

Next, we state a random selection rule which captures the non-determinism in the

description of our circuit.

random(type of break(T ))← occurs(break, T ).

The rule says that if action break occurs at step T then the type of break will be

selected at random from the range of possible types of breaks, unless this type is

fixed by a deliberate action. Intuitively, break can be viewed as a non-deterministic

action, with non-determinism coming from the lack of knowledge about the precise

type of break.

Let π0 be the circuit program given so far. Next we will give a sketch of the formal

semantics of P-log, using π0 as an illustrative example.

The logical part of a P-log program Π consists of its declarations, logical rules,

random selection rules, observations, and actions; while its probabilistic part consists

of its pr-atoms (though the above program does not have any). The semantics of

P-log describes a translation of the logical part of Π into an “ordinary” CR-Prolog

program τ(Π). The semantics of Π is then given by

5It is worth noticing that, though short, our formalization of the circuit is non-trivial. It is

obtained using the general methodology of representing dynamic systems modeled by transition

diagrams whose nodes correspond to physically possible states of the system and whose arcs are

labeled by actions. A transition 〈σ0, a, σ1〉 indicates that state σ1 may be a result of execution of

a in σ0. The problem of finding concise and mathematically accurate description of such diagrams

has been a subject of research for over 30 years. Its solution requires a good understanding of the

nature of causal effects of actions in the presence of complex interrelations between fluents. An

additional level of complexity is added by the need to specify what is not changed by actions. As

noticed by John McCarthy, the latter, known as the Frame Problem, can be reduced to finding

a representation of the Inertia Axiom which requires the ability to represent defaults and to do

non-monotonic reasoning. The representation of this axiom as well as that of the interrelations

between fluents we used in this example is a simple special case of general theory of action and

change based on logic programming under the answer set semantics.
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1. a collection of answer sets of τ(Π) viewed as the set of possible worlds of a

rational agent associated with Π, along with

2. a probability measure over these possible worlds, determined by the collection

of the probability atoms of Π.

To obtain τ(π0) we represent sorts as collections of facts. For instance, sort step

would be represented in CR-Prolog as

step(0). step(1).

For a non-boolean function type of break the occurrences of atoms of the form

type of break(T ) = trip in π0 are replaced by type of break(T, trip). Similarly for

burn and both. The translation also contains the axiom

¬type of break(T, V1) ← breaks(V1), breaks(V2), V1 6= V2,

type of break(T, V2).

to guarantee that type of break is a function. In general, the same transformation

is performed for all non-boolean functions.

Logical rules of π0 are simply inserted into τ(π0). Finally, the random selection rule

is transformed into

type of break(T, trip) or type of break(T, burn) or type of break(T, both)←

occurs(break, T ),

not intervene(type of break(T )).

It is worth pointing out here that while CBN’s represent the notion of intervention in

terms of transformations on graphs, P-log axiomatizes the semantics of intervention

by including not intervene(. . . ) in the body of the translation of each random

selection rule. This amounts to a default presumption of randomness, overridable

by intervention. We will see next how actions using do can defeat this presumption.

Observations and actions are translated as follows. For each literal l in π0, τ(π0)

contains the rule

← obs(l), not l.

For each atom a(t) = y, τ(π) contains the rules

a(t, y)← do(a(t, y)).

and

intervene(a(t))← do(a(t, Y )).

The first rule eliminates possible worlds of the program failing to satisfy l. The

second rule makes sure that interventions affect their intervened-upon variables in

the expected way. The third rule defines the relation intervene which, for each

action, cancels the randomness of the corresponding attribute.
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It is not difficult to check that under the semantics of CR-Prolog, τ(π0) has a unique

possible world W containing holds(closed, 1) and holds(turning, 1), the direct and

indirect effects, respectively, of the action close. Note that the collection of regular

ASP rules of τ(π0) is consistent, i.e., has an answer set. This means that CR-rule

occurs(break, 0)
+
← is not activated, break does not occur, and the program contains

no randomness.

Now we will discuss how probabilities are computed in P-log. Let Π be a P-log

program containing the random selection rule [r] random(a(t)) ← B1 and the pr-

atom prr(a(t) = y |c B2) = v. Then if W is a possible world of Π satisfying B1 and

B2, the assigned probability of a(t) = y in W is defined 6 to be v. In case W satisfies

B1 and a(t) = y, but there is no pr-atom prr(a(t = y |c B2) = v of Π such that

W satisfies B2, then the default probability of a(t) = y in W is computed using the

“indifference principle”, which says that two possible values of a random selection

are equally likely if we have no reason to prefer one to the other (see [Baral, Gelfond,

and Rushton 2009] for details). The probability of each random atom a(t) = y

occurring in each possible world W of program Π, written PΠ(W,a(t) = y), is now

defined to be the assigned probability or the default probability, as appropriate.

Let W be a possible world of Π. The unnormalized probability, µ̂Π(W ), of a

possible world W induced by Π is

µ̂Π(W ) =def

∏

a(t,y)∈ W

PΠ(W,a(t) = y)

where the product is taken only over atoms for which P (W,a(t) = y) is defined.

Suppose Π is a P-log program having at least one possible world with nonzero

unnormalized probability, and let Ω be the set of possible worlds of Π. The measure,

µΠ(W ), of a possible world W induced by Π is the unnormalized probability of W

divided by the sum of the unnormalized probabilities of all possible worlds of Π,

i.e.,

µΠ(W ) =def

µ̂Π(W )
∑

Wi∈Ω
µ̂Π(Wi)

When the program Π is clear from context we may simply write µ̂ and µ instead of

µ̂Π and µΠ respectively.

This completes the discussion of how probabilities of possible worlds are defined in

P-log. Now let us return to the circuit example. Let program π1 be the union of π0

with the single observation

obs(¬holds(turning, 1))

The observation contradicts our previous conclusion holds(turning, 1) reached by

using the effect axiom for toggle, the definitions of faulty and turning, and the

6For the sake of well definiteness, we consider only programs in which at most one v satisfies

this definition.
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inertia axiom for tripped and burned. The program τ(π1) will resolve this contra-

diction by using the CR-rule occurs(break, 0)
+
← to conclude that the action break

occurred at Step 0. Now type of break randomly takes one of its possible values.

Accordingly, τ(π1) has three answer sets: W1, W2, and W3. All of them contain

occurs(break, 0), holds(faulty, 1), ¬holds(turning, 1). One, say W1 will contain

type of break(1, trip), holds(tripped, 1), ¬holds(burned, 1)

W2 and W3 will respectively contain

type of break(1, burn), ¬holds(tripped, 1), holds(burned, 1)

and

type of break(1, both), holds(tripped, 1), holds(burned, 1)

In accordance with our general definition, π1 will have three possible worlds, W1,

W2, and W3. The probabilities of each of these three possible worlds can be com-

puted as 1/3, using the indifference principle.

Now let us add some quantitative probabilities to our program. If π2 is the union

of π1 with the following three pr-atoms

pr(type of break(T ) = trip |c break(T )) = 0.9

pr(type of break(T ) = burned |c break(T )) = 0.09

pr(type of break(T ) = both |c break(T )) = 0.01

then program π2 has the same possible worlds as Π1. Not surprisingly, Pπ2
(W1) =

0.9. Similarly Pπ2
(W2) = 0.09 and Pπ2

(W3) = 0.01. This demonstrates how a P-log

program may be written in stages, with quantitative probabilities added as they are

needed or become available.

Typically we are interested not just in the probabilities of individual possible worlds,

but in the probabilities of certain interesting sets of possible worlds described, e.g.,

those described by formulae. For current purposes a rather simple definition suffices.

Viz., recalling that possible worlds are sets of literals, for an arbitrary set C of literals

we define

Pπ(C) =def Pπ({W : C ⊆W}).

For example, Pπ1
(holds(turning, 1)) = 0, Pπ1

(holds(tripped, 1)) = 1/3,

and Pπ2
(holds(tripped, 1)) = 0.91.

Our example is in some respects rather simple. For instance, every possible world

of our program contains at most one atom of the form a(t) = y where a(t) is a

random attribute. We hope, however, that this example gives a reader some insight

in the syntax and semantics of P-log. It is worth noticing that the example shows

the ability of P-log to mix logical and probabilistic reasoning, including reasoning

about causal effects of actions and explanations of observations. In addition it
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demonstrates the non-monotonic character of P-log, i.e. its ability to react to new

knowledge by changing probabilistic models of the domain and creating new possible

worlds.

The ability to introduce new possible worlds as a result of conditioning is of

interest from two standpoints. First, it reflects the common sense semantics of

utterances such as “the motor might be burned out.” Such a sentence does not

eliminate existing possible beliefs, and so there is no classical (i.e., monotonic)

semantics in which the statement would be informative. If it is informative, as

common sense suggests, then its content seems to introduce new possibilities into

the listener’s thought process.

Second, nonmonotonicity can improve performance. Possible worlds tend to pro-

liferate exponentially with the size of a program, quickly making computations in-

tractable. The ability to consider only those random selections which may explain

our abnormal observations may make computations tractable for larger programs.

Even though our current solver is in its early stages of development, it is based on

well researched answer set solvers which efficiently eliminate impossible worlds from

consideration based on logical reasoning. Thus even our early prototype has shown

promising performance on problems where logic may be used to exclude possible

worlds from consideration in the computation of probabilities [Gelfond, Rushton,

and Zhu 2006].

4 Spider Example

In this section, we consider a variant of Simpson’s paradox, to illustrate the for-

malization of interventions in P-log. The story we would like to formalize is as

follows:

In Stan’s home town there are two kinds of poisonous spider, the creeper and the

spinner. Bites from the two are equally common in Stan’s area — though spinner

bites are more common on a worldwide basis. An experimental anti-venom has

been developed to treat bites from either kind of spider, but its effectiveness is

questionable.

One morning Stan wakes to find he has a bite on his ankle, and drives to the

emergency room. A doctor examines the bite, and concludes it is a bite from either

a creeper or a spinner. In deciding whether to administer the anti-venom, the

doctor examines the data he has on bites from the two kinds of spiders: out of 416

people bitten by the creeper worldwide, 312 received the anti-venom and 104 did

not. Among those who received the anti-venom, 187 survived; while 73 survived

who did not receive anti-venom. The spinner is more deadly and tends to inhabit

areas where the treatment is less available. Of 924 people bitten by the spinner,

168 received the anti-venom, 34 of whom survived. Of the 756 spinner bite victims

who did not receive the experimental treatment, only 227 survived.

For a random individual bitten by a creeper or spinner, let s, a, and c denote the
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events of survival, administering anti-venom, and creeper bite. Based on the fact

that the two sorts of bites are equally common in Stan’s region, the doctor assigns a

0.5 probability to either kind of bite. He also computes a probability of survival, with

and without treatment, from each kind of bite, based on the sampling distribution

of the available data. He similarly computes the probabilities that victims of each

kind of bite received the anti-venom. We may now imagine the doctor uses Bayes’

Theorem to compute P (s | a) = 0.522 and P (s | ¬a) = 0.394.

Thus we see that if we choose a historical victim, in such a way that he has a

50/50 chance of either kind of bite, those who received anti-venom would have a

substantially higher chance of survival. Stan is in the situation of having a 50/50

chance of either sort of bite; however, he is not a historical victim. Since we are

intervening in the decision of whether he receives anti-venom, the computation

above is not germane (as readers of [Pearl 2000] already know) — though we can

easily imagine the doctor making such a mistake. A correct solution is as follows.

Formalizing the relevant parts of the story in a P-log program Π gives

survive, antivenom : boolean.

spider : {creeper, spinner}.

random(spider).

random(survive).

random(antivenom).

pr(spider = creeper) = 0.5.

pr(survive |c spider = creeper, antivenom) = 0.6.

pr(survive |c spider = creeper,¬antivenom) = 0.7.

pr(survive |c spider = spinner, antivenom) = 0.2.

pr(survive |c spider = spinner,¬antivenom) = 0.3.

and so, according to our semantics,

PΠ∪{do(antivenom}(survive) = 0.4

PΠ∪{do(¬antivenom}(survive) = 0.5

Thus, the correct decision, assuming we want to intervene to maximize Stan’s chance

of survival, is to not administer antivenom.

In order to reach this conclusion by classical probability, we would need to consider

separate probability measures P1 and P2, on the sets of patients who received or did

not receive antivenom, respectively. If this is done correctly, we obtain P1(s) = 0.4

and P2(s) = 0.5, as in the P-log program.

Thus we can get a correct classical solution using separate probability measures.

Note however, that we could also get an incorrect classical solution using separate

measures, since there exist probability measures P̂1 and P̂2 on the sets of histor-

ical bite victims which capture classical conditional probabilities given a and ¬a

respectively. We may define
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P̂1(E) =def
P (E∩a)

0.3582

P̂2(E) =def
P (E∩¬a)

0.6418

It is well known that each of these is a probability measure. They are seldom seen

only because classical conditional probability gives us simple notations for them in

terms of a single measure capturing common background knowledge. This allows us

to refer to probabilities conditioned on observations without defining a new measure

for each such observation. What we do not have, classically, is a similar mechanism

for probabilities conditioned on intervention — which is sometimes of interest as

the example shows. The ability to condition on interventions in this way has been a

fundamental contribution of Pearl; and the inclusion in P-log of such conditioning-

on-intervention is a direct result of the authors’ reading of his book.

5 Infinite Programs

The definitions given so far for P-log apply only to programs with finite numbers

of random selection rules. In this section we state a theorem which allows us to

extend these semantics to programs which may contain infinitely many random

selection rules. No changes are required from the syntax given in [Baral, Gelfond,

and Rushton 2009], and the probability measure described here agrees with the one

in [Baral, Gelfond, and Rushton 2009] whenever the former is defined.

We begin by defining the class of programs for which the new semantics are

applicable. The reader is referred to [Baral, Gelfond, and Rushton 2009] for the

definitions of causally ordered, unitary, and strict probabilistic levelling.

DEFINITION 6. [Admissible Program]

A P-log program is admissible if it is causally ordered and unitary, and if there

exists a strict probabilistic levelling || on Π such that no ground literal occurs in

the heads of rules in infinitely many Πi with respect to ||.

The condition of admissibility, and the definitions it relies on, are all rather

involved to state precisely, but the intuition is as follows. Basically, a program is

unitary if the probabilities assigned to the possible outcomes of each selection rule

are either all assigned and sum to 1, or are not all assigned and their sum does not

exceed 1. The program is causally ordered if its causal dependencies are acyclic

and if the only nondeterminism in it is a result of random selection rules. A strict

probabilistic levelling is a well ordering of the selection rules of a program which

witnesses the fact that it is causally ordered. Finally, a program which meets these

conditions is admissible if every ground literal in the program logically depends on

only finitely many random experiments. For example, the following program is not

unitary:
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random(a) : boolean.

pr(a) = 1/2.

pr(¬a) = 2/3.

The following program is not causally ordered:

random(a) : boolean.

random(b) : boolean.

prr(a|c b) = 1/3.

prr(a|c ¬b) = 2/3.

prr(b|c a) = 1/5.

and neither is the following:

p ← not q.

q ← not p.

since it has two answer sets which arise from circularity of defaults, rather than

random selections. The following program is both unitary and causally ordered, but

not admissible, because atLeastOneTail depends on infinitely many coin tosses.

coin toss : positive integer → {head, tail}.

atLeastOneTail : boolean.

random(coin toss(N)).

atLeastOneTail← coin toss(N) = tail.

We need one more definition before stating the main theorem:

DEFINITION 7. [Cylinder algebra of Π]

Let Π be a countably infinite P-log program with random attributes ai(t), i > 0,

and let C be the collection of sets of the form {ω : ai(t) = y ∈ ω} for arbitrary t,

i, and y. The sigma algebra generated by C will be called the cylinder algebra of

program Π.

Intuitively, the cylinder algebra of a program Π is the collection of sets which

can be formed by performing countably many set operations (union, intersection,

and complement) upon sets whose probabilities are defined by finite subprograms.

We are now ready to state the main proposition of this section.

PROPOSITION 8. [Admissible programs]

Let Π be an admissible P-log program with at most countably infinitely many ground

rules, and let A be the cylinder algebra of Π. Then there exists a unique probability

measure PΠ defined on A such that whenever [r] random(a(t))← B1 and prr(a(t) =

y | B2) = v occur in Π, and PΠ(B1 ∧B2) > 0, we have PΠ(a(t) = y | B1 ∧B2) = v.

Recall that the semantic value of a P-log program Π consists of (1) a set of possible

worlds of Π and (2) a probability measure on those possible worlds. The proposition

now puts us in position to give semantics for programs with infinitely many random
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selection rules. The possible worlds of the program are the answer sets of the

associated (infinite) CR-Prolog program, as determined by the usual definition —

while the probability measure is PΠ, as defined in Proposition 8.

We next give an example which exercises the proposition, in a form of a novel

paradox. Imagine a casino which offers an infinite sequence of games, of which our

agent may decide to play as many or as few as he wishes. For the nth game, a fair

coin is tossed n times. If the agent chooses to play the nth game, then the agent

wins 2n+1 + 1 dollars if all tosses made in the nth game are heads and otherwise

loses one dollar.

We can formalize this game as an infinite P-log program Π. First, we declare

a countable sequence of games and an integer valued variable, representing the

player’s net winnings after each game.

game : positive integer.

winnings : game→ integer.

play : game→ boolean.

coin : {〈M,N〉 | 1 ≤M ≤ N} → {head, tail}.

Note that the declaration for coin is not written in the current syntax of P-log; but

to save space we use set-builder notation here as a shorthand for the more lengthy

formal declaration. Similarly, the notation 〈M,N〉 is also a shorthand. From this

point on we will write coin(M,N) instead of coin(〈M,N〉).

Π also contains a declaration to say that the throws are random and the coin is

known to be fair:

random(coin(M,N)).

pr(coin(M,N) = head) = 1/2.

The conditions of winning the N th game are described as follows:

lose(N)← play(N), coin(N,M) = tail.

win(N)← play(N), not lose(N).

The amount the agent wins or loses on each game is given by

winnings(0) = 0.

winnings(N + 1) = winnings(N) + 1 + 2N+1 ← win(N).

winnings(N + 1) = winnings(N)− 1 ← lose(N).

winnings(N + 1) = winnings(N) ← ¬play(N).

Finally the program contains rules which describe the agent’s strategy in choosing

which games to play. Note that the agent’s expected winnings in the N th game are

given by (1/2N )(1+2N+1)− (1−1/2N ) = 1, so each game has positive expectation

for the player. Thus a reasonable strategy might be to play every game, represented

as
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play(N).

This completes program Π. It can be shown to be admissible, and hence there is

a unique probability measure PΠ satisfying the conclusion of Proposition 1. Thus,

for example, PΠ(coin(3, 2) = head) = 1/2, and PΠ(win(10)) = 1/210. Each of

these probabilities can be computed from finite sub-programs. As more interesting

example, let S be the set of possible worlds in which the agent wins infinitely many

games. The probability of this event cannot be computed from any finite sub-

program of Π. However, S is a countable intersection of countable unions of sets

whose probabilities are defined by finite subprograms. In particular,

S =
∞
⋂

N=1

∞
⋃

J=N

{W | win(J) ∈W}

and therefore, S is in the cylinder algebra of Π and so its probability is given by

the measure defined in Proposition 1.

So where is the Paradox? To see this, let us compute the probability of S. Since

PΠ is a probability measure, it is monotonic in the sense that no set has greater

probability than any of its subsets. PΠ must also be countably subadditive, meaning

that the probability of a countable union of sets cannot exceed the sum of their

probabilities. Thus, from the above we get for every N ,

PΠ(S) < PΠ(
∞
⋃

J=N

{W | win(J) ∈W}

≤
∞
∑

J=N

PΠ({W | win(J) ∈W})

=

∞
∑

J=N

1/2J

= 1/2N

Now since right hand side can be made arbitrarily small by choosing a sufficiently

large N , it follows that PΠ(S) = 0. Consequently, with probability 1, our agent

will lose all but finitely many of the games he plays. Since he loses one dollar per

play indefinitely after his final win, his winnings converge to −∞ with probability

1, even though each of his wagers has positive expectation!
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On Computers Diagnosing Computers

Moises Goldszmidt

1 Introduction

I came to UCLA in the fall of 1987 and immediately enrolled in the course titled

“Probabilistic Reasoning in Intelligent Systems” where we, as a class, went over the

draft of Judea’s book of the same title [Pearl 1988]. The class meetings were fun

and intense. Everybody came prepared, having read the draft of the appropriate

chapter and having struggled through the list of homework exercises that were due

that day. There was a high degree of discussion and participation, and I was very

impressed by Judea’s attentiveness and interest in our suggestions. He was fully

engaged in these discussions and was ready to incorporate our comments and change

the text accordingly. The following year, I was a teaching assistant (TA) for that

class. The tasks involved with being a TA gave me a chance to rethink and really

digest the contents of the course. It dawned on me then what a terrific insight

Judea had to focus on formalizing the notion of conditional independence: All the

“juice” he got in terms of making “reasoning under uncertainty” computationally

effective came from that formalization. Shortly thereafter, I had a chance to chat

with Judea about these and related thoughts. I was in need of formalizing a notion

of “relevance” for my own research and thought that I could adapt some ideas from

the graphoid models [Pearl 1988]. In that opportunity Judea shared another of his

great insights with me. After hearing me out, Judea said one word: “causality”.

I don’t remember the exact words he used to elaborate, but the gist of what he

said to me was: “we as humans perform extraordinarily complex reasoning tasks,

being able to select the relevant variables, circumscribe the appropriate context,

and reduce the number of factors that we should manipulate. I believe that our

intuitive notions of causality enable us to do so. Causality is the holly grail [for

Artificial Intelligence]”.

In this short note, I would like to pay tribute to Judea’s scientific work by specu-

lating on the very realistic possibility of computers using his formalization of causal-

ity for automatically performing a nontrivial reasoning task commonly reserved for

humans. Namely designing, generating, and executing experiments in order to con-

duct a proper diagnosis and identify the causes of performance problems on code

being executed in large clusters of computers. What follows in the next two sections

is not a philosophical exposition on the meaning of “causality” or on the reasoning

powers of automatons. It is rather a brief description of the current state of the art
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in programming large clusters of computers and then, a brief account argumenting

that the conditions are ripe for embarking on this research path.

2 Programming large clusters of computers made easy

There has been a recent research surge in systems directed at providing program-

mers with the ability to write efficient parallel and distributed applications [Hadoop

2008; Dean and Ghemawat 2004; Isard et al. 2007]. Programs written in these envi-

ronments are automatically parallelized and executed on large clusters of commodity

machines. The tasks of enabling programmers to effectively write and deploy par-

allel and distributed application has of course been a long-standing problem. Yet,

the relatively recent emergence of large-scale internet services, which depend on

clusters of hundreds of thousands of general purpose servers, have given the area

a forceful push. Indeed, this is not merely an academic exercise; code written in

these environments has been deployed and is very much in everyday use at com-

panies such as Google, Microsoft, and Yahoo (and many others). These programs

process web pages in order to feed the appropriate data to the search and news

summarization engines; render maps for route planning services; and update usage

and other statistics from these services. Year old figures estimate that Dryad, the

specific such environment created at Microsoft [Isard et al. 2007], is used to crunch

on the order of a petabyte a day at Microsoft. In addition, in our lab at Microsoft

Research, a cluster of 256 machines controlled by Dryad runs daily at a 100% uti-

lization. This cluster mostly runs tests and experiments on research algorithms in

machine learning, privacy, and security that process very large amounts of data.

The intended model in Dryad is for the programmer to build code as if she were

programming one computer. The system then takes care of a) distributing the code

to the actual cluster and b) managing the execution of the code in the cluster. All

aspects of execution, including data partition, communications, and fault tolerance,

are the responsibility of Dryad.

With these new capabilities comes the need for new tools for debugging code,

profiling execution performance, and diagnosing system faults. By the mere fact

that clusters of large numbers of computers are being employed, rare bugs will

manifest themselves more often, and devices will fail in more runs (due to both

software and hardware problems). In addition, as the code will be executed in a

networked environment and the data will be partitioned (usually according to some

hash function), communication bandwidth, data location, contention for shared

disks, and data skewness will impact the performance of the programs. Most of

the times the impact of these factors will be hard to reproduce in a single machine,

making it an imperative that the diagnosis, profiling, and debugging be performed

in the same environment and conditions as those in which the code is running.
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3 Computers diagnosing computers

The good news is that the same infrastructure that enables the programming and

control of these clusters can be used for debugging and diagnosis. Normally the

computation proceeds in stages where the different nodes in the cluster perform

the same computation in parallel on different portions of the data. For purposes

of fault tolerance, there are mechanisms in Dryad to monitor the execution time

of each node at any computation stage. It is therefore possible to gather robust

statistics about the expected execution time of any particular node at a given stage

and identify especially slow nodes. Currently, this information is used to restart

those nodes or to migrate the computation to other nodes.

We can take this further and collect the copious amount of data that is generated

by the various built-in monitors looking at things such as cpu utilization, memory

utilization, garbage collection, disk utilization, and statistics on I/O.1 The statis-

tical analysis of these signals may provide clues pointing at the probable causes

of poor performance and even of failures. Indeed we have built a system called

Artemis [Creţu-Ciocârlie et al. 2008], that takes advantage of the Dryad infras-

tructure to collect and preprocess the data from these signals in a distributed and

opportunistic fashion. Once the data is gathered, Artemis will run a set of statis-

tical and machine learning algorithms ranging from summarizations to regression

and pattern classification. In this paper we propose one more step. We can imagine

a system that guided with the information from these analyses, performs active ex-

periments on the execution of the code. The objective will be to causally diagnose

problems, and properly profile dependencies between the various factors affecting

the performance of the computations.

Let us ground this idea in a realistic example. Suppose that through the analy-

sis of the execution logs of some large task we identify that, on a computationally

intensive stage, a small number of machines performed significantly worse that the

average/median (in terms of overall processing speed). Through further analysis,

for example logistic regression with L1 regularization, we are able to identify the

factors that differentiate the slower machines. Thus, we narrow down the possi-

bilities and determine that the main difference between these machines and the

machines that performed well is the speed at which the data is read by the slower

machines.2 Further factors influencing this speed are whether the data resides on

a local disk and whether there are other computational nodes that share that disk

(and introduce contention), and on the speed of the network. Figure 1 shows a

(simplified) causal model of this scenario depicting two processing nodes. The dark

nodes represent factors/variables that can be controlled or where intervention is

possible. Conducting controlled experiments guided by this graph would enable the

1The number of counters and other signals that these monitors yield can easily reach on the

order of hundreds per machine.
2This particular case was encountered by the author while running a benchmark based on

Terasort on a cluster with hundreds of machines [Creţu-Ciocârlie et al. 2008].
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trolling the “variables” of interest and setting up experiments in these clusters.

Systems such as Artemis [Creţu-Ciocârlie et al. 2008] enable efficient collection and

processing of extensive monitoring data, including the recording of the system state

for recreating particular troublesome scenarios. The final ingredient for having ma-

chines automatically set up and conduct experiments is a language to describe these

experiments and an algebra to reason about them in order to guarantee that the

right variables are being controlled, and that we are intervening in the right spots

in order to get to the correct conclusions. Through his seminal work in [Pearl 2000]

and follow up papers, Judea Pearl has already given us that ingredient.

Acknowledgments: The author wishes to thank Mihai Budiu for numerous tech-

nical discussions on the topics of this paper, Joe Halpern for his help with the

presentation, and very especially Judea Pearl for his continuous inspiration in the

relentless and honest search for scientific truth.
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Overthrowing the Tyranny of Null Hypotheses 

Hidden in Causal Diagrams 
  

SANDER GREENLAND 

  

1   Introduction  

Graphical models have a long history before and outside of causal modeling. 

Mathematical graph theory extends back to the 1700s and was used for circuit analysis in 

the 19
th

 century. Its application in probability and computer science dates back at least to 

the 1960s (Biggs et al., 1986), and by the 1980s graphical models had become fully 

developed tools for these fields (e.g., Pearl, 1988; Hajek et al., 1992; Lauritzen, 1996).  

As Bayesian networks, graphical models are carriers of direct conditional independence 

judgments, and thus represent a collection of assumptions that confine prior support to a 

lower dimensional manifold of the space of prior distributions over the nodes. Such 

dimensionality reduction was recognized as essential in formulating explicit and 

computable algorithms for digital-machine inference, an essential task of artificial-

intelligence (AI) research. By the 1990s, these models had been merged with causal path 

diagrams long used in observational health and social science (OHSS) (Wright, 1934; 

Duncan, 1975), resulting in a formal theory of causal diagrams (Spirtes et al., 1993; 

Pearl, 1995, 2000).  

It should be no surprise that some of the most valuable and profound contributions to 

these developments were from Judea Pearl, a renowned AI theorist. He motivated causal 

diagrams as causal Bayesian networks (Pearl, 2000), in which the basis for the 

dimensionality reduction is grounded in judgments of causal independence (and 

especially, autonomy) rather than mere probabilistic independence. Beyond his extensive 

technical and philosophical contributions, Pearl fought steadfastly to roll back prejudice 

against causal modeling and causal graphs in statistics. Today, only a few statisticians 

still regard causality as a metaphysical notion to be banned from formal modeling (Lad, 

1999). While a larger minority still reject some aspects of causal-diagram or potential-

outcome theory (e.g., Dawid, 2000, 2008; Shafer, 2002), the spreading wake of 

applications display the practical value of these theories, and formal causal diagrams 

have advanced into applied journals and books (e.g., Greenland et al., 1999; Cole and 

Hernán, 2002; Hernán et al., 2002; Jewell, 2004; Morgan and Winship, 2007; Glymour 

and Greenland, 2008) – although their rapid acceptance in OHSS may well have been 

facilitated by the longstanding informal use of path diagrams to represent qualities of 

causal systems (e.g., Susser, 1973; Duncan, 1975). 

Graphs are unsurpassed tools for illustrating certain mathematical results that hold in 

functional systems (whether stochastic or not, or causal or not). Nonetheless, it is 

essential to recognize that many if not most causal judgments in OHSS are based on 
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observational (purely associational) data, with little or nothing in the way of manipulative 

(or “surgical”) experiment to test these judgments. Time order is usually known, which 

insures that the chosen arrow directions are correct; but rarely is there a sound basis for 

deleting an arrow, leaving autonomy in question. When all empirical constraints encoded 

by the causal network come from passive frequency observations rather than 

experiments, the primacy of causal independence judgments has to be questioned. In 

these situations (which characterize observational research), we should not neglect 

associational models (including graphs) that encode frequency-based judgments, for these 

models may be all that are identified by available data. Indeed, a deep philosophical 

commitment to statistically identified quantities seems to drive the arguments of certain 

critics of potential outcomes and causal diagrams (Dawid, 2000, 2008). Even if we reject 

this philosophy, however, we should retain the distinction between levels of identification 

provided by our data, for even experimental data will not identify everything we would 

like to know. 

I will argue that, in some ways, the distinction of nonidentification from identification 

is as fundamental to modeling and statistical inference about causal effects as is the 

distinction of causation from association (Gustafson, 2005; Greenland, 2005a, 2009a, 

2009b). Indeed, I believe that some of the controversy and confusion over causation 

versus association stems from the inability of statistical observations to point identify 

(consistently estimate) many of the causal parameters that astute scientists legitimately 

ask about. Furthermore, if we consider strategies that force identification from available 

data (such as node or arrow deletions from graphical models) we will find that 

identification may arise only by declaring some types of joint frequencies as justifying 

the corresponding conditional independence assumptions. This leads directly into the 

complex topic of pruning algorithms, including the choice of target or loss function.  

I will outline these problems in their most basic forms, for I think that in the rush to 

adopt causal diagrams some realism has been lost by neglecting problems of 

nonidentification and pruning. My exposition will take the form of a series of vignettes 

that illustrate some basic points of concern. I will not address equally important concerns 

that many of the nodes offered as “treatments” may be ill-defined or nonmanipulable, or 

may correspond poorly to the treatments they ostensibly represent (Greenland, 2005b; 

Hernán, 2005; Cole and Frangakis, 2009; VanderWeele, 2009). 

 

2   Nonidentification from Unfaithfulness in a Randomized Trial 

Nonidentification can be seen and has caused controversy in the simplest causal-

inference settings. Consider an experiment that randomizes a node R. Inferences on 

causal effects of R from subsequent associations of R with later events would then be 

justified, since R would be an exogenous node. R would also be an instrumental variable 

for certain descendants under further conditional-independence assumptions.  

A key problem is how one could justify removing arrows along the line of descent 

from R to another node Y, even if R is exogenous. The overwhelmingly dominant 

approach licenses such removal if the observed R-Y association fails to meet some 

criterion for departure from pure randomness. This schematic for a causal-graph pruning 

366



Overthrowing the Tyranny of Null Hypotheses!

algorithm was employed by Spirtes et al. (1993), unfortunately with a very naïve 

Neyman-Pearsonian criterion (basically, allowing removal of arrows when a P-value 

exceeds an α level). These and related graphical algorithms (Pearl and Verma, 1991) 

produce what appear to be results in conflict with practical intuitions, namely causal 

“discovery” algorithms for single observational data sets, with no need for experimental 

evidence. These algorithms have been criticized philosophically on grounds related to the 

identification problem (Freedman and Humphreys, 1999; Robins and Wasserman, 

1999ab), and there are also objections based on statistical theory (Robins et al., 2003).  

One controversial assumption in these algorithms is faithfulness (or stability) that all 

connected nodes are associated. Although arguments have been put forward in its favor 

(e.g., Spirtes et al., 1993; Pearl, 2000, p. 63), this assumption coheres poorly with prior 

beliefs of some experienced researchers. Without faithfulness, two nodes may be 

independent even if there is an arrow linking them directly, if that arrow represents the 

presence of causal effects among units in a target population. A classic example of such 

unfaithfulness appeared in the debates between Fisher and Neyman in the 1930s, in 

which they disagreed on how to formulate the causal null hypothesis (Senn, 2004). The 

framework of their debate would be recognized today as the potential-outcome or 

counterfactual model, although in that era the model (when named) was called the 

randomization model. This model illustrates the benefit of randomization as a means of 

detecting a signal by injecting white noise into a system to drown out uncontrolled 

influences.  

To describe the model, suppose we are to study the effect of a treatment X on an 

outcome Yobs observable on units in a specific target population. Suppose further we can 

fully randomize X, so X will equal the randomized node R. In the potential-outcome 

formulation, the outcome becomes a vector Y indexed by X. Specifically, X determines 

which component Yx of Y is observable conditional on X=x: Yobs = Yx given X=x. To say 

X can causally affect a unit makes no reference to observation, however; it merely means 

that some components of Y are unequal. With a binary treatment and outcome, there are 

four types of units in the target population about a binary treatment X which indexes a 

binary potential-outcome vector Y (Copas, 1973): 

1)   Noncausal units with outcomes Y=(1,1) under X=1,0 (“doomed’ to Yobs=1);  

2)   Causal units with outcomes Y=(1,0) under X=1,0 (X=1 causes Yobs=1);  

3)   Causal units with outcomes Y=(0,1) under X=1,0 (X=1 prevents Yobs=1); and  

4)   Noncausal units with outcomes Y=(0,0) under X=1,0 (“immune” to Yobs=1).  

Suppose the proportion of type i in the trial population is pi. There are now two null 

hypotheses: 

Hs: There are no causal units: p2=p3=0 (sharp or strong null), 

Hw: There is no net effect of treatment on the distribution of Yobs: p2=p3 (weak null). 

Under the randomization distribution we have  

E(Yobs|X=1) = Pr(Yobs=1|do[X=1]) = Pr(Y1=1) = p1+p2 and  

E(Yobs|X=0) = Pr(Yobs=1|do[X=0]) = Pr(Y0=1) = p1+p3;  

hence Hw: p2=p3 is equivalent to the hypothesis that the expected outcome is the same for 

both treatment groups, and that the proportions with Yobs=1 under the extreme population 
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intervention do[X=1] to every unit and do[X=0] to every unit are equal. Note however 

that only Hs entails that the proportion with Yobs=1 would be the same under every 

possible allocation of treatment X among the units; this property implies that the Y 

margin is fixed under Hs, and thus provides a direct causal rationale for Fisher’s exact test 

of Hs (Greenland, 1991). 

Hs also entails Hw (or, in terms of parameter subspaces, Hs  Hw). The converse is 

false; but, under any of the “optimal” statistical tests that can be formulated from data on 

X and Yobs only, power is identical to the test size on all alternatives to the sharp null with 

p2=p3, i.e., Hs is not identifiable within Hw, so within Hw the power of any valid test of Hs 

will not exceed its nominal alpha level. Thus, following Neyman, it is only relevant to 

think in terms of Hw, because Hw could be rejected whenever Hs could be rejected. 

Furthermore, some later authors would disallow Hw – Hs: p2 = p3 ≠ 0 because it violates 

faithfulness (Spirtes et al., 2001) or because it represents an extreme treatment-by-unit 

interaction with no main effect (Senn, 2004).  

There is also a Bayesian argument for focusing exclusively on Hw. Hw is of Lebesgue 

measure zero, so under the randomization model, distinctions within Hw can be ignored 

by inferences based on an absolutely continuous prior on p = (p1,p2,p3) (Spirtes et al., 

1993). More generally, any distinction that remains a posteriori can be traced to the prior. 

A more radical stance would dismiss both Hs and the model defined by 1-4 above as 

“metaphysical,” because it invokes constraints on the joint distribution of the components 

Y1 and Y0, and that joint distribution is not identified by randomization of X if only X 

and Yobs are observed (Dawid, 2000).  

On the other hand, following Fisher one can argue that the null of key scientific and 

practical interest is Hs, and that Hw − Hs: p2 = p3 ≠ 0 is a scientifically important and 

distinct hypothesis. For instance, p2>0, p3>0 entails the existence of units who should be 

treated quite differently, and provides an imperative to seek covariates that discriminate 

between the two causal types, even if p2=p3. Furthermore, rejection of the stronger Hs is a 

weaker inference than rejection of the weaker Hw, and thus rejecting only Hs would be a 

conservative interpretation of a “significant” test statistic. Thus, focusing on Hs is 

compatible with a strictly falsificationist view of testing in which acceptance of the null is 

disallowed. Finally, there are real examples in which X=1 causes Y=1 in some units and 

causes Y=0 in others; in some of these cases there may be near-perfect balance of 

causation and prevention, as predicted by certain physical explanations for the 

observations (e.g., as in Neutra et al., 1980). 

To summarize, identification problems arose in the earliest days of formal causal 

modeling, even when considering only the simplest of trials. Those problems pivoted not 

on whether one should attempt formal modeling of causation as distinct from association, 

but rather on what could be identified by standard experimental designs. In the face of 

limited (and limiting) design strategies, these problems initiated a long history of 

attempts to banish identification problems based on idealized inference systems and 

absolute philosophical assertions. But a counter-tradition of arguments, both practical and 

philosophical, has regarded identification problems as carriers of valuable scientific 

information: They are signs of study limitations which need to be recognized and can 

368



369



370



Overthrowing the Tyranny of Null Hypotheses!

p(u,c,x,y,c*,x*,y*,s) =  

p(u)p(c|u)p(x|u,c)p(y|u,c,x)p(c*|u,c,x,y)p(x*|u,c,x,y)p(y*|u,c,x,y)p(s|u,c,x,y,c*,x*,y*), 

which involves both S=0 events (not selected) and S=1 events (selected), i.e., the 

lowercase “s” is used when S can be either 0 or 1. 

The marginal (total-population) potential-outcome distribution for Y after intervention 

on X, p(yx), equals p(y|do[X=x]), which under fig. 2 equals the standardized (mixing) 

distribution of Y given X standardized to (weighted by or mixed over) p(c,u) = 

p(c|u)p(u): 

p(yx) = p(y|do[x]) = Σu,c p(y|u,c,x)p(c|u)p(u). 

This estimand involves only three factors in the decomposition, but none of them are 

identified if U is unobserved and no further assumptions are made. Analysis of the causal 

estimand p(yx) must somehow relate it to the observed distribution p(c*,x*,y*|S=1) using 

known or estimable quantities, or else remain purely speculative (i.e., a sensitivity 

analysis). 

It is a long, hard road from p(c*,x*,y*|S=1) to p(yx), much longer than the current 

“causal inference” literature often makes it look. To appreciate the distance, rewrite the 

summand of the standardization formula for p(yx) as an inverse-probability-weighted 

(IPW) term derived from an observation (c*,x*,y*|S=1): From fig. 2,  

p(y|u,c,x)p(c|u)p(u) =   

p(c*,x*,y*|S=1)p(S=1)p(u,c,x,y|c*,x*,y*,S=1)/ 

   p(x|u,c)p(c*|u,c,x,y)p(x*|u,c,x,y)p(y*|u,c,x,y)p(S=1|u,c,x,y,c*,x*,y*). 

The latter expression includes 

1) the exposure dependence on its parents, p(x|u,c); 

2) the measurement distributions p(c*|u,c,x,y), p(x*|u,c,x,y), p(y*|u,c,x,y); and 

3) the fully conditioned selection probability p(S=1|u,c,x,y,c*,x*,y*). 

The absence of effects corresponding to 1−3 from graphs offered as “causal” suggests 

that “causal inference” from observational data using formal causal models remains a 

theoretical and largely speculative exercise (albeit often presented without explicit 

acknowledgement of that fact).  

When adjustments for these effects are attempted, we are usually forced to use crude 

empirical counterparts of terms like those in 1−3, with each substitution demanding 

nonidentified assumptions. Consider that, for valid inference under figure 2, 

1) Propensity scoring and IPW for treatment need p(x|u,c), but all we get from data  

is p(x*|c*). Absence of u and c is usually glossed over by assuming “no 

unmeasured confounders” or “no residual confounding.” These are not credible 

assumptions in OHSS. 

2) IPW for selection and censoring needs p(S=1|u,c,x,y,c*,x*,y*), but usually the  

most we get from a cohort study or nested study is p(S=1|c*,x*). We do not even 

get that much in a case-control study. 

3) Measurement-error correction needs conditional distributions from  

p(c*,x*,y*,u,c,x,y|S=1), but even when a “validation” study is done, we obtain 

only alternative measurements c
†
,x

†
,y

†
 (which are rarely error-free) on a tiny and 
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biased subset. So we end up with observations from 

p(c
†
,x

†
,y

†
,c*,x*,y*|S=1,V=1) where V is the validation indicator.  

4) Consistency between the observed X and the intervention variable, in the sense t 

hat P(Y|X=x) = P(Y|do[X=x],X=x). This can be hard to believe for common 

variables such as smoking, body-mass index, and blood pressure, even if 

do[X=x] is well-defined (which is not usually the case).  

In the face of these realities, standard practice seems to be: Present wildly hypothetical 

analyses that pretend the observed distribution p(c*,x*,y*|S=1), perhaps along with 

p(c
†
,x

†
,y

†
,c*,x*,y*|S=1,V=1) or p(S=1|c*,x*), is sufficient for causal inference. The 

massive gaps are filled in with models or assumptions, which are priors that reduce 

dimensionality of the problem to something within computing bounds. For example, use 

of IPW with p(S=1|c*,x*) to adjust for selection bias (as when 1−S is a censoring 

indicator) depends crucially on a nonidentified ignorability assumption that 

S╨(U,C,X,Y)|(C*,X*), i.e., that selection S is independent of the latent variables U,C,X,Y 

given the observed variables C*,X*. We should expect this condition to be violated 

whenever a latent variable affects selection directly or shares unobserved causes with 

selection. If such effects are exist but are missing from the analysis graph, then by some 

definitions the graph (and hence the resulting analysis) isn’t causal, no matter how much 

propensity scoring (PS), marginal structural modeling (MSM), inverse-probability 

weighting (IPW), or other causal-modeling procedures we apply to the observations 

(c*,x*,y*|S=1). 

Of course, the overwhelming dimensionality of typical OHSS problems virtually 

guarantees that arbitrary constraints will enter at some point, and forces even the best 

scientists to rely on a tiny subset of all the models or explanations consistent with 

available facts. Personal bias in determining this subset may be unavoidable due to strong 

cultural influences (such as adherence to received theories, as well as moral strictures and 

financial incentives), which can also lead to biased censoring of observations (Greenland, 

2009c). One means of coping with such bias is by being aware of it, then trying to test it 

against the facts one can muster (which are often few).  

The remaining sections sketch some alternatives to pretending we can identify 

unbiased or assuredly valid estimators of causal effects in observational data, as opposed 

to within hypothetical models for data generation (Greenland, 1990; Robins, 2001). In 

these approaches, both frequentist and Bayesian analyses are viewed as hypotheticals 

conditioned on a data-generation model of unknown validity. Frequentist analysis 

provides only inferences of the form “if the data-generation process behaves like this, 

here is how the proposed decision rule would perform,” while Bayesian analysis provides 

only inferences of the form “if I knew that its data-generation process behaves like this, 

here is how this study would alter my bets.”
1
 If we aren’t sure how the data-generation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"
This statement describes Bayes factors (Good, 1983) conditioned on the model. That model may 

include an unknown parameter that indexes a finite number of submodels scattered over some high-

dimensional subspace, in which case the Bayesian analysis is called “model averaging,” usually 

with an implicit uniform prior over the models. Model averaging may also operate over continuous 

parameters via priors on those parameters.!
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process behaves, no statistical analysis can provide more, no matter how much causal 

modeling is done.  

 

5   Predictive Analysis 

If current models for observed-data generators (whether logistic, structural, or propensity 

models) can’t be taken seriously as “causal”, what can we make of their outputs? It is 

hard to believe the usual excuses offered for regression outputs (e.g., that they are 

“descriptive”) when the fitted model is asserted to be causal or “structural.” Are we to 

consider the outputs of (say) and IPW-fitted MSM to be some sort of data summary? Or 

will it function as some kind of optimal predictor of outcomes in a purely predictive 

context? No serious case has been made for causal models in either role, and it seems that 

some important technical improvements are needed before causal modeling methods 

become credible predictive tools. 

Nonetheless, graphical models remain useful (and might be less misleading) even when 

they are not “causal,” serving instead as mere carriers of conditional independence 

assumptions within a time-ordered framework. In this usage, one may still employ 

presumed causal independencies as prior judgments for specification. In particular, for 

predictive purposes, some or all of the arrows in the graph may retain informal causal 

interpretations; but they may be causally wrong, and yet the graph can still be correct for 

predictive purposes. 

In this regard, most of the graphical modeling literature in statistics imposes little in the 

way of causal burden on the graph, as when graphs are used as influence diagrams, belief 

and information networks, and so on without formal causal interpretation (that is, without 

representing a formal causal model, e.g., Pearl, 1988; Hajek et al., 1992; Cox and 

Wermuth, 1996; Lauritzen, 1996). DAG rules remain valid for prediction if the absence 

of an open path from X to Y is interpreted as entailing X╨Y, or equivalently if the 

absence of a directed path from X to Y (in causal terms, X is not a cause of Y; 

equivalently, Y is not affected by X) is interpreted as entailing X╨Y|paX, the noncausal 

Markov condition (where paX is the set of parents of X). In that case, X→Y can be used 

in the graph even if X has no effect on Y, or vice-versa.  

As an example, suppose X and Y are never observed without them affecting selection 

S, as when X is affects miscarriage S and Y is congenital malformation. If the target 

population is births, X predicts malformations Y among births (which have S=1). As 

another example, suppose X and Y are never observed without an uncontrolled, 

ungraphed confounder U, as when X is diet and Y is health status. If one wishes to target 

those at high risk for screening or actuarial purposes it does not matter if X→Y 

represents a causally confounded relation. Lack of a directed path from X to Y now 

corresponds to lack of additional predictive value for Y from X given paX. Arrow 

directions in temporal (time-ordered) predictive graphs correspond to point priors about 

time order, just as they do in causal graphs.  

Of course, if misinterpreted as causal, predictive inferences from graphs (or any 

predictive modeling) may be potentially disastrous for judging interventions on X. But, in 

OHSS, the causality represented by a directed path in a so-called causal diagram rarely 
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where much background information is available) are not well represented by the 

dimensions constrained by the model, considerably efficiency can be lost for estimating 

parameters of interest. A striking example given by Whittemore and Keller (1986) 

displayed the poor small-sample performance for estimating a survival curve when using 

an unsmoothed nonparametric hazard estimator (Kaplan-Meier or Nelson-Altschuler 

estimation), relative to spline smoothing of the hazard. 

 

6   Pruning the Identified Portion of the Model 

Over recent decades, great strides have been made in creating predictive algorithms; the 

question remains however, what role should these algorithms play in causal inference? It 

would seem that these algorithms can be beneficially applied to fitting the marginal 

distribution identified by the observations. Nonetheless, the targets of causal inference in 

observational studies lie beyond the identified margin, and thus beyond the reach of these 

algorithms. At best, then, the algorithms can provide the identified foundation for 

building into unobserved dimensions of the phenomena under study.  

Even if we focus only on the identified margin, however, there may be far more nodes 

and edges than seem practical to allow in the final model. A prominent feature of modern 

predictive algorithms is that they start with an impractically large number of terms and 

then aggressively prune the model, and may re-grow and re-prune repeatedly (Hastie et 

al., 2009). These strategies coincide with the intuition that omitting a term is justified 

when its contribution is too small to stand out against bias and background noise; e.g., we 

do not include variables like patient identification number because we know that are 

usually pure noise.  

Nonetheless, automated algorithms often delete variables or connections that prior 

information instead suggests are relevant or related; thus shields from pruning are often 

warranted. Furthermore, a deleted node or arrow may indeed be important from a 

contextual perspective even if does not meet algorithmic retention criteria. Thus, model 

simplification strategies such as pruning may be justified by a need for dimensionality 

reduction, but should be recognized as part of algorithmic compression or computational 

prediction, not as a mode of inference about structural models.  

Apart from these vague cautions, it has long been recognized that if our goal is to 

evaluate causal effects, different loss functions are needed from those in the pruning 

algorithms commonly applied by researchers. Specifically, the loss or benefit entailed by 

pruning needs to be evaluated in reference to the target effect under study, and not simply 

successful prediction of identified quantities. Operationalizing this imperative requires 

building out into the nonidentified (latent) realm of the target effects, which is the focus 

of bias modeling. 

 

7   Modeling Latent Causal Structures (Bias Modeling)  

The target effects in causal inference are functions of unobserved dimensions of the data-

generating process, which consist primarily of bias sources (Greenland, 2005a). Once we 

recognize the nonidentification this structure entails, the major analysis task shifts away 
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from mathematical statistics to prior specification, because with nonidentification only 

proper priors on nonidentified parameters can lead to proper posteriors.  

Even the simplest point-exposure case can involve complexities that transform simple 

and precise-looking conventional results into complex and utterly ambiguous posteriors 

(Greenland, 2009a, 2009b). In a model complex enough to reflect Figure 2, there are far 

too many elements of specification to contextually justify them all in detail. For example, 

one could only rarely justify fewer than two free structural parameters per arrow, and the 

distributional form for each parameter prior would call for at least two hyperparameters 

per parameter (e.g., a mean and a variance), leading to at least 50 parameters and 100 

hyperparameters in a graph with 25 arrows. Allowing but one prior association parameter 

(e.g., a correlation) per parameter pair adds over 1,000 (50 choose 2) more 

hyperparameters.  

As a consequence of the exponential complexity of realistic models, prior specification 

is difficult, ugly, ad hoc, highly subjective, and tentative in the extreme. In addition, the 

hard-won model will lack generalizability and elegance, making it distasteful to both the 

applied scientist and the theoretical statistician. Nor will it please the applied statistician 

concerned with “data analysis,” for the analysis will instead revolve around numerous 

contextual judgments that enlist diverse external sources of information. In contrast to the 

experimental setting (in which the data-generation model may be dictated entirely by the 

design), the usually sharp distinction between prior and data information will be blurred 

by the dependence of the data-generation model on external information.  

These facts raise another challenge to the current “causal modeling” literature: If we 

know our observations are just a dim and distant projection of the causal structure and we 

can only identify predictive links among observed quantities, how can we incorporate 

simultaneously all error sources (systematic as well as random) known to be important 

into a complex longitudinal framework involving mismeasurement of entire sequences of 

exposures and confounders? Some progress on this front has been made, but primarily in 

contexts with validation data available (Cole et al., 2010), which is not the usual case.  

 

8   The Descriptive Alternative 

In the face of the extraordinary complexity of realistic models for OHSS, it should be an 

option of each study to focus on describing the study and its data thoroughly, sparing us 

attempts at inference about nonidentified quantities such as “causal effects.” This option 

will likely never be popular, but should be allowed and even encouraged (Greenland et 

al., 2004). After all, why should I care about your causal inferences, especially if they are 

based on or grossly over-weighted by the one or few studies that you happened to be 

involved in? If I am interested in forming my own inferences, I do want to see your data 

and get an accurate narrative of the physical processes that produced them. In this regard, 

statistics may supply data summaries. Nonetheless, it must be made clear exactly how the 

statistics offered reflect the data as opposed to some hypothesis about the population 

from which they came; P-values do not satisfy this requirement (Greenland, 1993; Poole, 

2001). 
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Here then is a final challenge to the “causal modeling” literature: If we know our 

observations are just a dim and distant projection of the causal structure and we can only 

identify associations among observed quantities, how can we interpret the outputs of 

“structural modeling” (such as confidence limits for ostensibly causal estimands which 

are not in fact identified) as data summaries? We should want to see answers that are 

sensible when the targets are effects in a context at least as complex as in fig. 2. 

 

9   What is a Causal Diagram? 

The above considerations call into question some epidemiological accounts of causal 

diagrams. Pearl (2000) describes a causal model M as a formal functional system giving 

relations among a set of variables. M defines a joint probability distribution p() and an 

intervention operator do[] on the variables. A causal diagram is then a directed graph G 

that implies the usual Markov decomposition for p() and displays additional properties 

relating p() and do[]. In particular, each child-parent family {X, paX} in G satisfies  

1) p(x|do[paX=a]) = p(x|paX=a), and 

2) if Z is not in {X, paX}, p(x|do[Z=z],paX=a) = p(x|paX=a).  

(e.g., see Pearl, 2000, p. 24). These properties stake out G as an illustration (mapping) 

of structure within M.  

Condition 1 is often described as stating that the association of each node X with its 

parent vector paX is unconfounded given M. Condition 2 says that, given M, the only 

variables in G that affect a node X are its parents, and is often called the causal Markov 

condition (CMC). Nonetheless, as seems to happen often as time passes and methods 

become widely adopted, details have gotten lost. In the more applied literature, causal 

diagrams have come to be described as “unconfounded graphs” without reference to an 

underlying causal model (e.g., Hernán et al., 2004; VanderWeele and Robins, 2007; 

Glymour and Greenland, 2008). This description not only misses the CMC (2) but, taken 

literally, means that all shared causes are in the graph. 

Condition 1 is a property relating two mathematical objects, G and M. To claim a 

diagram is unconfounded is to instead make a claim about the relation of G the real 

world, thus inviting confusion between a model for causal processes and the actual 

processes. For many experts in OHSS, the claim of unconfoundedness has zero 

probability of being correct because of its highly restrictive empirical content (e.g., see 

Robins and Wasserman, 1999ab). At best, we can only hope that the diagram provides a 

useful computing aid for predicting the outcomes of intervention strategies.  

As with regression models, causal models in OHSS are always false. Because we can 

never know we have a correct model (and in fact in OHSS we can’t even know if we are 

very close), to say G is causal if unconfounded is a scientifically vacuous definition: It is 

saying the graph is causal if the causal model it represents is correct. This is akin to 

saying a monotone increasing function from the range of X to [0,1] is not a probability 

distribution if it is not in fact how X is distributed; thus a normal(µ,σ2
) cumulative 

function wouldn’t be a probability distribution unless it is the actual probability 

distribution for X (whether that distribution is an objective event generator or a subjective 

betting schedule).  
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So, to repeat: To describe  a causal diagram as an “unconfounded graph” blurs the 

distinction between models and reality. Model-based deductions are logical conditionals 

of the form “model M deductively yields these conclusions,” and have complete certainty 

given the model M. But the model, and hence reality, is never known with certainty, and 

in OHSS cannot be claimed as known except in the most crude fashion. The point is 

brought home above by appreciating just how unrealistic all causal models and diagrams 

in OHSS must be. Thus I would encourage the description of causal diagrams as 

graphical causal models (or more precisely, graphical representations of certain 

equivalence classes of causal models), rather than as “unconfounded graphs” (or similar 

phrases). This usage might even be acceptable to some critics of the current causal-

modeling literature (Dawid, 2008). 

 

10   Summary and Conclusions 

I would be among the last to deny the utility of causal diagrams; but I argue that their 

practical utility in OHSS is limited to (i) compact and visually immediate representation 

of assumptions, and (ii) illustration of sources of nonidentification and bias given realistic 

assumptions. Converse claims about their utility for identification seem only the latest in 

a long line of promises to “solve” the problem of causal inference. These promises are 

akin to claims of preventing and curing all cancers; while progress is possible, the 

enormous complexity of real systems should leave us skeptical about claims of 

“solutions” to the real problem.  

Many authors have recognized that the problem of effect identification is unsolvable in 

principle. Although this logical impossibility led some to deny the scientific merit of 

causal thinking, it has not prevented development of useful tools that have causal-

modeling components. Nonetheless, the most precision we can realistically hope for 

estimating effects in OHSS is about one-digit accuracy, and in many problems even that 

seems too optimistic. Thus some practical sense is needed to determine what is and isn’t 

important to include as model components. Yet, despite the crudeness of OHSS, good 

sense seems to lead almost inevitably to including more components than can be 

identified by available data.  

My main point is that effect identification (in the frequentist sense of identification by 

the observed data) should be abandoned as a primary goal in causal modeling in OHSS. 

My reasons are practical: Identification will often demand dropping too much of 

importance from the model, thus imposing null hypotheses that have no justification in 

either past frequency observations or in priors about mechanisms generating the 

observations, thus leading to overconfident and biased inferences. In particular, defining 

a graph as “causal” if it is unconfounded assumes a possibly large set of causal null 

hypotheses (at least two for every pair of nodes in the graph: no shared causes or 

conditioned descendants not in the graph). In OHSS, the only graphs that satisfy such a 

definition will need many latent nodes to be “causal” in this sense, and as a consequence 

will reveal the nonidentified nature of target effects. Inference may then proceed by 

imposing contextually defensible priors or penalties (Greenland, 2005a, 2009a, 2009b, 

2010). 
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Despite my view and similar ones (e.g., Gustafson, 2005), I suspect the bulk of causal-

inference statistics will trundle on relying exclusively on artificially identified models. It 

will thus be particularly important to remember that just because a method is labeled a 

“causal modeling” method does not mean it gives us estimates and tests of actual causal 

effects. For those who find identification too hard to abandon in formal analysis, the only 

honest recourse is to separate identified and nonidentified components of the model, 

focus technique on the identified portion, and leave the latent residual as a topic for 

sensitivity analysis, speculative modeling, and further study. In this task, graphs can be 

used without the burden of causality if we allow them a role as pure prediction tools, and 

they can also be used as causal diagrams of the largely latent structure that generates the 

data. 

 

Acknowledgments: I am most grateful to Tyler VanderWeele, Jay Kaufman, and 
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Actual Causation and the Art of Modeling

Joseph Y. Halpern and Christopher Hitchcock

1 Introduction

In The Graduate, Benjamin Braddock (Dustin Hoffman) is told that the future can
be summed up in one word: “Plastics”. One of us (Halpern) recalls that in roughly
1990, Judea Pearl told him that the future was in causality. Pearl’s own research
was largely focused on causality in the years after that; his seminal contributions
are widely known. We were among the many influenced by his work. We discuss one
aspect of it, actual causation, in this article, although a number of our comments
apply to causal modeling more generally.

Pearl introduced a novel account of actual causation in Chapter 10 of Causality,
which was later revised in collaboration with one of us [Halpern and Pearl 2005].
In some ways, Pearl’s approach to actual causation can be seen as a contribution to
the philosophical project of trying to analyze actual causation in terms of counter-
factuals, a project associated most strongly with David Lewis [1973a]. But Pearl’s
account was novel in at least two important ways. The first was his use of struc-
tural equations as a tool for modeling causality. In the philosophical literature,
causal structures were often represented using so-called neuron diagrams, but these
are not (and were never intended to be) all-purpose representational tools. (See
[Hitchcock 2007b] for a detailed discussion of the limitations of neuron diagrams.)
We believe that the lack of a more adequate representational tool had been a se-
rious obstacle to progress. Second, while the philosophical literature on causality
has focused almost exclusively on actual causality, for Pearl, actual causation was
a rather specialized topic within the study of causation, peripheral to many issues
involving causal reasoning and inference. Thus, Pearl’s work placed the study of
actual causation within a much broader context.

The use of structural equations as a model for causal relationships was well
known long before Pearl came on the scene; it seems to go back to the work of
Sewall Wright in the 1920s (see [Goldberger 1972] for a discussion). However, the
details of the framework that have proved so influential are due to Pearl. Besides
the Halpern-Pearl approach mentioned above, there have been a number of other
closely-related approaches for using structural equations to model actual causation;
see, for example, [Glymour and Wimberly 2007; Hall 2007; Hitchcock 2001; Hitch-
cock 2007a; Woodward 2003]. The goal of this paper is to look more carefully at
the modeling of causality using structural equations. For definiteness, we use the
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Halpern-Pearl (HP) version [Halpern and Pearl 2005] here, but our comments apply
equally well to the other variants.

It is clear that the structural equations can have a major impact on the conclu-
sions we draw about causality—it is the equations that allow us to conclude that
lower air pressure is the cause of the lower barometer reading, and not the other
way around; increasing the barometer reading will not result in higher air pressure.
The structural equations express the effects of interventions: what happens to the
bottle if it is hit with a hammer; what happens to a patient if she is treated with
a high dose of the drug, and so on. These effects are, in principle, objective; the
structural equations can be viewed as describing objective features of the world.
However, as pointed out by Halpern and Pearl [2005] and reiterated by others [Hall
2007; Hitchcock 2001; Hitchcock 2007a], the choice of variables and their values can
also have a significant impact on causality. Moreover, these choices are, to some
extent, subjective. This, in turn, means that judgments of actual causation are
subjective.

Our view of actual causation being at least partly subjective stands in contrast to
the prevailing view in the philosophy literature, where the assumption is that the job
of the philosopher is to analyze the (objective) notion of causation, rather like that
of a chemist analyzing the structure of a molecule. This may stem, at least in part,
from failing to appreciate one of Pearl’s lessons: actual causality is only part of the
bigger picture of causality. There can be an element of subjectivity in ascriptions
of actual causality without causation itself being completely subjective. In any
case, the experimental evidence certainly suggests that people’s views of causality
are subjective, even when there is no disagreement about the relevant structural
equations. For example, a number of experiments show that broadly normative
considerations, including the subject’s own moral beliefs, affect causal judgment.
(See, for example, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-
Armstrong 2008; Hitchcock and Knobe 2009; Knobe and Fraser 2008].) Even in
relatively non-controversial cases, people may want to focus on different aspects
of a problem, and thus give different answers to questions about causality. For
example, suppose that we ask for the cause of a serious traffic accident. A traffic
engineer might say that the bad road design was the cause; an educator might
focus on poor driver’s education; a sociologist might point to the pub near the
highway where the driver got drunk; a psychologist might say that the cause is the
driver’s recent breakup with his girlfriend.1 Each of these answers is reasonable.
By appropriately choosing the variables, the structural equations framework can
accommodate them all.

Note that we said above “by appropriately choosing the variables”. An obvious
question is “What counts as an appropriate choice?”. More generally, what makes
a model an appropriate model? While we do want to allow for subjectivity, we need

1This is a variant of an example originally due to Hanson [1958].
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to be able to justify the modeling choices made. A lawyer in court trying to argue
that faulty brakes were the cause of the accident needs to be able to justify his
model; similarly, his opponent will need to understand what counts as a legitimate
attack on the model. In this paper we discuss what we believe are reasonable bases
for such justifications. Issues such as model stability and interactions between the
events corresponding to variables turn out to be important.

Another focus of the paper is the use of defaults in causal reasoning. As we hinted
above, the basic structural equations model does not seem to suffice to completely
capture all aspects of causal reasoning. To explain why, we need to briefly outline
how actual causality is defined in the structural equations framework. Like many
other definitions of causality (see, for example, [Hume 1739; Lewis 1973b]), the HP
definition is based on counterfactual dependence. Roughly speaking, A is a cause of
B if, had A not happened (this is the counterfactual condition, since A did in fact
happen) then B would not have happened. As is well known, this naive definition
does not capture all the subtleties involved with causality. Consider the following
example (due to Hall [2004]): Suzy and Billy both pick up rocks and throw them at
a bottle. Suzy’s rock gets there first, shattering the bottle. Since both throws are
perfectly accurate, Billy’s would have shattered the bottle had Suzy not thrown.
Thus, according to the naive counterfactual definition, Suzy’s throw is not a cause
of the bottle shattering. This certainly seems counterintuitive.

The HP definition deals with this problem by taking A to be a cause of B if B
counterfactually depends on A under some contingency. For example, Suzy’s throw
is the cause of the bottle shattering because the bottle shattering counterfactually
depends on Suzy’s throw, under the contingency that Billy doesn’t throw. (As we
will see below, there are further subtleties in the definition that guarantee that, if
things are modeled appropriately, Billy’s throw is not also a cause.)

While the definition of actual causation in terms of structural equations has been
successful at dealing with many of the problems of causality, examples of Hall [2007],
Hiddleston [2005], and Hitchcock [2007a] show that it gives inappropriate answers in
cases that have structural equations isomorphic to ones where it arguably gives the
appropriate answer. This means that, no matter how we define actual causality in
the structural-equations framework, the definition must involve more than just the
structural equations. Recently, Hall [2007], Halpern [2008], and Hitchcock [2007a]
have suggested that using defaults might be a way of dealing with the problem.
As the psychologists Kahneman and Miller [1986, p. 143] observe, “an event is
more likely to be undone by altering exceptional than routine aspects of the causal
chain that led to it”. This intuition is also present in the legal literature. Hart and
Honoré [1985] observe that the statement “It was the presence of oxygen that caused
the fire” makes sense only if there were reasons to view the presence of oxygen as
abnormal.

As shown by Halpern [2008], we can model this intuition formally by combining a
well-known approach to modeling defaults and normality, due to Kraus, Lehmann,
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and Magidor [1990] with the structural-equation model. Moreover, doing this leads
to a straightforward solution to the problem above. The idea is that, when showing
that if A hadn’t happened then B would not have happened, we consider only
contingencies that are at least as normal as the actual world. For example, if
someone typically leaves work at 5:30 PM and arrives home at 6, but, due to
unusually bad traffic, arrives home at 6:10, the bad traffic is typically viewed as the
cause of his being late, not the fact that he left at 5:30 (rather than 5:20).

But once we add defaults to the model, the problem of justifying the model be-
comes even more acute. We not only have to justify the structural equations and the
choice of variables, but also the default theory. The problem is exacerbated by the
fact that default and “normality” have a number of interpretations. Among other
things, they can represent moral obligations, societal conventions, prototypicality
information, and statistical information. All of these interpretations are relevant to
understanding causality; this makes justifying default choices somewhat subtle.

The rest of this paper is organized as follows. In Sections 2 and 3, we review the
notion of causal model and the HP definition of actual cause; most of this material is
taken from [Halpern and Pearl 2005]. In Section 4, we discuss some issues involved
in the choice of variables in a model. In Section 5, we review the approach of
[Halpern 2008] for adding considerations of normality to the HP framework, and
discuss some modeling issues that arise when we do so. We conclude in Section 6.

2 Causal Models

In this section, we briefly review the HP definition of causality. The description of
causal models given here is taken from [Halpern 2008], which in turn is based on
that of [Halpern and Pearl 2005].

The HP approach assumes that the world is described in terms of random vari-
ables and their values. For example, if we are trying to determine whether a forest
fire was caused by lightning or an arsonist, we can take the world to be described
by three random variables:

• F for forest fire, where F = 1 if there is a forest fire and F = 0 otherwise;

• L for lightning, where L = 1 if lightning occurred and L = 0 otherwise;

• ML for match (dropped by arsonist), where ML = 1 if the arsonist drops a lit
match, and ML = 0 otherwise.

Some random variables may have a causal influence on others. This influence
is modeled by a set of structural equations. For example, to model the fact that
if either a match is lit or lightning strikes, then a fire starts, we could use the
random variables ML, F , and L as above, with the equation F = max(L,ML).
(Alternately, if a fire requires both causes to be present, the equation for F becomes
F = min(L,ML).) The equality sign in this equation should be thought of more like
an assignment statement in programming languages; once we set the values of F
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and L, then the value of F is set to their maximum. However, despite the equality,
if a forest fire starts some other way, that does not force the value of either ML or
L to be 1.

It is conceptually useful to split the random variables into two sets: the exoge-
nous variables, whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by the exogenous
variables. For example, in the forest-fire example, the variables ML, L, and F are
endogenous. However, we want to take as given that there is enough oxygen for
the fire and that the wood is sufficiently dry to burn. In addition, we do not want
to concern ourselves with the factors that make the arsonist drop the match or the
factors that cause lightning. These factors are all determined by the exogenous
variables.

Formally, a causal model M is a pair (S,F), where S is a signature, which explic-
itly lists the endogenous and exogenous variables and characterizes their possible
values, and F defines a set of modifiable structural equations, relating the values
of the variables. A signature S is a tuple (U ,V,R), where U is a set of exogenous
variables, V is a set of endogenous variables, and R associates with every variable
Y ∈ U ∪ V a nonempty set R(Y ) of possible values for Y (that is, the set of values
over which Y ranges). F associates with each endogenous variable X ∈ V a func-
tion denoted FX such that FX : (×U∈UR(U))× (×Y ∈V−{X}R(Y )) → R(X). This
mathematical notation just makes precise the fact that FX determines the value
of X, given the values of all the other variables in U ∪ V. If there is one exoge-
nous variable U and three endogenous variables, X, Y , and Z, then FX defines the
values of X in terms of the values of Y , Z, and U . For example, we might have
FX(u, y, z) = u + y, which is usually written as X ← U + Y .2 Thus, if Y = 3 and
U = 2, then X = 5, regardless of how Z is set.

In the running forest-fire example, suppose that we have an exogenous random
variable U that determines the values of L and ML. Thus, U has four possible values
of the form (i, j), where both of i and j are either 0 or 1. The i value determines
the value of L and the j value determines the value of ML. Although FL gets as
arguments the vale of U , ML, and F , in fact, it depends only on the (first component
of) the value of U ; that is, FL((i, j),m, f) = i. Similarly, FML((i, j), l, f) = j. The
value of F depends only on the value of L and ML. How it depends on them depends
on whether either cause by itself is sufficient for the forest fire or whether both are
necessary. If either one suffices, then FF ((i, j), l,m) = max(l,m), or, perhaps more
comprehensibly, F = max(L,ML); if both are needed, then F = min(L,ML). For
future reference, call the former model the disjunctive model, and the latter the
conjunctive model.

The key role of the structural equations is to define what happens in the presence
of external interventions. For example, we can explain what happens if the arsonist

2The fact that X is assigned U + Y (i.e., the value of X is the sum of the values of U and Y )

does not imply that Y is assigned X −U ; that is, FY (U, X, Z) = X −U does not necessarily hold.
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does not drop the match. In the disjunctive model, there is a forest fire exactly
if there is lightning; in the conjunctive model, there is definitely no fire. Setting
the value of some variable X to x in a causal model M = (S,F) results in a new
causal model denoted MX←x. In the new causal model, the equation for X is very
simple: X is just set to x; the remaining equations are unchanged. More formally,
MX←x = (S,FX←x), where FX←x is the result of replacing the equation for X in
F by X = x.

The structural equations describe objective information about the results of in-
terventions, that can, in principle, be checked. Once the modeler has selected a set
of variables to include in the model, the world determines which equations among
those variables correctly represent the effects of interventions.3 By contrast, the
choice of variables is subjective; in general, there need be no objectively “right” set
of exogenous and endogenous variables to use in modeling a problem. We return to
this issue in Section 4.

It may seem somewhat circular to use causal models, which clearly already encode
causal information, to define actual causation. Nevertheless, as we shall see, there
is no circularity. The equations of a causal model do not represent relations of
actual causation, the very concept that we are using them to define. Rather, the
equations characterize the results of all possible interventions (or at any rate, all
of the interventions that can be represented in the model) without regard to what
actually happened. Specifically, the equations do not depend upon the actual values
realized by the variables. For example, the equation F = max(L,ML), by itself,
does not say anything about whether the forest fire was actually caused by lightning
or by an arsonist, or, for that matter, whether a fire even occurred. By contrast,
relations of actual causation depend crucially on how things actually play out.

A sequence of endogenous X1, . . . , Xn of is a directed path from X1 to Xn if the
value of Xi+1 (as given by FXi+1) depends on the value of Xi, for 1 = 1, . . . , n− 1.
In this paper, following HP, we restrict our discussion to acyclic causal models,
where causal influence can be represented by an acyclic Bayesian network. That is,
there is no cycle X1, . . . , Xn, X1 of endogenous variables that forms a directed path
from X1 to itself. If M is an acyclic causal model, then given a context, that is,
a setting ~u for the exogenous variables in U , there is a unique solution for all the
equations.

3In general, there may be uncertainty about the causal model, as well as about the true setting

of the exogenous variables in a causal model. Thus, we may be uncertain about whether smoking

causes cancer (this represents uncertainty about the causal model) and uncertain about whether

a particular patient actually smoked (this is uncertainty about the value of the exogenous variable

that determines whether the patient smokes). This uncertainty can be described by putting a

probability on causal models and on the values of the exogenous variables. We can then talk

about the probability that A is a cause of B.
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3 The HP Definition of Actual Cause

3.1 A language for describing causes

Given a signature S = (U ,V,R), a primitive event is a formula of the form X =
x, for X ∈ V and x ∈ R(X). A causal formula (over S) is one of the form
[Y1 ← y1, . . . , Yk ← yk]φ, where φ is a Boolean combination of primitive events,
Y1, . . . , Yk are distinct variables in V, and yi ∈ R(Yi). Such a formula is abbreviated
as [~Y ← ~y]φ. The special case where k = 0 is abbreviated as φ. Intuitively,
[Y1 ← y1, . . . , Yk ← yk]φ says that φ would hold if Yi were set to yi, for i = 1, . . . , k.

A causal formula ψ is true or false in a causal model, given a context. As usual,
we write (M,~u) |= ψ if the causal formula ψ is true in causal model M given context
~u. The |= relation is defined inductively. (M,~u) |= X = x if the variable X has
value x in the unique (since we are dealing with acyclic models) solution to the
equations in M in context ~u (that is, the unique vector of values for the endogenous
variables that simultaneously satisfies all equations in M with the variables in U
set to ~u). The truth of conjunctions and negations is defined in the standard way.
Finally, (M,~u) |= [~Y ← ~y]φ if (M~Y←~y, ~u) |= φ. We write M |= φ if (M,~u) |= φ for
all contexts ~u.

For example, if M is the disjunctive causal model for the forest fire, and u is
the context where there is lightning and the arsonist drops the lit match, then
(M,u) |= [ML← 0](F = 1), since even if the arsonist is somehow prevented from
dropping the match, the forest burns (thanks to the lightning); similarly, (M,u) |=
[L ← 0](F = 1). However, (M,u) |= [L ← 0; ML ← 0](F = 0): if the arsonist does
not drop the lit match and the lightning does not strike, then the forest does not
burn.

3.2 A preliminary definition of causality

The HP definition of causality, like many others, is based on counterfactuals. The
idea is that if A and B both occur, then A is a cause of B if, if A hadn’t occurred,
then B would not have occurred. This idea goes back to at least Hume [1748,
Section VIII], who said:

We may define a cause to be an object followed by another, . . . , where,
if the first object had not been, the second never had existed.

This is essentially the but-for test, perhaps the most widely used test of actual
causation in tort adjudication. The but-for test states that an act is a cause of
injury if and only if, but for the act (i.e., had the the act not occurred), the injury
would not have occurred.

There are two well-known problems with this definition. The first can be seen
by considering the disjunctive causal model for the forest fire again. Suppose that
the arsonist drops a match and lightning strikes. Which is the cause? According
to a naive interpretation of the counterfactual definition, neither is. If the match
hadn’t dropped, then the lightning would still have struck, so there would have been
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a forest fire anyway. Similarly, if the lightning had not occurred, there still would
have been a forest fire. As we shall see, the HP definition declares both lightning
and the arsonist causes of the fire. (In general, there may be more than one actual
cause of an outcome.)

A more subtle problem is what philosophers have called preemption, which is
illustrated by the rock-throwing example from the introduction. As we observed,
according to a naive counterfactual definition of causality, Suzy’s throw would not
be a cause.

The HP definition deals with the first problem by defining causality as coun-
terfactual dependency under certain contingencies. In the forest-fire example, the
forest fire does counterfactually depend on the lightning under the contingency that
the arsonist does not drop the match; similarly, the forest fire depends counterfac-
tually on the dropping of the match under the contingency that the lightning does
not strike.

Unfortunately, we cannot use this simple solution to treat the case of preemp-
tion. We do not want to make Billy’s throw the cause of the bottle shattering by
considering the contingency that Suzy does not throw. So if our account is to yield
the correct verdict in this case, it will be necessary to limit the contingencies that
can be considered. The reason that we consider Suzy’s throw to be the cause and
Billy’s throw not to be the cause is that Suzy’s rock hit the bottle, while Billy’s did
not. Somehow the definition of actual cause must capture this obvious intuition.

With this background, we now give the preliminary version of the HP definition
of causality. Although the definition is labeled “preliminary”, it is quite close to
the final definition, which is given in Section 5. The definition is relative to a causal
model (and a context); A may be a cause of B in one causal model but not in
another. The definition consists of three clauses. The first and third are quite
simple; all the work is going on in the second clause.

The types of events that the HP definition allows as actual causes are ones of
the form X1 = x1 ∧ . . .∧Xk = xk—that is, conjunctions of primitive events; this is
often abbreviated as ~X = ~x. The events that can be caused are arbitrary Boolean
combinations of primitive events. The definition does not allow statements of the
form “A or A′ is a cause of B”, although this could be treated as being equivalent
to “either A is a cause of B or A′ is a cause of B”. On the other hand, statements
such as “A is a cause of B or B′” are allowed; this is not equivalent to “either A is
a cause of B or A is a cause of B′”.

DEFINITION 1. (Actual cause; preliminary version) [Halpern and Pearl 2005] ~X =
~x is an actual cause of φ in (M,~u) if the following three conditions hold:

AC1. (M,~u) |= ( ~X = ~x) and (M,~u) |= φ.

AC2. There is a partition of V (the set of endogenous variables) into two subsets
~Z and ~W with ~X ⊆ ~Z, and a setting ~x′ and ~w of the variables in ~X and ~W ,
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respectively, such that if (M,~u) |= Z = z∗ for all Z ∈ ~Z, then both of the
following conditions hold:

(a) (M,~u) |= [ ~X ← ~x′, ~W ← ~w]¬φ.

(b) (M,~u) |= [ ~X ← ~x, ~W ′ ← ~w, ~Z ′ ← ~z∗]φ for all subsets ~W ′ of ~W and all
subsets ~Z ′ of ~Z, where we abuse notation and write ~W ′ ← ~w to denote
the assignment where the variables in ~W ′ get the same values as they
would in the assignment ~W ← ~w.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and AC2.

AC1 just says that ~X = ~x cannot be considered a cause of φ unless both ~X = ~x

and φ actually happen. AC3 is a minimality condition, which ensures that only
those elements of the conjunction ~X = ~x that are essential for changing φ in AC2(a)
are considered part of a cause; inessential elements are pruned. Without AC3, if
dropping a lit match qualified as a cause of the forest fire, then dropping a match
and sneezing would also pass the tests of AC1 and AC2. AC3 serves here to strip
“sneezing” and other irrelevant, over-specific details from the cause. Clearly, all the
“action” in the definition occurs in AC2. We can think of the variables in ~Z as
making up the “causal path” from ~X to φ, consisting of one or more directed paths
from variables in ~X to variables in φ. Intuitively, changing the value(s) of some
variable(s) in ~X results in changing the value(s) of some variable(s) in ~Z, which
results in the value(s) of some other variable(s) in ~Z being changed, which finally
results in the truth value of φ changing. The remaining endogenous variables, the
ones in ~W , are off to the side, so to speak, but may still have an indirect effect
on what happens. AC2(a) is essentially the standard counterfactual definition of
causality, but with a twist. If we want to show that ~X = ~x is a cause of φ, we
must show (in part) that if ~X had a different value, then φ would have been false.
However, this effect of the value of ~X on the truth value of φ may not hold in
the actual context; the value of ~W may have to be different to allow this effect
to manifest itself. For example, consider the context where both the lightning
strikes and the arsonist drops a match in the disjunctive model of the forest fire.
Stopping the arsonist from dropping the match will not prevent the forest fire.
The counterfactual effect of the arsonist on the forest fire manifests itself only in a
situation where the lightning does not strike (i.e., where L is set to 0). AC2(a) is
what allows us to call both the lightning and the arsonist causes of the forest fire.
Essentially, it ensures that ~X alone suffices to bring about the change from φ to ¬φ;
setting ~W to ~w merely eliminates possibly spurious side effects that may mask the
effect of changing the value of ~X. Moreover, when ~X = ~x, although the values of
variables on the causal path (i.e., the variables ~Z) may be perturbed by the change
to ~W , this perturbation has no impact on the value of φ. If (M,~u) |= ~Z = ~z∗, then
z∗ is the value of the variable Z in the context ~u. We capture the fact that the
perturbation has no impact on the value of φ by saying that if some variables Z on
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the causal path were set to their original values in the context ~u, φ would still be
true, as long as ~X = ~x.

EXAMPLE 2. For the forest-fire example, let M be the disjunctive model for the
forest fire sketched earlier, with endogenous variables L, ML, and F . We want to
show that L = 1 is an actual cause of F = 1. Clearly (M, (1, 1)) |= F = 1 and
(M, (1, 1)) |= L = 1; in the context (1,1), the lightning strikes and the forest burns
down. Thus, AC1 is satisfied. AC3 is trivially satisfied, since ~X consists of only one
element, L, so must be minimal. For AC2, take ~Z = {L,F} and take ~W = {ML},
let x′ = 0, and let w = 0. Clearly, (M, (1, 1)) |= [L ← 0,ML ← 0](F 6= 1); if the
lightning does not strike and the match is not dropped, the forest does not burn
down, so AC2(a) is satisfied. To see the effect of the lightning, we must consider the
contingency where the match is not dropped; the definition allows us to do that by
setting ML to 0. (Note that here setting L and ML to 0 overrides the effects of U ;
this is critical.) Moreover, (M, (1, 1)) |= [L ← 1,ML ← 0](F = 1); if the lightning
strikes, then the forest burns down even if the lit match is not dropped, so AC2(b)
is satisfied. (Note that since ~Z = {L,F}, the only subsets of ~Z − ~X are the empty
set and the singleton set consisting of just F .)

It is also straightforward to show that the lightning and the dropped match are
also causes of the forest fire in the context where U = (1, 1) in the conjunctive
model. Again, AC1 and AC3 are trivially satisfied and, again, to show that AC2
holds in the case of lightning we can take ~Z = {L,F}, ~W = {ML}, and x′ = 0, but
now we let w = 1. In the conjunctive scenario, if there is no lightning, there is no
forest fire, while if there is lightning (and the match is dropped) there is a forest
fire, so AC2(a) and AC2(b) are satisfied; similarly for the dropped match.

EXAMPLE 3. Now consider the Suzy-Billy example.4 We get the desired result—
that Suzy’s throw is a cause, but Billy’s is not—but only if we model the story
appropriately. Consider first a coarse causal model, with three endogenous variables:

• ST for “Suzy throws”, with values 0 (Suzy does not throw) and 1 (she does);

• BT for “Billy throws”, with values 0 (he doesn’t) and 1 (he does);

• BS for “bottle shatters”, with values 0 (it doesn’t shatter) and 1 (it does).

(We omit the exogenous variable here; it determines whether Billy and Suzy throw.)
Take the formula for BS to be such that the bottle shatters if either Billy or Suzy
throw; that is BS = max(BT ,ST ). (We assume that Suzy and Billy will not
miss if they throw.) BT and ST play symmetric roles in this model; there is
nothing to distinguish them. Not surprisingly, both Billy’s throw and Suzy’s throw
are classified as causes of the bottle shattering in this model. The argument is
essentially identical to that in the disjunctive model of the forest-fire example in

4The discussion of this example is taken almost verbatim from HP.
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the context U = (1, 1), where both the lightning and the dropped match are causes
of the fire.

The trouble with this model is that it cannot distinguish the case where both
rocks hit the bottle simultaneously (in which case it would be reasonable to say
that both ST = 1 and BT = 1 are causes of BS = 1) from the case where Suzy’s
rock hits first. To allow the model to express this distinction, we add two new
variables to the model:

• BH for “Billy’s rock hits the (intact) bottle”, with values 0 (it doesn’t) and
1 (it does); and

• SH for “Suzy’s rock hits the bottle”, again with values 0 and 1.

Now our equations will include:

• SH = ST ;

• BH = min(BT , 1− SH ); and

• BS = max(SH ,BH ).

Now it is the case that, in the context where both Billy and Suzy throw, ST = 1
is a cause of BS = 1, but BT = 1 is not. To see that ST = 1 is a cause, note
that, as usual, it is immediate that AC1 and AC3 hold. For AC2, choose ~Z =
{ST ,SH ,BH ,BS}, ~W = {BT}, and w = 0. When BT is set to 0, BS tracks ST :
if Suzy throws, the bottle shatters and if she doesn’t throw, the bottle does not
shatter. To see that BT = 1 is not a cause of BS = 1, we must check that there
is no partition ~Z ∪ ~W of the endogenous variables that satisfies AC2. Attempting
the symmetric choice with ~Z = {BT ,BH ,SH ,BS}, ~W = {ST}, and w = 0 violates
AC2(b). To see this, take ~Z ′ = {BH }. In the context where Suzy and Billy both
throw, BH = 0. If BH is set to 0, the bottle does not shatter if Billy throws
and Suzy does not. It is precisely because, in this context, Suzy’s throw hits the
bottle and Billy’s does not that we declare Suzy’s throw to be the cause of the
bottle shattering. AC2(b) captures that intuition by allowing us to consider the
contingency where BH = 0, despite the fact that Billy throws. We leave it to the
reader to check that no other partition of the endogenous variables satisfies AC2
either.

This example emphasizes an important moral. If we want to argue in a case of
preemption that X = x is the cause of φ rather than Y = y, then there must be
a random variable (BH in this case) that takes on different values depending on
whether X = x or Y = y is the actual cause. If the model does not contain such
a variable, then it will not be possible to determine which one is in fact the cause.
This is certainly consistent with intuition and the way we present evidence. If we
want to argue (say, in a court of law) that it was A’s shot that killed C rather than
B’s, then we present evidence such as the bullet entering C from the left side (rather
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than the right side, which is how it would have entered had B’s shot been the lethal
one). The side from which the shot entered is the relevant random variable in this
case. Note that the random variable may involve temporal evidence (if Y ’s shot
had been the lethal one, the death would have occurred a few seconds later), but it
certainly does not have to.

4 The Choice of Variables

A modeler has considerable leeway in choosing which variables to include in a model.
Nature does not provide a uniquely correct set of variables. Nonetheless, there are a
number of considerations that guide variable selection. While these will not usually
suffice to single out one choice of variables, they can provide a framework for the
rational evaluation of models, including resources for motivating and defending
certain choices of variables, and criticizing others.

The problem of choosing a set of variables for inclusion in a model has many
dimensions. One set of issues concerns the question of how many variables to
include in a model. If the modeler begins with a set of variables, how can she know
whether she should add additional variables to the model? Given that it is always
possible to add additional variables, is there a point at which the model contains
“enough” variables? Is it ever possible for a model to have “too many” variables?
Can the addition of further variables ever do positive harm to a model?

Another set of issues concerns the values of variables. Say that variable X ′ is a
refinement of X if, for each value x in the range of X, there is some subset S of
the range of X ′ such that X = x just in case X ′ is in S. When is it appropriate or
desirable to replace a variable with a refinement? Can it ever lead to problems if a
variable is too fine-grained? Similarly, are there considerations that would lead us
to prefer a model that replaced X with a new variable X ′′, whose range is a proper
subset or superset of the range of X?

Finally, are there constraints on the set of variables in a model over and above
those we might impose on individual variables? For instance, can the choice to
include a particular variable X within a model require us to include another variable
Y , or to exclude a particular variable Z?

While we cannot provide complete answers to all of these questions, we believe
a good deal can be said to reduce the arbitrariness of the choice of variables. The
most plausible way to motivate guidelines for the selection of variables is to show
how inappropriate choices give rise to systems of equations that are inaccurate, mis-
leading, or incomplete in their predictions of observations and interventions. In the
next three subsections, we present several examples to show how such considerations
can be brought to bear on the problem of variable choice.

4.1 The Number of Variables

We already saw in Example 3 that it is important to choose the variables correctly.
Adding more variables can clearly affect whether A is a cause of B. When is it
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appropriate or necessary to add further variables to a model?5 Suppose that we
have an infinite sequence of models M1,M2, . . . such that the variables in M i are
X0, . . . , Xi+1, Y , and M i+1

Xi+1←1 = Mi (so that M i+1 can be viewed as an extension
of M i). Is it possible that whether X0 = 1 is a cause of Y = 1 can alternate as we go
through this sequence? This would indicate a certain “instability” in the causality.
In this circumstance, a lawyer should certainly be able to argue against using, say,
M7 as a model to show that X0 = 1 is cause of Y = 1. On the other hand, if the
sequence stabilizes, that is, if there is some k such that for all i ≥ k,M i delivers the
same verdict on some causal claim of interest, that would provide a strong reason
to accept Mk as sufficient.

Compare Example 2 with Example 3. In Example 2, we were able to adequately
model the scenario using only three endogenous variables: L, ML, and F . By
contrast, in Example 3, the model containing only three endogenous variables, BT ,
ST , and BS , was inadequate. What is the difference between the two scenarios?
One difference we have already mentioned is that there seems to be an important
feature of the second scenario that cannot be captured in the three-variable model:
Suzy’s rock hit the bottle before Billy’s did. There is also a significant “topological”
difference between the two scenarios. In the forest-fire example, there are two
directed paths into the variable F . We could interpolate additional variables along
these two paths. We could, for instance, interpolate a variable representing the
occurrence of a small brush fire. But doing so would not fundamentally change
the causal structure: there would still be just two directed paths into F . In the
case of preemption, however, adding the additional variables SH and BH created
an additional directed path that was not there before. The three-variable model
contained just two directed paths: one from ST to BS , and one from BT to BS .
However, once the variables SH and BH were added, there were three directed
paths: {ST ,SH ,BS}, {BT ,BH ,BS}, and {ST ,SH ,BH ,BS}. The intuition, then,
is that adding additional variables to a model will not affect the relations of actual
causation that hold in the model unless the addition of those variables changes the
“topology” of the model. A more complete mathematical characterization of
the conditions under which the verdicts of actual causality remain stable under the
addition of further variables strikes us as a worthwhile research project that has not
yet been undertaken.

4.2 The Ranges of Variables

Not surprisingly, the set of possible values of a variable must also be chosen ap-
propriately. Consider, for example, a case of “trumping”, introduced by Schaffer
[2000]. Suppose that a group of soldiers is very well trained, so that they will obey
any order given by a superior officer; in the case of conflicting orders, they obey the

5Although his model of causality is quite different from ours, Spohn [2003] also considers the

effect of adding or removing variables, and discusses how a model with fewer variables should be

related to one with more variables.
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highest-ranking officer. Both a sergeant and a major issue the order to march, and
the soldiers march. Let us put aside the morals that Schaffer attempts to draw from
this example (with which we disagree; see [Halpern and Pearl 2005] and [Hitchcock
2010]), and consider only the modeling problem. We will presumably want variables
S, M , and A, corresponding to the sergeant’s order, the major’s order, and the sol-
diers’ action. We might let S = 1 represent the sergeant’s giving the order to march
and S = 0 represent the sergeant’s giving no order; likewise for M and A. But this
would not be adequate. If the only possible order is the order to march, then there
is no way to capture the principle that in the case of conflicting orders, the soldiers
obey the major. One way to do this is to replace the variables M , S, and A by
variables M ′, S′ and A′ that take on three possible values. Like M , M ′ = 0 if the
major gives no order and M ′ = 1 if the major gives the order to march. But now
we allow M ′ = 2, which corresponds to the major giving some other order. S′ and
A′ are defined similarly. We can now write an equation to capture the fact that if
M ′ = 1 and S′ = 2, then the soldiers march, while if M ′ = 2 and S′ = 1, then the
soldiers do not march.

The appropriate set of values of a variable will depend on the other variables
in the picture, and the relationship between them. Suppose, for example, that a
hapless homeowner comes home from a trip to find that his front door is stuck. If
he pushes on it with a normal force then the door will not open. However, if he
leans his shoulder against it and gives a solid push, then the door will open. To
model this, it suffices to have a variable O with values either 0 or 1, depending on
whether the door opens, and a variable P , with values 0 or 1 depending on whether
or not the homeowner gives a solid push.

On the other hand, suppose that the homeowner also forgot to disarm the security
system, and that the system is very sensitive, so that it will be tripped by any push
on the door, regardless of whether the door opens. Let A = 1 if the alarm goes off,
A = 0 otherwise. Now if we try to model the situation with the same variable P , we
will not be able to express the dependence of the alarm on the homeowner’s push.
To deal with both O and A, we need to extend P to a 3-valued variable P ′, with
values 0 if the homeowner does not push the door, 1 if he pushes it with normal
force, and 2 if he gives it a solid push.

These considerations parallel issues that arise in philosophical discussions about
the metaphysics of “events”.6 Suppose that our homeowner pushed on the door with
enough force to open it. Is there just one event, the push, that can be described
at various levels of detail, such as a “push” or a “hard push”? This is the view of
Davidson [1967]. Or are there rather many different events corresponding to these
different descriptions, as argued by Kim [1973] and Lewis [1986b]? And if we take
the latter view, which of the many events that occur should be counted as causes of
the door’s opening? These strike us as pseudoproblems. We believe that questions

6This philosophical usage of the word “event” is different from the typical usage of the word in

computer science and probability, where an event is just a subset of the state space.
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about causality are best addressed by dealing with the methodological problem of
constructing a model that correctly describes the effects of interventions in a way
that is not misleading or ambiguous.

A slightly different way in which one variable may constrain the values that
another may take is by its implicit presuppositions. For example, a counterfactual
theory of causation seems to have the somewhat counterintuitive consequence that
one’s birth is a cause of one’s death. This sounds a little odd. If Jones dies suddenly
one night, shortly before his 80th birthday, the coroner’s inquest is unlikely to list
“birth” as among the causes of his death. Typically, when we investigate the causes
of death, we are interested in what makes the difference between a person’s dying
and his surviving. So our model might include a variable D such D = 1 holds if
Jones dies shortly before his 80th birthday, and D = 0 holds if he continues to
live. If our model also includes a variable B, taking the value 1 if Jones is born, 0
otherwise, then there simply is no value that D would take if B = 0. Both D = 0
and D = 1 implicitly presuppose that Jones was born (i.e., B = 1). Our conclusion
is that if we have chosen to include a variable such as D in our model, then we
cannot conclude that Jones’ birth is a cause of his death!

4.3 Dependence and Independence

Lewis [1986a] added a constraint to his counterfactual theory of causation. In order
for event c to be a cause of event e, the two events cannot be logically related.
Suppose for instance, that Martha says “hello” loudly. If she had not said “hello”,
then she certainly could not have said “hello” loudly. But her saying “hello” is not
a cause of her saying “hello” loudly. The counterfactual dependence results from a
logical, rather than a causal, relationship between the two events.

We must impose a similar constraint upon causal models. Values of different
variables should not correspond to events that are logically related. But now, rather
than being an ad hoc restriction, it has a clear rationale. For suppose that we had
a model with variable H1 and H2, where H1 represents “Martha says ‘hello’ ” (i.e.,
H1 = 1 if Martha says “hello” and H1 = 0 otherwise), and H2 represents “Martha
says ‘hello’ loudly”. The intervention H1 = 0∧H2 = 1 is meaningless; it is logically
impossible for Martha not to say “hello” and to say ‘’hello” loudly.

We doubt that any careful modeler would choose variables that have logically
related values. However, the converse of this principle, that the different values
of any particular variable should be logically related (in fact, mutually exclusive),
is less obvious and equally important. Consider Example 3. While, in the actual
context, Billy’s rock will hit the bottle just in case Suzy’s doesn’t, this is not a
necessary relationship. Suppose that, instead of using two variables SH and BH ,
we try to model the scenario with a variable H that takes the value 1 if Suzy’s rock
hits, and and 0 if Billy’s rock hits. The reader can verify that, in this model, there
is no contingency such that the bottle’s shattering depends upon Suzy’s throw. The
problem, as we said, is that H = 0 and H = 1 are not mutually exclusive; there are
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possible situations in which both rocks hit or neither rock hits the bottle. In partic-
ular, this representation does not allow us to consider independent interventions on
the rocks hitting the bottle. As the discussion in Example 3 shows, it is precisely
such an intervention that is needed to establish that Suzy’s throw (and not Billy’s)
is the actual cause of the bottle shattering.

While these rules are simple in principle, their application is not always trans-
parent.

EXAMPLE 4. Consider cases of “switching”, which have been much discussed in
the philosophical literature. A train is heading toward the station. An engineer
throws a switch, directing the train down the left track, rather than the right track.
The tracks re-converge before the station, and the train arrives as scheduled. Was
throwing the switch a cause of the train’s arrival? HP consider two causal models
of this scenario. In the first, there is a random variable S which is 1 if the switch
is thrown (so the train goes down the left track) and 0 otherwise. In the second,
in addition to S, there are variables LT and RT , indicating whether or not the
train goes down the left track and right track, respectively. Note that with the first
representation, there is no way to model the train not making it to the arrival point.
With the second representation, we have the problem that LT = 1 and RT = 1
are arguably not independent; the train cannot be on both tracks at once. If we
want to model the possibility of one track or another being blocked, we should use,
instead of LT and RT , variables LB and RB , which indicate whether the left track
or right track, respectively, are blocked. This allows us to represent all the relevant
possibilities without running into independence problems. Note that if we have
only S as a random variable, then S = 1 cannot be a cause of the train arriving;
it would have arrived no matter what. With RB in the picture, the preliminary
HP definition of actual cause rules that S = 1 can be an actual cause of the train’s
arrival; for example, under the contingency that RB = 1, the train does not arrive
if S = 0. (However, once we extend the definition to include defaults, as we will in
the next section, it becomes possible once again to block this conclusion.)

These rules will have particular consequences for how we should represent events
that might occur at different times. Consider the following simplification of an
example introduced by Bennett [1987], and also considered in HP.

EXAMPLE 5. Suppose that the Careless Camper (CC for short) has plans to go
camping on the first weekend in June. He will go camping unless there is a fire in
the forest in May. If he goes camping, he will leave a campfire unattended, and
there will be a forest fire. Let the variable C take the value 1 if CC goes camping,
and 0 otherwise. How should we represent the state of the forest?

There appear to be at least three alternatives. The simplest proposal would be
to use a variable F that takes the value 1 if there is a forest fire at some time, and 0
otherwise.7 But now how are we to represent the dependency relations between F

7This is, in effect, how effects have been represented using “neuron diagrams” in late preemption
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and C? Since CC will go camping only if there is no fire (in May), we would want to
have an equation such as C = 1−F . On the other hand, since there will be a fire (in
June) just in case CC goes camping, we will also need F = C. This representation is
clearly not rich enough, since it does not let us make the clearly relevant distinction
between whether the forest fire occurs in May or June. The problem is manifested
in the fact that the equations are cyclic, and have no consistent solution.8

A second alternative, adopted by Halpern and Pearl [2005, p. 860], would be to
use a variable F ′ that takes the value 0 if there is no fire, 1 if there is a fire in
May, and 2 if there is a fire in June. Now how should we write our equations?
Since CC will go camping unless there is a fire in May, the equation for C should
say that C = 0 iff F ′ = 1. And since there will be a fire in June if CC goes
camping, the equation for F ′ should say that F ′ = 2 if C = 1 and F ′ = 0 otherwise.
These equations are cyclic. Moreover, while they do have a consistent solution, they
are highly misleading in what they predict about the effects of interventions. For
example, the first equation tells us that intervening to create a forest fire in June
would cause CC to go camping in the beginning of June. But this seems to get the
causal order backwards!

The third way to model the scenario is to use two separate variables, F1 and F2,
to represent the state of the forest at separate times. F1 = 1 will represent a fire
in May, and F1 = 0 represents no fire in May; F2 = 1 represents a fire in June and
F2 = 0 represents no fire in June. Now we can write our equations as C = 1 − F1

and F2 = C × (1−F1). This representation is free from the defects that plague the
other two representations. We have no cycles, and hence there will be a consistent
solution for any value of the exogenous variables. Moreover, this model correctly
tells us that only an intervention on the state of the forest in May will affect CC’s
camping plans.

Once again, our discussion of the methodology of modeling parallels certain meta-
physical discussions in the philosophy literature. If heavy rains delay the onset of
a fire, is it the same fire that would have occurred without the rains, or a different
fire? It is hard to see how to gain traction on such an issue by direct metaphysical
speculation. By contrast, when we recast the issue as one about what kinds of
variables to include in causal models, it is possible to say exactly how the models
will mislead you if you make the wrong choice.

cases. See Hitchcock [2007b, pp. 85–88] for discussion.
8Careful readers will note the the preemption case of Example 3 is modeled in this way. In that

model, BH is a cause of BS , even though it is the earlier shattering of the bottle that prevents

Billy’s rock from hitting. Halpern and Pearl [2005] note this problem and offer a dynamic model

akin to the one recommended below. As it turns out, this does not affect the analysis of the

example offered above.
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5 Dealing with normality and typicality

While the definition of causality given in Definition 1 works well in many cases, it
does not always deliver answers that agree with (most people’s) intuition. Consider
the following example, taken from Hitchcock [2007a], based on an example due to
Hiddleston [2005].

EXAMPLE 6. Assassin is in possession of a lethal poison, but has a last-minute
change of heart and refrains from putting it in Victim’s coffee. Bodyguard puts
antidote in the coffee, which would have neutralized the poison had there been
any. Victim drinks the coffee and survives. Is Bodyguard’s putting in the antidote
a cause of Victim surviving? Most people would say no, but according to the
preliminary HP definition, it is. For in the contingency where Assassin puts in the
poison, Victim survives iff Bodyguard puts in the antidote.

Example 6 illustrates an even deeper problem with Definition 1. The struc-
tural equations for Example 6 are isomorphic to those in the forest-fire example,
provided that we interpret the variables appropriately. Specifically, take the en-
dogenous variables in Example 6 to be A (for “assassin does not put in poison”),
B (for “bodyguard puts in antidote”), and VS (for “victim survives”). Then A, B,
and VS satisfy exactly the same equations as L, ML, and F , respectively. In the
context where there is lightning and the arsonists drops a lit match, both the light-
ning and the match are causes of the forest fire, which seems reasonable. But here
it does not seem reasonable that Bodyguard’s putting in the antidote is a cause.
Nevertheless, any definition that just depends on the structural equations is bound
to give the same answers in these two examples. (An example illustrating the same
phenomenon is given by Hall [2007].) This suggests that there must be more to
causality than just the structural equations. And, indeed, the final HP definition
of causality allows certain contingencies to be labeled as “unreasonable” or “too
farfetched”; these contingencies are then not considered in AC2(a) or AC2(b). As
discussed by Halpern [2008], there are problems with the HP account; we present
here the approach used in [Halpern 2008] for dealing with these problems, which in-
volves assuming that an agent has, in addition to a theory of causality (as modeled
by the structural equations), a theory of “normality” or “typicality”. (The need
to consider normality was also stressed by Hitchcock [2007a] and Hall [2007], and
further explored by Hitchcock and Knobe [2009].) This theory would include state-
ments like “typically, people do not put poison in coffee” and “typically doctors do
not treat patients to whom they are not assigned”. There are many ways of giving
semantics to such typicality statements (e.g., [Adams 1975; Kraus, Lehmann, and
Magidor 1990; Spohn 2009]). For definiteness, we use ranking functions [Spohn
2009] here.

Take a world to be a complete description of the values of all the random variables.
we assume that each world has associated with it a rank, which is just a natural
number or ∞. Intuitively, the higher the rank, the less “normal” or “typical” the
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world. A world with a rank of 0 is reasonably normal, one with a rank of 1 is
somewhat normal, one with a rank of 2 is quite abnormal, and so on. Given a
ranking on worlds, the statement “if p then typically q” is true if in all the worlds
of least rank where p is true, q is also true. Thus, in one model where people do not
typically put either poison or antidote in coffee, the worlds where neither poison
nor antidote is put in the coffee have rank 0, worlds where either poison or antidote
is put in the coffee have rank 1, and worlds where both poison and antidote are put
in the coffee have rank 2.

Take an extended causal model to be a tuple M = (S,F , κ), where (S,F) is a
causal model, and κ is a ranking function that associates with each world a rank.
In an acyclic extended causal model, a context ~u determines a world, denoted s~u.
~X = ~x is a cause of φ in an extended model M and context ~u if ~X = ~x is a cause of
φ according to Definition 1, except that in AC2(a), there must be a world s such
that κ(s) ≤ κ(s~u) and ~X = ~x′ ∧ ~W = ~w is true at s. This can be viewed as a
formalization of Kahneman and Miller’s [1986] observation that “an event is more
likely to be undone by altering exceptional than routine aspects of the causal chain
that led to it”.

This definition deals well with all the problematic examples in the literature.
Consider Example 6. Using the ranking described above, Bodyguard is not a cause
of Victim’s survival because the world that would need to be considered in AC2(a),
where Assassin poisons the coffee, is less normal than the actual world, where he
does not. We consider just one other example here (see [Halpern 2008] for further
discussion).

EXAMPLE 7. Consider the following story, taken from (an early version of) [Hall
2004]: Suppose that Billy is hospitalized with a mild illness on Monday; he is
treated and recovers. In the obvious causal model, the doctor’s treatment is a cause
of Billy’s recovery. Moreover, if the doctor does not treat Billy on Monday, then
the doctor’s omission to treat Billy is a cause of Billy’s being sick on Tuesday. But
now suppose that there are 100 doctors in the hospital. Although only doctor 1 is
assigned to Billy (and he forgot to give medication), in principle, any of the other
99 doctors could have given Billy his medication. Is the nontreatment by doctors
2–100 also a cause of Billy’s being sick on Tuesday?

Suppose that in fact the hospital has 100 doctors and there are variables
A1, . . . , A100 and T1, . . . ,T100 in the causal model, where Ai = 1 if doctor i is
assigned to treat Billy and Ai = 0 if he is not, and Ti = 1 if doctor i actually treats
Billy on Monday, and Ti = 0 if he does not. Doctor 1 is assigned to treat Billy;
the others are not. However, in fact, no doctor treats Billy. Further assume that,
typically, no doctor is assigned to a given patient; if doctor i is not assigned to
treat Billy, then typically doctor i does not treat Billy; and if doctor i is assigned
to Billy, then typically doctor i treats Billy. We can capture this in an extended
causal model where the world where no doctor is assigned to Billy and no doctor
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treats him has rank 0; the 100 worlds where exactly one doctor is assigned to Billy,
and that doctor treats him, have rank 1; the 100 worlds where exactly one doctor is
assigned to Billy and no one treats him have rank 2; and the 100× 99 worlds where
exactly one doctor is assigned to Billy but some other doctor treats him have rank
3. (The ranking given to other worlds is irrelevant.) In this extended model, in the
context where doctor i is assigned to Billy but no one treats him, i is the cause of
Billy’s sickness (the world where i treats Billy has lower rank than the world where
i is assigned to Billy but no one treats him), but no other doctor is a cause of Billy’s
sickness. Moreover, in the context where i is assigned to Billy and treats him, then
i is the cause of Billy’s recovery (for AC2(a), consider the world where no doctor is
assigned to Billy and none treat him).

Adding a normality theory to the model gives the HP account of actual causation
greater flexibility to deal with these kinds of cases. This raises the worry, however,
that this gives the modeler too much flexibility. After all, the modeler can now
render any claim that A is an actual cause of B false, simply by choosing a nor-
mality order that assigns the actual world s~u a lower rank than any world s needed
to satisfy AC2. Thus, the introduction of normality exacerbates the problem of
motivating and defending a particular choice of model. Fortunately, the literature
on the psychology of counterfactual reasoning and causal judgment goes some way
toward enumerating the sorts of factors that constitute normality. (See, for exam-
ple, [Alicke 1992; Cushman 2009; Cushman, Knobe, and Sinnott-Armstrong 2008;
Hitchcock and Knobe 2009; Kahneman and Miller 1986; Knobe and Fraser 2008;
Kahneman and Tversky 1982; Mandel, Hilton, and Catellani 1985; Roese 1997].)
These factors include the following:

• Statistical norms concern what happens most often, or with the greatest fre-
quency. Kahneman and Tversky [1982] gave subjects a story in which Mr.
Jones usually leaves work at 5:30, but occasionally leaves early to run errands.
Thus, a 5:30 departure is (statistically) “normal”, and an earlier departure
“abnormal”. This difference affected which alternate possibilities subjects
were willing to consider when reflecting on the causes of an accident in which
Mr. Jones was involved.

• Norms can involve moral judgments. Cushman, Knobe, and Sinnott-Armstrong
[2008] showed that people with different views about the morality of abortion
have different views about the abnormality of insufficient care for a fetus,
and this can lead them to make different judgments about the cause of a
miscarriage.

• Policies adopted by social institutions can also be norms. For instance, Knobe
and Fraser [2008] presented subjects with a hypothetical situation in which
a department had implemented a policy allowing administrative assistants
to take pens from the department office, but prohibiting faculty from doing
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so. Subjects were more likely to attribute causality to a professor’s taking a
pen than to an assistant’s taking one, even when the situation was otherwise
similar.

• There can also be norms of “proper functioning” governing the operations of
biological organs or mechanical parts: there are certain ways that hearts and
spark plugs are “supposed” to operate. Hitchcock and Knobe [2009] show
that these kinds of norms can also affect causal judgments.

The law suggests a variety of principles for determining the norms that are used
in the evaluation of actual causation. In criminal law, norms are determined by
direct legislation. For example, if there are legal standards for the strength of seat
belts in an automobile, a seat belt that did not meet this standard could be judged
a cause of a traffic fatality. By contrast, if a seat belt complied with the legal
standard, but nonetheless broke because of the extreme forces it was subjected to
during a particular accident, the fatality would be blamed on the circumstances of
the accident, rather than the seat belt. In such a case, the manufacturers of the
seat belt would not be guilty of criminal negligence. In contract law, compliance
with the terms of a contract has the force of a norm. In tort law, actions are often
judged against the standard of “the reasonable person”. For instance, if a bystander
was harmed when a pedestrian who was legally crossing the street suddenly jumped
out of the way of an oncoming car, the pedestrian would not be held liable for
damages to the bystander, since he acted as the hypothetical “reasonable person”
would have done in similar circumstances. (See, for example, [Hart and Honoré
1985, pp. 142ff.] for discussion.) There are also a number of circumstances in
which deliberate malicious acts of third parties are considered to be “abnormal”
interventions, and affect the assessment of causation. (See, for example, [Hart and
Honoré 1985, pp. 68ff.].)

As with the choice of variables, we do not expect that these considerations will
always suffice to pick out a uniquely correct theory of normality for a causal model.
They do, however, provide resources for a rational critique of models.

6 Conclusion

As HP stress, causality is relative to a model. That makes it particularly important
to justify whatever model is chosen, and to enunciate principles for what makes a
reasonable causal model. We have taken some preliminary steps in investigating
this issue with regard to the choice of variables and the choice of defaults. However,
we hope that we have convinced the reader that far more needs to be done if causal
models are actually going to be used in applications.
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