
Directional Resolution:

The Davis-Putnam Procedure, Revisited �

Rina Dechter and Irina Rish

Information and Computer Science

University of California, Irvine

dechter@ics.uci.edu, irinar@ics.uci.edu

Abstract

The paper presents an algorithm called directional resolution, a variation on the

original Davis-Putnam algorithm, and analyzes its worst-case behavior as a function of

the topological structure of propositional theories. The concepts of induced width and

diversity are shown to play a key role in bounding the complexity of the procedure.

The importance of our analysis lies in highlighting structure-based tractable classes of

satis�ability and in providing theoretical guarantees on the time and space complexity

of the algorithm. Contrary to previous assessments, we show that for many theories

directional resolution could be an e�ective procedure. Our empirical tests con�rm

theoretical prediction, showing that on problems with a special structure, namely k-tree

embeddings (e.g. chains, (k,m)-trees), directional resolution greatly outperforms one of

the most e�ective satis�ability algorithms known to date, the popular Davis-Putnam

procedure. Furthermore, combining a bounded version of directional resolution with

the Davis-Putnam procedure results in an algorithm superior to either components.

�This work was partially supported by NSF grant IRI-9157636, by Air Force O�ce of Scienti�c Research

grant AFOSR 900136, by Toshiba of America, and by a Xerox grant.

1

1 Introduction

In 1960, Davis and Putnam presented a resolution algorithm for determining propositional

satis�ability [6]. They proved that a restricted amount of resolution performed systemati-

cally along some ordering of the variables in a propositional theory is su�cient for deciding

satis�ability. This algorithm, in its original form, has received limited attention, and anal-

yses of its performance have emphasized its worst-case exponential behavior [12, 14], while

neglecting the algorithm's virtues. This happened, in our view, because the algorithm was

immediately overshadowed by a competitor with nearly the same name: The Davis-Putnam

Procedure. This competing algorithm, proposed in 1962 by Davis, Logemann, and Loveland

[5], searches through the space of possible truth assignments while performing unit resolution

until quiesience at each step. We will refer to the �rst algorithm as DP-elimination and to

the second as DP-backtracking. The latter was presented in [5] as a minor syntactic change to

the �rst: the elimination rule (rule III in [6]) in DP-elimination was replaced by the splitting

rule (rule III' in [5]) in order to avoid the memory explosion encountered when empirically

testing DP-elimination. By refraining from an explicit analysis of this exchange (beyond

the short comment on memory explosion), the authors of [5] may have left the impression

that the two algorithms are basically identical. Indeed, from then on, most work on the

Davis-Putnam procedure quotes the backtracking version [15, 19], wrongly suggesting that

this is the algorithm presented in [6].

In this paper, we wish to \revive" the DP-elimination algorithm by studying its virtues

theoretically and by subjecting it to a more extensive empirical testing. First, we show that,

in addition to determining satis�ability, the algorithm generates an equivalent theory that

facilitates model generation and query processing. Consequently, it may be better viewed

as a knowledge compilation algorithm. Second, we o�set the known worst-case exponential

complexities [12, 14] by showing the tractability of DP-elimination for many known tractable

classes of satis�ability and constraint satisfaction problems (e.g., 2-cnfs, Horn clauses, causal

theories and theories having a bounded induced width [7, 8]). Third, we introduce a new

parameter, called diversity, that gives rise to new tractable classes.

2

On the empirical side, we qualify prior empirical tests in [5] by showing that for uniform

random propositional theories DP-backtracking outperforms DP-elimination by far. How-

ever, for a class of instances having a special structure (embeddings in k-trees, for example

chains and (k,m)-trees) DP-elimination outperforms DP-backtracking by several orders of

magnitude. Also, a restricted version of DP-elimination, called bounded directional resolu-

tion, used as a preprocessing for DP-backtracking, improves the performance of the latter

both on uniform and structured problems. Empirical results show that the combined algo-

rithm called BDR-DP outperforms both DP-elimination and DP-backtracking.

2 De�nition and preliminaries

We denote propositional symbols, also called variables, by uppercase letters P;Q;R; :::,

propositional literals (e.g., P;:P) by lowercase letters p; q; r; :::, and disjunctions of liter-

als, or clauses, by �; �; :::. For instance, � = (P _ Q _ R) is a clause. We will sometime

denote the clause (P _Q _R) by fP;Q;Rg. A unit clause is a clause with only one literal.

The notation (� _ T) will be used as a shorthand for the disjunction (P _Q _ R _ T), and

� _ � denotes the clause whose literals appear in either � or �. The resolution operation

over two clauses (� _Q) and (� _ :Q) results in a clause (� _ �), thus eliminating Q. Unit

resolution is a resolution operation when one of the clauses is a unit clause. A formula ' in

conjunctive normal form (cnf) is represented as a set f�1; :::; �tg denoting the conjunction

of clauses �1; :::; �t. The set of models of a formula ' is the set of all truth assignments to

its symbols that satisfy '. A clause � is entailed by ', ' j= �, i� � is true in all models

of '. A Horn formula is a cnf formula whose clauses have at most one positive literal. In

a de�nite Horn formula, each clause has exactly one positive literal. A clause is positive if

it contains only positive literals and is negative if it contains negative literals only. A k-cnf

formula is one whose clauses are all of length k or less.

3

3 DP-elimination { Directional Resolution

DP-elimination [6] is an ordering-based restricted resolution that can be described as fol-

lows. Given an arbitrary ordering of the propositional variables, we assign to each clause

the index of the highest ordered literal in that clause. Then we resolve only clauses having

the same index, and only on their highest literal. The result of this restriction is a system-

atic elimination of literals from the set of clauses that are candidates for future resolution.

DP-elimination also includes additional steps, one forcing unit resolution whenever possi-

ble and another dealing with the variables that appear only negatively (called all-negative)

or only positively (called all-positive). All-positive (all-negative) variables are assigned the

value \true" (\false") and all clauses containing those variables are deleted from the theory.

There are many other intermediate steps that can be introduced between the basic steps

of eliminating the highest indexed variable (e.g., subsumption elimination). However, in

this paper we focus on the ordered elimination step and refer to auxiliary steps only when

necessary. We are interested not merely in achieving refutation, but also in the sum total of

the clauses accumulated by this process, which constitutes an equivalent theory with useful

computational features. Algorithm directional resolution (DR) (the core of DP-elimination)

is described in Figure 1. We call its output theory, Ed('), the directional extension of '.

The algorithm can be conveniently described using the notion of buckets partitioning the

set of clauses in '. Given an ordering d = Q1; :::Qn, the bucket for Qi, bucketi, contains

all the clauses containing Qi, that do not contain any symbol higher in the ordering. Given

the theory ', algorithm directional resolution processes the buckets in a reverse order of d.

When processing bucketi, it resolves over Qi all possible pairs of clauses in the bucket and

inserts the resolvents into the appropriate lower buckets.

Theorem 1: (model generation)

Let ' be a cnf formula, d = Q1; :::; Qn an ordering, and Ed(') its directional extension.

Then, if the extension is not empty, any model of ' can be generated in time O(jEd(')j) in a

backtrack-free manner, consulting Ed('), as follows: Step 1. Assign to Q1 a truth value that

4

directional-resolution

Input: A cnf theory ', an ordering d = Q1; :::; Qn of its variables.

Output: A decision of whether ' is satis�able. If it is, a theory Ed('), equivalent to ', else an

empty directional extension.

1. Initialize: generate an ordered partition of the clauses, bucket1; :::; bucketn, where bucketi con-

tains all the clauses whose highest literal is Qi.

2. For i = n to 1 do:

3. Resolve each pair f(�_Qi); (� _ :Qi)g � bucketi. If
 = � _ � is empty, return Ed(') = ;, the

theory is not satis�able; else, determine the index of
 and add it to the appropriate bucket.

4. End-for.

5. Return Ed(')(=
S
i bucketi.

Figure 1: Algorithm directional resolution

is consistent with clauses in bucket1 (if the bucket is empty, assign Q1 an arbitrary value);

Step i. After assigning values to Q1; :::; Qi�1, assign a value to Qi, so that together with the

previous assignments it will satisfy all clauses in bucketi.

Proof: Suppose the model generation process is not backtrack-free, i.e there exists a truth

assignments q1; :::; qi�1 for the �rst i� 1 symbols that satis�es all the clauses in the buckets

of Q1,..., Qi�1, but cannot be extended by any truth value of Qi without falsifying some

clauses in bucketi. Let � and � be two clauses in the bucket of Qi that clash, i.e. cannot

be satis�ed simultaneously, given the assignment q1; :::; qi�1. Clearly, � and � contain Qi

with opposite signs; in one Qi appears negatively and in the other positively. Consequently,

while being processed by directional-resolution, � and � should have been resolved upon,

thus resulting in a clause that must appear now in a bucketj, j < i. Such a clause, if existed,

would not have allowed the partial model q1; :::; qi, thus leading to a contradiction. 2

Corollary 1: [6] A theory has a non-empty directional extension i� it is satis�able. 2

Clearly, the e�ectiveness of directional resolution both for satis�ability and for subsequent

query processing depends on the the size of its output theory Ed(').

5

Theorem 2: (complexity)

Given a theory ' and an ordering d of its propositional symbols, the time complexity of

algorithm directional resolution is O(n � jEd(')j2), where n is the number of propositional

symbols in the language.

Proof: There are at most n buckets, each containing no more clauses than the directional

extension of the theory, and resolving pairs of clauses in a bucket is quadratic in its size. 2

The bound above, although it could be loose, demonstrates the dependence of the algo-

rithm's complexity on the size of its resulting output. Once Ed(') is compiled, determining

the entailment of a single literal involves checking the bucket of that literal �rst. If the literal

appears there as a unit clause, it is entailed; if not, the negation of that literal must be added

to the theory and the algorithm must be restarted from that bucket. If the empty clause

is generated, the literal is entailed. To determine the entailment of an arbitrary clause, the

negation of each literal in that clause must be added to the corresponding bucket; then the

processing must be restarted from the highest of those buckets. Therefore, in knowledge

bases with queries involving a restricted subset of the alphabet the ordering for directional

resolution should start with the symbols of that subset. In summary,

Theorem 3: (entailment)

Given a directional extension Ed(') and a constant c, the entailment of clauses involving

only the �rst c symbols in d is polynomial in the size of Ed('). 2

4 Tractable classes

Consider the following two examples demonstrating the e�ect of ordering on Ed(').

Example 1: Let '1 = f(B;A) ,(C;:A); (D;A); (E;:A)g: For the ordering d1 = (E;B;C;D;A),

all clauses are initially contained in bucket(A) (highest in the ordering). All other buckets

are empty. Following the application of directional resolution along d1, we get (note that pro-

cessing is in the reverse order of d): bucket(D) = f(C;D); (D;E)g, bucket(C) = f(B;C)g,

6

bucket(B) = f(B;E)g. On the other hand, the directional extension along the ordering

d2 = (A;B;C;D;E) is identical to the input theory, and each bucket contains at most one

clause.

Example 2: Consider the theory '2 = f(:A;B); (A;:C); (:B;D);(C;D;E)g: The direc-

tional extensions of ' along the ordering d1 = (A;B;C;D;E) and d2 = (D;E;C;B;A) are

Ed1(') = ' and Ed2(') = ' [f(B;:C) ; (:C;D); (E;D)g, respectively.

In Example 1, A appears in all clauses; hence, it potentially can generate new clauses

when resolved upon, unless it is processed last (i.e., appears �rst in the ordering), as in d2.

This shows that the interactions among clauses play an important role in the e�ectiveness

of the algorithm and may suggest orderings that yield smaller extensions. In Example 2, on

the other hand, all symbols have the same type of interaction, each (except E) appearing

in two clauses. Nevertheless, D appears positive in both clauses and consequently will not

be resolved upon; hence, it can be processed �rst. Subsequently, B and C appear only

negatively in the remaining theory and can be processed without generating new clauses.

In the following, we will provide a connection between the algorithm's complexity and two

parameters: a topological parameter, called induced width, and a syntactic parameter, called

diversity.

Note that directional resolution is tractable for 2-cnf theories in all orderings, since 2-

cnf are closed under resolution (the resolvents are of size 2 or less) and because the overall

number of clauses of size 2 is bounded by O(n2). (In this case, unrestricted resolution is also

tractable). Clearly, this algorithm is not the most e�ective one for satis�ability of 2-cnfs.

Satis�ability for these theories can be decided in linear time [10]. However, as noted earlier,

DR achieves more than satis�ability, it compiles a theory that allows model generation in

linear time. We summarize:

Theorem 4: If ' is a 2-cnf theory, then algorithm directional resolution will produce a

directional extension of size O(n2) in time O(n3). 2

7

A

B

C

D

E

A

B

C

D

E

AB

D C

E

(b) (c)(a)

Figure 2: The interaction graph of '2

Corollary 2: Given a directional extension Ed(') of a 2-cnf theory ', the entailment of

any clause involving the �rst c symbols in d is O(c3). 2

4.1 Induced width

Let ' = '(Q1; :::; Qn) be a cnf formula de�ned on the variables Q1; :::; Qn. The interaction

graph of ', denoted G('), is an undirected graph that contains one node for each proposi-

tional variable and an arc connecting any two nodes whose associated variables appear in

the same clause. The interaction graph of '2 is given in Figure 2a. We can �nd a bound on

the size of all theories having the same interaction graph using some properties of the graph.

De�nition 1: Given a graph G and an ordering of its nodes d, the parent set of a node

A relative to d is the set of nodes connected to A that precede A in the ordering d. The

size of this parent set is the width of A relative to d. The width w(d) of an ordering d is

the maximum width of nodes along the ordering, and the width w of a graph is the minimal

width of all its orderings [11, 7].

Lemma 1: Given an interaction graph G(') and an ordering d, if A is a node having k�1

parents, then there are no more than 3k clauses in the bucket of A; if w(d) = w, then the

size of the corresponding theory is O(n � 3w).

Proof: The bucket of A contains clauses de�ned on k literals only. For the set of k � 1

symbols there are at most

0
B@
k � 1

i

1
CA subsets of i symbols. Each subset can be associated

8

with at most 2i clauses (i.e., each symbol can appear either positive or negative in a clause),

and A can be also positive or negative. Therefore we can have at most

2 �
k�1X
i=0

0
B@
k � 1

i

1
CA 2i = 2 � 3k�1: (1)

clauses. Clearly, if the parent set is bounded by w, the extension is bounded by O(n �3w). 2

Directional resolution applied along an ordering d to a theory having graph G adds new

clauses and, accordingly, changes the interaction graph. The concept of induced graph will

be de�ned to re
ect those changes.

De�nition 2: Given a graph G and an ordering d, the graph generated by recursively

connecting the parents of G, in a reverse order of d, is called the induced graph of G w.r.t. d,

and is denoted by Id(G). The width of Id(G) is denoted by w�(d) and is called the induced

width of G w.r.t. d.

The graph in Figure 2a, for example, has width 2 along the ordering A;B;C;D;E (Figure

2b). Its induced graph is given in Figure 2c. The induced width of G equals 2.

Lemma 2: Given a theory ' and an ordering d, the interaction graph G(Ed(')) of the

directional extension of ' along d is a subgraph of Id(G(')).

Proof: The proof is done by induction on the variables along the ordering d. The

induction hypothesis is that all the arcs incident to Qn; :::; Qi in the G(Ed(')) appear also

in Id(G(')). The claim is true for Qn, since its connectivity is the same in both graphs.

Assume that the claim is true for Qn; :::; Qi and we will show that it holds also for Qi�1,

namely, if (Qi�1; Qj), j < i � 1, is an arc in G(Ed(')), then it also belongs to Id(G(')).

There are two cases: either Qi�1 and Qj appeared in the same clause of the initial theory,

', so they are connected in G(') and, therefore, also in Id(G(')), or a clause containing

both symbols was added during directional resolution. In the second case, that clause was

obtained while processing some bucket Qt; t > i � 1. Since Qi�1 and Qj appeared in the

bucket of Qt, each must be connected to Qt in G(Ed(')) and, by the induction hypothesis,

9

they will also be connected in Id(G(')). Therefore, Qi�1 and Qj would become connected

in Id(G(')), when connecting the parents of Qt. 2

Theorem 5: Let ' = '(Q1; :::; Qn) be a cnf, G(') its interaction graph, and w�(d) its

induced width along d; then, the size of Ed(') is O(n � 3w
�(d)) and the time complexity of

directional resolution along the ordering d is O(n � 9w
�(d)).

Proof: The result follows from lemmas 1 and 2: the interaction graph of Ed(') is a

subgraph of Id(G), and the size of theories having Id(G) as their interaction graph is bounded

by O(n�3w
�(d)). The time complexity of directional resolution is bounded by O(n�jbucketij2),

where jbucketij is the size of the largest bucket (remember, that resolution on a bucket takes

time quadratic in the bucket size). From lemma 1 we get jbucketij = O(3w
�(d)), therefore

the time complexity is O(n � 9w
�(d)). Note, that this deduction implicitly assumes that the

algorithm eliminates duplicate clauses. 2

As follows from the last theorem, theories with the bounded induced width would con-

stitute a tractable class for directional resolution. It is known that the induced width of a

graph embedded in a k-tree is bounded by k [1]. Here is a recursive de�nition of k-trees.

De�nition 3: (k-trees)

1. A clique of size k (complete graph with k vertices) is a k-tree.

2. Given a k-tree de�ned on Q1; :::; Qi�1, a k-tree on Q1; :::; Qi can be generated by se-

lecting a clique of size k and connecting Qi to every node in that clique.

Corollary 3: If ' is a formula whose interaction graph can be embedded in a k-tree then

there is an ordering d such that the time complexity of directional resolution on that ordering

is O(n � 9k). 2

Finding an ordering yielding the smallest induced width of a graph is NP-hard [1]. How-

ever, any ordering d yields an easily computed bound, w�(d). Consequently, when given

a theory and its interaction graph, we will try to �nd an ordering that yields the smallest

10

A A

AA A A1

8A A

3 5 7

2 4 6

Figure 3: The interaction graph of '8 in example 3:'8 = f(A1; A2;:A3), (:A2; A4),

(:A2; A3;:A4), (A3; A4;:A5), (:A4; A6), (:A4; A5;:A6), (A5; A6;:A7), (:A6; A8),

(:A6; A7;:A8)g

width possible. Several heuristic orderings are available (see [2]). Important special tractable

classes are those having w� = 1 (namely, the interaction graph is a tree) and those having

w� = 2, called series parallel networks. These classes can be recognized in linear time. In

general, given any k, graphs having induced width of k or less can be recognized inO(exp(k)).

Example 3: Consider a theory 'n over the alphabet fA1; A2; ; :::; Ang. The theory 'n has

a set of clauses indexed by i, where a clause for i odd is given by (Ai; Ai+1;:Ai+2) and two

clauses for i even are given by (:Ai; Ai+2) and (:Ai; Ai+1; :Ai+2). The reader can check

that the induced width of such theories along the natural order is 2 and thus the size of the

directional extension will not exceed 18 � n (see lemma 1). For given ordering of variables

the induced graph is identical to the original graph (see �gure 3).

4.2 Diversity

The concept of induced width frequently leads to a loose upper bound on the number of

clauses recorded by directional resolution. In example 3, for instance, only 6 clauses were

generated by directional-resolution when processed in the given order, even without eliminat-

ing subsumption and tautologies in each bucket, while the computed bound is 18 � 8 = 144.

The induced graph may not be a tight bound for the interaction graph of Ed('). Consider,

for instance, the two clauses (:A;B); (:C;B) and the order d = A;C;B. When bucket B

is processed, no clause is added because B is positive in both clauses, nevertheless, nodes

A and C will be connected in the induced graph. In this subsection, we introduce a more

11

re�ned parameter, called diversity, based on the observation that a propositional letter can

be resolved upon only when it appears both positively and negatively in di�erent clauses.

Extensions to this parameter will later attempt at bounding the number of resolvents in a

bucket.

De�nition 4: (diversity of a theory)

Given a theory ' and an ordering d, let Q+
i (Q�

i) denote the number of times Qi appears

positively (negatively) in bucketi w.r.t. d. The diversity of Qi relative to d, div(Qi), is

Q+
i �Q�

i . The diversity of an ordering d, div(d), is the maximum diversity of its variables

w.r.t. the ordering d and the diversity of a theory, div, is the minimal diversity over all its

orderings.

Theorem 6: Algorithm min-diversity (Figure 4) generates a minimal diversity ordering of

a theory.

Proof: Let d be an ordering generated by the algorithm and let Qi be a variable whose

diversity equals the diversity of the ordering. If Qi is pushed up, its diversity can only

increase and if pushed down, it must be replaced by a variable whose diversity is either

equal to or higher than the diversity of Qi. 2

Theorem 7: The complexity of algorithm min-diversity is O(n2 � c), where c is the number

of clauses in the input theory.

Proof: Computing the diversity of a variable takes O(c) time, and the algorithm checks

at most n variables in order to select one with the smallest diversity at each of n steps. This

yields the total O(n2 � c) complexity. 2

4.2.1 Discovering causal structures

The concept of diversity yields new tractable classes. If d is an ordering having a zero

diversity, directional resolution will add no clauses to ' along d. Namely,

12

min-diversity (')

1. For i = n to 1 do

2. Choose symbol Q having the smallest diversity in ' �
Sn
j=i+1 bucketj, and put it in the

i-th position.

Figure 4: Algorithm min-diversity

Theorem 8: Theories having zero diversity are tractable and can be recognized in linear

time. 2

Example 4: Let ' = f(G;E; :F);(G; :E;D); (:A; F); (A;:E) (:B;C;:E) (B;C;D)g.

The reader can verify that the ordering d = A;B;C;D;E;F;G is a zero-diversity ordering

of '.

Note that the diversity of theories in example 3 along the speci�ed ordering, is 1.

Zero-diversity theories generalize the notion of causal theories de�ned for general networks

of multivalued relations [8]. According to the de�nition in [8], theories speci�ed in the form

of cnfs would correspond to causal if there is an ordering of the symbols such that each

bucket contains a single clause, and consequently has zero diversity. Note that even when

a general theory is not zero-diversity it is better to put zero-diversity literals last in the

ordering (so that they will be processed �rst). Then, the size of the directional-extension is

exponentially bounded in the number of literals having only strictly-positive diversities. In

general, however, the parameter of interest is the diversity of the directional extension Ed(')

rather than the diversity of '.

De�nition 5: (induced diversity)

The induced diversity of an ordering d, div�(d), is the diversity of Ed(') along d, and the

induced diversity of a theory, div�, is the minimal induced diversity over all its orderings.

Since div�(d) bounds the added clauses generated from each bucket, we can trivially

bound the size of Ed(') using div�: for every d, jEd(')j � j'j+ n � div�(d). The problem is

13

that even for a given ordering d, div�(d) is not polynomially computable, and therefore, the

bound is not useful. It can, however, be used for some special cases for which the bound is

precomputable. We will use two principles to bound div�.

1. Identify cases where div = div� can be polynomially recognizable.

2. Identify cases where all the added resolvents are super
uous, giving the notion of zero-

diversity a broader interpretation.

For most theories and most orderings div�(d) > div(d). A special counter example we

observed are the zero-diversity theories for which div�(d) = div(d) = 0. We next identify a

subclass of diversity-1 theories whose div� remains 1.

Theorem 9: A theory ' = '(Q1; :::; Qn), has div� � 1 and is therefore tractable, if each

symbol Qi satis�es one of the following conditions: a. it appears only negatively; b. it appears

only positively; c. it appears in exactly two clauses.

Proof: The proof is by induction on the number of symbols. Clearly, the diversity of

the top literal is at most 1. If it is of zero diversity, no clause is added during processing; if

it is of diversity 1, then at most one clause is added. Assume it is added to bucket Qj. If

Qj is a single-sign symbol, it will remain so, namely, the diversity of its bucket will be zero.

Else, since there are at most two clauses containing Qj, and one of these was at the bucket

of Qn, the current bucket of Qj (after processing Qn) cannot contain more than two clauses.

The diversity of Qj is therefore 1. We can now assume that after processing Qn; :::; Qi the

induced diversity is at most 1, and we can show that processing Qi�1 will leave the diversity

at most 1. The argument is identical to the base case of the induction. 2

The set of theories in example 3 has div� = 1. Note though, that we can easily create

examples with high w� having div� � 1.

We next extend the class of causal theories by attributing a wider meaning to \zero"

diversity. For the class of zero diversity theories de�ned earlier directional resolution will not

generate any new clauses. Sometime, however, directional resolution generate clauses which

are tautologies, or which are all subsumed in the original set of clauses.

14

Example 5: The odd-parity relation over n propositional symbols P1; :::; Pn allows all

models with an odd number of \true" assignments. This theory has a nice representation

using an additional set of n symbols Q1; :::; Qn. Symbol Qi denotes the parity of the �rst i

propositions P1; :::; Pi. The general de�nition of the theory is given by:

P1 ! Q1

:P1 ! :Q1

The ith de�nitions is

Pi; Qi�1 ! :Qi

Pi;:Qi�1 ! Qi

:Pi; Qi�1 ! Qi

:Pi;:Qi�1 ! :Qi

If we want to state that the relation is odd-parity we add the proposition, Qn. Consider

now the ordering: d = (P1; Q1; P2; Q2; :::; Pn; Qn). Clearly this ordering has diversity equal

2. Nevertheless its diversity equals to its induced diversity if we eliminate tautologies in

resolvents. This leads to the following de�nition:

De�nition 6: [Extended zero diversity]

Given a theory ' and an ordering d, Qi is said to be of extended zero diversity i� all the

resolvents generated when bucketi is processed are either tautologies, or they are subsumed

by clauses in bucket1; :::; bucketi�1. An ordering has extended zero diversity i� all its buck-

ets have extended zero diversity. A theory has extended zero diversity i� there exists an

extended-zero-diversity ordering of its variables.

Theorem 10: Algorithm recognize-extended-zero-div (see Figure 5) is guaranteed to rec-

ognize extended zero diversity.

15

recognize-extended-zero-div(')

1. For i = n to 1 do

2. Find a letter Q such that all its resolvents over the theory 'i = ' � [n
j=i+1bucketj are

subsumed by 'i. If no such letter exists declare failure. Else put Q as ith in the ordering.

Figure 5: Algorithm recognizing extended zero diversity

Proof: Let S denote the set of variables of a theory '. Assume that there exists an

extended-zero-diversity ordering d of variables in S, but the algorithm could not �nd any

such ordering. In other words, at some step i, after Qn; :::; Qi+1 were selected, the algorithm

was not able to �nd any extended-zero-diversity variable among Si = S � [n
j=i+1Qj. Now,

let Q be the highest variable in S w.r.t. d. Then any resolvent obtained in Q's bucket

is subsumed by clauses in lower buckets of d. Those buckets correspond to the variables

in Si � fQg and, possible, some of Qn; :::; Qi+1. Now we delete all the clauses containing

Qn; :::; Qi+1 from those buckets, and the resulting theory will be exactly 'i. But then then

all resolvents in Q's bucket are subsumed in the buckets of Si � fQg, not in any one of

Qn; :::; Qi+1 (subsumed clause should include all the variables of the subsuming clause), i.e.

subsumed by 'i. This contradicts our assumption. 2

Theorem 11: The complexity of the algorithm recognize zero-diversity is O(n2 � j'j3),

where j'j is the number of clauses in '.

Proof: For each variable Q at the i-th step of the algorithm O(j'j2) clauses are generated

by resolving over this variable, and each clause is checked for subsumption in O(j'j) time,

which yields O(j'j3) complexity of checking a variable for extended zero diversity. The

algorithm performs n steps, checking no more than n variables at each step, i.e. the total

bound on algorithm's complexity is O(n2 � j'j3). 2

16

DP-backtracking(')

Input: A cnf theory '.

Output: A decision of whether ' is satis�able.

1. Unit propagate(');

2. If the empty clause generated return(false);

3. else if all variables are assigned return(true);

4. else

5. Q = some unassigned variable;

6. return(DP-backtracking(' ^Q) _

DP-backtracking(' ^ :Q))

Figure 6: Davis-Putnam procedure

5 Bounded directional resolution

Since the algorithm directional resolution is time and space exponential in the worst case,

we propose an approximate algorithm called bounded directional resolution (BDR). The al-

gorithm records clauses of size k or less when k is a constant. Consequently, its complexity

is polynomial in k. Algorithm bounded directional resolution parallels algorithms for direc-

tional k-consistency in constraint satisfaction problems [7].

6 Experimental evaluation

In this section we report experimental results demonstrating advantages and drawbacks of

the algorithms directional resolution (DR), bounded directional resolution (BDR), and DP-

backtracking on problems with di�erent structures. A combination of the last two algorithms

called BDR-DP is proposed as an overall most e�cient algorithm among them.

Directional resolution has been implemented in accordance with the algorithm described

in section 3. DP-backtracking is a version of the Davis-Putnam procedure (see Figure 6)

17

~A B ~C
A ~B ~C

 E F G
E ~F G

A ~F ~H ~ I ~J~G I

H I ~J

Figure 7: An example of a theory with the chain structure

that uses a loop construction instead of recursion in order to increase space e�ciency. The

algorithm has been also augmented with the 2-literal clause heuristic proposed in [4]. The

heuristic suggests to instantiate next a variable that would cause the largest number of unit

propagations. The number of possible unit propagations is approximated by the number of 2-

literal clauses in which the variable appears. The modi�ed version signi�cantly outperforms

DP-backtracking without this heuristic [4]. In order to �nd a solution, DR was followed

by DP-backtracking without the 2-literal clause heuristic so that the order of variables was

�xed. As the theory dictates, no deadends occur when DP-backtracking runs after DR on the

same ordering, and the time it takes is linear in the size of DR's output theory. Algorithm

BDR, since it is incomplete for satis�ability, was followed by DP-backtracking augmented

with the 2-literal clause heuristic. We call this combination BDR-DP.

We tested the algorithms on di�erent orderings of variables: input ordering as used by

the random problem generator, min-width ordering, and min-diversity ordering. Given an

interaction graph, min-width ordering selects a variable with the smallest degree, and puts

it last in the ordering; the node is eliminated from the graph and the ordering continues

recursively. Min-diversity ordering was described earlier.

In order to test the algorithms on problems with di�erent structures several random

generators were used. Uniform k-cnfs were obtained using the generator proposed in [17].

It takes as an input the number of variables n, the number of clauses m, and the number

of literals per clause k, and obtains each clause by choosing k variables randomly from

the set of n variables and by determining the polarity of each literal with probability p =

0.5. Di�erent values of p were also used. We did not check clause uniqueness since for

18

large number of variables it is unlikely that identical clauses will be generated. Our second

generator, called mixed cnfs, produces theories containing clauses of length k1 or k2. The

third generator, called chains, obtains a sequence of n independent uniform k-cnf theories

(called subtheories), and connects them in a chain by (n�1) 2-cnf clauses. Each 2-cnf clause

contains variables from two consecutive subtheories in the chain (see Figure 7). Similarly,

we connected sequences of independent theories into a tree structure.

Both chains and tree-structures described above belong to a class of random embeddings

in k-trees [1]. We implemented a generator, called (k;m)-trees, which generalizes the idea

of k-trees. A (k;m)-tree is a tree of cliques, each having (k + m) nodes, where k is the

size of intersection between each two neighbouring cliques. Therefore, conventional k-trees

are (k; 1)-trees according to our de�nition. The (k;m)-tree generators takes as an input k,

m, the number of cliques in a (k;m)-tree Ncliques, and the number of clauses to be added

per each new clique, Nclauses. It generates the �rst clique of size k + m with Nclauses

clauses in it, then, until Ncliques are generated, it chooses randomly a previously generated

clique, randomly selects k variables out of this clique, adds m new variables and generates

Nclauses clauses on the new clique. We should notice that Nclauses is not the number of

clauses per each clique, because each new clique shares some variables with the previously

(and, possible, future) generated cliques. The induced width of a (k;m)-trees is bounded by

k +m� 1.

6.1 Results for Problems with Uniform Structure

We recorded CPU time for all algorithms, and the number of deadends for DP-backtracking.

We recorded also the number of new clauses generated by DR, the maximal size of the

generated clauses, and the induced width. The number of experiments per each data point

is reported in the �gures.

We compared DP-backtracking with DR on uniform k-cnfs for k=3,4,5 and on mixed

theories. In all these cases DP-backtracking signi�cantly outperforms DR. It was observed

that the complexity of DR indeed grows exponentially with the size of problems (see Figure

19

12010080604020
.01

.1

1

10

100

1000
DP-backtracking
DR

 DR vs. DP-backtracking
 Uniform 3-CNF, 20 variables
 20 experiments per each point

Number of clauses

C
P

U
 t

im
e

(l
og

 s
ca

le
)

750700650600550500
0

10

20

30

40

50

DP-Backtracking
BDR-DP (bound = 3)

BDR-DP vs. DP-backtracking
Uniform 3-CNF, 150 variables
40 experiments per each point

Number of clauses

C
P

U
 t

im
e

(a) DR and DP-backtracking (b) BDR-DP and DP-backtracking

Figure 8: DP-backtracking, DR and BDR on uniform 3-cnfs

8a). We show the results for 3-cnfs with 20 variables only. On larger problems DR often ran

out of memory due to the large number of generated clauses.

Since DR was so ine�cient for solving uniform k-cnfs we used Bounded Directional Res-

olution (BDR) followed by DP-backtracking (BDR-DP) using di�erent bounds. Our exper-

iments show that BDR generates almost no new clauses when running on uniform k-cnf

theories with a bound k or less. On the other hand, when the bound is strictly greater

than k, running just BDR takes too long. The only promising case occurs when the bound

equals k. In this case relatively few clauses were added by BDR which therefore ran much

faster. DP-backtracking often ran a little faster on the BDR's output theory than on the

original theory, and, therefore, the combined algorithm was somewhat more e�cient than

DP-backtracking (see Figure 8b). Our experiments have shown that on larger problems

BDR-DP becomes more e�cient relatively to DP-backtracking.

BDR-DP with bound 3 was also more e�cient than DP-backtracking on random 3-cnfs

when varying the probability of a literal to appear positive in a clause. The results of running

BDR with bounds 3 and 4 on random cnfs with p = 0:7 are shown in Table 1.

Again, as in the case when p = 0:5, we can see that BDR-DP with bound 3 is almost

20

Table 1: DP-backtracking (DPB) versus BDR-DP with bounds 3 and 4 on uniform 3-cnfs

200 variables

Probability of a literal to appear positive = 0.7

Mean values on 20 experiments per each row

Num DPB: BDR-DP (bound 3) BDR-DP (bound 4)

of Time Dead BDR DP Dead Number BDR DP Dead Number

cls ends time time ends of new time time ends of new

cls cls

900 1.1 0 0.3 1.1 0 11 8.4 1.7 1 657

1000 2.7 48 0.4 1.6 14 12 13.1 2.7 21 888

1100 8.8. 199 0.6 27.7 685 18 20.0 50.4 729 1184

1200 160.2 3688 0.8 141.5 3271 23 28.6 225.7 2711 1512

1300 235.3 5027 1.0 219.1 4682 28 39.7 374.4 4000 1895

1400 155.0 3040 1.2 142.9 2783 34 54.4 259.0 2330 2332

always more e�cient that DP-Backtracking. Running BDR with larger bounds does not

look promising, because even for bound 4 the preprocessing phase takes too long.

6.2 Results on chains

The behaviour of the algorithms on chains (and k-tree embeddings in general) di�ers dra-

matically from that on uniform instances. We found here extremely hard instances for

DP-backtracking, orders of magnitude harder than those generated by the uniform model.

In Table 2 we compare the performance of DP-backtracking on uniform 3-cnf problems and

on 3-cnf chain problems with the same number of clauses. The problems contain 25 sub-

theories with 5 variables and 9 to 23 3-cnf clauses per subtheory, as well as 24 2-cnf clauses

connecting subtheories in the chain. The corresponding uniform 3-cnf problems have 125

variables and 249 to 599 clauses. We tested DP-backtracking on both classes of problems.

21

Table 2 shows the mean values on 20 experiments where the number of experiments is per a

constant problem size, i.e. per each row in the table. The min-diversity ordering have been

used for each instance.

Table 2: DP-backtracking on uniform 3-cnfs and on chain problems of the same size

3-cnfs theories with 125 variables

Mean values on 20 experiments per each row

Num Uniform 3-cnfs 3-cnf chains

of % Time Dead % Time Dead

clau Sat 1st ends Sat 1st ends

ses solu solu

tion tion

249 100 0.2 0 100 0.3 0

299 100 0.2 0 100 0.4 1

349 100 0.2 3 70 9945.7 908861

399 100 0.2 2 25 2551.1 207896

449 100 0.4 17 15 185.2 13248

499 95 3.7 244 0 2.4 160

549 35 8.5 535 0 0.9 9

599 0 6.6 382 0 0.1 6

Most of the extremely hard chain problems with many deadends were found around

the cross-over point, where about 50% of generated chain problems were satis�able. As

it was shown for uniform 3-cnfs [17, 4], the percentage of satis�able problems and their

complexity depend on the clauses/variables ratio. Small values of that ratio correspond

to underconstrained problems most of which have many solutions and are easily solved

by DP-backtracking. When the ratio is large, the problems become overconstrained, and

mostly unsatis�able. On the average, overconstrained problems are not very hard for DP-

22

Table 3: DR and DP-backtracking on 3-cnf chains

3-cnf chains with 125 variables: 25 subtheories, 5 variables in each

Mean values on 20 experiments per each row

Num SAT: DP-backtracking DR

of % Time: Dead Time: 1st Time: 1st Number Size of Induced

cls solution ends SAT solution of new max width

only clauses clause

249 100 0.3 0 0.6 0.3 61 4.1 5.1

299 100 0.4 1 1.4 0.3 105 4.1 5.3

349 70 9945.7 908861 2.2 0.3 131 4.0 5.3

399 25 2551.1 207896 2.8 0.2 131 4.0 5.3

449 15 185.2 13248 3.7 0.3 135 4.0 5.5

499 0 2.4 160 3.8 0.0 116 3.9 5.4

549 0 0.9 9 4.0 0.0 99 3.9 5.2

599 0 0.1 6 4.6 0.0 93 3.6 5.2

backtracking, which detects inconsistency early in the search. Most of the hard problems

appear around the so called cross-over point, the transition point from mostly satis�able

to mostly unsatis�able problems. According to experimental studies, for uniform 3-cnfs the

transition occurs at the clauses/variables ratio approximately equal to 4.3. We observed

that the crossover point for chains shifted towards a smaller ratio(see Table 2). Many chain

problems around the crossover point were orders of magnitude harder for DP-backtracking

than uniform 3-cnf problems of the same size, and also harder than average uniform 3-cnf

problems at their crossover point. Directional resolution, on the other hand, behaved in a

tamed way on chains and was sometimes more than 1000 times faster than DP-backtracking.

In Table 3 we compare DP-backtracking with DR on the same chain problems as in Table

2. A detailed illustration in Table 4 lists the results on selected hard instances (number of

23

Table 4: DR and DP-backtracking on hard chain instances (number of deadends > 5000)

3-cnf chains with 125 variables: 25 subtheories, 5 variables in each

Num SAT: DP-backtracking DR

of 0 or 1 Time: Dead Time: 1st

cls 1st solution ends solution

349 0 41163.8 3779913 1.5

349 0 102615.3 9285160 2.4

349 0 55058.5 5105541 1.9

399 0 74.8 6053 3.6

399 0 87.7 7433 3.1

399 0 149.3 12301 3.1

399 0 37903.3 3079997 3.0

399 0 11877.6 975170 2.2

399 0 841.8 70057 2.9

449 1 655.5 47113 5.2

449 0 2549.2 181504 3.0

449 0 289.7 21246 3.5

deadends exceeds 5000) from Table 3. We see that extremely hard instances (more than

100000 deadends), although rare, contribute most to the mean values.

All the experiments reported so far used min-diversity ordering. When experimenting

with di�erent orderings (input ordering and min-width ordering) we observed similar results

(Figure 9). We also ran a small set of experiments with the actual code of tableau [4], that

implements the Davis-Putnam procedure with various heuristics. Its behaviour on chain

problems was similar to the one of our implementation. Some problem instances that were

hard for our version of DP-backtracking were easy for tableau, however there was a subset

of instances that were extremely di�cult for both algorithms.

24

20151050
.1

1

10

100

DP-splitting
DP-elimination

 3-CNF CHAINS
 15 subtheories, 4 variables in each
 ’Initial ’ ordering
 500 experiments

Clauses per subtheory

C
P

U
-t

im
e

(l
og

-s
ca

le
)

20151050
.01

.1

1

10

100

DP-backtracking

DR

 3-CNF CHAINS
 15 subtheories, 4 variables in each
 Min-width ordering
 100 experiments

Clauses per subtheory

C
P

U
-t

im
e

(l
og

 s
ca

le
)

(a) input ordering (b) min-width ordering

Figure 9: DR and DP-Backtracking on chains with di�erent orderings

Almost all the hard chain problems (for DP-backtracking) were unsatis�able. One plau-

sible explanation is the existence of an unsatis�able subtheory that is last in the ordering.

If all other subtheories are satis�able, then DP-backtracking will try to re-instantiate vari-

ables from the satis�able subtheories each time it encounters a deadend. Figure 10 shows an

example of a chain of satis�able theories where an unsatis�able one appears almost at the

very end of ordering. Min-diversity and min-width orderings do not guarantee that we avoid

a situation like that. Not knowing the structure hurts DP-backtracking. Choosing the right

ordering would help but this may be hard to recognize without some preprocessing. Other

variants of backtracking that are capable of exploiting the structure like backjumping[13, 9]

would avoid such useless re-instantiation of variables. Experiments with backjumping on

the instances in Table 3 con�rmed that it outperforms DP-backtracking by far (Figure 11).

When experimenting with BDR-DP on chains we observed that all chain instances hard

for DP-backtracking have been solved easily by BDR-DP. The performance of BDR-DP on

chains was comparable to DR.

25

sat=1 sat=1 sat=1 sat=1 sat= 0

Figure 10: Illustration of a \hard chain problem"

690640590540490440390340290240
.1

1

10

100

1000

10000

100000

DP-backtracking

DR
Backjumping

BDR-DP (bound=3)

DP-Backtracking, DR, BDR-DP and
 Backjumping on 3-CNF chains
25 subtheories, 5 variables in each
 50 experiments per each point

Number of clauses

C
P

U
 t

im
e

(l
og

 s
ca

le
)

Figure 11: DP-Backtracking, DR and Backjumping on chains

26

6.3 Results on k-m-trees

The behaviour of both DP-backtracking and DR on (k;m)-trees is similar to the one we

have observed on chains. Indeed, chains are (2;m)-trees. For �xed k, m and the num-

ber of cliques in a (k;m)-tree, we varied the number of clauses per clique and discovered,

again, exceptionally hard problems for DP-backtracking around the (k;m)-trees' crossover

point. Experiments on 1-4-trees and on 2-4-trees, with total of 100 cliques, show that DP-

backtracking exceeded the limit of 20000 deadends (around 700 seconds) on 40% of 1-4-trees

with Nclauses = 13, and on 20% of 2-4-trees with Nclauses = 12. Table 5 summarizes the

results on (k;m)-trees. We terminate the algorithm once it reaches more than 20000 dead-

ends. This explains why the di�erence in CPU time between BDR-DP and DP-backtracking

is smaller than that on chains where we ran DP-backtracking until completion.

As in the case of chains, we observed that most of the exceptionally hard problems

were unsatis�able. The frequency of those hard instances and their hardness depend on the

parameters of (k;m)-trees. For �xed m, when k is small, and the number of cliques is large,

hard instances for DP-backtracking appear more often. The intuitive explanation is similar

to one given for chains: we are likely to encounter a long sequence of almost independent

(because the intersection size between cliques, k, is small) satis�able subtheories which may

end up with an unsatis�able subtheory causing many deadends. If at the same time m is

reasonably small than DR and BDR easily recognize the unsatis�able subtheory.

Note that in one case a satis�able instance that was relatively easy for DP-backtracking

became very hard for the same algorithm after preprocessing by BDR. The problem is a 3-4-

tree with 80 clusters and 9 clauses per cluster, solved by DP-backtracking in about 3 seconds

with only 58 deadends. After preprocessing, DP-backtracking encountered 10000 deadends

and was terminated without �nding a solution after 227 seconds. It means that preprocessing

(BDR) could hurt backtracking (DP) in some rare cases. Still, we concluded that BDR-DP

is the overall superior among the algorithms considered in the paper: it is more e�cient than

DP-Backtracking and backjumping on uniform problems, although not signi�cantly, and it

recognizes easily unsatis�able subproblems having huge amount of deadends if processed by

27

DP-backtracking.

6.4 Directional Resolution as Knowledge Compilation

Directional resolution may be viewed as a knowledge compilation algorithm. Our experi-

ments show that answering queries on the directional extension of DR may be signi�cantly

faster than that on the original theory.

In order to determine if a clause is entailed by a theory, we add the negation of each

literal in the clause to the theory and run DP-backtracking. In Table 6 we compare the time

complexity of query answering for DP-backtracking before and after running DR, on a 3-cnf

chain instance with 20 subtheories each containing 5 variables and 13 clauses. We terminate

DP-backtracking if the number of deadends exceeds 50000. Deciding on satis�ability of that

chain problem was also hard for DP-backtracking and took 360.6 seconds when DR solved it

in just 0.6 seconds. Answering some queries was easy for DP-backtracking, but most of them

required time comparable to that of deciding satis�ability. In general, query answering results

on di�erent random problem generators were similar to those for satis�ability checking. We

observed that running DR as a preprocssing algorithm on chains is extremely useful, because

on chains (and (k;m)-trees in general) the size of the directional extension is bounded, and

query answering on the compiled theory is practically backtrack-free.

7 Related work and conclusions

Directional resolution belongs to a family of elimination algorithms �rst analyzed for opti-

mization tasks in dynamic programming [2] and later used in constraint satisfaction [18, 7]

and in belief networks [20]. The complexity of all those elimination algorithms is a function

of the induced width w� of the undirected graph characteristic of each problem instance.

Although it is known that determining the w� of an arbitrary graph is NP-hard, useful

heuristics for bounding w� are available.

Since propositional satis�ability is a special case of constraint satisfaction, the induced-

28

width could be obtained by mapping a propositional formula into the relational framework

of a constraint satisfaction problem (see [3]), and then applying adaptive consistency, the

elimination algorithm tailored for constraint satisfaction problems [7, 18]. We have recently

shown, however, that this kind of pairwise elimination operation as performed by directional

resolution is more e�ective. And, while it can be extended to any row-convex constraint

problem [21] or to every 1-tight relations [22] it cannot decide consistency for arbitrary

multi-valued networks of relations.

The paper makes three main contributions. First, we revive the old Davis-Putnam al-

gorithm (herein called directional resolution) and mitigate the pessimistic analyses of DP-

elimination by showing that the algorithm admits some known tractable classes for satis-

�ability and constraint satisfaction, including 2-cnfs, Horn clauses, causal networks, and

bounded-width networks. Second, we identify new tractable classes based on the notion

of diversity . Third, our empirical tests show that, while on uniform theories directional

resolution is indeed ine�ective, on problems with special structures, like chains and k-trees,

having low w�, directional resolution greatly outperforms DP-backtracking which is one of

the most e�ective satis�ability algorithm known to date.

In conclusion, although directional resolution outperformsy DP-backtracking on some

classes of problems, it is not advocated as an e�ective method for general satis�ability

problems. Even when the structure is right, there are other structure-exploiting algorithms,

like backjumping, that are likely to be more e�ective than BDR-DP in �nding a satisfying

solution. What we do advocate is that structure-based components should be integrated,

together with other heuristics (like unit propagation), into any algorithm that tries to solve

satis�ability e�ectively.

At the same time, we have shown that, for some structured domains, directional resolu-

tion is an e�ective knowledge compilation procedure, compiling knowledge into a form that

facilitates e�cient model generation and query processing.

29

Acknowledgements

We would like to thank Dan Frost, Eddie Schwalb and Rachel Ben-Eliyahu for comments

on this paper. Also we would like to thank Dan Frost for running experiments with the

backjumping algorithm.

30

References

[1] Arnborg, S., Corneil D.G., and Proskurowski A., Complexity of Finding Embedding in

a k-tree, SIAM J. Algebraic Discrete Methods 8(2):177-184 (1987).

[2] Bertele,U. and Brioschi, F., Nonserial Dynamic Programming, Academic Press, New

York, 1972.

[3] Ben-Eliyahu, R., and Dechter, R., Default Logic, Propositional Logic and Constraints, in

Proceedings of the National Conference on Arti�cial Intelligence (AAAI-91), July 1991,

Anaheim, CA, pp. 379-385.

[4] Crawford, J.M. and Auton, L.D., Experimental Results on the Cross-over Point in Sat-

is�ability Problems, in Proceedings of AAAI-93, 1993, pp 21-27.

[5] Davis, M., Logemann, G., and Loveland D., A Machine Program for Theorem Proving,

Communications of the ACM 5:394-397 (1962).

[6] Davis, M. and Putnam, H., A Computing Procedure for Quanti�cation Theory, J. ACM

7:201-215 (1960).

[7] Dechter, R., and Pearl, J. Network-based Heuristics for Constraint Satisfaction Problems,

Arti�cial Intelligence 34:1-38 (1987).

[8] Dechter, R., and Pearl, J., Directed Constraint Networks: A Relational Framework for

Causal Models, in Proceedings of the Twelfth International Joint Conference on Arti�cial

Intelligence (IJCAI-91), Sidney, Australia, August 1991, pp. 1164-1170.

[9] Dechter, R., Enhancement Schemes for Constraint Processing: Backjumping, Learning

and Cutset Decomposition, Arti�cial Intelligence, 41:273-312 (1990).

[10] Even, S., Itai, A., and Shamir, A., On the Complexity of Timetable and Multi-

Commodity Flow", SIAM Journal on Computing, 5:691-703 (1976).

31

[11] Freuder, E.C., A Su�cient Condition for Backtrack-Free Search, J. ACM, 29:24-32

(1982).

[12] Galil, Z., On the Complexity of Regular Resolution and the Davis-Putnam Procedure,

Theoretical Computer Science 4:23-46 (1977).

[13] Gashnig, J., Performance Measurement and Analysis of Certain Search Algorithms,

Technical Report CMU-CS-79-124, Carnegie Mellon University, 1979.

[14] Goerdt, A., Davis-Putnam Resolution Versus Unrestricted Resolution, Annals of Math-

ematics and Arti�cial Intelligence, 6:169-184 (1992).

[15] Goldberg, A., Purdom P., and Brown, C., Average Time Analysis of Simpli�ed Davis-

Putnam Procedures, Information Processing Letters, 15:72-75 (1982).

[16] McAllester, D., Private communication.

[17] Mitchell, D., Selman, B., and Levesque, H., Hard and Easy Distributions of SAT Prob-

lems, in Proceedings of AAAI-92, 1992, pp. 459-465.

[18] Seidel, R., A New Method for Solving Constraint Satisfaction Problems, in Proceed-

ings of the Seventh international joint conference on Arti�cial Intelligence (IJCAI-81),

Vancouver, Canada, August 1981, pp. 338-342.

[19] Selman, B., Levesque H., and Mitchell, D., A New Method for Solving Hard Satis�abil-

ity Problems, in Proceedings of the Tenth National Conference on Arti�cial Intelligence

(AAAI-92), San Jose, CA, July 1992.

[20] Lauritzen, S.L. and Spigelholter, D.J., Local Computations With Probabilities on

Graphical Structures and Their Applications to Expert Systems, Journal of the Royal

Statistical Society, Series, B, 5:65-74 (1988).

[21] van Beek, P. and Dechter, R., On the Minimality and Decomposability of Row-Convex

Constraint Networks, Journal of the Association of Computing Machinery (JACM), In

press, 1995.

32

[22] van Beek, P. and Dechter, R., Constraint Tightness vs Global Consistency, November,

1994. Submitted manuscript.

33

Table 5: BDR-DP (bound 3) and DP-backtracking (termination at 20000 deadends) on

(k;m)-trees

Mean values on 50 experiments per each row

DP-backtracking BDR-DP with bound=3

Time: Dead Time Time: 1st Dead Number

1st solution ends BDR only solution ends of new

DP after BDR DP after BDR clauses

1-4-tree, Nclauses = 11, Ncliques = 100

Total: 401 variable, 1100 clauses

233.2 7475 5.4 17.7 2 298

1-4-tree, Nclauses = 12, Ncliques = 100

Total: 401 variable, 1200 clauses

352.5 10547 7.5 1.2 7 316

1-4-tree, Nclauses = 14, Ncliques = 100

Total: 401 variable, 1400 clauses

1-4-tree, Nclauses = 13, Ncliques = 100

Total: 401 variable, 1300 clauses

328.8 9182 9.8 0.25 3 339

1-4-tree, Nclauses = 14, Ncliques = 100

Total: 401 variable, 1400 clauses

174.2 4551 11.9 0.0 0 329

2-4-tree, Nclauses = 12, Ncliques = 100

Total: 402 variable, 1200 clauses

160.0 4633 6.0 1.6 25 341

2-4-tree, Nclauses = 13, Ncliques = 100

Total: 402 variable, 1300 clauses

95.4 2589 8.3 0.1 0 390

34

Table 6: Query processing on a 3-cnf chain (20 subtheories, 5 variables in each)

20 queries of length 1

DP before DR DP afterDR

Time Deadends Time Deadends

0.1 13 0.0 1

0.0 1 0.0 1

224.2 30811 0.0 1

296.2 40841 0.0 1

240.5 33234 0.0 1

34.1 4753 0.0 1

34.0 4754 0.0 1

0.0 1 0.0 1

313.0 43324 0.0 1

362.0 50001 0.0 1

0.1 14 0.0 1

362.8 50001 0.0 1

361.2 50001 0.0 1

0.0 1 0.0 1

0.7 91 0.0 1

363.0 50001 0.0 1

68.1 9505 0.0 1

295.5 40842 0.0 1

0.0 1 0.0 1

367.4 50001 0.0 1

35

