
Constraint Satisfaction

Rina Dechter

Department of Computer and Information Science

University of California, Irvine

Irvine, California, USA 92717

dechter@@ics.uci.edu

A constraint satisfaction problem (csp) de�ned over a constraint network

consists of a �nite set of variables, each associated with a domain of values,

and a set of constraints. A solution is an assignment of a value to each

variable from its domain such that all the constraints are satis�ed. Typical

constraint satisfaction problems are to determine whether a solution exists,

to �nd one or all solutions and to �nd an optimal solution relative to a given

cost function. An example of a constraint satisfaction problem is the well

known k-colorability. The problem is to color, if possible, a given graph

with k colors only, such that any two adjacent nodes have di�erent colors. A

constraint satisfaction formulation of this problem associates the nodes of the

graph with variables, the possible colors are their domains and the inequality

constraints between adjacent nodes are the constraints of the problem. Each

constraint of a csp may be expressed as a relation, de�ned on some subset

of variables, denoting their legal combinations of values. As well, constraints

1

can be described by mathematical expressions or by computable procedures.

Another known constraint satisfaction problem is SATis�ability; the task of

�nding the truth assignment to propositional variables such that a given

set of clauses are satis�ed. For example, given the two clauses (A _ B _

:C); (:A _D), the assignment of false to A, true to B, false to C and false

to D, is a satisfying truth value assignment.

The structure of a constraint network is depicted by a constraint graph

whose nodes represents the variables and any two nodes are connected if

the corresponding variables participate in the same constraint. In the k-

colorability formulation, the graph to be colored is the constraint graph. In

our SAT example the constraint graph has A connected to D and A;B and

C are connected to each other.

Constraint networks have proven successful in modeling mundane cog-

nitive tasks such as vision, language comprehension, default reasoning, and

abduction, as well as in applications such as scheduling, design, diagnosis,

and temporal and spatial reasoning. In general, constraint satisfaction tasks

are computationally intractable (NP-hard) (see COMPUTATIONAL COM-

PLEXITY).

Techniques for processing constraints can be classi�ed into two cate-

gories:(1) search and (2) consistency inference, and these techniques inter-

act. Search algorithms traverse the space of partial instantiations while

consistency-inference algorithms reason through equivalent problems. Search

is either systematic and complete, or stochastic and incomplete. Likewise,

consistency-inference has complete solution algorithms (e.g., variable-elimination),

or incomplete versions in the form of local consistency algorithms.

2

Consistency inference. Local consistency (or consistency-enforcing, or

constraint propagation) algorithms [15, 13, 6] are polynomial algorithms that

transform a given constraint network into an equivalent, yet more explicit

network by deducing new constraints to be added onto the network. In-

tuitively, a consistency-enforcing algorithm will make any partial solution

of a small subnetwork extensible to some surrounding network. For exam-

ple, the most basic consistency algorithm, called arc-consistency ensures that

any legal value in the domain of a single variable has a legal match in the

domain of any other selected variable. Path-consistency ensures that any

consistent solution to a two-variable subnetwork is extensible to any third

variable, and, in general, i-consistency algorithms guarantee that any locally

consistent instantiation of i � 1 variables is extensible to any ith variable.

Enforcing i-consistency can be accomplished in time and space exponential

in i. Algorithms for i-consistency frequently decide inconsistency.

A network is said to be globally consistent, if it is i-consistent for every i.

This means that a solution can be assembled by assigning values using any

variable ordering without encountering any dead-end, namely in a backtrack-

free manner. However, it is enough to posses directional global consistency

relative to a given ordering, only. Indeed, algorithm adaptive consistency, a

variable elimination algorithm, enforces global consistency in a given order

only, such that every solution can be extracted with no dead-ends along

this ordering. Another related algorithm called tree-clustering compiles the

given constraint problem into an equivalent tree of subproblems [4] whose

respective solutions can be combined into a complete solution, e�ciently.

Adaptive-consistency and tree-clustering are time and space exponential in

3

a parameter of the constraint graph called induced-width (or tree-width)

[1, 3].

When a problem is computationally hard for adaptive-consistency it can

be solved by bounding the amount of consistency-enforcing (e.g. arc- or

path-consistency), and augmenting the algorithm with a search component.

Generally speaking, search will bene�t from network representations that

have a high level of consistency. However, because the complexity of enforc-

ing i-consistency is exponential in i, there is a trade-o� between the e�ort

spent on consistency inference and that spent on search. Theoretical and

empirical studies of this tradeo�, prior to- or during search, aims at identi-

fying a problem-dependent cost-e�ective balance [10, 17, 21, 5].

Search. The most common algorithm for performing systematic search is

backtracking, which traverses the space of partial solutions in a depth-�rst

manner. At each step the algorithm extends a partial solution by assigning

a value to one more variable. When a variable is encountered such that none

of its values are consistent with the partial solution (a situation referred to

as a dead-end), backtracking takes place. The algorithm is time exponential,

but require only linear space.

Improvements of backtracking algorithm have focused on the two phases

of the algorithm: moving forward (look-ahead schemes) and backtracking

(look-back schemes) [2]. When moving forward, to extend a partial solu-

tion, some computation (e.g., arc-consistency) is carried out to decide which

variable and value to choose next. For variable orderings, variables that max-

imally constrain the rest of the search space are preferred. For value selection,

4

however, the least constraining value is preferred, in order to maximize future

options for instantiations [10, 3, 18, 21].

Look-back schemes are invoked when the algorithm encounters a dead-

end. These schemes perform two functions: One, decide how far to backtrack,

by analyzing the reasons for the dead-end, a process often referred to as

backjumping [8]. Two, record the reasons for the dead-end in the form of

new constraints so that the same con
icts will not arise again, known as

constraint learning and no-good recording [23, 2].

Stochastic local search strategies have been recently reintroduced into the

satis�ability and constraint satisfaction literature under the umbrella name

GSAT (Greedy SATis�ability) (see GREEDY LOCAL SEARCH). These meth-

ods move in hill-climbingmanner in the space of complete instantiations to all

the variables [20]. The algorithm improves its current instantiation by `
ip-

ping' a value of a variable that maximize the number of constraints satis�ed.

Such search algorithms are incomplete, may get stuck in a local maxima and

cannot prove inconsistency. Nevertheless, when equipped with some heuris-

tics for randomizing the search or for revising the guiding criterion function

(constraint rewighting), they prove successful in solving large and hard prob-

lems that are frequently hard for backtracking-style search [22].

Structure-driven algorithms cut across both search and consistency-inference

algorithms. These techniques emerged from an attempt to topologically char-

acterize constraint problems that are tractable. Tractable classes were gen-

erally recognized by realizing that enforcing low-level consistency (in polyno-

mial time) guarantees global consistency for some problems. The basic net-

work structure that support tractability is a tree [14]. In particular, enforcing

5

arc-consistency on a tree-structured network ensures global consistency along

some ordering. Most other graph-based techniques can be viewed as trans-

forming a given network into a meta-tree. We have already seen adaptive-

consistency, tree-clustering, and constraint learning, all of which are time and

space exponentially bounded by the tree-width of the constraint graph, the

cycle-cutset scheme combining search and inference, which is exponentially

bounded by the constraint graph's cycle-cutset, the bi-connected component

method, which is bounded by the size of the constraint graph's largest bi-

connected component [6]; and backjumping, which is exponentially bounded

by the depth of the graph's depth-�rst-search tree. The latter three methods

require only polynomial space.

Tractable classes were also identi�ed by the properties of the constraints

themselves. Such tractable classes exploit notions such as tight domains and

tight constraints [25], row-convex constraints [24], implicational and max-

ordered constraints [11, 16], as well as causal networks. A connection

between tractability and algebraic closure was recently discovered [16].

Finally, special classes of constraints associated with temporal reasoning

has received much attention in the last decade. Tractable classes include

subsets of qualitative interval algebra [9], expressing relationships such as

time interval A overlaps or precede time interval B, as well as quantitative

binary linear inequalities over the Real numbers of the form X � Y � a [19]

(see TEMPORAL REASONING).

Evaluation of algorithms. Theoretical evaluation of constraint satisfac-

tion algorithms is accomplished primarily by worst-case analysis, (i.e., deter-

mining a function of problem's size that upper bounds the algorithm's per-

6

formance over all problems of that size) or by dominance relationships [12].

However, as worst-case analysis by its nature is too pessimistic and often does

not re
ect actual performance, empirical evaluation is necessary. Normally, a

proposed algorithm is evaluated empirically on a set of randomly generated

instances taken from the relatively \hard" \phase transition" region [22].

Other benchmarks based on real-life applications such as scheduling are also

used. Currently, dynamic variable ordering and value selection heuristics

that use various forms of constraint inference, backjumping as well as con-

straint learning, have been shown to be very e�ective for various problem

classes. [17, 7, 21].

References

[1] S. Arnborg and A. Proskourowski. Linear time algorithms for np-hard

problems restricted to partial k-trees. Discrete and Applied Mathemat-

ics, 23:11{24, 1989.

[2] R. Dechter. Enhancement schemes for constraint processing: Backjump-

ing, learning and cutset decomposition. Arti�cial Intelligence, 41:273{

312, 1990.

[3] R. Dechter and J. Pearl. Network-based heuristics for constraint satis-

faction problems. Arti�cial Intelligence, 34:1{38, 1987.

[4] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti-

�cial Intelligence, pages 353{366, 1989.

7

[5] R. Dechter and I. Rish. Directional resolution: The davis-putnam pro-

cedure, revisited. In Principles of Knowledge Representation and Rea-

soning (KR-94), pages 134{145, 1994.

[6] E. C. Freuder. A su�cient condition for backtrack-free search. Journal

of the ACM, 29(1):24{32, 1982.

[7] D. Frost and R. Dechter. In search of best search: An empirical evalu-

ation. In AAAI-94: Proceedings of the Twelfth National Conference on

Arti�cial Intelligence, pages 301{306, Seattle, WA, 1994.

[8] J. Gaschnig. Performance measurement and analysis of search algo-

rithms. Technical Report CMU-CS-79-124, Carnegie Mellon University,

1979.

[9] M. C. Golumbic and R. Shamir. Complexity and algorithms for rea-

soning about time: a graph-theoretic approach. Journal of the ACM,

40:1108{1133.

[10] M. Haralick and G. L. Elliot. Increasing tree-search e�ciency for con-

straint satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.

[11] L. M. Kirousis. Fast parallel constraint satisfaction. Arti�cial Intelli-

gence, 64:147{160, 1993.

[12] G. Kondrak and P. van Beek. A theoretical valuation of selected algo-

rithms. Arti�cial Intelligence, 89:365{387, 1997.

[13] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intel-

ligence, 8(1):99{118, 1977.

8

[14] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial

network consistency algorithms for constraint satisfaction problems. Ar-

ti�cial Intelligence, 25, 1985.

[15] U. Montanari. Networks of constraints: Fundamental properties and

applications to picture processing. Information Sciences, 7(66):95{132,

1974.

[16] D. Cohean P. Jeavons and M. Gyssens. A unifying framework for

tractable constraints. In Constraint Programming (CP95), France, 1995.

[17] P. Prosser. Hybrid algorithms for constraint satisfaction problems. Com-

putational Intelligence, 9(3):268{299, 1993.

[18] P. W. Purdom. Search rearangement backtracking and polynomial av-

erage time. Arti�cial Intelligence, 21:117{133, 1983.

[19] I. Meiri R. Dechter and J. Pearl. Temporal constraint networks. Arti�cial

Intelligence, 49:61{95, 1990.

[20] A.B. Philips S. Minton, M.D. Johnston and P. Laired. Solving large scale

constraint satisfaction and scheduling problems using heuristic repair

methods. In National Conference on Arti�cial Intelligence (AAAI-90),

pages 17{24, Anaheim, CA, 1990.

[21] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in

constraint satisfaction. In ECAI-94, pages 125{129, Amsterdam, 1994.

9

[22] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard

satis�ability problems. In Proceedings of the Tenth National Conference

on Arti�cial Intelligence, pages 440{446, 1992.

[23] M. Stallman and G. J. Sussman. Forward reasoning and dependency-

directed backtracking in a system for computer-aided circuit analysis.

Arti�cial Intelligence, 9(2):135{196, 1977.

[24] P. van Beek and R. Dechter. On the minimality and decomposability of

row-convex constraint networks. Journal of the ACM, 42:543{561, 1995.

[25] P. van Beek and R. Dechter. Constraint tightness and looseness versus

local and global consistency. Journal of the ACM (in press), 1997.

Further readings

References

[1] A. B. Baker. Intelligent Backtracking on constraint satisfaction prob-

lems: experimental and theoretical results. Phd thesis, Graduate school

of the university of Oregon, Oregon 1995.

[2] R. Bayardo and D. Mirankar. A complexity analysis of space-bound

learning algorithms for the constraint satisfaction problem. In AAAI-96:

Proceedings of the Thirteenth National Conference on Arti�cial Intelli-

gence, pages 298{304, 1996.

10

[3] S. Bistarelli and U. Montanari and F Rossi. Semiring-based Constraint

Satisfaction and Optimization. journal of the Association of Computing

Machinery (JACM), volume = "to appear", 1998.

[4] D. A. Cohen M. C. Cooper and P.G. Jeavons. Characterizing tractable

constraints. Arti�cial Intelligence, 65:347{361, 1994.

[5] R. Dechter. Constraint networks. Encyclopedia of Arti�cial Intelligence,

pages 276{285, 1992.

[6] R. Dechter and I. Meiri. Experimental evaluation of preprocessing al-

gorithms for constraint satisfaction problems. Arti�cial Intelligence,

68:211{241, 1994.

[7] R. Dechter and P. van Beek. Local and global relational consistency.

Theoretical Computer Science, pages 283{308, 1997.

[8] R. Dechter and D. Frost. Backtracking algorithms for constraint satis-

faction problems; a survey. Constraints, International Journal, to appear

1998.

[9] D. Frost Algorithms and Heuristics for Constraint Satisfaction Prob-

lems. Phd Thesis, Information and Computer Science, University of

California, Irvine, 1997.

[10] , M. L. Ginsberg. Dynamic backtracking. Journal of Arti�cial Intelli-

gence Research, 1:25-46, 1993.

[11] , V. Kumar. Algorithms for constraint satisfaction problems: a survey,

AI magazine, 13(1), 1992, 32-44.

11

[12] A. K. Mackworth. Constraint Satisfaction. Encyclopedia of Arti�cial

Intelligence, pages 285{293, 1992.

[13] E. Schwalb, and R. Dechter. Processing disjunctions in temporal con-

straint networks. Arti�cial Intelligence, 93(1-2), 29{61, 1997.

[14] E. Tsang. Foundation of Constraint Satisfaction. Academic press, 1993.

12

