UNIVERSITY OF CALIFORNIA

Irvine

Algorithms and Heuristics
for Constraint Satisfaction Problems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Information and Computer Science
by

Daniel Hunter Frost

Committee in charge:
Professor Rina Dechter, Chair
Professor Dennis Kibler

Professor Richard H. Lathrop

1997

©1997
DANIEL HUNTER FROST
ALL RIGHTS RESERVED

The dissertation of Daniel Hunter Frost is approved,
and is acceptable in quality and form for

publication on microfilm:

Committee Chair

University of California, Irvine

1997

i

To Kathy

i1

Contents

List of Figures vii
List of Tables X
Acknowledgements Lo xi
Curriculum Vitae xii
Abstract xiii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Background Lo 3
1.3 Methodology 8
1.4 Related Work oo 13
1.5 Overview of the Dissertation 13
Chapter 2 Algorithms from the Literature 17
2.1 Overview of the Chapter 17
2.2 Definitions 18
2.3 Backtrackingo oo oL 20
2.4 Backmarking oL 25
2.5 Backjumping 26
2.6 Graph-based backjumping o000 30
2.7 Conflict-directed backjumping 32
2.8 Forward checking oL 34
2.9 Arc-consistency 36
2.10 Combining Search and Arc-consistency 39
2.11 Full and Partial Looking Ahead 42
2.12 Variable Ordering Heuristics 43
Chapter 3 The Probability Distribution of CSP Computational
Effort 46
3.1 Overview of the Chapter 46
3.2 Introduction 46

v

3.3 Random Problem Generators 49
3.4 Statistical Background oo o000 52
3.5 Experiments Lo 61
3.6 Distribution Derivations 79
3.7 Related Work 86
3.8 Concluding remarks Lo oL 87
Chapter 4 Backjumping and Dynamic Variable Ordering 89
4.1 Overview of Chapter 89
4.2 Introduction 89
4.3 The BJ+DVO Algorithm 91
4.4 Experimental Evaluation 0000, 93
4.5 Discussion e e e 105
4.6 Conclusions e 107
Chapter 5 Interleaving Arc-consistency 109
5.1 Overview of Chapter 109
5.2 Introduction 110
5.3 Look-ahead Algorithms 111
5.4 First Set of Experiments oo 113
5.5 Variants of Interleaved Arc-consistency 127
5.6 Conclusions e 134
Chapter 6 Look-ahead Value Ordering 136
6.1 Overview of the Chapter 136
6.2 Introduction 136
6.3 Look-ahead Value Ordering 137
6.4 LVO Heuristicso 139
6.5 Experimental Results o000, 141
6.6 LVO and Backjumping oL 149
6.7 Related Work 150
6.8 Conclusions and Future Work 151
Chapter 7 Dead-end Driven Learning 154
7.1 Overview of the chapter, 154
7.2 Introduction 154
7.3 Backjumpingo L 158
7.4 Learning Algorithms oo oo 159
7.5 Experimental Results 000000 166
7.6 Average-case Space Requirements 174
7.7 Conclusions e 174

Chapter 8 Comparison and Synthesis 176

8.1 Overview of Chapter 176
8.2 Combining Learning and LVO 176
8.3 Experiments on Large Random Problems 177
8.4 Experiments with DIMACS Problems 181
8.5 Discussion Lo 183
8.6 Conclusions 186
Chapter 9 Encoding Maintenance Scheduling Problems as CSPs 188
9.1 Overview of Chapter 188
9.2 Introduction 188
9.3 The Maintenance Scheduling Problem 190
9.4 Formalizing Maintenance Problems as CSPs 195
9.5 Problem Instance Generator 202
9.6 Experimental Results 0L, 208
9.7 Conclusions L 213
Chapter 10 Conclusions 214
10.1 Contributions 214
10.2 Future Work oo 216
10.3 Final Conclusions L 218
Bibliography 219

vi

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
217

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

List of Figures

The 4-Queens puzzle 4
The 4-Queens puzzle, cast asa CSP 6
The cross-over point as parameter ' is varied 12
The backtracking algorithm 21
A modified coloring problem oL 24
Part of the search tree explored by backtracking 24
The backmarking algorithm 25
Gaschnig’s backjumping algorithm 28
The search space explored by Gaschnig’s backjumping 29
The graph-based backjumping algorithm 30
The conflict-directed backjumping algorithm 32
The forward checking algorithm 35
Part of the search space explored by forward checking 36
The Revise procedureo 37
The arc-consistency algorithm AC-1 38
Algorithm AC-3 39
Waltz’s algorithm o oo 40
A reconstructed version of Waltz’s algorithm 41
The full looking ahead subroutine 43
The partial looking ahead subroutine 43
The lognormal and Weibull density functions 56
A cumulative distribution functiono 0L 58
Computing the KS statistic 59
Graphs of sample data and the lognormal distribution 62
Continuation of Fig. 3.4 L . 63
Graphs of sample data and the Weibull distribution 66
Continuation of Fig. 3.6 67
Unsolvable problems — 100 and 1,000 instances 70
Unsolvable problems — 10,000 and 100,000 instances 71
Unsolvable problems — 1,000,000 instances 72
A close-up view of 1,000,000 instances 73
The tail of 1,000,000 instances T4
Comparing Model A and Model B goodness-of-fit; unsolvable problems 80

vii

3.14 Comparing Model A and Model B goodness-of-fit; solvable problems 80

4.1 The BJ+DVO algorithm 91
4.2 The variable ordering heuristic used by BJ+DVO 93
4.3 Lognormal curves based on (100,3,0.0343,0.333) 102
4.4 Data on search space size. 104

5.1 The BT+DVO algorithm with varying degrees of arc-consistency . . 113

5.2 Algorithm AC-3 oo 114
5.3 The Revise procedure o0 117
5.4 The full looking ahead algorithm 118
5.5 The partial looking ahead algorithm 118
5.6 Weibull curves based on (175,3,0.0358,0.222) 120
5.7 Lognormal curves based on (175,3,0.0358,0.222) 121
5.8 Weibull curves based on (60,6,0.2192,0.222) 122
5.9 Lognormal curves based on (60,6,0.2192,0.222) 123
5.10 Weibull curves based on (75,6,0.1038,0.333) 124
5.11 Lognormal curves based on (75,6,0.1038,0.333) 125
5.12 Comparison of BT+DVO, BT+DVO+FLA, and BT4+DVO+4+IAC . 128
5.13 Extended version of Fig. 5.1 o 0oL 129
5.14 Algorithm AC-DC, a modification of AC-3 129
5.15 Algorithm AC-DC with the unit variable heuristic 130
5.16 Algorithm AC-DC, with the full looking ahead method 131
5.17 Domain values removed by TAC as a function of depth 132
5.18 Algorithm AC-DC with the truncation heuristic 133
6.1 Backjumping with DVO and look-ahead value ordering (LVO). . . 138
6.2 BJ+DVO v. BJ4+DVO+LVO; segregated by problem difficulty . . . 145
6.3 Scatter chart of BJ+DVO v. BJ-DVO+ILVO 145
6.4 The increasing benefit of LVO on larger problems 147
6.5 The varying effectiveness of LVO on non-cross-over problems 148
6.6 Anexample CSPo 149
7.1 A sample CSP with ten variables 156
7.2 The BJ4+DVO algorithm with a learning procedure 161
7.3 A small sample CSP oo 162
7.4 The value-based learning procedure. 163
7.5 The graph-based learning procedure. 164
7.6 The jump-back learning procedure. 164
7.7 The deep learning procedure. 165
7.8 Results from experiments with (100,6,.0772,.333) 168
7.9 Results from experiments with (125,6,.0395,.444) 169
7.10 Results from experiments with varying N 171
7.11 Comparison of BJ4+DVO with and without learning, 7=.333 172

viii

7.12 Comparison of BJ4+DVO with and without learning, 7'=.222 173

8.1 Algorithm BJ+DVO+LRN+ILVO 178
8.2 Lognormal curves based on (350,3,0.0089,0.333) 182
8.3 Scatter diagram based on (75,6,0.1744,0.222) 183
9.1 Maintenance scheduling problems 190
9.2 Parameters defining a maintenance scheduling problem 192
9.3 Weekly demand Lo 204
9.4 The scheme file used to generate MSCSPs. 207
9.5 Average CPU seconds on small problems 209
9.6 Average CPU seconds on large problems 210
9.7 Weibull curves based on large maintenance scheduling problems . . 212

X

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
3.3
5.4

6.1

6.2

6.3
6.4

7.1

8.1
8.2
8.3
8.4

9.1

List of Tables

Statistics from a 10,000 sample experiment 48
Experimentally derived formulas for the cross-over point 51
Goodness-of-fit o 65
Goodness-of-fit for a variety of algorithms 69
Estimated valuesof pand o o000 oo 75
Goodness-of-fit for unsolvable problems 76
Goodness-of-fit for solvable problems 77
Comparison of six algorithms with D=3; unsolvable 95
Comparison of six algorithms with D=3; solvable 96
Comparison of six algorithms with D=6; unsolvable 97
Comparison of six algorithms with D=6; solvable 98
Comparison of BT+DVO and BJ+DVO on unsolvable problems . . 100
Comparison of BT+DVO and BJ+DVO on solvable problems . . . 100
Extract comparing BT+DVO and BJ+DVO 105
Data on unsolvable problems 107
Comparison of BT+DVO, PLA, FLA, and TAC 115
Comparison of BT+DVO, PLA, FLA, and TAC 116
Additional statistics from experiments in Figs. 5.1 and 5.2 126
Comparison of six variants of BT+DVO 134
Comparison of BJ+DVO and five value ordering schemes; unsolv-

able instances Lo 142
Comparison of BJ4+DVO and five value ordering schemes; solvable

instances Lo L Lo 143
Experimental results with and without LVO; unsolvable problems . 144
Experimental results with and without LVO; solvable problems . . . 146
Comparison of BJ4+DVO and four varieties of learning 166
Comparison of five algorithm with D=3 179
Comparison of five algorithm with D=6 180
Comparison of five algorithms on DIMACS problems 184
Continuation of Table 8.3 185
Statistics for five algorithms applied to MSCSPs 211

Acknowledgements

Six years of graduate school would never have started, continued happily, or
ended successfully without the help of many people. The love, encouragement,
and support from my parents, Hunter and Carolyn Frost, and my grandmother,
Rhoda Truax Silberman, has made a world of difference. My wondertul wife and
friend Kathy has helped me every step of the way. Our daughters Sarah and Betsy
made the last five years much more interesting and enjoyable.

[am indebted to Professor Rina Dechter, my advisor, who introduced me to
the topic of constraint satisfaction, provided the first challenge — to solve problems
with more than one hundred variables — that got me started on the course that led
to this dissertation, and provided just the right amounts of prodding and leeway
throughout my research. I would like to thank my committee, Professor Dennis
Kibler and Professor Rick Lathrop, for their support and reading of my work. The
National Science Foundation and the Electric Power Research Institute provided
financial support for my Research Assistantship.

I’ve enjoyed many pleasant hours with my friends and crewmates Jeui Chang,
Karl Kilborn, Chris Merz, Scott Miller, Harry Yessayan, and Hadar Ziv. To my
colleagues in the same “boat” as me, Kalev Kask, Irina Rish, and Eddie Schwalb,
I say thank you and clear sailing to port. Thanks also to Heidi Skolnik and Lluis
Vila for your friendship.

xi

1978
1985

1993

1997

Curriculum Vitae

A.B. in Folklore and Mythology, Harvard University.

M.S. in Computer Science, Metropolitan College, Boston
University.

M.S. in Information and Computer Science, University of
California, Irvine.

Ph.D. in Information and Computer Science, University of
California, Irvine.

Dissertation: Algorithms and Heuristics for Constraint
Satisfaction Problems

xii

Abstract of the Dissertation

Algorithms and Heuristics
for Constraint Satisfaction Problems
by
Daniel Hunter Frost
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 1997
Professor Rina Dechter, Chair

This dissertation presents several new algorithms and heuristics for constraint
satisfaction problems, as well as an extensive and systematic empirical evaluation
of these new techniques. The goal of the research is to develop algorithms which

are effective on large and hard constraint satisfaction problems.

The dissertation presents several new combination algorithms. The BJ+DVO
algorithm combines backjumping with a dynamic variable ordering heuristic that
utilizes a forward checking style look-ahead. A new heuristic for selecting a value
called Look-ahead Value Ordering (LVO) can be combined with BJ4+DVO to yield
BJ+DVO+LVO. A new learning, or constraint recording, technique called jump-
back learning is described. Jump-back learning is particularly effective because it
takes advantage of effort that has already been expended by BJ4+DVO. This type
of learning can be combined with either BJ+DVO or BJ+DVO+4LVO. Learning

is shown to be helpful for solving optimization problems that are cast as a series

x1il

of constraint problems with successively tighter cost-bound constraints. The con-
straints recorded by learning are used in subsequent attempts to find a solution

with a lower cost-bound.

The algorithms are evaluated in the dissertation by their performance on
three types of problems. Extensive use is made of random binary constraint satis-
faction problems, which are generated according to certain parameters. By varying
the parameters across a range of values it is possible to assess how the relative per-
formance of algorithms is affected by characteristics of the problems. A second
random problem generator creates instances modeled on scheduling problems from
the electric power industry. Third, algorithms are compared on a set of DIMACS

Challenge problems drawn from circuit analysis.

The dissertation presents the first systematic study of the empirical distribu-
tion of the computational effort required to solve randomly generated constraint
satisfaction problems. If solvable and unsolvable problems are considered sepa-
rately, the distribution of work on each type of problem can be approximated by
two parametric families of continuous probability distributions. Unsolvable prob-
lems are well fit by the lognormal distribution function, while the distribution of
work on solvable problems can be roughly modelled by the Weibull distribution.
Both of these distributions can be highly skewed and have a long, heavy right tail.

x1v

Chapter 1

Introduction

1.1 Introduction

It would be nice to say to a computer, “Here is a problem I have to solve.
Please give me a solution, or if what I'm asking is impossible, tell me so.” Solving
problems on a computer without programming: such is the stuff that dreams of

Artificial Intelligence are made on. Such is the subject of this dissertation.

For many purposes, writing a computer program is an effective way to give
instructions to a computer. But when it is easy to state the desired result, and
difficult to specify the process for achieving it, another approach may be preferred.
Constraint satisfaction is a framework for addressing such situations, as it per-
mits complex problems to be stated in a purely declarative manner. Real-world
problems that arise in computer vision, planning, scheduling, configuration, and

diagnosis [63] can be viewed as constraint satisfaction problems (CSPs).

Many algorithms for finding solutions to constraint satisfaction problems
have been developed since the 1970s. These techniques can be broadly divided
into two categories, those based on backtracking search and those based on con-
straint propagation. Although the two approaches are often studied separately,
several algorithms which combine them have been devised. In this dissertation we
present several new algorithms and heuristics, most of which have both search and

constraint propagation components. The basic algorithm in most of the research

described here is called BJ+DVO. This new algorithm combines two well-proven
techniques, backjumping and a dynamic variable ordering heuristic. We also de-
velop several effective extensions to BJ4+DVO: BJ+DVO+LVO, which uses a new
value ordering heuristic; and BJ4+DVO+Learning, which integrates a new variety
of constraint recording learning. Additionally, we show the effectiveness of ex-
tensive constraint propagation when integrated with bactracking in the BT4+IAC
algorithm.

The study of algorithms for constraint satisfaction problems has often re-
lied upon experimentation to compare the relative merits of different algorithms
or heuristics. Experiments for the most part have been based on simple bench-
mark problems, such as the 8-Queens puzzle, and on randomly generated problem
instances. In the 1990s, the experimental side of the field has blossomed, due to
several developments, including the increasing power of inexpensive computers and
the identification of the “cross-over” phenomenon, which has enabled hard random
problems to be generated easily. A major contribution of this thesis is the report
of systematic and extensive experiments. Most of our experiments were conducted
with parameterized random binary problems. By varying the parameters of the
random problem generator, we can observe how the relative strength of different
algorithms is affected by the type of problems they are applied to. We also de-
fine a class of random problems that model scheduling problems in the electric
power industry, and report the performance of several algorithms on those con-
straint satisfaction problems. To complement these random problems, we report
on experiments with benchmark problems drawn from the study of circuits, and
which have been used by other researchers. These experiments show that the new
algorithms we present can improve the performance of previous techniques by an

order of magnitude on many instances.

Conducting and reporting experiments with large numbers of random prob-

lem instances raises several issues, including how to summarize accurately the

results and how to determine an adequate number of instances to use. These is-
sues are challenging in the field of constraint satisfaction problems because in large
sets of random problems a few instances are always much harder to solve than the
others. We investigated the the distribution of our algorithms’ computational ef-
fort on random problems, and found that it can be summarized by two standard
probability distributions, the Weibull distribution for solvable problems, and the
lognormal distribution for unsolvable CSPs. These distributions can be used to
improve the reporting of experiments, to aid in the interpretation of experiments,

and possibly to improve the design of experiments.

In the remainder of this Introduction we describe more fully the constraint
satisfaction problem framework, and then provide an overview of the thesis and a

summary of our results.

1.2 Background

1.2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a set of n variables,
Xq,...,X,, and a set of constraints. For each variable X; a domain D; with d
elements {1, zi2,...,2,} is specified; a variable can only be assigned a value
from its domain. A constraint specifies a subset of the variables and which combi-
nations of value assignments are allowed for that subset. A constraint is a subset of
the Cartesian product Dy, x...x D;,, consisting of all tuples of values for a subset
(Xi,,..., X,) of the variables which are compatible with each other. A constraint
can also be represented in other ways which may be more convenient. For instance,

if Xy, Xy, and X5 each have a domain consisting of the integers between 1 and 10,

a constraint between them might be the algebraic relationship X7 + X + X5 > 15.

Q

Q

Figure 1.1: A solution to the 4-Queens problem. Each “QQ” represents a queen. No

two queens share the same row, column, or diagonal.

A solution to a CSP is an assignment of values to all the variables such that
no constraint is violated. A problem that has a solution is termed satisfiable or con-
sistent; otherwise it is unsatisfiable or inconsistent. Sometimes it is desired to find
all solutions; in this thesis, however, we focus on the task of finding one solution, or
proving that no solution exists. A unary constraint specifies one variable. A binary
constraint pertains to two variables. A binary CSP is one in which each constraint
is unary or binary. A constraint satisfaction problem can be represented by a con-
straint graph that has a node for each variable and an arc connecting each pair
of variables that are contained in a constraint. In general, constraint satisfaction

tasks are computationally intractable (NP-hard).

As a concrete example of a CSP, consider the N-Queens puzzle. An illus-
tration of the 4-Queens puzzle is shown in Fig. 1.1. The desired result is easy to
state: place N chess queens on an N by N chess board such that no two queens
are in the same row, column, or diagonal. In comparison to this short statement of
the goal, a specification of a computer program that solves the N-Queens puzzle
would be quite lengthy, and would deal with data structures, looping, and possibly
function calls and recursion. The usual encoding of the N-Queens problem as a
CSP is based on the observation that any solution will have exactly one queen
per row. FEach row is represented by a variable, and the value assigned to each

variable, ranging from 1 to N, indicates the square in the row that has a queen. A

constraint exists between each pair of variables. Fig. 1.2 shows a constraint satis-
faction representation of the 4-Queens problem, using this scheme. The four rows
are represented by variables R1, R2, R3, R4. The four squares in each row, on one
of which a queen must be placed, are called cl, c2, ¢3 and c4. The constraints are
expressed as relations, that is, tables in which each row is an allowable combination
of values. The task of a CSP algorithm is to assign a value from {cl, ¢2, ¢3, c4}
to each variable R1, R2, R3, R4, such that for each pair of variables the respective
pair of values can be found in the corresponding relation. The constraint graph of
the N-Queens puzzle is fully connected, for any value of NV, because the position

of a Queen on one row affects the permitted positions of Queens on all other rows.

Another example of a constraint satisfaction problem is Boolean satisfiability
(SAT). In SAT the goal is to determine whether a Boolean formula is satisfiable.
A Boolean formula is composed of Boolean variables that can take on the values
true and false, joined by operators such as V (and), A (or), = (negation), and “()”

(parentheses). For example, the formula
(PVQ)N(—PV~-S)

is satisfiable, because the assignment (or “interpretation”) (P=true, Q=true, S=

false) makes the formula true.

1.2.2 Methods for Solving CSPs

Two general approaches to solving CSPs are search and deduction. Each is
based on the idea of solving a hard problem by transforming it into an easier one.
Search works in general by guessing an operation to perform, possibly with the
aid of a heuristic, A good guess results in a new state that is nearer to a goal.
For CSPs, search is exemplified by backtracking, and the operation performed is
to extend a partial solution by assigning a value to one more variable. When a

variable is encountered such that none of its values are consistent with the partial

Variables: R1, R2, R3, R4. (rows)

Domain of each variable: {cl, ¢2, ¢3, c4} (columns)

Constraint relations (allowed combinations):

R1IR2 | RIR3| R1I R4 | R2R3 | R2R4 | R3 R4
cl 3 |cl c2 |cl 2 |cl 3 |cl 2 |cl c3
cl ¢4 |cl c4 |cl 3 |cl 4 |cl c4 |cl c4
c2 cd | c2 cl | c2 cl |2 4 |c2 cl |2 4
c3 cl |2 ¢33 | c2 3 |3 cl |2 ¢3 |3 cl
cd cl | e3 c2 | c2 cd | cd cl |3 2 | cd cl
cd c2 | c3 cd |3 cl |cd 2 |3 cd | cd c2

cd cl | c3 c2 cd cl
cd c3 | c3 4 cd 3
cd 2
cd 3

Figure 1.2: The 4-Queens puzzle, cast as a CSP.

solution (a situation referred to as a dead-end), backtracking takes place. The

algorithm is time exponential, but requires only linear space.

Improvements of backtracking algorithm have focused on the two phases
of the algorithm: moving forward (look-ahead schemes) and backtracking (look-
back schemes) [15]. When moving forward, to extend a partial solution, some
computation is carried out to decide which variable and value to choose next. For
variable ordering, a variable that maximally constrains the rest of the search space
is preferred. For value selection, however, the least constraining value is preferred,

in order to maximize future options for instantiation [40, 18, 71].

Look-back schemes are invoked when the algorithm encounters a dead-end.
They perform two functions. First, they decide how far to backtrack, by analyz-

ing the reasons for the dead-end, a process often referred to as backjumping [31].

Second, they can record the reasons for the dead-end in the form of new con-
straints, so that the same conflicts will not arise again. This procedure is known

as constraint learning and no-good recording [84, 15, 5].

Deduction in the CSP framework is known as constraint propagation or con-
sistency enforcing. The most basic consistency enforcing algorithm enforces are-
consistency, also known as 2-consistency. A constraint satisfaction problem is
arc-consistent if every value in the domain of every variable is consistent with
at least one value in the domain of any other selected variable [60, 50, 25]. In
general, ¢-consistency algorithms ensure that any consistent instantiation of ¢—1
variables can be extended to a consistent value of any 2th variable. A problem that
is 2-consistent for all ¢ is called globally consistent. Because consistency enforced
during search is applied to “future” variables, which are currently unassigned, it

is used as a “look-ahead” mechanism.

In addition to backtracking search and constraint propagation, two other
approaches are stochastic local search and structure-driven algorithms. Stochastic
methods move in a hill-climbing manner in the space of complete instantiations
[56]. In the CSP community the most prominent stochastic method is GSAT
[58]. This algorithm improves its current instantiation by “flipping” a value of a
variable that will maximize the number of constraints satisfied. Stochastic search
algorithms are incomplete and cannot prove inconsistency. Nevertheless, they are

often extremely successful in solving large and hard satisfiable CSPs [78].

Structure-driven algorithms cut across both search and consistency-enforcing
algorithms. These techniques emerged from an attempt to characterize the topol-
ogy of constraint problems that are tractable. Tractable classes were generally
recognized by realizing that enforcing low-level consistency (in polynomial time)
guarantees global consistency for some problems. The basic graph structure that
supports tractability is a tree [51]. In particular, enforcing arc-consistency on
a tree-structured network ensures global consistency along some ordering. Most

graph-based techniques can be viewed as transforming a given network into an

equivalent tree. These techniques include adaptive-consistency, tree-clustering, and
constraint learning, all of which are exponentially bounded by the tree-width of the
constraint graph [25, 18, 19]; the cycle-cutset scheme, which separates a graph
into tree and non-tree components and is exponentially bounded by the constraint
graph’s cycle-cutset [15]; the bi-connected component method, which is bounded by
the size of the constraint graph’s largest component [25]; and backjumping, which
is exponentially bounded by the depth of the graph’s depth-first-search tree [16].
See [16] for details and definitions. The focus of this thesis is on complete search

algorithms such as backtracking.

1.3 Methodology

1.3.1 Random problem generators

Our primary technique in this dissertation for evaluating or comparing algo-
rithms is to apply the algorithms to parameterized, randomly generated, binary
CSP instances. A CSP generator is a computer program that uses pseudo-random
numbers to create a practically inexhaustible supply of problem instances with de-
fined characteristics such as number of variables and number of constraints. Our

generator takes four parameters:
e N, the number of variables;
e [, the size of each variable’s domain;
e (', an indicator of the number of constraints; and
e T, an indicator of the tightness of each constraint.
We often write the parameters as (N, D, C,T), e.g. (20,6,.9789, .167). The random

problems all have N variables. Each variable has a domain with D elements. Each

problem has €' x N x (N — 1)/2 binary constraints. In other words, C is the

proportion of possible constraints which exist in the problem. We use C” to refer
to the actual number of constraints. Each binary constraint permits (1 —7') x D?
value pairs. The constraints and the value pairs are selected randomly from a
uniform distribution. This generator is the CSP analogue of Random K-SAT [58]
for satisfiability problems.

Significant limitations to the use of a random problem generator should be
noted. The most important is that the random problems may not correspond
to the type of problems which a practitioner actually encounters, risking that
our results are of little or no relevance. We believe, however, that experiments
with random problems do reveal interesting characteristics about the algorithms
we study. Our emphasis is primarily on how algorithm performance changes in
response to changing characteristics of the generated problems, and on how dif-
ferent algorithms compare on different classes of problems. Another hazard with
computer generated problems is that subtle biases, if not outright bugs, in the
implementation may skew the results. The best safeguard against such bias is the
repetition of our experiments, or similar ones, by others; to facilitate such repeti-
tion we have made our instance generating program available by FTP, and it has

been evaluated and adopted by several other researchers.

1.3.2 Performance measures

Three statistics are commonly used to measure the performance of an algo-
rithm on a single CSP instance: CPU time, consistency checks, and search space
size (nodes). CPU time (in this work always reported in seconds on a SparcStation
4 with a 110 MHz processor) is the most fundamental statistic, since the goal of
most research into CSP algorithms is to reduce the time required to solve CSPs.
Every aspect of the computer program that implements an algorithm influences the
resulting CPU time, which is both the strength and the limitation of this measure.
Reported CPU times for two algorithms implemented by different programmers

10

and run on different machines are generally incomparable. We have endeavored
to make CPU time as unbiased and useful a statistic as possible. All CPU times
reported in this thesis are based on the same computer program. Different al-
gorithms are implemented with different blocks of code, but the same underlying
data structures are used throughout, and as much code as possible is shared. There
is still some risk that one algorithm may benefit from a more clever or efficient

implementation than another, but the risk has been minimized.

A second measure of algorithm performance is the number of consistency
checks made while solving the problem. A consistency check is a test of whether a
constraint is violated by the values currently assigned to variables. Since the con-
sistency check subroutine is performed frequently in any CSP algorithm, counting
the number of times it is invoked is a good measure of the overall work of the

algorithm.

A third measure is the size of the search space explored by the algorithm.
Each assignment of a value to a variable counts as one “node” in the search tree.
Knowing the size of the search space gives a sense of how many assignments the
algorithm made that did not lead to a solution. Comparing the ratio of consistency
checks to nodes for different algorithms is a good way to see the relative amount

of work per assignment that each algorithm does.

In general we are concerned with measures of computer time, but not of space
(memory). Backtracking search generally requires space that is linear in the size of
the problem. Our implementation uses tables that have size of approximately n%d?,
where n is the number of variables and d is the number of values per variable, but
the program runs easily in main memory for the size of problems with which we
have experimented. In Chapter 7 we discuss a learning algorithms that potentially

require exponential space.

11

1.3.3 The CSP cross-over point

In 1991, Cheeseman et al. [10] observed a sharp peak in the average problem
difficulty for several classes of NP-hard problems, random instance generators, and
particular values of the parameters to the generator. Mitchell et al. [58] extended
this observation to Boolean satisfiability. Specifically, they observe experimen-
tally that for 3-SAT problems (each clause has 3 variables), the average problem
hardness peaks when the ratio of clauses to variables is about 4.3. Moreover, this
ratio corresponds to a combination of parameters which yields an equal number of
satisfiable and unsatisfiable instances. With fewer than 4.3N clauses, almost all
problems have solutions and these solutions are easy to find. With more clauses,
almost no problems have solutions, and it is easy to prove unsatisfiability. A set of
parameters which yields an equal number of satisfiable and unsatisfiable problems,
and which corresponds to a peak in average problem hardness, is often called a
“cross-over point”, and the phenomenon in general is sometimes referred to as a

“phase transition”?.

The existence of a cross-over point for binary CSPs and the random problem
generator described above was shown empirically by Frost and Dechter [27]. Similar
observations with a different generator are reported in [69]. An illustration of the
cross-over point for binary CSPs appears in Fig. 1.3. For fixed values of N, D,
and 7', 10,000 problems were generated at varying values of C'. The cross-over
point is between C'=.0505, where 55% of the problems are solvable and the average
number of consistency checks is 3,303, and C'=.0525, with 46% solvable and 3,398
average consistency checks. The figure illustrates that, for these values of N, D,
and T', if (' is chosen to be less than .04 or greater than .08, the problems will

tend to be quite easy. Increasing N seems to make the peak higher and narrower

!The term phase transition is by analogy with physics, e.g. ice turns to water at a certain
critical temperature. The evidence for a similar abrupt change in the characteristics of the random
problems, and not just in their average hardness, 1s lacking at this point, I believe. Therefore my

use of the term phase transition does not imply any model of an underlying explanation.

12

roTTEe T . . . — 100
3000
— 75
2000
— 50
1000 — 25
I O‘O.O'O~O. -0 (i) [CIREEREEE (i) Occvvnnnn o — 0

| | |
0202(100) .0404(200) .0608(300) .0808(400) .1010(500) .1212(600)

Figure 1.3: The cross-over point. Results from a set of experiments using algo-
rithm BJ4+DVO and parameters N = 100, D = 3, T' = .222, and varying values
of C'. Bullets (o) indicate average consistency checks over 10,000 instances (left
hand scale). Circles (o) indicate percentage solvable (right hand scale). x-axis is
parameter C' (with actual number of constraints C N(N — 1)/2 in parentheses).

[79], and only a small range of C' (or whichever parameter is being varied) leads
to problems which aren’t almost trivially easy. Before the discovery of the phase
transition phenomenon and its relation to the 50% solvable point, it was therefore

to difficult to locate and experiment with hard random problems.

Because we generate CSPs based on four parameters, the situation is some-
what more complex than for 3-SAT: if any three parameters are fixed and the
fourth is varied a phase transition can be observed. It might be more accurate
to speak of a cross-over “ridge” in a five-dimensional space where the “height”
dimension is the average difficulty, and the CSP four parameters make the other
four dimensions. In Fig. 1.3 the five dimensions are reduced to two by holding V,

D, and T constant.

13

1.4 Related Work

From the 1970’s through the early 1990’s, several empirical studies of con-
straint satisfaction algorithms based on random problems were conducted, notably
by Gaschnig [31], Haralick and Elliott [40], Nudel [65], Dechter [15], Dechter and
Meiri [17], and Bessiére [6]. Stone and Stone [85] and Nadel [62] conducted exper-

iments based on the N-Queens problem.

The idea of combining two or more CSP algorithms to create a hybrid al-
gorithm has received increasing attention in recent years. Nadel [62] describes
a systematic approach to combining backtracking with varying degrees of partial
arc-consistency. The approach was continued by Prosser [68], who considers sev-
eral backtracking-based algorithms. Ginsberg’s Dynamic Backtracking algorithm
[36, 4] combines several techniques into a tightly integrated algorithm. Sabin and

Freuder [74] show that arc-consistency can be combined effectively with search.

1.5 Overview of the Dissertation

The dissertation has ten chapters. Chapter 2 is a review of standard algo-
rithms from the literature. The chapter is both a literature review, although no
attempt has been made at completeness, and an introduction to the algorithms

and heuristics on which the research in this thesis is based.

In Chapter 3 we address an issue that has been unresolved in the CSP research
community for many years: what is the best way to summarize and present the
results from experiment on many random CSP instances? A rightward skew in
the empirical distribution of search space or any other measure makes standard
statistics, such as the mean, median, or standard deviation, difficult to interpret.
We show empirically that the distribution of effort required to solve CSPs can

be approximated by two standard families of continuous probability distribution

14

functions. Solvable problems can be modelled by the Weibull distribution, and
unsolvable problems by the lognormal distribution. These distributions fit equally
well over a variety of backtracking based algorithms. By reporting the parameters
of the Weibull and lognormal distributions that best fit the empirical distribution,
it is possible to accurately and succinctly convey the experimental results. We also
show that the mathematical derivation of the lognormal and Weibull distribution

functions parallels several aspects of CSP search.

Chapters 4 through 8 present several new algorithms and heuristics, together
with extensive empirical evaluation of their performance. In Chapter 4 we de-
scribe an algorithm, dubbed BJ4+DVO, which combines three different techniques
for solving constraint satisfaction problems: backjumping, forward checking, and
dynamic variable ordering. We show empirical results indicating that the combi-
nation algorithm is significantly superior to its constituents. BJ4+DVO forms the
platform for two additional contributions, described in Chapters 6 and 7, which

are shown able to improve its performance.

Chapter 5 is a comparative study of several algorithms that enforce differ-
ent amounts of consistency during search. We compare four algorithms, forward
checking, partial looking ahead, full looking ahead, and arc-consistency, and show
empirically that the relative performance of these algorithms is strongly influenced
by the tightness of the problem’s constraints. In particular, we show that on prob-
lems with a large number of loose constraints, it was best to do the least amount
of consistency enforcing. When there were relatively few constraints and they were
tight, more intensive consistency enforcing paid off. We also propose and evaluate
three new heuristics which can usefully control how much time the search algorithm
should spend looking ahead. We conclude that none of these heuristic dominates
the algorithms without heuristics. Finally, the chapter describes a technique called
AC-DC, for arc-consistency domain checking, which improved the integration of

an arc-consistency algorithm with backtracking search.

15

In Chapter 6 we describe a new value ordering heuristic called look-ahead
value ordering (LVO). Ideally, if the right value for each variable is known, the
solution to a CSP can be found with no backtracking. In practice, even a value
ordering heuristic that offers a slight improvement over random guessing can be
quite helpful in reducing average run time. LVO uses the information gleaned from
forward checking style look-ahead to guide the value ordering. We show that LVO
improves the performance of BJ4+DVO on hard problems, and that, surprisingly,
this heuristic is helpful even on instances that do not have solutions, due to its

interaction with backjumping.

Chapter 7 presents jump-back learning, a new variant of CSP learning [15].
When a dead-end is encountered, the search algorithm learns by recording a new
constraint that is revealed by the dead-end. Backjumping also maintains informa-
tion that allows it, on reaching a dead-end, to jump back over several variables.
Recognizing that backjumping and learning can make use of the same information
inspired the development of jump-back learning. We show that when combined
with BJ4+DVO it is superior both to other learning schemes available in the liter-
ature and to BJ+DVO without learning on many problems.

Chapter 8 synthesizes the results of Chapters 4 through 7. A new algorithm,
which combines look-ahead value ordering and jump-back learning, is described.
This combination algorithm and five of the best algorithms from earlier chapters
are compared on sets of random problems with large values of NV, and on a suite
of six DIMACS Challenge benchmark problems. We show that results on these
non-random benchmarks largely confirm the observations made in earlier chap-
ters based on random problems. We also show that, measured by CPU time,
our algorithms’ performance is on par with that of other systems being used for

experimental research.

In Chapter 9 we show how scheduling problems of interest to the electric
power industry can be formalized as constraint satisfaction problems. Producing an

optimal schedule for preventative maintenance of generating units, while ensuring

16

a sufficient supply of power to meet estimated demand, is a well-studied problem of
substantial economic importance to every large electric power plant. We describe a
random problem generator that creates maintenance scheduling CSPs, and report

the performance of six algorithms two sets of these random problems.

We also describe in Chapter 9 a new use of jump-back learning that aids in the
solution of optimization problems in the CSP framework. Constraint satisfaction
problems are decision problems. Optimization problems, such as finding the best
schedule, have an objective function which should be minimized. One way to find
an optimal solution with CSP techniques is to solve a single problem multiple
times, each time with a new constraint that enforces a slightly lower bound on the
maximum acceptable value of the objective function. With learning, constraints
learned during one “pass” of the problem can be applied again later. Our empirical

results show this technique is effective on maintenance scheduling problems.

In Chapter 10 we conclude the dissertation by summarizing the contributions
made, and suggest some promising directions for further research. We recapitulate
that the goal of the thesis is to advance the study of algorithms and heuristics
for constraint satisfaction problems by introducing several new approaches and

carefully evaluating them on a variety of challenging problems.

Chapter 2

Algorithms from the Literature

2.1 Overview of the Chapter

In this chapter we review several standard algorithms and heuristics for solv-
ing constraint satisfaction problems. “Standard” is meant to convey that the
algorithms are well-known and have formed the basis for the development of other
algorithms. Thus the chapter is both a literature review, although no attempt has
been made at completeness, and an introduction to several algorithms for CSPs.
The emphasis is on algorithms and heuristics which we draw upon in later chapters.
The organization of this chapter is motivated by the structure of the algorithms
and heuristics, and not by the historical order in which they were developed. Of
course, to a large extent the history of CSP algorithms has seen an increase in

complexity and sophistication.

The search algorithms in this chapter are all based on backtracking, a form of
depth-first search which abandons a branch when it determines that no solutions
lie further down the branch. It makes this determination by testing the values
chosen for variables against a set of constraints. A variation of backtracking called
backmarking explores the same search tree as backtracking, but maintains two
tables which summarize the results of earlier constraint tests, thus reducing the
total number that need to be made. Another modification to backtracking is called
backjumping. Three versions of backjumping are presented, each of which offers a

successively greater ability to bypass sections of the search space which cannot lead

17

18

to solutions. Some backtracking-based algorithms interleave a certain amount of
consistency propagation. In this chapter we review three in this category, forward
checking, Waltz’s algorithm, and Gaschnig’s DEEB. The last section of the chapter

focusses on heuristics for variable ordering.

A uniform style for presenting each algorithm is adopted, in order to highlight
both the similarities and the differences between methods. We do not describe
many of the mechanics of dealing with the necessary data structures; although
these mechanics are of importance and some interest they are incidental to the
structure of the underlying algorithms. It is also worth noting that most of the
algorithms described in this chapter were originally described recursively. Since
processing a CSP with n variables can be approached as processing one variable
and then proceeding to a sub-CSP with n — 1 variables, a recursive formulation
for many algorithms is natural. Nevertheless, we do not use recursion in this
chapter, or elsewhere in the thesis. Partially this choice reflects the current style
— recursion seems to have diminished popularity in the 1990’s. It also enables a
more explicit statement of the control structure. (See [68] for similar arguments

against using recursion in pseudo-code.)

2.2 Definitions

As in Chapter 1, a constraint satisfaction problem (CSP) consists of a set of
n variables, Xy,..., X, and a set of constraints. For each variable X; a domain
D; ={xq, i, ..., 24} with d elements is specified; a variable can only be assigned
a value from its domain. A constraint specifies a subset of the variables and which
combinations of value assignments are allowed for that subset. A constraint is a
subset of the Cartesian product D; x ... x D;;, consisting of all tuples of values

for a subset (X; ., X;;) of the variables which are compatible with each other.

Lo
A constraint can also be represented in other ways which may be more convenient.

For instance, if X;, X3, and X3 each have a domain consisting of the integers

19

between 1 and 10, a constraint between them might be the algebraic relationship

X1+ Xo 4+ X5 > 15.

A solution to a CSP is an assignment of values to all the variables such that
no constraint is violated. A problem that has a solution is termed satisfiable or
consistent; otherwise it is unsatisfiable or inconsistent. Sometimes it is desired
to find all solutions; in this thesis, however, we focus on the task of finding one
solution, or proving that no solution exists. A binary CSP is one in which each
constraint involves at most two variables. A constraint satisfaction problem can
be represented by a constraint graph that has a node for each variable and an arc

connecting each pair of variables that are contained in a constraint.

A variable is called instantiated when it is assigned a value from its domain. A
variable is called uninstantiated when no value is currently assigned to it. Reflecting
the backtracking control strategy of assigning values to variables one at a time,
we sometimes refer to instantiated variables as past variables and uninstantiated
variables as future variables. We use “X;=x,” to denote that the variable X; is

instantiated with the value z;, and “X; < x;” to indicate the act of instantiation.

The variables in a CSP are often given an order. We denote by #; the
instantiated variables up to and including X; in the ordering. If the variables
were instantiated in order (X7, X5, ..., X,,), then #; is shorthand for the notation

(Xlzl’l, XQZJ?Q, Ce 7X2:x2)

A set of instantiated variables ¥; is consistent or compatible if no constraint
is violated, given the values assigned to the variables. Only constraints which
refer exclusively to instantiated variables X through X; are considered; if one or
more variables in a constraint have not been assigned values then the status of the
constraint is indeterminate. A value x for a single variable X;;; is consistent or

compatible relative to ¥; if assigning X;11 = x renders ¥,y consistent.

A variable X; is a dead-end when no value in its domain is consistent with

—

Z;—1. We distinguish two types of dead-ends. X; is a leaf dead-end if there are

20

constraints prohibiting each value in D;, given ¥;_1. X; is found to be an interior
dead-end when some values in D; are compatible with #;_;, but the subtree rooted
at X; does not contain a solution. Different algorithms may define or test for con-
sistency in different ways. The term dead-end comes from analogy with searching
through a maze. At a dead-end in a maze, one cannot go left, right, or forward,

and must retrace one’s steps.

The most basic consistency enforcing algorithm enforces arc-consistency. A
constraint satisfaction problem is arc-consistent, or 2-consistent, if every value in
the domain of every variable is consistent with at least one value in the domain
of any other selected variable [60, 50, 25]. In general, i-consistency algorithms
guarantee that any consistent instantiation of ¢—1 variables can be extended to a

consistent value of any ¢th variable.

An individual constraint among variables (X

., X;;) is called tight if it

Lo
permits a small number of the tuples in the Cartesian product D; x ... x D,
and loose if it permits a large number of tuples. For example, assume variables X
and X, have the same domain, with at least three elements in it. The constraint
X1=X; is a tight constraint. Once one variable is assigned a value, only one choice
exists for the other variable. On the other hand, the constraint X; # X, is a loose

constraint, as instantiating one variable prohibits only one possible value for the

other.

2.3 Backtracking

A simple algorithm for solving a CSP is backtracking [89, 37, 8]. Backtracking
works with an initially empty set of consistent instantiated variables and tries to
extend the set to a new variable and a value for that variable. If successful, the
process is repeated until all variables are included. If unsuccessful, another value

for the most recently added variable is considered. Returning to an earlier variable

21

Backtracking
1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the

index of the next variable in the ordering. Set D', .

— Dcur-
2. (Choose a value.) Select a value « € D’ that is consistent with all

previous variables. Do this as follows:

(a) It D, =0 (Xeu is a dead-end), go to 3.

cur

(b) Pop x from D7, (that is, select an arbitrary value and remove it
from D’,.).

(c¢) For every constraint defined on Xj through X.,,, test whether it is
violated by Z.yr—1 and X.,,=z. If so, go to (a).

(d) Instantiate X.,, <« z, and go to 1.

3. (Backtrack.) If X.,, is the first variable, exit with “inconsistent.”
Otherwise, set cur equal to the index of the previous variable. Go to 2.

Figure 2.1: The Backtracking algorithm.

in this way is called a backtrack. If that variable doesn’t have any further values,
then the variable is removed from the set, and the algorithm backtracks again. The
simplest backtracking algorithm is called chronological backtracking because at a

dead-end the algorithm returns to the immediately earlier variable in the ordering.

As presented in Fig. 2.1, the backtracking algorithm has three sections. The
first is “step forward,” in which a new variable is selected to be the current variable,
denoted X,,,. If all variables have been assigned values, then the search process is
complete and the algorithm returns with a solution. In the second section of the
algorithm an attempt is made to assign a value to the current variable. The value
chosen must not cause any constraints to be violated. If a compatible value is
found, then control returns again to the first step, and another variable is chosen.
If no compatible value could be found for the current variable, then the algorithm
goes to the “backtrack” step, where it returns to the immediately previous variable.
If the current variable is the first variable it is not possible to backtrack, and the

algorithm returns with an indicator that it failed to find a consistent solution.

22

For simplicity in the pseudo-code, we consider each variable domain, D,
to be a set. We can test whether the set is empty, that is, is D; = 7 We
can remove one element of the set with a pop function. (Unless specified, the
element is chosen arbitrarily.) In addition to the fixed value domains D;, the
algorithm employs mutable value domains D!, such that D! C D,. D! holds the
possibly proper subset of D; which has not yet been examined under the current
instantiation of variables Xj through X; ;. In other words, a value in the set
D; — D! is either the current value assigned to X;, is inconsistent with #;,_q, or
is consistent with #;_1 but does not lead to a solution. If the values of each D;
are ordered (e.g. they are the integers from 1 to d) and they are considered in
this order, then it is not necessary to maintain the D’ sets. Knowing the current
value of a variable, we know that all previous values have been tried. (It may be
convenient to use a value that is not in the domain to indicate that a variable
is currently unassigned.) We describe backtracking with the D’ sets because of
the greater generality they afford, and because we will use the D’ sets extensively
in describing later algorithms, particularly those such as forward checking that
“filter” the domain of uninstantiated variables. For the sake of uniform treatment,

we describe backtracking with the D’ sets.

Step 2 (c) in the backtracking algorithm is implemented by performing consis-
tency checks, that is, tests of whether the variables in a constraint, as instantiated,
are consistent with the constraint. Consistency checking is performed frequently
and constitutes a major part of the work performed by any CSP algorithm. Hence
a count of the number of consistency checks is a common measure of the overall
work of the algorithm. The cost (in CPU time) of a consistency check depends on
how the constraints are represented internally in the computer. If a constraint is
stored as a list of compatible tuples, then the program will have to search through
this list; sorting or indexes can be used to reduce the average time required. When
the constraints are loose, it may be more efficient to store only the incompatible
tuples. A technique that allows consistency checking in a fixed amount of time is

to represent constraints as a table of boolean values, with as many dimensions as

23

there are variables in the constraint. A fourth possibility is to represent a con-
straint with a procedure. When the constraint is an easily tested quality such as

equality, this method is the most efficient. If the CSP is a binary CSP, in which

each constraint pertains to at most two variables, then step 2 (¢) can be stated as

2. (Choose a value.)

(c¢) For all X;,1 <i < cur, test if X; as instantiated is consistent with
Xewr = x. If not, go to (a).

Stating the test in this way takes advantage of the fact that there can be at most
one binary constraint between two variables. The test of consistency can be more
efficient with binary CSPs, since the number of consistency checks is bounded by
the number of variables. The more general version of 2 (c) of Fig. 2.1 requires one

test for each constraint. Frequently a CSP has more constraints than variables.

The actions of a search algorithm can be described by a search tree. We
illustrate this with a toy example shown in Fig. 2.2. The problem in this figure is a
small coloring problem, in which the goal is to assign a color to each variable such
that connected variables do not share the same color. Fig. 2.3 shows part of the
search tree expanded when backtracking processes the CSP described in Fig. 2.2,
using the ordering (X1, X2, X3, X4, X5, X6, X7). Note that the problem has no

solution.

The rest of this chapter describes several algorithms and heuristics which
augment basic backtracking. We can categorize the algorithms by which of back-
tracking’s three sections they concentrate on. Backmarking reduces the number of
consistency checks that are performed in step 2 (¢). The three versions of back-
jumping we describe are all designed to improve the choice of backtrack variable
in step 3. Forward checking changes step 2 (c¢) to test the adequacy of a value
selection by making sure the value is compatible with at least one value in the
domain of every future variable. Static and dynamic variable order heuristics at-

tempt to improve the choice of a variable in step 1. Another important category of

24

X2

X1
red, blue, green X7

blue, green

X6

| red, green, teal

o)

Figure 2.2: An example CSP; a modified coloring problem. The domain of each
node is written inside the ellipse; note that not all nodes have the same domain.
Arcs join nodes that must be assigned different colors.

X1
X2
X3
X4

X5

X6

X7

Figure 2.3: Part of the search tree explored by backtracking, on the example CSP
in Fig. 2.2. Only the search tree below X1=red and X2=blue is drawn. A black
square denotes an instantiation from which further search can continue. A gray
rectangle denotes a value that is incompatible with some previous value. The nodes
are numbered in the order in which they are popped in step 2 (b).

25

Backmarking (binary CSPs and static variable ordering only)
0. (Initialize tables.) Set all M;, « 0; set all L; « 0.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the

index of the next variable in the ordering. Set D'

cur — DCUT‘

2. Select a value # € D, that is consistent with all previous variables. Do

this as follows:

(a
(b
(c
(d

Ito, =0, goto3.

cur

Pop x, from D’ . (v is the index of the domain value popped.)

cur”®

If Mewrw < Leyr, then go to (a).

Examine, in order, the past variables X;, L., <1 < cur; if X; as
instantiated conflicts with X.,, = x, then set M, , < ¢ and go to

(a).

(e) Instantiate X, < x,, set M.y, < cur, and go to 1.

)
)
)
)

3. (Backtrack step.) If X.,, is the first variable, exit with “inconsistent.”
Otherwise, for all X; after X141, if cur < L; then set L; < cur. Set
Ly, — cur — 1. Set cur equal to the index of the previous variable. Go
to 2.

Figure 2.4: The Backmarking algorithm.

backtracking-based CSP algorithm consists of those that learn, or record additional

constraints during search. These algorithms augment step 3.

2.4 Backmarking

A method to reduce consistency checking while backtracking is Gaschnig’s
backmarking [30, 40]. Backmarking requires that consistency checks be performed
in the same order as variable instantiation. By keeping track of where consistency
checks have succeeded or failed in the past, backmarking can eliminate the need
to repeat unnecessarily checks which have been performed before and will again

succeed or fail in the same way. Backmarking is restricted to binary CSPs and

26

a static variable ordering. However, Bacchus and van Run [3] give a variation of

backmarking that works with a dynamic variable ordering.

Backmarking requires two additional tables (see Fig. 2.4). The first table,
with elements M, ,,, records the first variable that failed a consistency check with
X; = z,. I X; = x, is consistent with all earlier variables, then M;, = :. For
instance, Mjp, = 4 means that X, as instantiated was found inconsistent with
X190 = x5, and that X;, X3 and X3 did not conflict with X;0 = x3. The second
table, with elements L;, indicates the earliest variable which has changed its value
since M; , was set for X; and any domain element v. If M;, < L;, then the variable
pointed to by M, , has not changed, and X; = x, will still fail when checked with
X,

7

.- Thus, there is no need to do any consistency checking and x, can be rejected
immediately. If M;, > L;, then X; = x, is consistent with all variables before X7,

and those checks can be skipped.

The structure of the Backmarking algorithm is almost identical to that of
Backtracking. A step 0 has been added in which the new tables are initialized.
Step 2 changes to reflect how the two tables are maintained and used. In step 2 (¢),
the backmarking tables are consulted and if an earlier variable is still instantiated
with a value that conflicted with value x, at an earlier point in the search then we
can immediately reject x,. Otherwise, the algorithm proceeds to 2 (d), checking
compatibility only with variables which may have changed assignment since the
last time X.,, was instantiated. If a conflict is found, this is recorded in table M.

If no consistent for X.,,. is found, the algorithm goes to step 3, where it updates

the L table and then backtracks.

2.5 Backjumping

Backtracking (as well as Backmarking) can suffer from thrashing; the same

dead-end can be encountered many times. If X; is a dead-end, the algorithm

27

will backtrack to X;_1. Suppose a new value for X;_; exists, but that there is
no constraint between X; and X;_;. The same dead-end will be reached at X;
again and again until all values of X;_; have been exhausted. For instance, the
problem in Fig. 2.2 has a dead-end at X7 after the assignment (X1 = red, X2 =
blue, X3 = blue, X4 = blue, X5 = green, X6 = red). Backtracking returns to X6

and reinstantiates it as X6 = teal. But the same dead-end at X7 is re-encountered.

To reduce the amount of thrashing, an enhancement to backtracking called
backjumping was proposed by Gaschnig in [31] (see Fig. 2.5). This algorithm is
able to “jump” from the dead-end variable back to an earlier variable which, as
instantiated, is a direct cause for the dead-end. When is a variable a direct cause
of a dead-end? When the variable, plus zero or more other variables which precede
it in the ordering, are instantiated in such a way that a constraint disallows some
value (or values) of the dead-end variable. For example, imagine variables X7y and
Xy, each with the domain {0, 1,2}, and a constraint which permits any assignment
to X19 and Xyo except (Xio=1, X20=1). Xio and Xy also participate in other
constraints. If Xjo is instantiated to 1 and later Xy is a dead-end, then Xjo is
a cause of the dead-end because its assignment prohibits one value from Xy’s
domain. In contrast, if Xig has the value 2 and X3¢ is a dead-end anyway, X1 is

not a cause of the dead-end.

To locate a variable which is a cause of the dead-end, backjumping maintains
an array J;, 1 <@ < n. J; remembers the latest variable in the ordering that was
tested for consistency with some value of X;. If X; is not a dead-end, then .J; = 1—1.
If X; is a dead-end, then each value in D; was tested for consistency with the earlier
variables until some check failed, and J; holds the index if the latest variable which
is inconsistent with some value in D;. It is critical that the order of consistency
checking on instantiated variable be the same as the order of instantiation. This
rule is easy to implement if all constraints are binary; with higher order constraints
and a fixed variable ordering it is efficient to store or index the constraints in

order of their second-to-last variable. For instance, suppose there are constraints

28

Gaschnig’s Backjumping
1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the
index of the next variable in the ordering. Set D! <+ D, . Set

cur
qur 0.

2. Select a value x € D’

L. that is consistent with all previous variables. Do

this as follows:

(a) It D, =0, go to 3.

cur

(b) Pop x from D!

(c¢) For 1 <17 < cur (in ascending order): if ¢ > J,,, then set J.,, « 1; if
#; and X,,,=x are inconsistent then go to (a).

(d) Instantiate X.,, < x and go to 1.
3. (Backjump step.) If J.,, = 0 (there is no previous variable which shares

a constraint with X.,,), exit with “inconsistent.” Otherwise, select
variable X;_ ; call it X,,,. Go to 2.

Figure 2.5: Gaschnig’s backjumping algorithm.

prohibiting (Xs=a, Xe=0b, X10=c) and (Xy=d, Xs=¢, X10=c). Assuming X;=a,
Xy=d, Xg=b, and Xg=e¢, then both constraints prohibit Xjp=c. It is important
that backjumping records Xg, not Xg, as preventing X;o=c, because changing the

value assigned to Xg does not make Xjo=c consistent.

It X, is a dead-end, then we can be assured that all backtracking on variables
between Xy ;1 and X,y will be fruitless because the cause of the dead-end at
X; is not addressed. The partial instantiation ¥ causes every value for X; to be

inconsistent with some constraint, so changing variables after X; will not eliminate

the dead-end.

The first step of the Gaschnig’s backjumping algorithm sets J.,, to 0, indi-
cating that at this point no conflicts with X, have been found. In step 2 (¢) Jeyur
is updated if a conflict is found at a later variable than any previous conflict. If
a value is consistency with all previous instantiated variables, then J.,, will have

the value cur — 1. Step 3 is now a backjump (instead of backtrack) step. After a

29

red

X1

X2

X3

X4

X5

not searched
by Gaschnig’s

X6 backjumping

X7

Figure 2.6: The search space explored by Gaschnig’s backjumping, on the example
CSP in Fig. 2.2. The nodes surrounded by the circle are explored by backtracking
but not by Gaschnig’s backjumping.

dead-end, the algorithm returns to X;__, which is a variable that is a direct cause
of the dead-end. If J.,, is 0, then either X, is the first variable, or there are no
constraints between X, and the earlier variables. In either case, the problem has
no solution. Recognizing the second case is particularly important in CSPs which

consist of disjoint subproblems.

Referring again to the problem in Fig. 2.2, at the dead-end for X7, J; will be
3, because value red for X7 was ruled out by X1 and value blue was ruled out by
X3, and no later variable had to be examined. The other values for X6 therefore
do not need to be explored (see Fig. 2.6). On returning to X3, there are no further
values to try (D5 = 0). Since J3 = 2, the next variable examined will be X2.

30

Graph-based Backjumping
0. (Initialize parent sets.) Compute P; for each variable. Set I, «— P, for all

2.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the
index of the next variable in the ordering. Set D'

cur — DCUT‘

2. Select a value x € D’

L. that is consistent with all previous variables. Do

this as follows:

(a) It D, =0, go to 3.

cur

(b) Pop x from D!

cur”®

(c¢) For every constraint involving X.,, and no uninstantiated variables,
test whether it is violated by X.,, = x. If a constraint is violated,

go to (a).
(d) Instantiate X; « z, and go to 1.

3. (Backjump.) If 1., = 0 (there is no previous variable in the induced
parent set), exit with “inconsistent.” Otherwise, set [iepmp < lour; set cur
equal to the index of the last variable in [.,,. Set

]cur —]temp U]cur - {Xcur}- GO to 2.

Figure 2.7: The Graph-based backjumping algorithm.

2.6 Graph-based backjumping

In Gaschnig’s backjumping a jump occurs only after a dead-end which is a
leaf in the search tree. A dead-end is also possible on an interior node. If all of
the children of an interior node in the search tree lead to dead-ends (as happens
with X3 in the example), then that node is called an interior dead-end. When an
interior dead-end occurs, at least one value of the variable is compatible with the

previous variables, but these compatible values did not lead to solutions.

Dechter’s graph-based backjumping [15] is another variation on backtrack-
ing that can jump over variables in response to a dead-end. Unlike Gaschnig’s
backjumping, graph-based backjumping can jump back in response to an interior

dead-end. To do so, it consults the parent set P; of the dead-end variable X;, where

31

a parent of X is a variable that is connected to X, in the constraint graph and
precedes X; in the variable ordering. After a dead-end at variable X;, the algo-
rithm jumps back based on information in the parent set. If X is a leaf dead-end,
then the jump back is to the latest variable in the parent set. If X; is an interior
dead-end, then a new set is constructed by forming the union of X;’s parent set
and those of all dead-end variables which have been found in the search tree below
X;. The algorithm jumps back to the latest variable in this induced parent set,
which is called [; in Fig. 2.7. To see why consulting [; is necessary, consider a
leaf dead-end at Xi5, followed by a backjump to Xiq, which is itself an interior
dead-end. Suppose the parent set of X5 is {Xg, X109} and the parent set of X
is { X3, X5}. If no dead-ends other than X5 occurred in the subtree below Xjg,
then I1p = { X3, X5, Xg}. It is necessary to jump back to X, because changing
the value of that variable may permit Xi5 to be successfully instantiated and a
solution to be found. Another way to look at is that some value of Xiq, say a’,
was compatible with X; through Xy, but led to a dead-end at X;5. The dead-end
at Xis requires the parents of Xjo to be augmented with the parents of Xjs, since

those variables are necessary to explain why X q=x' did not lead to a solution.

In comparison with Gaschnig’s backjumping, graph-based backjumping has
the advantage of not having to update .J; after each unsuccessful consistency check.
An offsetting overhead is that the parent sets have to be computed. In the pseudo-
code of Fig. 2.7, the parent sets are precomputed once and stored in a table denoted
P;; this step requires O(n?) space and O(ce) time, where ¢ is the number of con-
straints and e is the maximum number of variables in any constraint. Another
disadvantage of using parent sets based on the constraint graph instead of actual
conflicts discovered in consistency checking is that less refined information about
the potential cause of the dead-end is utilized. A variable may be connected to
the dead-end variable, but not, as currently instantiated, be a direct cause of the
dead-end. In such a circumstance graph-based backjumping will not jump back as

far as possible, and some avoidable thrashing will result.

32

Conflict-directed Backjumping
1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the
index of the next variable in the ordering. Set D! =+ D.,,. Set

cur
PC’U//’ — ®‘

2. Select a value x € D’

L. that is consistent with all previous variables. Do
this as follows:

(a) It D, =0, go to 3.

cur

(b) Pop x from D!

(¢) For 1 <i < cur (in ascending order): if ¥; and X.,,=x are
inconsistent then add X; to P.,, and go to (a).

(d) Instantiate X.,, < x and go to 1.
3. (Backjump.) If P.,, = 0 (there is no previous variable), exit with

“inconsistent.” Otherwise, set P «— P.,,; set cur equal to the index of

the last variable in P. Set P., « P.,, UP —{X..}. Go to 2.

Figure 2.8: The conflict-directed backjumping algorithm.

In the problem in Fig. 2.2, P = {X1, X3, X4, X5}, so after a dead-end at
X7 the next variable to be processed is X5, the last variable in P;. X5 has no
remaining values, so the algorithm will jump back to the last variable in P; U P5 —
{X5}, namely X4. Note that graph-based backjumping will not go back to X2,

since it is not a parent of X7 nor of any of X7’s parents.

2.7 Conflict-directed backjumping

Prosser’s conflict-directed backjumping algorithm [68] integrates the two ideas
of jumping back to a variable that as instantiated conflicts with the dead-end vari-
ables, and of jumping back at interior dead-ends. When a subset of the variables
are instantiated, they and any constraints which are now irrelevant can be tem-

porarily removed from the constraint graph, creating a new conditional graph. A

33

constraint involving X; and a later variable X; becomes irrelevant in two situa-
tions: the instantiated value of X; is compatible with all values of X, or any value
of X; that conflicts with X; as instantiated is also in conflict with a variable that is
earlier than X;. In the second case the constraint is considered irrelevant because
even after changing the value of X; it remains necessary to return to the earlier
variable. In conditional graph-based backjumping, the parent set P¢ is now recom-
puted each time X; is instantiated, and only consists of previous variables which as
instantiated conflict with some value of X;. Conditional graph-based backjump-
ing can substantially reduce the search space compared to regular graph-based

backjumping, since P¢ is often significantly smaller than P.

Conditional graph-based backjumping is essentially identical to Prosser’s
conflict-directed backjumping [68], described in Fig. 2.8. Because this is the stan-
dard version of backjumping now in use, we refer to it, here and later in the thesis,
simply as backjumping. Steps 1 and 2 of this algorithm follow Gaschnig’s back-
jumping closely, the most important change being in step 2 (c). In Gaschnig’s
backjumping it is sufficient to update a pointer to the deepest variable in conflict
with some value of X.,.. Backjumping, like graph-based backjumping, remembers
the set of variables which caused the dead-end. If a dead-end at X; causes a jump
back to X}, and X} turns out to be an interior dead-end, then the parents of X;

become the parents of Xj,.

Backjumping will examine the fewest nodes of any algorithm presented so
far, when presented with the problem of Fig. 2.2. After the dead-end at X7, it

jumps to X3, since (X1 = red, X3 = blue) conflicts with all the values of X7. X3
is a pseudo dead-end, so the algorithm will then jump again, back to X1.

A variation of backtracking called dependency-directed backtracking was pro-
posed by Stallman and Sussman in the context of circuit analysis [84]. The basic
idea is to record, as additional entries in the database of constraints, the cause of a
dead-end, thus permitting the algorithm to backtrack directly to a variable which
part of the cause. The concept is identical to that of backjumping. The term

34

intelligent backtracking is also used for similar concepts in logic programming and

truth maintenance systems.

2.8 Forward checking

Haralick and Elliott’s forward checking algorithm [40] is a widely used varia-
tion of backtracking. In contrast to the backtracking and backjumping algorithms
presented above, which remove values from the domain of the current variable by
checking them against previously instantiated variables, forward checking instanti-
ates a variable, and then removes conflicting values from the domains of all future
(uninstantiated) variables. Forward checking rejects any value which would re-
move the last remaining value from the domain of a future variable. Of course, the
values are not removed permanently. As with backtracking and backjumping, D’
sets are employed to contain reduced domains. Temporary removal of values from
D’ sets is known as filtering. Algorithms which filter the domains of uninstantiated

variables are often called look-ahead algorithms.

The forward checking algorithm, as described in Fig. 2.9, differs from back-
tracking in several ways. Step 0 sets up the D’ sets to hold the complete domain

for each variable. In step 1, D’ is not modified, since as the algorithm proceeds

r

to a new variable it needs to retain the knowledge acquired in previous steps of
which values in the domain of the new variable are inconsistent with the current
partial instantiation. In step 2, note that forward checking is looking for a value

in D that is compatible with at least one value for each future variable. There

/

is no need to compare the elements of D',

with the previous variables, since only

!
cur”®

those value in D.,, that are compatible with Z.,,_; remain in D

Step 3 of forward checking specifies that after backtracking to an earlier
variable, the D’ sets should be restored to the values they had before the new X,,,

was assigned its current value. To illustrate, suppose Xy is assigned the value x,

35

Forward Checking
0. (Initialize.) Set D} « D, for 1 <i <n.

1. If X,y 1s the last variable, then all variables have value assignments; exit
with this solution. Otherwise, set cur equal to the index of the next
variable in the ordering.

2. Select a value x € D’

value of each future variable. Do this as follows:

that is consistent with at least one remaining

(a) It D, =0, go to 3.

cur

(b) Pop x from D!

cur”®

(¢) Examine the future variables X;, cur < ¢ < n. Remove all v in D!
that conflict with Z.,,—; and X.,, = z. If doing so results in D! =
for some ¢, then restore the D!’s to their values before this step (c)
was begun and go to (a).

(d) Instantiate X.,, < x and go to 1.

3. (Backtrack step.) If there is no previous variable, exit with
“inconsistent.” Otherwise, set cur equal to the index of the previous
variable. Reset all D’ sets to the way they were before X, was last
instantiated. Go to 2.

Figure 2.9: The forward checking algorithm.

and the sets D}, through D! are filtered appropriately. If the algorithm backtracks
to Xy, it will be assigned a new value, say x,, and the filtering due to z; is no

longer relevant and should be undone.

The authors of the forward checking algorithm described the motivation be-
hind its development as “Lookahead and anticipate the future in order to succeed
in the present” [40]. Forward Checking tends to make dead-ends occur much ear-
lier in the search, as may be seen by comparing the behavior of this algorithm and
the “look back” algorithms such as backjumping presented earlier. In the problem
described in Fig. 2.2, instantiating X1 = red reduces the domains of X3, X4 and
XT7. Instantiating X2 = blue does not affect any future domain. The variable X3
only has blue in its domain, and selecting that value causes the domain of X7 to

be empty, so X3 = blue is rejected and X3 is a dead-end. See Fig. 2.10.

36
Xl """""""""

X2

X3 =

not searched
Ad by forward

checking
X5

X6
X7

Figure 2.10: Part of the search space explored by forward checking, on the example
CSP in Fig. 2.2. Only the search space below Xl=red and X2=blue is drawn.
Dotted lines connect values with future values that they filter out in step 2 (c).

Génisson and Jégou [33] have shown that the well-known Davis-Putnam (DP)
procedure for propositional satisfiability [14, 13], in particular the version from
1962, interleaves search and domain filtering in a manner that is strictly equivalent
to forward checking. Both the “Rule for Elimination of One-Literal Clauses” and
the “Affirmative-Negative Rule” from the DP procedure can eliminate or simplify
clauses, reducing redundancy. In CSP terms, these rules correspond to removing
elements from the D’ sets, as in step 2 (c) of forward checking, and replacing longer

constraints with shorter one.

2.9 Arc-consistency

An important class of algorithms for processing CSPs are those that enforce
arc-consistency. Arc-consistency algorithms, as well as procedures for any level of

k-consistency, can be executed before or during search.

37

An essential component of any arc-consistency procedure is the REVISE sub-
routine [50] (see Fig. 2.11). This subroutine examines two variables, X; and X;,
and determines whether each value y in D! has at least one compatible value in
the domain of X;. If no such compatible value exists, then X;=y cannot be part
of a solution, so y is removed from D!. Our version of REVISE differs from the
standard presentation in that it includes the current partial instantiation Z.,, in
the test for consistency on line 2. This is important if the CSP includes non-binary

constraints.

REVISE(Z, 7)

1 for each value y € D)

2 if there is no value z € D’ such that (Z..,, X;=y, X;=z) is consistent
3 then remove y from D)

Figure 2.11: The Revise procedure.

There is a long history of arc-consistency algorithms. The simplest is due to
Mackworth [50] and is called AC-1 (see Fig. 2.12). To make AC-1 more appropri-
ate for interleaving with backtracking, we have added a tree-depth parameter d;
therefore only future variables are checked for arc-consistency. Another change in
our version is the that procedure returns immediately if an empty future domain is
detected. AC-1 calls REVISE on each pair of future variables. If REVISE removes a
value, then there may be repercussions on the domains of other variables, so again
REVISE is called on each pair of future variables. The process continues until no

values are removed — the CSP is arc-consistent.

AC-1 suffers from the defect that if a single value is removed from a variable’s
domain by REVISE, then an entire repetition of the loop in lines 2-6 of Fig. 2.12
must be made, and much needless consistency checking will be done. AC-1 requires
O(d®ne) time in the worst case, where d is the size of the largest domain, n is the

number of variables, and e is the number of constraints, and O(e + nd) space.

Improved arc-consistency algorithms have been given the monikers AC-2 [50]

(superseded by AC-3) and AC-3 [50], which has O(d’¢) time complexity and O(e+

38

AC-1(d)

1 repeat

2 fori:«—d-+1ton
3 for j «—d+1ton

4 REVISE(Z, 7)

5 if D! =

6 then return

7 until no call to REVISE removed a value

Figure 2.12: The arc-consistency algorithm AC-1.

nd) space complexity. AC-4 [59] has an optimal time complexity of O(ed?), but
suffers from several drawbacks. Its average time complexity is very near the worst-
case, and the algorithm has a relatively high start-up cost in initializing several
data structures. Moreover, the space complexity of AC-4 is O(ed*). AC-5 [88]
is a general framework for arc-consistency algorithms, but is not itself a specific
algorithm. AC-6 [6] keeps the optimal O(ed?) worst-case time complexity of AC-
4, but has a superior space complexity of O(ed). The improvements of the more
advanced arc-consistency algorithms come from maintaining data structures which
record which variables are possibly impacted by the removal of a value from the
domain of another variable. How best to cache this information and whether
doing so pays off in reduced processing time depends largely on the domain size

and number of constraints in the constraint problem (see [6] for experimental

comparisons of AC-3, AC-4 and AC-6).

As with AC-1, the heart of AC-3 is the REVISE procedure, which enforces
arc-consistency on a single directed constraint arc (see Fig. 2.13). AC-3 views each
(binary) constraint as two directed arcs, and maintains a set,), of every directed
arc which needs to be tested for arc-consistency. If the arc X; — X, is in @), it
means the AC-3 must use REVISE to verify that every value in the domain of X;
is compatible with at least one value in the domain of X;. If REVISE removes a
value from the domain of future variable X;, every future variable which shares a

constraint with X; is identified, and the arcs from those variables to X; are added

39

to (). This is necessary because the value just removed from X; may be the only
one compatible with, say, Xy =x;. The AC-3 algorithm continues until all arcs

have been removed from () without any new ones being added.

AC-3(d)

1 Q@ «{arc(e,g)|i > d, 5 > d}
2 repeat

3 select and delete any arc(p, ¢) in Q)
4 REVISE(p, ¢)

5 if D), =10

6 then return

7 if REVISE removed a value from D]
8 then @ — QU {arc(z,p)|i > d}

9 until Q =0

Figure 2.13: Algorithm AC-3.

2.10 Combining Search and Arc-consistency

Early and influential algorithms that combine search and consistency enforc-
ing by performing an arc-consistency procedure after each variable instantiation
are due to Waltz [90] and Gaschnig [31]. More recent algorithms of this type were
developed by Nadel [61] and Sabin and Freuder [74].

Waltz’s system takes as input as set of line segments, and constructs a de-
scription of a scene of three-dimensional objects which plausibly could give rise
to a line drawing with the given line segments. Line segments which meet define
junctions, which may be corners, edges, or the result of shadows. Waltz defines 11
different junction types. Each line segment or edge in a junction can be labeled
as a shadow edge, a concave edge, a convex edge, an obscuring edge, or a crack
edge. When considering a junction in isolation there are usually many possible
labelings for the junction’s line segments, but a line segment must be labeled the

same way in each junction it is part of. Waltz found that by comparing adjacent

40

Waltz’s algorithm (close to original)
1. (Before search.)

(a) Use domain-specific knowledge to reduce the number of possible
edge-labelings at each junction.

(b) (Enforce arc-consistency.) Repeat until no edge labels are removed:
Eliminate a possible label for an edge when the edge cannot be
assigned the same label at another junction.

2. Choose an unlabeled edge J to label.

3. Eliminate from J’s set of possible labels all those which don’t have
matches in J’s neighbors (those junctions which share a line segment
with J).

4. Choose a label for J.

5. Check each of J’s neighbors, eliminating from their sets of possible labels
those that don’t match how J’s line segments have been labeled. If a

neighbor has a label removed from its set of possible labels, repeat the
arc-consistency step 1 (b).

6. (This step is unstated but implied.) Backtrack if a junction’s set of
possible labels becomes empty.

Figure 2.14: Waltz’s algorithm.

junctions and labeling the line segments so that no local contradictions were made,
his system usually found only a few lines which were not uniquely specified, and

thus very little search was required.

Although Waltz does not explicitly state the algorithm used, we have recon-
structed it in Fig. 2.14 In Fig. 2.15, we cast Waltz’s algorithm in the common

framework used for other algorithms in the chapter.

The primary differences between Waltz’s algorithm and Haralick and Elliott’s
forward checking is that Waltz’s algorithm performs a step before search which
enforces arc-consistency, and then enforces arc-consistency after each instantiation
(labeling). This additional work before and during search was effective in the
application that Waltz studied, because the domains are relatively large (typically

there are five to ten ways to label a junction after the domain specific selection

41

Waltz’s algorithm (reconstruction)
0. (Initialize.) For all variables X;, set D! « D,. Enforce arc-consistency,
which may remove some values from some D’ sets.

1. If X,y 1s the last variable, then all variables have value assignments; exit
with this solution. Otherwise, set cur equal to the index of the next
variable in the ordering.

2. Select a value x € D’ . as follows:

cur?

(a) It D!, =10, go to 3.

cur

(b) Pop x from D!

(¢) Examine the future variables X;, cur < ¢ < n. Remove all v in D!
which conflict with Z.,,_1 and X, = x. If doing so results in
D! =) for some 7, then restore the D!’s to their values before this
step (c) was begun and go to (a).

(d) Instantiate X.,, « .

(e) Enforce arc-consistency. If doing so leaves a D’ set without any
elements, go to (a). Otherwise, go to 1.

3. (Backtrack step.) If there is no previous variable, exit with
“inconsistent.” Otherwise, set cur equal to the index of the previous
variable. Reset all D’ sets to the way they were before X, was last
instantiated. Go to 2.

Figure 2.15: A reconstructed version of Waltz’s algorithm.

rules are applied) and the constraints are equality constraints, which are quite
tight. In contrast, Haralick and Elliot performed most of their experimental work

on problems with much looser constraints.

Nadel [62] proposes a series of partial arc-consistency algorithms, called
ACY/5, ACY/4, ACY/3 and ACY/, that are designed to be interleaved with a back-
tracking based tree-search algorithm. The fractional suffixes indicate approxi-
mately how much work the algorithm does in proportion to full arc-consistency.
Forward checking, which corresponds to backtracking plus AC'/4, is judged the

best in the experiments Nadel reports.

42

2.11 Full and Partial Looking Ahead

In addition to forward checking, Haralick and Elliott [40] defined two algo-
rithms called partial looking ahead and full looking ahead which do more consis-

tency enforcing than forward checking and less than arc-consistency.

The additional processing done by full looking ahead is a limited form of arc-
consistency, in effect performing a single iteration of the AC-1’s outer loop (see
Fig. 2.16). The full looking ahead subroutine can be called in step 2 (c) of forward
checking (Fig. 2.9), by modifying that step in the following manner:

2. (Choose a value.)

(¢) (Forward checking style look-ahead.) Examine the future variables
Xi,cur <t <n, For each v in D! if X; = v conflicts with Z.,, then
remove v from D’; if D} is now empty, go to (d) (without examining
other X;’s).

(Additional looking ahead.)

i. If Algorithm = FLA, perform FULL-LOOKING-AHEAD(?);

ii. Else if Algorithm = PLA, perform
PARTIAL-LOOKING-AHEAD(?).

To illustrate how full looking ahead works, suppose there are three future
variables, Xj5 with current domain {«, b}, X6 with current domain {a,b} and
X7 with current domain {b}. Also suppose there is an inequality constraint (as
in graph coloring) between X5 and Xy and between X6 and Xs7. Full looking
ahead will process Xy5 and reject neither of its values, since they both have a
compatible value in the domain of Xy5. When full looking ahead processes Xy, it
removes the value b because there is no allowable match for 6 in the domain of Xy7.
Arc-consistency would later go back and remove a from Xs5’s domain, because it

no longer has a consistent match in Xy4’s domain, but full looking ahead does not

do this.

Partial looking ahead [40] seems to have been proposed with the same general

motivation that inspired the new heuristics presented later in this chapter: a notion

43

FULL-LOOKING-AHEAD(d)
1 fore—d+1ton

2 for j«—d+1ton
REVISE(Z, 7)

if D=0
then return

U= W

Figure 2.16: The full looking ahead subroutine.

that it might be possible to do a bit less work than that done by full looking ahead,
and yet to achieve most of the benefits. This scheme employed by partial looking
ahead is to check each future variable only with those other future variables later
than it (see Fig. 2.17). Dechter and Pearl [18] note that partial looking ahead
performs directional arc-consistency at each step, and this observation may explain
the motivation for the original development of the algorithm. However, when using
dynamic variable ordering the order of uninstantiated variables is not known, and
so the set of variables which are “after” a future variable is essentially a random one.
Of course it is possible to define an ordering for the uninstantiated variables, but

this ordering is unlikely to be the order in which variables are actually instantiated.

2.12 Variable Ordering Heuristics

In describing the algorithms in the previous sections, we have assumed that

the order of the variables is static, that is, unchanging as the algorithm proceeds. In

PARTIAL-LOOKING-AHEAD(d)
1 fore—d+1ton

2 for j«—i14+1ton
3 REVISE(Z, 7)

4 if D! =

5 then return

Figure 2.17: The partial looking ahead subroutine.

44

practice this is not necessarily the case, which requires modifying some algorithms.
In this section we first consider several heuristics for static variable ordering, and

then the dynamic variable ordering scheme most frequently used.

Waltz [90] proposed a variable ordering heuristic, motivated by the desire to
“eliminate as many possibilities as early as possible.” First, label junctions on the
scene/background border, since those junctions tend to have few possible labels.
Second, label junctions which share an edge with those junctions in the first step.
In general constraint satisfaction terms, we can interpret these guidelines as “select
a variable which has few values” (e.g. |D’| is small). Intuitively, if we want the
size of the search tree to be as small as possible, it is probably better to put nodes

with small branching factor first.

In some application areas and in many instances of artificial data, all variables
have the same size domain. In such cases, static variable ordering schemes have to

rely on the constraint graph. We now present two which do so.

The minimum width (MW) heuristic [25] orders the variables from last to
first by selecting, at each stage, a variable in the constraint graph that connects
to the minimal number of variables that have not been selected yet. For instance,
in the CSP from Fig. 2.2, we could choose X2, X3 or X6 to be the last variable,
since each is connected to two other variables. If we arbitrarily select X2 to
be last, then X6 will be chosen to be second-to-last, since it now participates
in one constraint (X2 and constraints involving it having been eliminated), the
minimum. Now both X3 and X5 connect to two other nodes; we can choose
X5 to be third-to-last. Continuing in this manner, the final ordering might be
X7, X3, X1, X4, X5, X6, X2. There is usually more than one min width ordering
of a CSP.

The mazimum cardinality (MC) variable ordering heuristic [17] selects the
first variable arbitrarily, and then selects each subsequent variable by choosing the

one connected with the largest number of previously chosen variables. A variation

45

of MC is to choose as the first variable the one that participates in the most

constraints. Using this variation, a maximum cardinality ordering of the variables

from Fig. 2.2 is X1, X2, X3, X7, X4, X5, X6.

The use of a variable ordering heuristic does not change the worst-case com-
plexity of any backtracking algorithm. The most extensive set of experiments
comparing the average case performance of MW and MC is reported in [17]. No
clear superiority between the two was discernable (several other ordering schemes

were studied as well), although MW was slightly superior.

Under a dynamic variable ordering scheme, the order of the variables is de-
termined as search progresses, and may be differ from one branch of the search
tree to another. Most dynamic variable ordering heuristics are based on an idea
proposed by Haralick and Elliot [40] under the rubric “fail first.” The main idea of
the heuristic is to select the future variable with the smallest remaining domain,
or D' set. Haralick and Elliot show via a probabilistic analysis that choosing the
variable with the smallest number of remaining values minimizes the probability
that the variable can be consistently instantiated, and thus “minimizes the ex-
pected length or depth of any branch” (p. 308). The fail first heuristic relies on a
look-ahead technique such as forward checking to filter the domains of the future

variables.

Several other dynamic variable ordering heuristics have been proposed. Those
of Purdom [71] and Minton et al. [56] do not rely on a forward checking style look
ahead, but most others do and can be considered variants of the Haralick and

Elliott’s fail first principle: Nudel [65], Gent et al. [34].

Chapter 3
The Probability Distribution of
CSP Computational Effort

3.1 Overview of the Chapter

In this chapter we present empirical evidence that the distribution of effort
required to solve CSPs can be approximated by two standard families of contin-

uous probability distribution functions!

. Solvable problems can be modelled by
the Weibull distribution, and unsolvable problems by the lognormal distribution.
These distributions fit equally well over a variety of backtracking based algorithms.
We show that the mathematical derivation of the lognormal and Weibull distribu-

tion functions parallels several aspects of CSP search.

3.2 Introduction

This chapter reports our efforts to uncover regularities that exist in the distri-
bution of effort required to solve CSPs, independent of the algorithm used (within
the framework of backtracking based algorithms) or the specific parameters to the

problem generating model. In all cases we consider satisfiable and unsatisfiable

!The general results and conclusions of this chapter were first reported in Frost et al. [29] and

Rish and Frost [73]

46

47

problems separately, since we have found them to have completely different distri-
butions. For satisfiable problems, we limit our attention to the effort required to

find the first solution.

The problem we address has long been an open one. Many researchers have
observed that the work required to solve constraint satisfaction problems exhibits
a large variance. Knuth noted in 1975 [46] that “great discrepancies in execution
time are characteristic of backtrack programs.” Mitchell [57] writes “we can’t
even estimate how large a sample size would be needed to obtain valid confidence
intervals for the sample mean.” Kwan [49] shows that the distribution of effort
on CSPs is not normal. Researchers have addressed the problem of unknown
distribution by reporting a variety of statistics, including the mean, the median,
the standard deviation, the minimum, the maximum, the 99th percentile, and the

99.9th percentile.

To illustrate the issues that may arise in reporting experimental results, con-
sider the data in Table 3.2, which come from an experiment using the BJ4+DVO
algorithm (described in Chapter 4). The algorithm was applied to 10,000 random
instances created by a Model A generator and parameters (100, 8,.0566,0.50).
Each line of the table reports various statistics — average, median, standard devi-
ation, maximum — after a certain number of instances had been processed. The
table is organized in this manner to show how the average hardness of a sample
of problems, measured by CPU time, can change as the size of the sample grows,
mostly due to the effect of rare very hard problems. Mitchell [57] reports a similar
table, based on an experiment with the Davis-Putnam procedure and random 3-
CNF formulas, in which at sample size 100 the mean is 98, and after 5,000 instances

the sample mean has become 12,000.

This pattern or distribution of problem hardness presents two sources of
difficulty for someone designing and reporting an experiment with a CSP algorithm
and randomly generated problems. The design question is, how many instances

are enough? The goal is to have the sample be representative of the entire set of

48

sample size | average | median | hardest | st. deviation
50 12.08 3.18 60.60 32.44
100 13.25 3.30 | 235.00 33.53
200 17.33 3.62 | 290.83 45.37
300 19.60 3.58 | 1,019.22 72.82
400 19.28 3.42 | 1,019.22 69.16
500 18.65 3.37 | 1,019.22 65.36
800 20.31 3.42 | 1,176.63 71.85
1,000 18.96 3.32 | 1,176.63 67.59
1,500 18.00 3.16 | 1,176.63 69.65
2,000 20.20 3.08 | 3,083.43 101.49
5,000 19.26 3.13 | 3,083.43 88.93
10,000 19.05 3.15 | 3,083.43 76.44

Table 3.1: Cumulative statistics at varying points in a 10,000 sample experi-
ment. Units are CPU seconds, algorithm is BJ+DVO, generator parameters are

(100, 8,.0566, 0.50).

possible random problems with a certain set of parameters, requiring hundreds if
not thousands of instances. The example of Table 3.2 shows that with a sample
of a few hundred instances, the empirical mean can be about 10% too large or
too smal, if we make the assumption, perhaps unwarranted, that the sample mean

after 10,000 instances is close to the true population mean.

The second, related, question is which statistics to report. With more than
a few dozen instances it is not feasible to report the results of each instance. The
mean and the median are the most popular statistics to report, but these do not
convey the long “tail” of difficult problems that often occurs. In order to con-
vey more information, some authors have reported percentile points such as the
hardness of the instance at the 99th and 99.9th percentiles, minimum and max-
imum values, and the standard deviation. In experiments involving large sets of
randomly generated instances, the ideal would be to report the entire distribution
of cost to solve. It might be imagined that doing so would be unwieldy. In this
chapter we present evidence that such an approach is quite feasible, because the
experimentally derived distributions are quite closely approximated by standard

distribution functions from the field of statistics.

49

Our main findings are that the hardness distributions of solvable and unsolv-
able problems are distinctly different, with unsolvable problems being close to the
lognormal distribution, and solvable problems being reasonably well approximated
by the Weibull distribution. The lognormal and Weibull distributions are each
parameterized by shape and scale parameters. By noting that the results of an
experiment can be fit by a certain distribution with parameters @ and vy, it is pos-
sible to convey a complete understanding of the experimental results: the mean,

median, mode, variance, and shape of the tail.

We use the number of nodes in the search space to measure the computational
effort required to solve a problem instance. In [29] we measured consistency checks,
with almost identical results. A limitation of counting the number of nodes in the
search space as a proxy for overall effort of the algorithm is that this measure does
not take into account the amount of work, and ultimately CPU time, expended by
the algorithm at each node. This quantity can vary greatly; a theme of research
in CSP algorithms that we will explore in later chapters is how to best trade off
extra work at some nodes for a sufficiently reduced size in the total search space.
Thus counting only the number of nodes is often not a fair comparison between
algorithms; this should be borne in mind when reading the tables which contain

results for multiple algorithms.

3.3 Random Problem Generators

3.3.1 Model A and Model B

In this chapter we use two random problem generators; following Smith and
Dyer [82] we call them Model A and Model B. In other chapters we use the Model B
generator only. In this chapter we focus on Model A because it has some properties
of independence between constraints which simplifies the analysis at the end of the

chapter.

30

Both generators use parameters N, D, T, and . N and D have the same
meaning in both models. As defined in Chapter 1, in Model B parameters ¢ and T
define the exactly number of constraints and prohibited value pairs per constraint.
In Model A, C is the probability of a constraint existing between any pair of
variables, and each constraint is statistically independent of the others. Parameter
T in Model A defines the probability that a value in the domain of one variable in
a constraint will be incompatible with a value in the domain of the other variable
in the constraint. Two different problem instances under the Model A distribution
can have different numbers of constraints, and two constraints in the model A

distribution can prohibit a different number of value pairs.

3.3.2 Parameters at the Cross-over Point

The phase transition phenomenon, described in Chapter 1, is an important
aspect of empirical CSP research. In this and succeeding chapters, many experi-
ments are conducted with parameters at the cross-over point. Therefore, we briefly
discuss the manner in which we determined combinations of parameters values at

the cross-over point.

Two interesting aspects of the phase transition phenomenon are that the peak
in average difficulty occurs at the 50% satisfiable point, and that the relationship
between the number of constraints and the number of variables at the cross-over
point is linear. Neither relationship has been proven analytically, but both have
been well established for K-SAT and for binary CSPs [12, 27, 35]. An accurate
formula for deriving sets of parameters at the cross-over point has not been found,
but the following equation, due to Smith [81] and Williams and Hogg [91], is an
approximation:

DN -1 =1, (3.1)

DV is the total number of possible assignments of values to variables, and the

probability of any given random assignment satisfying all C” constraints is (1 —

51

T | formula for C’
A11 | 7.300N 4+ 16.72
222 | 3.041N + 13.72
333 | 1.516/N + 15.56
444 1 0.725N +16.78
11 | 13.939N + 12.82
222 6.361NV + 6.56
333 | 3.761N + 5.49
A44 1 2.408N + 5.41
556 | 1.510N + 7.00
222 8.284N + 3.86
333 | 4.949N +4.87
A44 1 3.280N + 4.32

@@@@o;@@@wwww@

Table 3.2: Experimentally derived formulas for €’ at the cross-over point, under
Model B. C" = CN(N —1)/2 is the number of constraints in a CSP with parameters
C and N.

T)C/. The product is the expected number of solutions. When the expected
number of solutions is about 1, then the parameters are at the cross-over point.
The equation is not accurate because it makes an unwarranted assumption of
independence between the constraints, and because it ignores the distribution of
solutions. Solvable problems often have many solutions, so looking for the expected
number of solutions to be 1 is an approximation. Nevertheless, the formula does

describe the general relationship between the parameters at the cross-over point.

Equation (3.1) can be rewritten as
C"= N(—log,_s D), (3.2)

which shows that for fixed settings of T" and D the relationship between ¢’ and
N is linear. Similarly, (3.1) shows that for fixed N and D, increasing T means
decreasing C' to stay at the cross-over point; or for fixed NV and T', D must increase

as (' decreases.

Because equation (3.1) is not accurate, the exact values of parameters at
the cross-over point have to be determined experimentally. Empirically derived

relationships between C” (number of constraints) and N (number of variables) are

52

given in Fig. 3.2, for selected values of D and T'. These formulas were determined
through an iterative process. For a given set of parameters N, D, and T, 100
random problems were generated at each of several values of C'. We used values of
C' corresponding to an integer number of constraints. A standard CSP algorithm
was applied to each problem, and we noted the percentage that had solutions.
From that information we could estimate values of C' reasonably near the cross-
over point. The process was repeated until the number of constraints at the cross-
over value was ascertained within one or two. We then ran experiments with
2,000 instances at each of two or three values of C'. The final result was usually
one value of C' that produced slightly more than 50% solvable, and one value
of C' that produced slightly fewer. We determined the cross-over value of C' by
linear interpolation. This is illustrated by the following example, for parameters

N=25, D=3, T=.111:

C’ C ‘ solvable (out of 2,000)
198 0.6600 1058
199 0.6633 988

Interpolating linearly, 1,000 is .83 of the way from 1,058 to 988, so we estimate the
cross-over value of €’ to be 198.83 in this example. When the cross-over values of
C" were determined for a fixed D and T and five to ten values of N, we derived

the parameters of the linear regression line using the Unix “pair” program [35].

3.4 Statistical Background

In this section we review some basic notions of statistics upon which the later
sections are based. We focus on three probability distributions, the normal, the

lognormal, and the Weibull.

33

3.4.1 Distribution functions

Given a random variable X, the probability distribution of X defines the
probability that X will take on any particular value in its domain. If X is a
continuous variable, then the probability distribution is a continuous probability
distribution. Although our study is of discrete constraint satisfaction problems,
we emphasize the continuous probability distributions to which they converge in

the limit of increased sample size.

The probability distribution of a continuous random variable X can be de-
fined in two ways. The cumulative distribution function (cdf) F(x) specifies the

probability that the value of X is less than or equal to a:
F(z)=P(X <ux) (3.3)

The probability density function (pdf) f(x) is the derivative of the cumulative

probability function. Thus, for a continuous variable,

Flz) = / Ry (3.4)
and in particular

F(b) - F(a) = /abf(t) dt = P(a < X < b). (3.5)

For a continuous random variable X, the expected value E(X), also called

the mean, p, is given by

E(X) = /Oo of(e) de, (3.6)

— 00

assuming the integral is absolutely convergent (|x|f(z)dx < o0). The deviation
from the mean of a particular value of X is (X — p). The expected value of the
square of the deviation is called the variance of X, and is written Var(X) or o2

It is computed as
Var(X) = BI(X —] = B(X?) — 2, (3.7)

The positive square root of the variance, o, is called the standard deviation.

o4

3.4.2 Sample Statistics and Empirical Distributions

The arithmetic sample mean of n observations (w1, xa,...,2,) is the sum

of all observations divided by the number of observations, or

e
The sample variance s? is computed as
1
2 = — Z(Q?Z —z)? (3.9)

7

and the sample standard deviation s is the positive square root of s2.

The empirical distribution function is important for goodness-of-fit tests we
discuss in a later section. Let xq,x,,..., 2, denote an ordered random sample of

size n. The empirical distribution function, or sample CDF, is calculated as
Femp(a;) =1/n. (3.10)

Thus F.,,, ranges from 1/n to 1.

3.4.3 The normal distribution

Perhaps the most widely used distribution in statistics is the normal distri-

bution. The probability density function of the normal distribution is

fla) = — exp(—M). (3.11)

C oV2r 202
The pdf f(x) is parameterized by u, the mean of the distribution which has the
range —o0 < g < oo, and o, the standard deviation of the distribution, which
ranges 0 < o < oo. The normal distribution with parameters g and o is de-
noted N(u,c?). The standardized normal distribution, N(0,1), has a cumulative
distribution function ®(x) defined by

O(x “3t2 di (3.12)

R

)

In general, if z = (@ — p)/o then F(z) = ®(2).

Much of the usefulness of the normal distribution stems from the fact that,
in the limit, the sum of independent random variables tends to be normally dis-

tributed. This is known as the central limit theorem.

Theorem 1 (Central Limit Theorem) Let (X1, Xa,...) be a sequence of inde-
pendent random variables with edf’s (F1(X), F5(X),...), means (p1, pi2,...), and
variances (o3,03,...). Let a, = Xy + -+ X, Co = p1 + -+ phn, and 72 =
01 + -+ 02 Then

lim P (“” —n y) = d(y), (3.13)
n—0o0 T’]’L
or in other words
lim d,, is distributed as N((,,77) (3.14)

subject to certain conditions on the variances o?.

3.4.4 The lognormal distribution

A positive random variable X is lognormally distributed with parameters p
and o if Y = In X is normally distributed with mean y and variance o*. We say

X is distributed as A(u,0?). The probability density function of the lognormal is

1 (Inz—p)?

-, > 0

fla)={ Ve P (5525 (3.15)
0, x < 0.

The parameters u and o are not the mean and standard deviation of the lognormal

distribution. These statistics, and the variance, median and mode, are given by

explji+ 0/2)
= exp(p)(exp(20?) — exp(a?))"/?

(X) = exp((3.16)
(X) ((3.17)
Var(X) = exp(2u + o®)(exp(c?) — 1) (3.18)
(X) ((3.19)
(X) ((3.20)

p—a?)

56

Density
lognormal f_ g mhean

a 0.63 1.0 3.08

0 5 A 6
Weibull___~ # mean
. d 1.0 1.0 1.00

1 i |
e 1.0 0.5 2.00
1.0 2.0 0.89

0 1 9 3

Figure 3.1: Graphs of the lognormal and Weibull density functions for selected
parameter values.

The cumulative distribution function of the lognormal is

Flz)=® (h” — ”) . (3.21)

g

The first graph in Fig. 3.1 shows the shape of the lognormal pdf for several values
of 4 and 0. When o is small the pdf is relatively symmetric and the mean and
median are close together. As o increases, the lognormal distribution becomes
more skewed, and the probability of a random instance being above the mean

decreases.

3.4.5 The Weibull distribution

The Weibull distribution has wide applicability in reliability and lifetime
studies. Its probability density function is

)\ﬁﬂxﬁ_le_(m)ﬁ, x>0

flz) = (3.22)

and the cdf is

F(z) = (3.23)

57

The parameter A is interpreted as scale and 3 as shape. The mean, E. of a Weibull
distribution is given by E = A7', (1 4+ 37!) where , (-) is the Gamma function.
There is also a three parameter version of the Weibull distribution, in which z is
replaced by x—a in the above equations; « is called the origin of the distribution.

When g = 1, the Weibull distribution is identical to the exponential distribution.

The second graph in Fig. 3.1 shows the shape of the Weibull pdf for several
values of A and 3. When 3 < 1, the pdf has no mode (maximum value) and
is monotonically decreasing. When 3 is greater than 1, the pdf has a maximum
which is greater than 0; the greater is 3, the further to the right on the graph the

maximum appears.

3.4.6 Statistical Significance and Tail Ratio Test

It is important to be able to measure and report the goodness of fit between
a hypothesized distribution function and a sample created experimentally. We
measure the discrepancy in two ways, with a standard statistical technique called
the Kolmogorov-Smirnov statistic, and with a measure we developed call the Tail

Ratio.

The Kolmorgorov-Smirnov (KS) test statistic is based on the maximum dif-
ference between the cdf of the hypothesized distribution and the empirical cdf of
the sample. Let F'(x) be the cdf of the hypothesized distribution, and define

DT = max(ifn — F(x;)) = max(Feny(zi) — F(x;))

D~ = mZELX(F(J}Z) —(i=1)/n) = m;ELX(F(J}Z) — Femp(2i21))
Dpow = max(DY, D7),

D7 is the maximum distance the empirical cdf goes above the hypothesized cdf, and
D7 is the maximum distance below. Fig. 3.2 shows the cdf for the lognormal with
p=12.00 and o = 0.44. Fig. 3.3 shows a small section of an empirical distribution

based on a sample and which demonstrates D,, ., visually. D,,,.. is the KS statistic;

38

| | |
132,111 400,000 600,000

Figure 3.2: The cumulative distribution function for A(12.00,0.44) (see the fifth
line in Fig. 3.6). The curve is truncated at (F(646650) = 0.99. The small square
indicates the portion magnified in the next Figure. 132,111 is the median of the
distribution.

we report it in tables under the heading “KS”. This value can range from 0 to 1,
with a smaller value indicating a better fit. In general terms, when the product
of the KS statistic and the square root of the number of samples is less than 1, a
close match between the distribution and the sample is indicated. To interpret the
statistical significance of the KS statistic, it is necessary to know critical values
that correspond to particular level of significance. If specific parameters of the
distribution are part of the hypothesis that is being tested, then these critical
values are readily available. In our case, however, the distribution parameters are
estimated from the sample data, and there is no simple way to derive critical values.
We report the KS statistic solely as an indicator of the relative goodness-of-fit of

different samples to the corresponding lognormal or Weibull functions.

The KS statistic is not particularly sensitive at the tails of the distribution,
since at these points both the hypothesized distribution and the sample’s empirical
distribution tend to come together at 0 or 1. Indeed, we have found that D,,,,
is usually found near the median of the sample. Sometimes experimenters are
particularly interested in the behavior of the rare hard problems in the right tail.

Therefore, we have devised a measure called the Tail Ratio (TR) which focusses

39

| |
130,000 132,111

Figure 3.3: Computing the KS statistic D,,.,, when comparing the cdf for
A(12.00,0.44) (smooth line) and the empirical cdf for the experiment described
in the fifth row of Fig. 3.6 (stepwise line). Note that only a small part of the curve
near the maximum difference is shown.

on the goodness-of-fit in the right tail of the distribution. In general, the tail ratio
of two distributions with cdfs F7 and F, is parameterized by a value «, and is
the ratio of probabilities that a random variable will be greater than « in each

distribution:

TR. = (1 — Fi(a))/(1 — Fy(a)). (3.24)

In practice, we always set a equal to the number of nodes explored for the sample
instance at the 99th percentile. For example, out of 5,000 instances the 4.950th
hardest one might require 2,000,000 nodes, so a = 2,000,000. F} is the cdf of the
lognormal or Weibull function, and F; is the empirical distribution function for

the sample. Because of the way « is selected, Fy(a) = .99. Thus,

1 = F(99th percentile in sample)
B 1—.99

TR (3.25)

where F' is the appropriate cdf. If the TR is 1.0, the match is perfect and the
distribution accurately models the 99th percentile of the right tail. A number less

than 1 indicates that the distribution does not predict as many hard instances as

60

were actually encountered; when greater than 1 the TR indicates the distribution

predicts too many hard instances.

3.4.7 Estimating Distribution Parameters

The field of statistics has developed methods for estimating the parameters of
a distribution from sample values. It is almost always assumed that the distribution
function is known. The “universal method for optimal estimation of unknown
parameters” [75] is the maximum likelihood method, which chooses parameter

values which maximize the probability that the observed sample would occur.

For the lognormal distribution we use the maximum likelihood estimator
(MLE) [11]. Let {ay,22,...,2,} be the n samples. The estimate of p, called f,

and of 0%, called &%, are computed as

1 n

o= —> Ina; (3.26)
ni
1 n

6 = =Y (Inx;—p)% (3.27)
=

The MLE for the Weibull distribution is not recommended when 5 < 2 [11],

which is usually the case for the data we encounter

We therefore use a modified moment estimator (MME) [11]. Again, let the
n samples be {x1, x9,...,2,}, with 21 the smallest in the set. Let & be the sample
mean, s2 be the sample variance, and S\,B and & be the estimates for the Weibull
parameters. Where , (-) is the Gamma function, let

k=, (1 + %) . (3.28)

The first step of the MME is to iterate over possible values of B, finding a value
which satisfies the equality

_ . (3.29)

61

We varied B from 0.010 to 2.000 in steps of .001, selecting the value that minimized
the difference between the two sides in (3.29). With B derived, the MME computes

the other parameters as

p—
I

(3.30)

o>
Il
=1
|
p—

)1 (3.31)

3.5 Experiments

The primary goal of the experiments is to show the goodness-of-fit between
the empirical distributions of the samples and the lognormal (for unsolvable prob-
lems) and Weibull (for solvable problems) distributions. We use both Model A
and Model B random problem generators. We view the random CSP generator as
defining a distribution over the set of all CSPs. This distribution is a distribution
over CSP instances, not over the work to process these instances. For a given set
of parameters (N, D,C, T, CSPs which cannot be output by the generator have
a probability of 0 in the distribution, while all CSPs which can be generated have
an equal probability under the distribution.

Model B has been more widely used in recent empirical studies of CSP algo-
rithms than Model A. The advantage of Model A, for the purposes of this chapter,
is that the independence of constraints and prohibited value pairs simplifies the
analysis of why the lognormal distribution appears in unsatisfiable problems. We

discuss this topic in section 3.6.

Because there are many experiments to report, we start with an outline of the
section. In subsection 3.5.1 we show that the distributions are observed under a va-
riety of algorithms; the experiments in this section use Model A with combinations
of parameters that are at or near the 50% solvable cross-over point. Section 3.5.2

show how increasing the sample size, from 100 up to 1,000,000 instances, reduces

62

020

<20,6,.9789,.1678 Model A, BT+RND -
= 13.21, 0 = 0.53
KS: 0.0046 TR: 1.1

Freq.

.010

0 627,583 2,510,200
Search Space Nodes

I
020 <20,6,.7053,.2228 Model A, BT+RND .
p=1321,0 =0.85

KS: 0.0076 TR: 0.9
Freq. :

.010

0 787,750 3,150,800
Search Space Nodes

Figure 3.4: Graphs of sample data (vertical bars) and the lognormal distribution
(curved line). Based on the unsolvable portion of 20,000 instances for each graph.
Algorithm is simple backtracking with random variable ordering (BT+RND).

the seemingly random fluctuations in the histogram bars in the graphs. In sub-
section 3.5.3, we show that empirical distributions can also be approximated by
the lognormal and Weibull functions outside the 50% satisfiable region as well.

Subsection 3.5.4 shows the impact of using Model B on the goodness-of-fit.

Throughout our experiments we employ the same procedures and report the
data in a consistent format. Qur experimental procedure consisted of selecting var-
ious sets of parameters for the random CSP generator, then generating 20,000 or
more instances for each set, and applying one or more search algorithms to each in-

stance. For each instance and algorithm we recorded whether a solution was found

63

(20,6,.4263,.333) Model A, BT+RND
(= 1338, 0 = 1.29
KS: 0.0076 TR: 0.9

.03

Freq.
.02

.01

0 1,531,500 6,126,000
Search Space Nodes

(20,6,.2316.,.500) Model A, BT+RND]
(L= 14.08, 0 = 1.94
KS: 0.0096 TR: 0.7

|"“IIIInnnm....n.m...n.. |

0 9,767,857 39,086,600
Search Space Nodes

Figure 3.5: Continuation of Fig. 3.4, with different problem generator parameters.

and the number of nodes in the search space. We derived parameters for the distri-
butions, and measured the closeness of the fit using the KS (Kolmogorov-Smirnov)
and TR (Tail Ratio) statistics. Each line in Fig. 3.3 and Fig. 3.4 represents one
experiment with one algorithm on the unsolvable (Fig. 3.3) or solvable (Fig. 3.4)
instances generated from one set of parameters. The column labeled “Mean” in
these tables shows the mean number of nodes for an experiment. The “u”, “o”,
“N70 437 and “a” columns show the estimated value for these parameters. Since

values for \ are typically very small, we show them multiplied by 10°. In the “solv”

column is the percentage of solvable problems that were generated with the given

64

parameters. The “KS” column holds the Kolmogorov-Smirnov statistic, and the

tail ratio measure is reported in the “TR” column.

We also show some experimental results and distributions in a pictorial fash-
ion, as in Fig. 3.4, Fig. 3.5, Fig. 3.6, and Fig. 3.7. These graphs can be difficult
to interpret, because each one has its own scale for the # and y axes. The sample
data is represented by a histogram of vertical bars. The samples in each case have
been grouped into 200 bins; a problem that required between (¢ — 1) x w 4+ 1 and
2 X w nodes is reported in the ith bin. The “width” of the bin, w, is set to be equal
to one-fiftieth of the mean, unless noted otherwise. When this is so the sample
mean, which is noted on the z-axis, is one fourth of the way across the graph, from
left to right. Instances greater than four times the mean are not pictured, but
are considered in estimating the parameters. The height of each vertical line is in
proportion to the fraction of the sample that fell within the corresponding range
of nodes, as indicated on the y-axis. The continuous line on the charts indicates
the distribution function; the height of the line at :, 0 < ¢ < 200, is proportional
to F(e x w) — F((¢ — 1) x w), where F'is the cdf and w is the bin width. The
vertical dotted lines indicate the median and 90th percentile of the data.

For example, in the top graph of Fig. 3.4, the mean of the 12,125 unsolvable
instances was 627,583. Dividing the mean by 50 and ignoring the remainder yields
a bin width, w, of 12,551. The 100th bin, to focus on one in particular, contains 34
samples which required between 1,242,550 and 1,255,100 nodes in the search. The
height of the histogram line representing bin 100 is therefore 34/12125 = 0.002804.
Using the lognormal cdf F' with parameters pp = 13.21 and o = 0.53, the height of
the curved line at @ = 100 is F(1225100) — F'(1242550) = 0.941210 — 0.938968 =
0.002242. Since 0.002242 < 0.002804, at this point along the z-axis the vertical
line extends above the curved line. Samples above 200 x 12551 = 2510200 are not
shown on the graph. There were 17 such instances in this experiment, ranging

from 2,583,312 to 5,024,460. Truncating the extreme right tails of the graphs is

65

Model(N, D, C, T) Unsolvable / Lognormal
Parameters Mean ‘ I ‘ o ‘ solv ‘ KS ‘ TR

Algorithm: BT4+RND
A (20, 6, .9789, .167) 627,583 | 13.21 | 0.53 | 39% | 0.0046 | 1.1
A (20, 6, .7053, .222) 787,750 | 13.21 | 0.85 | 40% | 0.0076 | 0.9
A (20, 6, .4263, .333) || 1,531,500 | 13.38 | 1.29 | 42% | 0.0111 | 0.9
A (20, 6, .2316, .500) || 9,601,654 | 14.08 | 1.94 | 43% | 0.0096 | 0.7
Algorithm: BJ+RND
A (20, 6, .9789, .167) 180,251 | 12.00 | 0.44 | 39% | 0.0077 | 1.0
A (20, 6, .7053, .222) 167,360 | 11.79 | 0.68 | 40% | 0.0078 | 0.9
A (20, 6, .4263, .333) 149,273 | 11.41 | 0.99 | 42% | 0.0096 | 0.8
A (20, 6, .2316, .500) 117,744 1 10.68 | 1.36 | 43% | 0.0122 | 1.4
Algorithm: FC4+RND

A (20, 6, .9789, .167) 9,421 | 9.05 [0.45 | 39% | 0.0036 | 1.0
A (20, 6, .7053, .222) 8,477 | 8.81 | 0.68 | 40% | 0.0071 | 0.9
A (20, 6, .4263, .333) 8,659 | 8.49 | 1.05 | 42% | 0.0124 | 0.7

A (20, 6, .2316, .500) 20,296 | 8.34 | 1.66 | 43% | 0.0189 | 0.5
Algorithm: BT4+MW
A (20, 6, .9789, .167) 509,301 | 13.01 | 0.51 | 39% | 0.0058 | 1.0
A (20, 6, .7053, .222) 85,687 | 11.19 | 0.57 | 40% | 0.0096 | 0.8
A (20, 6, .4263, .333) 17,855 | 9.50 | 0.75 | 42% | 0.0129 | 0.8

A (20, 6, .2316, .500) 4,381 | 7.90 | 0.93 | 43% | 0.0218 | 0.9
Algorithm: BJ+DVO

A (20, 6, .9789, .167) 639 | 6.42|0.29 | 39% | 0.0073 | 1.1
A (20, 6, .7053, .222) 321 | 5.71]0.35 | 40% | 0.0068 | 1.0
A (20, 6, .4263, .333) 136 | 4.81 | 0.46 | 42% | 0.0128 | 0.8
A (20, 6, .2316, .500) 53 | 3.78 | 0.58 | 43% | 0.0357 | 0.4

Table 3.3: Goodness-of-fit between unsolvable CSP instances and the lognormal
distribution. This table compares a variety of algorithms.

unfortunate but essential for maintaining a scale appropriate to the rest of the

graph.

3.5.1 First Set of Experiments: Variety of Algorithms

The first set of experiments are designed to explore how well the lognormal

and Weibull distributions fit the data over a range of settings of ¢’ and T', and for

66

: 20,6,.9789,.167) Model A, BT+RND
) : KS: 0.0173 TR: 1.0

1.01, a = 20

Freq.

.010

0 313,262 1,253,000
Search Space Nodes

.050 § 20,6,.7053,.222) Model A, BT+RND -
: = 2.54e — 06, # = 0.78, a = 20
KS: 0.0289 TR: 0.8

0 454,988 1,819,800
Search Space Nodes

Figure 3.6: Graphs of sample data (vertical bars) and the Weibull distribution
(curved line). Based on the solvable portion of 20,000 instances for each graph.
Algorithm is simple backtracking with random variable ordering (BT+RND).

a variety of algorithms. We set N=20 and D=6, and chose four combinations of T
and (' which result in a roughly equal number of solvable and unsolvable instances.
The algorithms used are all based on backtracking search and are described in detail
in Chapter 2. The basic algorithm, backtracking, can be run with a fixed random
variable ordering (BT+RND) or using the min-width variable ordering heuristic
(BT+MW). We also experiment with backjumping and a random variable ordering
(BJ+RND) and forward checking with random variable ordering (FC+RND). We
selected a variety of relatively simple algorithms in order to demonstrate that the

correspondence with continuous distributions is not the consequence of any specific

67

: 20,6.,.4263,.333) Model A, BT+RND
10 : = 1.50e — 06, 3 = 0.60, o = 19 —
: KS: 0.0564 TR: 0.4

Freq.

0 1,004,748 4,018,800
Search Space Nodes
S | : —
: 20,6,.2316,.500) Model A, BT+RND
=3.61le—07,3 =042, 2 =19
KS: 0.1193 TR: 0.7

0 8,381,083 33,524,200
Search Space Nodes

Figure 3.7: Continuation of Fig. 3.6.

heuristic, but holds for many varieties of backtracking search. As an example
of a sophisticated variation of backtracking search that combines backjumping,
forward checking style look-ahead, and a dynamic variable ordering heuristic, we

use BJ4+DVO, described in chapter 4.

The results of the experiments are presented in Table 3.3 (unsolvable prob-
lems) and Table 3.4 (solvable problems). The results for the experiments with
BT+RND are shown graphically in Fig. 3.4, Fig. 3.5, Fig. 3.6, and Fig. 3.7.

The fit between unsolvable problems and the lognormal distribution is quite

good. It is least good for the problems with parameters (20,6,.2316,.500), which

63

have the sparsest graphs and the tightest constraints. For the other sets of param-
eters, the TR statistic ranges from 0.7 to 1.1, and KS is not greater than 0.0129.
Fig. 3.4 and Fig. 3.5 show visually that the lognormal distribution accurately re-
flects the shape of the data.

The fit between the Weibull distribution and the distribution of solvable
problems is much less good, but not entirely unsatisfactory. The visual evidence in
Fig. 3.6 and Fig. 3.7 is that the fit is good enough to use the Weibull distribution
for capturing the overall shape of the empirical distribution. The fit is least good to
the “left” of the median line, where the Weibull distribution is often substantially
larger or smaller than the observed value. It is possible to choose parameters
for the Weibull distribution which create a closer fit on the easiest problems (the
left part of the graph), but these parameters always cause an extreme mismatch

between the Weibull and empirical distributions elsewhere on the graph.

We observe a pattern that holds for both solvable and unsolvable problems:
the sparser the constraint graph, the greater the variance of the distribution, in-
dicated by larger o and smaller A. The effect is visible in Table 3.3 and Table 3.4
when comparing rows with the same N, D, and algorithm. Parameters T" and C
are inversely related at the 50% satisfiable point, so the effect may be due to in-
creasing T" as well. The pattern holds even with BT. BJ, FC, and BT+MW can
exploit tight constraints and a sparse graph to make such problems much easier.

BT does not, but we still find greater variance with lower C.

69

Model(N, D, C, T) Solvable / Weibull
Parameters Mean ‘ A x 10° ‘ I¢] ‘ « ‘ solv ‘ KS ‘ TR

Algorithm: BT+RND
A (20, 6, .9789, .167) 313,262 3.17 1 1.01 | 19 | 39% | 0.0173 | 1.0
A (20, 6, .7053, .222) 454,988 2.54 1 0.78 | 19 | 40% | 0.0289 | 0.6
A (20, 6, .4263, .333) || 1,004,748 1.50 | 0.60 | 19 | 42% | 0.0564 | 0.4
A (20, 6, .2316, .500) | 8,248,756 0.36 | 0.42 | 19 | 43% | 0.1193 | 0.7
Algorithm: BJ+RND
A (20, 6, .9789, .167) 85,121 11.39 | 1.08 | 19 | 39% | 0.0202 | 1.4
A (20, 6, .7053, .222) 82,993 12.94 | 0.87 | 19 | 40% | 0.0142 | 0.7
A (20, 6, .4263, .333) 72,204 17.78 1 0.69 | 19 | 42% | 0.0307 | 0.6
A (20, 6, .2316, .500) 45,942 37.92 | 0.54 | 19 | 43% | 0.0696 | 0.5
Algorithm: FC4+RND

A (20, 6, .9789, .167) 4,794 | 20034 [1.12 [19 [39% | 0.0158 | 1.3
A (20, 6, 7053, .222) 4,920 | 214.65 [0.89 | 19 | 40% | 0.0155 | 0.7
A (20, 6, 4263, .333) 5,810 | 219.69 | 0.69 | 19 | 42% | 0.0388 | 0.5

A (20, 6, .2316, .500) 18,129 | 132.14 | 0.46 | 19 | 43% | 0.1014 | 0.7
Algorithm: BT+MW
A (20, 6, .9789, .167) 246,677 3.99 | 1.04 | 19 | 39% | 0.0144 | 1.0
A (20, 6, .7053, .222) 46,478 21.99 | 0.95 | 19 | 40% | 0.0120 | 0.8
A (20, 6, .4263, .333) 11,798 94.48 | 0.82 | 19 | 42% | 0.0207 | 0.6

A (20, 6, .2316, .500) 9,899 | 163.89 | 0.57 | 19 | 43% | 0.1833 | 4.0
Algorithm: BJ4+DVO

A (20, 6, .9789, .167) 324 2,817 | 141 0[39% | 0.0276 | 1.4
A (20, 6, .7053, .222) 182 5,008 | 1.38 | 0 [40% | 0.0322 | 1.1
A (20, 6, .4263, .333) 91 | 10,035 | 1.39 | 0 |42% | 0.0741 | 0.5
A (20, 6, .2316, .500) 471 19478 | 1.46 | 0| 43% | 0.1631 | 0.1

Table 3.4: Goodness-of-fit between solvable CSP instances and the Weibull distri-
bution. This chart compares a variety of algorithms.

3.5.2 1,000,000 instances

In the this section we report on an experiment in which almost two million
CSP instances — approximately 1,000,000 unsolvable instances — were created and
processed with the BJ4+DVO algorithm. The goal was to explore visually the effect
of varying the number of samples in a chart. One difficulty in interpreting charts
such as those in Figs. 3.4 and 3.5 is the fluctuations in the heights of the histogram

bars. Apparently more samples are necessary to smooth the histogram.

70

3,000 6,000
Search Space Nodes

Freq.

0 3,000 6,000
Search Space Nodes

Figure 3.8: Unsolvable problems from parameters (50,6,.1576,.333), using algo-
rithm BJ+DVO. The top chart is based on the first 100 unsolvable instances, the
bottom chart on the first 1,000 unsolvable instances. Fach histogram bar repre-
sents the number of sample instances in a range of 30 nodes.

The parameters used in this experiment were (50,6,.1576,.333), and only
unsolvable instances are reported. The relevant charts are in Fig. 3.8 through
Fig. 3.12. The samples displayed are cumulative; e.g. the 100 instances in the top
chart of Fig. 3.8 are also included in the bottom chart, along with the next 900 in

the experiment.

71

015

Freq.
.010

005

0 3,000 6,000

015

Freq.
.010

005

0 3.000 6,000
Search Space Nodes

Figure 3.9: Continuation of Fig. 3.8. The top chart is based on the first 10,000
unsolvable instances, the bottom chart on the first 100,000 unsolvable instances.

72

015

Freq.
.010

005

0 1,000 3,000 6,000
Search Space Nodes

Figure 3.10: Continuation of Fig. 3.8 and Fig. 3.9. This chart is based on 1,000,000

unsolvable instances.

Figs. 3.8, 3.9, and 3.10 show histograms and lognormal distributions based
on samples of sizes 100, 1,000, 10,000, 100,000, and 1,000,000. In each chart the
same x-axis scale is used — one histogram bar represents a range of 30 nodes.
The distributions are truncated above 6,000 nodes, so there are 200 bars in each
chart. The y-axis scales are the same within each figure, but change from figure to
figure. In each chart, the lognormal distribution pictured is based on parameters

estimated from that chart’s sample.

The top chart in Fig. 3.8 is based on 100 instances, and so displays many
gaps in the histogram. Most of the histogram bars have a height of 0.00 (that
is, no bar) or 0.01, because exactly zero or one instance (out of one hundred) fell
into the corresponding range. With 100 instances the chart looks awful, and it is
nearly impossible to tell by eye the goodness-of-fit between the sample data and
the lognormal distribution display. If this were the only set of data to display,

clearly a better scale could be chosen.

73

003 - 20th - 30th

.002
Freq.

.001

0 250 500 750 1,000
Search Space Nodes

Figure 3.11: A “close-up” view of the data in Fig. 3.10. FEach histogram bar
represents a range of 5 nodes (in comparison to 30 in Fig. 3.10; only instances with
search space less than 1,000 nodes. The dotted lines indicate the 10th, 20th, and

30th percentile lines in the sample.

In the subsequent charts in Figs. 3.8, 3.9, and 3.10 the histograms look
smoother and smoother. By 1,000,000 samples (Fig. 3.10) almost all fluctuation
from bar to bar has been dampened. It is also possible to see that there is a sys-
tematic mismatch between empirical distribution and the lognormal distribution,
particularly at the mode, where the peak of the empirical distribution seems to
be a bit higher and to the left of the lognormal. It is possible, of course, that
this mismatch is due to sampling error and would disappear if sufficient further
instances were added to the sample. It is more likely that the true underlying
distribution of problem difficulty diverges slightly from the lognormal distribution.
Because solving CSPs requires finite units of work and the lognormal and Weibull

distributions are continuous, we can never expect perfect agreement.

To explore the mismatch around the mode more closely, Fig. 3.11 shows a
subset of the data from Fig. 3.10, grouped in histogram bars of width 5, and trun-
cated above 1,000 nodes. In this “close-up” view, each bar represents about one
sixth as much data as in Fig. 3.10. The lognormal distribution (with parame-
ters estimated by the maximum likelihood estimator) predicts slightly too many

instances around 100 nodes, too few instances in the range of 250 to 600 nodes,

74

Freq.
.0005

.0004
.0003
.0002
.0001

6,000 9,000 12,000
Search Space Nodes

Freq. “th "
00005 99.7t 99.9¢
.00004
.00003

.00002

.00001

12,000 15,000 18,000
Search Space Nodes

Figure 3.12: The two graphs are continuations of Fig. 3.10, showing data in the
tail of the distributions. The top chart extends Fig. 3.10 from 6,000 to 12,000
nodes, and the bottom chart continues from 12,000 to 18,000 nodes. The z-axis
scale is the same in Fig. 3.10 and these charts — 30 nodes, but the vertical scale
varies. The dotted lines show the indicated percentiles in the sample.

75

sample size | sample mean i o
50 1,703 | 6.969 | 1.046
100 1,723 | 7.012 | 0.981
1,000 1,971 | 7.192 | 0.885
10,000 1,913 | 7.173 | 0.876
100,000 1,912 | 7.172 | 0.879
1,000,000 1,914 | 7.173 | 0.880

Table 3.5: Mean number of nodes and estimated values of 1 and o for the lognormal
distribution, using the maximum likelihood estimator, based on varying sample
sizes.

and just about the right number from 600 to 1,000 nodes. The visual evidence,
from this one experiment, is that the sample is not drawn from an exactly log-
normal distribution, but that the approximation is sufficiently close for almost all

purposes.

In Fig. 3.12 we show some of the tail of the distribution with 1,000,000
instances. This figure should be viewed as a continuation of Fig. 3.10, extending
the chart to those instances with a search space of 6,000 to 12,000 nodes (top chart)
and 12,000 to 18,000 nodes (bottom chart). The x-axis scale of the three charts
is identical (30 nodes), but the y-axis scales are modified as appropriate. Again
the goodness-of-fit of the lognormal seems quite good to the eye, although above
the 99.7th percentile it seems to be overestimating slightly the actual number of

instances.

It is interesting to observe how the maximum likelihood estimates of the
lognormal parameters change as the sample size increases. This data is tabulated
in Table 3.5. The estimates of y and o are reasonably accurate after even 50
samples, and by 1,000 samples they are almost identical to their values at 1,000,000

instances.

3.5.3 Parameters not at the cross-over point

Model(N, D, C, T) Unsolvable / Lognormal
Parameters Mean ‘ I ‘ o ‘ solv ‘ KS ‘ TR
Algorithm: BJ4+DVO
A (20, 6, 5263, .222) || 27,906 | 9.93 | 0.79 | 99% | 0.1147 | 1.0
A (20, 6, .5526, .222) || 21,390 | 9.70 | 0.72 | 99% | 0.0623 | 0.1
A (20, 6, .5789, .222) || 18,138 | 9.52 | 0.75 | 98% | 0.0327 | 0.7
A (20, 6, .6053, .222) || 16,595 | 9.44 | 0.73 | 94% | 0.0176 | 0.6
A (20, 6, 6316, .222) || 14,231 | 9.20 | 0.73 | 86% | 0.0168 | 0.7
A (20, 6, .6579, .222) || 11,947 | 9.13 | 0.71 | 73% | 0.0078 | 0.8
A (20, 6, .6842, .222) || 10,014 | 8.96 | 0.69 | 55% | 0.0114 | 0.9
A (20, 6, .7105, .222) || 8,279 | 8.78 | 0.69 | 37% | 0.0094 | 0.9
A (20, 6, .7368, .222) || 6,544 | 8.55 | 0.67 | 22% | 0.0109 | 0.8
A (20, 6, .7632, .222) || 5,175 | 8.33 | 0.65 | 11% | 0.0145 | 1.0
A (20, 6, .7895, .222) || 4,043 [8.11 | 0.62 | 5% | 0.0141 | 0.7
A (20, 6, 8158, .222) || 3,122 | 7.87 | 0.58 | 2% | 0.0136 | 0.6
A (20, 6, 8421, .222) || 2458 | 7.65 | 0.55 | 1% | 0.0147 | 0.6
A (20, 6, 8684, .222) || 1,946 | 7.44 | 0.51 | 0% | 0.0148 | 0.7
A (20, 6, 8947, .222) || 1,574 | 7.25 | 0.47 | 0% | 0.0102 | 0.8
A (20, 6,.9211, .222) || 1,205 | 7.07 | 0.44 | 0% | 0.0126 | 0.8
A (20, 6,.9474, .222) || 1,078 | 6.90 | 0.41 | 0% | 0.0082 | 0.7
A (20, 6, .9737, .222) 908 | 6.74 | 0.38 | 0% | 0.0065 | 0.8
A (20, 6, 1.000, .222) 773 16.59 | 0.34 | 0% | 0.0029 | 0.9

76

Table 3.6: Goodness-of-fit for a set of experiment with fixed values for N, D and
T and varying values of C'. Unsolvable problems; algorithm is FC+RND.

77

Model(N, D, C, T) Solvable / Weibull
Parameters Mean ‘ A ‘ I¢] ‘ solv ‘ KS ‘ TR

Algorithm: BJ+DVO
A (20, 6, 5000, 222
20, 6, .5263, .222
20, 6, .5526, .222
20, 6, .5789, .222

1,700 | 1,176.75 | 0.50 | 100% | 0.0537 | 0.8
2,065 861.27 | 0.54 | 99% | 0.0342 | 0.6
2,587 614.72 | 0.58 | 99% | 0.0352 | 0.7
3,221 444.70 | 0.62 | 98% | 0.0257 | 0.7

)
A)
A)
A)
A (20, 6, .6053, .222) || 3,827 | 339.84 | 0.68 | 94% | 0.0187 | 0.8
A (20, 6, 6316, .222) || 4,597 | 263.44 [0.74 | 86% | 0.0154 | 0.7
A (20, 6, .6579, .222) | 4,849 | 215.65 | 0.87 | 73% | 0.0154 | 0.7
A (20, 6, .6842, .222) | 4,981 | 218.92 | 0.94 | 55% | 0.0174 | 0.7
A (20, 6, .7105, .222) || 4,696 | 217.47 [0.95 | 37% | 0.0168 | 0.7
A (20, 6, .7368, .222) || 4,412 | 231.24 [0.96 | 22% | 0.0186 | 0.6
A (20, 6, .7632, .222) || 3,876 | 256.53 | 1.01 | 11% | 0.0314 | 0.5
A (20, 6, .7895, .222) || 3,162 | 311.33 [1.04 | 5% | 0.0393 | 0.7
A (20, 6, 8158, .222) || 2,748 | 351.12 [1.10 | 2% | 0.0384 | 1.1
A (20, 6)

8421, .222) | 2,221 441.03 | 1.05 1% | 0.0538 | 0.5

Table 3.7: Goodness-of-fit for a set of experiment with fixed values for N, D and
T and varying values of C'. Solvable problems; algorithm is FC+RND.

In the previous experiments the parameters were selected such that ap-
proximately equal numbers of solvable and unsolvable instances were generated.
Parameters at the cross-over point are used by many experimenters when eval-
uating algorithms, and so are of particular interest. We now report on a set of
experiments which indicate that the lognormal and Weibull distributions remain
good approximations of the empirical distributions for problems generated by pa-
rameters not at the cross-over point. Our technique is to fix N=20, D=6, and
T'=.222 and then to vary parameter C' from .500, where all problems have solu-
tions, up to 1.00, where no problems have solutions. ' is incremented in steps of
.0263, which corresponds to 5 constraints. The results are reported in Table 3.6
(problems without solutions) and Table 3.7 (problems with solutions).

In the unsolvable problems, there is a clear trend of the Kolmogorov-Smirnov
statistic improving (decreasing) with increasing C' and decreasing percent solvable.

The Tail Ratio does not exhibit any pattern. The cause of the improving K-S figure

78

is difficult to pinpoint. It may be related to a similar pattern seen in Fig. 3.3, where
the experiments with higher values of (' tend to have lower values of o and better

goodness-of-fit, as measured by K-S.

In contrast to the data from unsolvable instances, the solvable problems show
a clear deterioration of goodness-of-fit between the Weibull distribution and the
experimental samples when the problem parameters are not near the cross-over
point. As with the unsolvable problems, there may be a confounding factor, in
this case a correlation between the number of nodes and the K-S statistics. For
relatively low and high values of C' (e.g below .6 or above .8) the problems are
easier and less like the Weibull distribution.

Even when focusing exclusively on parameter combinations at the cross-over
point, there are still so many combinations that extrapolation from empirical data
must be done with caution. If we look at the complete range of possible parameters,
it becomes much more difficult to know whether results from one cross-section of
the four-dimensional parameter space have any predictive value for other sections
of the space. We therefore limit our conclusions in this section to the statement
that we have seen no evidence, either in Tables 3.6 and 3.7 or in other experiments
we have conducted, to indicate a severe fall off in goodness-of-fit when problem

parameters are not at the 50% solvable point.

3.5.4 Model A and Model B

The experiments reported above were all conducted with Model A, in which
the parameters ' and T specify the probability of a constraint and of a prohibited
value pair, respectively. As discussed earlier, Model B has become more widely
used in recent years, and therefore we conducted a set of experiments with Model B.
Results in [29] were based on experiments with Model B. Our primary goal was to
determine whether the change in generating model, and thus distribution of CSP

instances, makes an appreciable difference in the applicability of the lognormal

79

and Weibull distributions to summarizing empirical distributions. The results
we report in this chapter will have limited interest if they are contingent on a
particular family of problem distributions. Although Model A and Model B are
similar distributions of CSPs, we view this comparison as a first step towards

judging the wider applicability of the continuous distribution functions.

The results are presented in Fig. 3.13 (for unsolvable problems) and Fig. 3.14
(for solvable problems). We have sorted the experiments in descending order of
parameter C', the number of constraints (third number in the angle brackets), be-
cause this highlights an interesting pattern. On problems with relatively dense
graphs, approximately C' > .1500, the lognormal distribution fits Model A prob-
lems better than it fits Model B problems. When C' is less than .1500, the fit is
better with Model B. The cause of this pattern is unknown. Our conclusion from
the data presented is that the choice of Model A or Model B does not substantially
affect the goodness-of-fit of the lognormal and Weibull distributions.

3.6 Distribution Derivations

Selecting the best distribution, or model, to describe a set of data is as much
an art as a science. It is often the case that no simple textbook distribution provides
a completely satisfactory fit for all samples. Moreover, more than one distribution
may match the data equally well, or different distributions may be superior for
different samples from the same family of underlying distributions. Rish and Frost
[73] report that unsatisfiable CSPs can be modelled reasonably well by several
other distributions besides the lognormal. In particular, the gamma distribution
can in some cases provide a better fit to a sample dataset than the lognormal
distribution. Gomes et al. [38] propose using the Pareto distribution to model a

set, of satisfiable instances.

80

Model(N, D, C, T) Unsolvable / Lognormal
Parameters Mean ‘ I ‘ o ‘ solv ‘ KS ‘ TR

Algorithm: BJ+DVO
A (50, 6, .3722, .167) | 19,807 | 9.72 | 0.59 | 32% | 0.0093 | 1.3
A (50, 6, .2653, .222) || 8,220 | 8.78 | 0.70 | 35% | 0.0114 | 1.4
A (60, 6, .2260, .222) | 19,343 | 9.55 | 0.80 | 17% | 0.0093 | 1.2
A (50, 6, .1576, .333) 1,911 | 7.18 | 0.87 | 38% | 0.0095 | 1.2
A (60, 6, .1356, .333) 3,404 | 7.65|0.98 | 18% | 0.0191 | 1.0
A (75, 6, .0577, .500) 1,022 | 5.86 | 1.46 | 13% | 0.0391 | 0.6
Algorithm: BJ+DVO
B (50, 6, .3722, .167) | 40,488 | 10.55 | 0.36 | 43% | 0.0109 | 1.1
50, 6, .2653, .222) || 17,048 | 9.63 | 0.48 | 48% | 0.0148 | 1.3

)

)

60, 6, .2260, .222) || 38,465 | 10.42 | 0.52 | 14% | 0.0108 | 1.2
0, 6, .1576, .333) || 3,826 | 8.02 | 0.68 | 53% | 0.0097 | 1.4
, 6, .1356, .333) 6,674 | 8.52 | 0.75 | 15% | 0.0177 | 1.4
6, .0577, .500) 2,200 | 6.82 | 1.31 | 13% | 0.0157 | 0.7

Figure 3.13: This table compares goodness-of-fit between Model A and Model B,
using unsolvable problems and the lognormal distribution. The rows are arranged
in decreasing order of parameter C, fraction of constraints. Parameters are in
bold face when the lognormal fit Model A better than Model B, based on the KS

statistic.

Model(N, D, C, T) Solvable / Weibull
Parameters Mean ‘ A ‘ I¢] ‘ solv ‘ KS ‘ TR

Algorithm: BJ+DVO
A (50, 6, .3722, .167) || 12,748 78.82 1 0.99 | 32% | 0.0152 | 1.2
A (50, 6, .2653, .222) 5,667 183.41 1 0.92 | 35% | 0.0135 | 1.0
A (50, 6, .1576, .333) 1,531 711.05 | 0.85 | 38% | 0.0463 | 0.6
A (50, 6, .0832, .500) 386 | 2,958.40 | 0.79 | 36% | 0.1820 | 0.2
A (60, 6, .2260, .222) 17,760 59.06 | 0.91 | 17% | 0.0287 | 1.7
A (60, 6, .1356, .333) 4,329 256.19 | 0.83 | 18% | 0.0377 | 0.6
Algorithm: BJ+DVO
B (50, 6, .3722, .167) || 19,563 47.99 | 1.21 | 43% | 0.0258 | 1.5
B (50, 6, .2653, .222) 8,637 110.77 | 1.13 | 48% | 0.0140 | 1.1
B (50, 6, .1576, .333) 2,212 450.19 | 1.01 | 53% | 0.0207 | 0.6
B (50, 6, .0832, .500) 505 | 2,125.03 | 0.87 | 52% | 0.1313 | 0.2
B (60, 6, .2260, .222) | 24,430 | 38.92 | 1.15 | 14% | 0.0222 | 1.1
B (60, 6, .1356, .333) 5,090 193.10 | 1.04 | 15% | 0.0391 | 0.3

Figure 3.14: Comparing goodness of fit when generating problems with Model A
and Model B - solvable problems.

81

For these reasons, it is appealing to select a model not only on the basis
of goodness-of-fit to several sets of samples of data, but also because the theory
behind the distribution corresponds with our understanding of the process being
modelled, in this case backtracking search. In this section we briefly outline such
a correspondence between the lognormal distribution and unsatisfiable problems,
and between the Weibull distribution and satisfiable problems. The goal is a better
appreciation of the degree to which the statistical model can capture the distribu-
tion of backtracking search on CSPs, and perhaps a heightened understanding of

the backtracking search process itself.

3.6.1 Deriving the Lognormal

Several models have been proposed to derive the lognormal distribution [1].
One approach is to start directly with the definition of the lognormal distribution.
Recall that a positive random variable X is lognormally distributed with param-
eters ¢ and ¢% if Y = In X is normally distributed with mean g and variance
o?. Equivalently, X = ¢¥, for a normally distributed variable Y. Finding such a
Y seems plausible in the context of search trees. Suppose that each search tree
can be associated with a depth d, such that D? = the number of nodes in the
search tree, where D is the number of values per variables and thus the maximum
branching factor of the search tree. For instance, d might be the average depth of
a leaf dead-end. If d is a normally distributed random variable, then the lognormal
distribution of nodes could be understood in terms of this d. For this line of rea-
soning to be interesting, d should be some well-defined property of the search tree.
We have not found a d that meets the requirements, and so turn our attention to

another source of the lognormal distribution.

The lognormal distribution can be derived from the “law of proportionate
effect” [1]. This law says that if the growth rate of a variable at each step in a
y g P

process is in random proportion to its size at that step, then the size of the variable

82

at time n will be approximately lognormally distributed. In other words, if the

value of a random variable at time ¢ is Z;, and if the relationship
Zi = Zi—l X XZ (332)

holds, where (X1, X3,...,X,) are independent random variables, then the distri-
bution of Z; for large enough 2 is lognormally distributed. We formalize this notion

as a corollary to the central limit theorem:

Corollary 1 (Law of Proportionate Effect) Let (X1, X,...) be a sequence of
independent positive random variables as in Theorem 1 (restricted to X; > 0).
Let (Xl, X, .. .) be the natural logarithms of (X1, Xa,...), with means (fix, fi2,...),
and variances (6{,63,...). Let a, = X1 X -+ x X, fn = 1+ + fin, and

"2 _ A2 A2
2=6{4+---+067. Then

Iny —(,
lim Pla, <y)=® (M) (3.33)
n—00 Tn
or in other words
lim a, is distributed as A(fn,ﬁf). (3.34)

n—oo

Proof. We defined
a, = X1 X - x X,,

and taking the logarithm of both sides yields
Inag, =InX; +---+1InX,.
Since the In X;’s are independent random variables, by the central limit theorem

lim Ina, is distributed as N(fn, 72) (3.35)

n—oo

and by the definition of the lognormal distribution,

lim a, is distributed as A(fn, 72). (3.36)

n—oo

Q.E.D.

83

We can summarize by stating that the law of proportionate effect is a mul-
tiplicative corollary of the central limit theorem. In the limit, the product of a
series of independent and arbitrarily distributed random numbers is lognormally
distributed. The only restriction is that the individual random numbers must be

positive, since the lognormal probability density function is only defined for X > 0.

In the context of constraint satisfaction problems, we will now show that the
number of nodes on each level of the search tree explored by backtracking is dis-
tributed approximately lognormally. We restrict our attention to the backtracking
algorithm with a fixed random variable ordering (BT+RND), and to problems with
no solution (so that the entire search tree is explored). We also assume that the
problems are generated according to Model A. Thus the the probability that there
is a constraint between any particular pair of variables is completely determined

by €, and is independent of any constraints between other pairs of variables.

Our approach is to look at each level of the search tree explored by back-
tracking. Since the variable ordering is fixed, a level in the tree corresponds to a
particular variable. The number of nodes on one level is the number of times the
algorithm tried to instantiate that variable with one of its values. We show that

this number of nodes per level is approximately lognormally distributed.

Let N; be the number of nodes on level 7,1 <1 < n, of the search tree, for a
CSP instance with no solution. We define the branching factor b; to be the ratio
N;/N;—y for 2 <1 < n and by = D (the size of the domain of the first variable).
Note that b; can be greater than or less than 1. The value of b; depends on the

constraints between X;_; and the earlier variables. We can then write
N =by X by x ... X by. (3.37)

Each b;, say, b1, is a random variable which takes on one value per CSP instance.
The distributions of the b;’s are related, since they all depend on the parameters
(N,D,C,T) and the backtracking search algorithm. But each value of b; for

a particular search tree is independent of the others, because it depends on the

84

number of constraints between X;_; and the variables prior to X;_; in the ordering,
and in Model A this number is independent of the existence of constraints between
other variables. Because the b;’s are independent random variables, an important
condition of the law of proportionate effect is met. However, our analysis deviates
from the law because it is possible for b; to have the value of 0. In fact, because
these CSPs have no solutions, it is inevitable that for each problem (search tree),
some b; = 0, and for all £,k > 7, b; is undefined. Therefore we only see an
approximate correspondence between backtracking search and the derivation of

the lognormal distribution via the law of proportionate effect.

3.6.2 Deriving the Weibull

Two derivations of the Weibull distribution are common, first from the notion
of an increasing or decreasing hazard rate, and second from the distribution of the
smallest order statistic [53]. Both approaches have intuitive correspondences to

backtracking search.

The notion of hazard rate has wide application in reliability studies. In
actuarial statistics the same concept in known as the “force of mortality.” In
extreme value theory it is called the “intensity function.” In CSP solving, we

might call this rate the completion rate.

The hazard rate formalizes the notion that the probability of an event or

failure may be conditioned on lifetime or waiting time. The hazard rate, h(x), is

defined as
@
1 — F(x)

where F'(x) is a cumulative distribution function and f(x) the associated prob-

h(z) (3.38)

ability density function. If a problem is not solved at time x, h(x) - Ax is the
probability of completing the search in (x, 2 + Ax). The Weibull distribution can

be derived when the hazard rate is some power function of x [53]. The completion

rate of the Weibull distribution is A(z) = A?B2f~1, which increases with z if 3 > 1

89

and decreases with = for f < 1. For the exponential distribution, a special case of
the Weibull distribution with 8 =1, h(x) = X is constant. Thus when 8 < 1, each
node in the search tree has a smaller probability of being the last one than the one
before it. In backtracking search on solvable problems, the effort required to find
a solution is strongly influenced by the number of solutions and their distribution
in the search space. As search continues without completion, the probability that
there are many solutions decreases. This in turn increases the probability that the
search will take a relatively large amount of effort. The decreasing completion rate
of the Weibull distribution reflects the observation that easy solvable problems
often have many solutions, and not finding a solution early in the search increases

the estimate of how long the search will take.

The Weibull distribution can also be derived from the study of the smallest
extreme. Let (Xi,Xs2,...,X,) be a random sample of n observations from dis-
tribution F'. It is possible to compute the distribution of the minimum value in
(X1, Xa,...,X,), called the first order statistic, as a function of F and n. For
several types of function F', and as n becomes large, the distribution of the first
order statistic is a Weibull distribution. In particular, the distribution of the first

order statistic from a Weibull distribution is also a Weibull distribution.

Consider a backtracking search strategy in which all the subtrees rooted at
level r in the search tree are searched in parallel. For instance, if r =4 and D (the
number of values per variable) = 3, then there are 3* such subtrees, although some
subtrees may not exist because of dead-ends before level 4. Let S; be the amount
of work (e.g. search space or consistency checks) expended on the ¢’th subtree.
If the problem has a solution, let S’ be the amount of effort devoted to search in
the first subtree which produces a solution. Then the total effort required (over
all subtrees and over all processors) will be approximately D" x S’ less some time
not spent on subtrees which finish without a solution after less than S’ work. If we

can approximate the distribution of finding a solution in a subtree with a Weibull

86

distribution, then the distribution over the entire tree may also have a Weibull

distribution.

3.7 Related Work

The primary factor which distinguishes our work from similar studies is that
we focus not only on the expected effort required to solve CSPs, but also on the

variance and distribution.

Haralick and Elliott [40] show how to compute the expected number of nodes
and consistency checks for backtracking and forward checking, based on a model

of random CSP similar to Model A.

Nudel [65] works with a model of CSP distribution in which instances are
randomly chosen from the set of all problems that have a specified number of

compatible value pairs, I;;, for every pair of variables X; and Xj.

Mitchell ([57]) shows results from a set of experiments in which the run time
mean, standard deviation, and maximum value all increase as more and more
samples are recorded. The finding is similar to that in Fig. 3.2, and is entirely
consistent with the Weibull and lognormal distributions, as both tend to have long
tails and high variance. Hogg and Williams ([41]) provide an analytical analysis
of the exponentially long tail of CSP hardness distributions. Their work suggests
that the distributions at the 50% satisfiable point are quite different than the
distributions elsewhere in the parameter space. Selman and Kirkpatrick ([77])
have noted and analyzed the differing distributions of satisfiable and unsatisfiable
instances. Kwan ([49]) has recently shown empirical evidence that the hardness of

randomly generated CSPs and 3-coloring problems is not distributed normally.

87

3.8 Concluding remarks

More accurate summarization of experimental results was our initial motiva-
tion for investigating the distribution of CSP hardness. It remains primary, but
several other benefits of this study are also worth highlighting. Well-developed sta-
tistical techniques, based on the assumption of a known underlying distribution,
are available for estimating parameters based on data that have been “censored”
above a certain point [64]. This may aid the interpretation of an experiment in
which runs are terminated after a certain time point. In certain cases, it may be
advantageous to design an experiment with a time-bound, knowing that the loss
of accuracy in estimating the parameters of the distribution due to not having any
data from the right tail is more than compensated for by the increased number of

instances that can be run to completion.

Knowing the distribution will also enable a more precise comparison of com-
peting algorithms. For instance, it is easier to determine whether the difference
in the means of two experiments is statistically significant if the population distri-
butions are known. Knowing that the distribution is not normal will prevent the

researcher from relying on a statistical test that makes an assumption of normality.

Knowledge of the distribution function can be used in resource-limited sit-
uations to suggest an optimum time-bound for an algorithm to process a single
instance. Examples would be running multiple algorithms on a single instance in
a time-sliced manner, as proposed in [42], and environments where the goal is to

complete as many problems as possible in a fixed time period.

The most important direction in which this line of research can be pursued
is to determine whether the distribution of work required to solve real-world CSPs
can also be usefully approximated by simple continuous distributions, perhaps the
lognormal and the Weibull, or perhaps other distribution functions. In applications

such as scheduling there are usually a large number of CSPs to solve which can

88

be thought of as coming from an (unknown) distribution. The distribution of

solving-time for these problems may also display useful regularities.

Chapter 4
Backjumping and Dynamic

Variable Ordering

4.1 Overview of Chapter

We propose an algorithm, dubbed BJ4+DVO, which combines conflict-based
backjumping and a dynamic variable ordering heuristic which incorporates forward

!, Experimental evaluation shows that

checking style filtering of future domains
BJ+DVO is effective on random problem instances created with a wide range of

parameters.

4.2 Introduction

In Chapter 2 we discussed two standard constraint satisfaction algorithms,
conflict-based backjumping (BJ) and forward checking (FC). Although the two
algorithms are both based on backtracking, they take quite different approaches
to identifying and rejecting instantiations which conflict with a constraint. In
this chapter we develop an algorithm that combines backjumping with a dynamic
variable ordering heuristic which is based on information acquired by a forward

checking style processing of future variables.

'BJ+DVO was first described and evaluated in Frost and Dechter [27].

89

90

Backjumping can be termed a “look-back” algorithm. Like backtracking,
backjumping rejects a potential value for a variable if it is incompatible with the
current set of instantiated variables. Backjumping goes beyond backtracking in
sophistication because it is able to jump back over variables that are not responsible

for a dead-end.

Forward checking uses a “look-ahead” approach. After a value v is assigned
to a variable X, all values in the domains of future variables that are incompatible
with X =wv are removed while X =v. Forward checking does not need to test
whether a value in the domain of the current variable is compatible with the
previous partial instantiation, since incompatible values were temporarily filtered

out when the earlier variables were assigned values.

Because backjumping and forward checking use two orthogonal methods for
improving CSP search, it is natural to wonder whether it makes sense to combine
the two approaches. Worst-case analyses such as that of Kondrak and van Beek
[47] offer no answer, since we do not expect a combination algorithm to have better

worst-case performance.

Prosser [68] performed a small experimental study, limited to random per-
mutations of a single problem, with several algorithms including “BJ+FC”, which
combines backjumping and forward checking but uses a fixed variable ordering.
The new element in algorithm BJ4+DVO is that it combines, in effect, BJ+FC
with dynamic variable ordering. In addition, we present an extensive and sys-
tematic evaluation on large instances, which was not done before. Our empirical
evidence demonstrates that the combination of backjumping, forward checking,

and dynamic variable ordering is indeed a strong performer on a wide variety of

CSPs.

91

Backjumping with DVO
0. (Initialize.) Set D} « D, for 1 <i <mn. Set P, « () for 1 <i <n.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the
index of the next variable, selected according to a
VARIABLE-ORDERING-HEURISTIC (see Fig. 4.2). Set P.,, « 0.

2. Select a value x € D’ Do this as follows:

cur”®

(a) It D, =0, go to 3.

cur

(b) Pop x from D, and instantiate X.,, « x.

(c) Examine the future variables X;, cur < ¢ < n. For each v in D!, if
X; = v conflicts with Z.,, then remove v from D! and add X, to
P;; if D! becomes empty, go to (d) (without examining other X;’s).

(d) Go to 1.

3. (Backjump.) If P.,, = 0 (there is no previous variable), exit with
“inconsistent.” Otherwise, set P «— P.,,; set cur equal to the index of

the last variable in P. Set P.,, « P., UP —{X.,}. Reset all D' sets to
the way they were before X.,, was last instantiated. Go to 2.

Figure 4.1: The BJ+DVO algorithm.

4.3 The BJ4+DVO Algorithm

This chapter reports an algorithm which is designed to combine the desirable
features of backjumping, forward checking, and dynamic variable ordering. We

call this combination BJ4+DVO, and it is described in Fig. 4.1.

Step 1 of BJ+DVO utilizes a variable ordering heuristic, which selects an
uninstantiated variable to be the next in the ordering. The variable ordering

heuristic we use is described in Fig. 4.2 and is discussed below.

Step 2 of BJ4+DVO is patterned after the forward checking algorithm in
Section 2.8, with two changes. The first change is that conflicts are recorded
using parent sets P;. The parent sets have the same function as in backjumping:

P; is a set of variables X, each of which is the last in a partial instantiation

92

7 which conflicts with some value of X;. The presence of a forward checking
style look-ahead mechanism affects how the P’s are updated. In backjumping,
earlier variables are added to P.,. In BJ4+DVO, X, is added to the parent
set of a future variable. This reflects the fact that pure look-back algorithms
(such as backjumping) compare the current variable with earlier variables, while
an algorithm having a look-ahead component, such as BJ+DVO, removes values

from the domains of future variables.

The other change to step 2 marks a departure from all the earlier algorithms
in Chapter 2. In the earlier algorithms, if a value x from D/, was found incompat-
ible, either by a look back or a look forward check with other variables, there was
a “go to (a)” step which continued the search with the next value of the current
variable. In contrast, BJ4+DVQO’s step 2 always proceeds to step 1 after assigning
a value to X,,,. If that value causes the domain of a future variable X, to become
empty, then the variable ordering heuristic will select X, to be the next variable,
and after step 2 (a) (for X, with an empty domain) is executed, control will go
the backjump step, step 3. The backjump from X, will of course be a step back to
the immediately preceeding variable, since it was the instantiation of that variable
which caused X, to have an empty domain. Thus in BJ+DVO, a backjump from
a leaf dead-end is always to the immediately preceeding variable. The fact that
selecting to be next a variable with an empty domain makes Gaschnig’s backjump-

ing — that is, backjumping from leaves in the search tree — redundant was noted

in [3] and [47].

In step 2 (b), the values of each variable are considered in an arbitrary but

fixed order.

Step 3 of BJ4+DVO is identical to the step 3 of the backjumping algorithm
from chapter 2, section 6. The most recent variable in the P.,, set is identified, and
that variable becomes current, with its parent set being merged with the parent

set of the dead-end variable.

93

VARIABLE-ORDING-HEURISTIC
1. If no variable have yet been selected, select the variable that participates
in the most constraints. In case of a tie, select one variable arbitrarily.

2. Let m be the size of the smallest D’ set of a future variable.

(a) If there is one future variable with D’ size = m, then select it.

(b) If there is more than one, select the one that participates in the most
constraints (in the original problem), breaking any remaining ties
arbitrarily.

Figure 4.2: The variable ordering heuristic used by BJ4+DVO.

The main idea of the variable ordering heuristic, described in Fig. 4.2, is
to select the future variable with the smallest remaining domain. As noted in
Chapter 2, this idea was proposed by Haralick and Elliot [40] under the rubric
“fail first.” We have found that augmenting the fail-first strategy with the tie-
breaking rules described in step 1 and step 2 (b) of Fig. 4.2 produces a 10% to
30% improvement in performance, when compared to BJ+DVO without the tie-
breakers (data not shown). The guiding intuition behind the tie-breakers is to
select the variable that is the most constraining, and thus most likely to reduce

the size of the D’ sets of those variables selected after it.

4.4 Experimental Evaluation

The goal of the experiments was to determine whether combining backjump-
ing, forward-checking style look-ahead, and dynamic variable ordering into a single
procedure would be an effective combination. Six algorithms or combination al-
gorithms were employed: BT+MW (simple backtracking with the min-width vari-
able ordering heuristic), BJ+MW (conflict-directed backjumping with min-width),
FC+MW (forward checking with min-width), BJ+FC+MW (backjumping with
forward checking and min-width), BT+DVO (backtracking with dynamic variable

94

ordering), and BJ+DVO (backjumping with dynamic variable ordering). We se-
lected a variety of parameters for the random problem generator, and for each set of
parameters generated 2,000 problem instances. The experiments show the relative
performance of the six algorithms over a range of values for D, T', and C', and for
increasing N. For selected value of D and T, we generated instances with several
values of N and C'. Because the parameters are all near the cross-over point, there
are about 1,000 solvable and unsolvable instances for each set. Tables 4.1, 4.2, 4.3,
and 4.4 report mean CPU seconds (on a SparcStation 4, 110 MHz processor) for
each experiment, with unsolvable and solvable problems reported separately. CPU
seconds are rounded to two decimal points; reported values of “0.00” indicate that
the average was less than 0.005. A position in the tables is in parentheses when the

”

experiment was stopped part way through; “n.r.” indicates that the experiment

was not run.

For convenience, experiments with D = 3 are reported in Table 4.1 and
4.2, while experiments with D = 6 are summarized in Table 4.3 and 4.4. Within
each table, sets of experiments with different values of parameter T" are divided by

horizontal lines.

The first four columns of Tables 4.1 through 4.4 show the results of us-
ing algorithms which have a fixed variable ordering. In all cases the combination
BT+FC+MW performed best, and simple backtracking, BT+MW, least well. The
relative performance of BJ+MW and FC+MW depended on the domain size pa-
rameter D. On problems with D=3, BJ+MW solved problems using less CPU
time and FC+MW, while FC+MW was better with D=6.

The experiments in general support the conclusion that the BJ+DVO com-
bination is an extremely effective one. Its only serious rival, among the algorithms
we tested, is BT+DVO when parameter T' is relatively small, that is, when the
constraints are loose. With D=3 and T=.111, BJ4+DVO is marginally worse than
BT+DVO on unsolvable problems, and marginally better on solvable problems

95

D=3 Mean CPU seconds (1,000 unsolvable instances)
Parameters +MW +DVO

BT | BJ| FC | BJ4FC BT | BJ
(25,3,.6633,.111) 0.11 0.02 0.03 0.02 0.00 0.01
(50,3,.3118, .111) (17.72) 0.68 2.20 0.53 0.03 0.04
(75,3,.2032,.111) n.r. 16.47 | (157.33) 9.78 0.17 0.19
(100, 3,.1509, .111) n.r. n.r. n.r. n.r. 0.73 0.77
(125,3,.1199,.111) n.r. n.r. n.r. n.r. 2.69 2.82
(150,3,.0995, .111) n.r. n.r. n.r. n.r. 9.40 9.74
(175,3,.0850,.111) n.r. n.r. n.r. n.r. 33.81 | 34.37
(200,3,.0742,.111) n.r. n.r. n.r. n.r. | 104.72 | 106.15
(25,3,.2967,.222) 0.02 0.01 0.01 0.01 0.00 0.00
(50,3, .1355, .222) 8.13 0.09 0.47 0.09 0.01 0.01
(75,3,.0872,.222) n.r. 0.75 | (40.03) 0.61 0.05 0.04
(100, 3,.0790, .222) n.r. 7.11 n.r. 4.10 0.24 0.12
(150, 3,.0421, .222) n.r. | (93.80) n.r. n.r. | (49.32) 0.86
(175,3,.0358, .222) n.r. n.r. n.r. n.r. n.r. 2.10
(200, 3,.0313, .222) n.r. n.r. n.r. n.r. n.r. 4.35
(250, 3,.0249, .222) n.r. n.r. n.r. n.r. n.r. | 44.72
(50,3,.0751,.333) (22.06) 0.02 0.44 0.02 0.01 0.00
(75,3,.0476,.333) n.r. 0.09 | (49.35) 0.09 0.04 0.02
(100, 3,.0343, .333) n.r. 0.38 n.r. 0.29 18.84 0.05
(125,3,.0267,.333) n.r. 1.05 n.r. 0.79 | (60.50) 0.12
(150, 3,.0218, .333) n.r. 3.15 n.r. 2.21 n.r. 0.35
(175,3,.0185,.333) n.r. 7.65 n.r. 4.69 n.r. 0.43
(200, 3,.0160, .333) n.r. n.r. nr. | (21.83) n.r. 0.86
(300, 3,.0105, .333) n.r. n.r. n.r. n.r. n.r. | 18.81

Table 4.1: Comparison of six algorithms on unsolvable instances generated with
parameter D=3. Parentheses indication partial completion; n.r. means not run.

96

D=3 Mean CPU seconds (1,000 solvable instances)
Parameters +MW +DVO
BT | BJ| FC | BJ4FC BT | BJ
(25,3,.6633,.111) 0.05 0.01 0.02 0.01 0.00 | 0.00
(50,3,.3118,.111) (9.08) 0.33 1.43 0.26 0.02 | 0.02
(75,3,.2032,.111) n.r. 8.20 | (129.87) 5.40 0.09 | 0.09
(100, 3,.1509,.111) n.r. n.r. n.r. n.r. 0.33 | 0.35
(125,3,.1199,.111) n.r. n.r. n.r. n.r. 1.221 1.26
(150,3,.0995,.111) n.r. n.r. n.r. n.r. 41.34 | 4.42
(175,3,.0850,.111) n.r. n.r. n.r. n.r. 15.99 | 15.91
(200,3,.0742,.111) n.r. n.r. n.r. n.r. 46.29 | 45.32
(25,3,.2967,.222) 0.01 0.00 0.00 0.01 0.00 | 0.00
(50,3, .1355,.222) 6.26 0.05 0.39 0.05 0.01 | 0.01
(75,3,.0872,.222) n.r. 0.41 31.76 0.34 0.03 | 0.03
(100, 3,.0790, .222) n.r. 3.83 | (482.79) n.r. 0.32 | 0.08
(150,3,.0421, .222) n.r. | (58.75) n.r. n.r. 13.28 | 0.68
(175,3,.0358, .222) n.r. n.r. n.r. n.r. 25.67 | 1.37
(200, 3,.0313, .222) n.r. n.r. n.r. nr. | (38.14) | 3.44
(250, 3,.0249, .222) n.r. n.r. n.r. n.r. n.r. | 32.01
(50,3,.0751,.333) (9.46) 0.01 0.29 0.02 0.01 | 0.01
(75,3,.0476,.333) n.r. 0.06 | (32.07) 0.07 0.03 | 0.01
(100, 3,.0343,.333) n.r. 0.17 n.r. 0.18 0.26 | 0.03
(125,3,.0267,.333) n.r. 0.54 n.r. 0.50 | (16.91) | 0.05
(150,3,.0218, .333) n.r. 1.21 n.r. 1.07 nr. | 0.11
(175,3,.0185,.333) n.r. 4.17 n.r. 2.29 nr. | 0.17
(200, 3,.0160, .333) n.r. n.r. n.r. (6.38) n.r. | 0.28
(300, 3,.0105, .333) n.r. n.r. n.r. n.r. n.r. | 7.14

Table 4.2: Comparison of six algorithms on solvable instances generated with
parameter D=3. Parentheses indication partial completion; n.r. means not run.

97

D=6 Mean CPU seconds (1,000 unsolvable instances)
Parameters +MW +DVO
BT | BJ| FC|BJ4FC BT | BJ
(35,6,.8420,.111) (1,189) | (167.00) | (52.18) 42.12 1.34 | 1.46
(40,6,.7308,.111) n.r. n.r. n.r. n.r. 3.17 | 3.45
(50,6,.5796,.111) n.r. n.r. n.r. n.r. 16.00 | 17.56
(60,6,.4797,.111) n.r. n.r. n.r. n.r. 81.07 | 88.22
(25,6,.5533,.222) 1.44 0.44 0.31 0.29 0.05 | 0.06
(40,6,.3346, .222) (61.78) 13.87 8.78 6.38 0.51 | 0.56
(50,6,.2653,.222) n.r. n.r. 75.05 45.00 2.00 | 2.20
(60,6,.2192,.222) n.r. n.r. n.r. n.r. 7.53 | 8.17
(75,6,.1744, .222) n.r. n.r. n.r. n.r. 54.71 | 58.92
(25,6,.3333,.333) 0.30 0.10 0.08 0.08 0.02 | 0.02
(40,6,.2000, .333) (103.66) 1.75 1.28 0.91 0.14 | 0.15
(50,6,.1576,.333) n.r. n.r. 7.11 4.10 0.44 | 0.46
(75,6,.1038,.333) n.r. n.r. n.r. | (32.38) 6.77 | 6.85
(100,6,.0772,.333) n.r. n.r. n.r. n.r. | (91.47) | 85.96
(25,6,.2200, .444) 0.09 0.03 0.03 0.03 0.01 | 0.01
(50,6,.1029, .444) (10.70) 1.44 1.10 0.57 0.15 | 0.13
(60,6,.0847, .444) n.r. 5.35 4.55 1.81 0.41 | 0.33
(75,6,.0670,.444) n.r. n.r. n.r. 10.48 1.67 | 1.17
(100,6,.0497, .444) n.r. n.r. n.r. n.r. 21.19 | 10.18
(50,6,.0678,.555) (9.36) 0.42 0.19 0.18 0.14 | 0.04
(75,6,.0432, .555) n.r. 3.41 2.54 2.01 49.06 | 0.32
(100,6,.0319, .555) nr. | (46.21) 32.27 17.83 n.r. | 5.59

Table 4.3: Comparison of six algorithms on unsolvable instances generated with
parameter D=6. Parentheses indication partial completion; n.r. means not run.

98

D=6 Mean CPU seconds (1,000 solvable instances)
Parameters +MW +DVO
BT| BJ| FC|BJ+FC BT | BJ
(35,6,.8420,.111) (498.72) | (68.07) | (23.17) 17.23 0.58 | 0.63
(40,6,.7308,.111) n.r. n.r. n.r. n.r. 1.25 | 1.36
(50,6,.5796,.111) n.r. n.r. n.r. n.r. 6.67 | 7.31
(60,6,.4797,.111) n.r. n.r. n.r. n.r. 33.92 | 36.88
(25,6,.5533,.222) 0.69 0.20 0.15 0.14 0.03 | 0.03
(40,6, .3346, .222) (19.40) 7.40 4.85 3.36 0.25 | 0.27
(50,6,.2653,.222) n.r. n.r. 40.55 23.10 0.96 | 1.05
(60,6,.2192,.222) n.r. n.r. n.r. n.r. 3.75 | 4.05
(75,6,.1744,.222) n.r. n.r. n.r. n.r. 27.81 | 29.87
(25,6,.3333,.333) 0.17 0.05 0.05 0.04 0.01 | 0.01
(40, 6,.2000, .333) (41.48) 1.06 0.87 0.58 0.08 | 0.09
(50,6,.1576,.333) n.r. n.r. 5.11 2.62 0.25 | 0.27
(75,6,.1038,.333) n.r. n.r. nr. | (12.56) 4.19 | 4.18
(100,6,.0772,.333) n.r. n.r. n.r. n.r. | (61.99) | 57.51
(25,6,.2200,.444) 0.06 0.02 0.02 0.02 0.01 | 0.01
(50,6,.1029, .444) n.r. 1.20 1.25 0.49 0.11 | 0.09
(60,6,.0847,.444) n.r. 4.56 8.96 1.78 0.33 | 0.25
(75,6,.0670,.444) n.r. n.r. n.r. 7.99 1.99 |1 1.15
(100,6,.0497, .444) n.r. n.r. n.r. n.r. 23.36 | 7.91
(50,6,.0678,.555) (14.30) 0.31 0.18 0.16 0.12 | 0.04
(75,6,.0432,.555) n.r. 1.75 1.86 1.79 | 165.19 | 0.28
(100,6,.0319, .555) n.r. | (31.08) 39.47 13.29 n.r. | 2.08

Table 4.4: Comparison of six algorithms on solvable instances generated with
parameter D=6. Parentheses indication partial completion; n.r. means not run.

99

(see Table 4.1 and Table 4.2). When T is greater than .111, BJ4+DVO substan-
tially outperforms BT+DVO. With D=6, the dividing line is near 7" = .333. At
this and smaller values of 7', BJ+DVO underperforms BT+DVO, although by no
more, on average, than 10%. When D=6 and 7' is greater than .333, BJ+DVO is
substantially better than BT+DVO.

CPU seconds is the basis for comparing algorithms in Tables 4.1-4.4. Tables
4.5 and 4.6 are based on the same experiments as the earlier tables, but show mean
consistency checks and mean nodes in search space for selected sets of parameters
and for the algorithms BT+DVO and BJ4+DVO only. In several cases where
BJ+DVO requires more CPU time, on average, than BT+DVO, it makes fewer
consistency checks and expands a slightly smaller search space. For instance, in
the experiment with parameters (150,3,.0995,.111) and unsolvable problems (see
the first line in Table 4.5), BT+DVO makes 7% more consistency checks than
BJ4+DVO (1,048,156 compared to 981,043) and searches 7% more nodes (37,171
compared to 34,674), yet on average requires only 97% as much CPU time. This
pattern holds not only for the average, but also on an instance by instance basis.
Over three fourths of the unsolvable problems with these parameters made between
1% and 15% more consistency checks with BT+DVO than with BJ+DVO, but
finished in 85% to 99% as much CPU time.

On large problems (N=175 and N=200) generated with D=3 and T=.111,
BJ+DVO is slightly worse than BT4+DVO on unsolvable problems and slightly bet-
ter than BT+DVO on solvable problems (when measuring CPU time). Unsolvable
branches of solvable problems tend to be somewhat deeper than the average branch
of an unsolvable problem with the same parameters. Thus solvable problems fre-
quently have deeper search trees that unsolvable problems, and the more time the
search spends deep in the search tree, the more opportunity exists for backjumping

to be useful.

It can be interesting to examine not only the mean performance of algorithms,

but the entire distribution of computational effort over a set of problem instances.

100

Mean values (1,000 unsolvable instances)

Parameters BT+DVO BJ+DVO
cC ‘ Nodes ‘ CPU cC ‘ Nodes ‘ CPU
(150,3,.0995,.111) 1,058,173 | 37,484 9.40 991,163 | 35,003 9.74
(175,3,.0850,.111) 3,095,396 | 109,124 | 33.81 2,873,370 | 100,981 | 34.37
(200,3,.0742,.111) 8,735,964 | 306,628 | 104.72 8,043,054 | 281,559 | 106.15
(100, 3,.0790,.222) 11,007 1,002 0.24 8,775 679 0.12
(150, 3,.0421,.222) 570,635 | 189,997 | 49.32 38,856 3,099 0.86
(175,3,.0358,.222) 81,473 6,697 2.10
(200, 3,.0313,.222) 150,959 | 12,346 4.53
(100, 3,.0343,.333) 542,233 | 129,338 | 18.84 1,943 257 0.05
(125,3,.0267,.333) 955,740 | 294,718 | 60.50 3,800 524 0.12
(150, 3,.0218,.333) 8,602 1,293 0.35
(200, 3,.0160,.333) 32,763 7,353 2.00
(50,6,.5796,.111) 7,677,173 1 130,284 | 16.00 7,615,125 | 129,061 | 17.56
(60,6,.4797,.111) 33,521,936 | 562,191 | 81.07 || 33,154,152 | 555,195 | 88.22

Table 4.5: Comparison of BT+DVO and BJ4+DVO on unsolvable problems, mea-

suring consistency checks, nodes in the search space, and CPU seconds.

Mean values (1,000 solvable instances)

Parameters BT+DVO BJ+DVO
cC ‘ Nodes ‘ CPU cC ‘ Nodes ‘ CPU
(150,3,.0995,.111) 477,156 | 17,808 | 4.34 441,225 | 16,387 | 4.42
(175,3,.0850,.111) 1,425,292 | 52,737 | 15.99 1,300,459 | 47,932 | 1591
(200,3,.0742 .111> 3,786,347 | 138,251 | 46.29 3,378,094 | 122,824 | 45.32
(100, 3,.0790,.222) 10,253 1,744 | 0.32 5,267 488 | 0.08
(150,3,.0421,.222) 214,932 | 48,817 | 13.28 28,526 2,740 | 0.68
(175,3,.0358,.222) 346,607 | 79,455 | 25.67 48,208 4,368 | 1.37
(200, 3,.0313,.222) 112,886 | 10,309 | 3.63
(100, 3,.0343,.333) 6,882 1,745 0.26 1,609 276 | 0.05
(125,3,.0267,.333) 279,194 | 79,311 | 16.91 1,609 276 | 0.05
(150, 3,.0218, .333) 2,727 449 | 0.11
(200, 3, .0160, .333) 40,426 | 7,148 | 2.29
(50,6,.5796,.111) 3,171,321 | 54,924 | 6.67 3,143,167 | 54,353 | 7.31
(60,6,.4797,.111) 13,908,893 | 237,554 | 33.92 || 13,745,036 | 234,363 | 36.88

Table 4.6: Comparison of BT+DVO and BJ+DVO on solvable problems, measur-

ing consistency checks, nodes in the search space, and CPU seconds.

101

Taking advantage of the results from Chapter 3, we estimate the parameters of the
lognormal distributions that most closely approximate the empirical distributions
on unsolvable instances generated with (100, 3,0.0343,0.333) and searched by al-
gorithms BJ+MW, BJ4+FC+MW, BT+DVO, and BJ4+DVO. In Fig. 4.3 we graph
the lognormal distributions, measuring both the number of consistency checks
made (top chart) and the number of CPU seconds required (bottom chart). The
estimated g and o parameters are specified inside the chart. Comparing the re-
sulting curves, we see that BT4+DVO and BJ4+DVO solve the most problems with
a small amount of effort — the distributions for these two algorithms have high
modes far to the left. However, BT4+DVO required a very large amount of effort
on a few instances. The mean CPU time and consistency checks for BT4+DVO is
therefore higher than for the other algorithms, and its o parameter is the highest,

indicating a heavy right tail and a relatively large number of hard instances.

102

BJ+DVO (100, 3,0.0343,0.333) _
BJ+MW: 4=9.55 0=1.42
BJ+FC+MW: 4=8.38 0=1.35
BT+DVO: p=7.31 0=1.67

BT+DVO BJ4+DVO: 1=6.89 o=1.10 _

.06

04 -

Frequency

02 - BJ+MW —

BJ4+FC+MW

| : =——————
0 2,500 10,000 17,500
Consistency Checks
T T T
BJ+DVO (100, 3,0.0343,0.333)
02 BJ+MW: y=—1.83 0=1.15 .
BT+DVO BJ+FC+MW: y=—2.02 o=1.11

BT+DVO: p=—2.27 0=1.52
BJ4+DVO: p=—2.63 ¢=0.98

BJ4+FC+MW

Frequency
.01 f
BJ+MW

0 0.0625 0.2500 0.4375
CPU Seconds

Figure 4.3: Lognormal curves based on unsolvable problems generated from pa-
rameters (100, 3,0.0343,0.333). The top chart is based on consistency checks, the
bottom chart on CPU seconds. p and o parameters were estimated using the
Maximum Likelihood Estimator (see Chapter 3).

103

Data from some experiments reported in Table 4.1 is plotted in Fig. 4.4. The
plots show that for this class of problems the performance of BJ4+DVO scales up
better than that of BT+DVO. In this figure the experimental results are summa-
rized by the p and o parameters of the lognormal distribution. The maximum
likelihood estimator described in Chapter 3 was used to determine 4 and o. In ad-
dition to plotting the data points for various parameter combinations, we also show
the least square regression line. For both algorithms BT+DVO and BJ4+DVO, a
clear linear relationship between N and each parameter of the lognormal distribu-
tion is evident. The correlation coefficient is 0.989 or above in all four cases. We
have observed a similar linear relationship with many other algorithms and sets of
parameters for the problem generator, and also for solvable problems. A similar
observation has been made by Crawford and Auton [12] concerning the growth of
3-SAT problems at the cross-over point. They found the logarithm of the aver-
age search space size linearly related to the number of variables with a factor of

approximately 0.04.

In Chapter 3 we noted that in a lognormal distribution, the mean is exp(u +
0?/2), the median is exp(p), and the variance is exp(2u + o?)(exp(c?) — 1). If
we extrapolate that an approximately linear relationship between g and N and
between o and N holds at larger values of N, it is clear that the performance
gap between BJ+DVO and BT+DVO will grow more pronounced on larger and
larger problems. Linear growth in p and o corresponds to exponential growth in
the mean and median problem difficulty, for the distribution of CSPs defined by
the Model B generator. Not only are the mean and median smaller for BJ+DVO
than for BT+DVO, but so is the variance, which is particularly sensitive to o.
The hardest problems for BT+DVO tend to be impacted the most by adding
backjumping to the algorithm, since they have the largest search spaces and thus

offer the most opportunities for large jumpbacks.

104

13L | ® #BJ+DVO
* 1 BT+DVO
o ¢ BJ+DVO
o o BT4+DVO
11
- 0.0322N + 3.0087
9| " _0.0281N + 3.1496
7L

. 0.0085N +.2390 2.0
0.0049N + .3976 |19
1.0

g
15

2 1 1 2
5 50 00 N 30 00

Figure 4.4: Data on search space size of unsolvable problems in experiments with
parameters D=3, T'=.222, and varying values of N and C (as in Table 4.1), using
algorithms BT4+DVO and BJ+DVO. Points represent estimated x (left hand scale)
and o (right hand scale) for each algorithm, assuming a lognormal distribution.

Lines (solid for BJ4+DVO, dotted for BT4+DVO) show best linear fit. The formula
to the right of each line shows the slope and the y-axis intercept.

105

Mean CPU seconds | Mean Mean per 10,000
Parameters BT4+DVO | BJ+DVO | EJratio| EJ>5 EJ > 10
(175,3,.0850,.111) 33.81 34.37 0.61 225 54
(175,3,.0358, .222) 325.77 2.30 0.80 391 132
(175,3,.0185,.333) 0.43 1.16 651 271
(50,6,.5796,.111) 15.74 17.30 0.15 6 0
(60,6,.2192,.222) 7.60 12.41 0.19 13 0
(75,6,.1038,.333) 5.96 6.05 0.25 31 2
(100,6,.0497, .444) 21.19 10.18 0.39 94 15
(100,6,.0319, .555) 5.59 0.56 215 70

Table 4.7: Extract of data from Table 4.1 and Table 4.3, plus record of extra jumps
made by backjumping. Unsolvable instances only.

4.5 Discussion

Why does the relative performance of BT+DVO and BJ4+DVO seem to de-
pend on the tightness of the constraints? The answer lies in the costs and benefits
of backjumping. The overhead of backjumping, primarily maintaining and check-
ing the P; sets, does not seem to pay off, on average, on problems with relatively
loose constraints. With tighter constraints, the average size of the parent set tends
to shrink, because it is more likely that a single variable in the parent set is in con-
flict with multiple values of the dead-end variable. A smaller parent set increases
the likelihood that backjumping will skip over a large number of variables in its
jump. To assess this explanation quantitatively, we can examine more closely the

behavior of backjumping.

During the execution of the BJ4+DVO algorithm measurements were made
pertaining to the effectiveness of backjumping; they are reported in Table 4.7. The
measurements were made during a second, instrumented, run of the algorithm, so
that the CPU times cited in the tables would not be affected by the overhead of
recording additional information. Our goal was to discover how much jumping
BJ+DVO was doing. We recorded, for each problem instance, the total number

of “extra jumps” made, defining an extra jump as returning to a variable other

106

than the immediately preceeding one. For instance, if after a dead-end at Xy
the highest variable in Py (the parent set of Xyg) is Xi7, this counts as 2 extra
jumps. Dividing the total number of extra jumps by the number of interior dead-
ends yields the “extra jump ratio” for an instance; the average for each set of
parameters is reported in the “EJ ratio” column of Table 4.7. Leaf dead-ends were
excluded from this calculation because, as discussed in section 4.3, the backjump
from a leaf dead-end is always a single step to the immediately preceeding variable
(no extra jumps) when DVO is in effect. The last two columns of Table 4.7 show
the average number of large backjumps, size five or greater and size ten or greater,

per 10,000 interior dead-ends.

It is not surprising to observe in Table 4.7 that as T" increases and BJ+DVO
becomes more effective than BT4+DVO, the quantity of extra jumps increases.
It is perhaps surprising to see how large an impact a seemingly small number
of extra jumps can make. For instance, in the set of problems with parame-
ters (175,3,.0358,.222) BJ+DVO requires half a percent as much CPU time as
does BT+DVO, the result of jumping back on average slightly less than one ex-
tra variable per interior dead-end. In this particular set of unsolvable problems,
one instance required 23.6 CPU hours with BT4+DVO and only 2 CPU seconds
with BJ4+DVO (excluding this problem instance, the means would be 26.17 CPU
seconds under BT+DVO and an unchanged 2.10 CPU seconds under BJ+DVO).
BJ+DVO made 3,076 extra jumps on this instance and had 2,523 interior dead-
ends, for an extra jump ratio of 1.22, somewhat higher than average. On this
instance BJ+DVO once jumped over 88 variables, and had 59 jumps of 10 or more

variables.

The combination of DVO and backjumping is particularly felicitous because
of the complementary strengths of the backjumping and dynamic variable ordering
components. Backjumping is more effective on sparser constraint graphs (low value
of parameter ('), since the average size of each “jump” tends to increase with

increasing sparseness. The dynamic variable ordering heuristic, in contrast, tends

107

Parameters single value domain
<75 3 2032, .111) 92.8%
(75,3,.0872,.222) 78.9%
(7 5 3 .0476,.333) 70.9%
(40,6,.3346, .222) 80.2%
(40,6,.2000, .333) T7.1%
(40,6,.1308, .444) 72.4%

Table 4.8: Data on unsolvable problems with N=75, D=3 (first three lines), drawn
from the same experiments as in Table 4.1, and data with N=40, D=6 (second
three lines), drawn from the same experiments as in Table 4.3. The algorithm is
BT+DVO, and the “single value domain” column reports the frequency in non-
dead-end situations that there was a future variable with exactly one value in its
domain.

to function better when there are many constraints (high value of parameter '),
since each constraint provides information it can utilize in deciding on the next
variable. We assessed this observation quantitatively by recording the performance
of BT4+DVO over a variety of values of €', while holding the number of variables
N and the domain size D constant. Specifically, we measured the frequency with
which BT4+DVO found the size of the smallest future domain to be one. This is the
situation where DVO can most effectively prune the search space. See Table 4.8,
where the column labelled “single value domain” shows how often DVO found a
variable with one remaining consistent value, in those cases where there wasn’t
an empty future domain. The decreasing frequency of single-valued variables as
the constraint graph becomes sparse indicates that on those problems DVO has to

make a less-informed choice about the variable to choose next.

4.6 Conclusions

We have introduced a new algorithm for solving CSPs called BJ+DVO, which
combines three different techniques: backjumping, forward checking, and dynamic

variable ordering. Our experimental evaluation shows that each of BJ4+DVO’s

108

three constituent parts plays an important role in the overall performance of the
algorithm, and that BJ4+DVO is substantially better than any algorithm that uses
just one or two of its constituents. BJ+DVO is a clear winner over the next best
algorithm when the constraints are relatively tight, and is only slightly worse than
BT+DVO on problems with loose constraints, such as T=.111. On these problems,
BJ+DVO makes fewer consistency checks and explores a smaller search space than
does BT4+DVO, but still uses a small amount of additional CPU time, due to the

cost of maintaining the tables for jumpback.

Chapter 5

Interleaving Arc-consistency

5.1 Overview of Chapter

Many techniques have been proposed for interleaving search and constraint
propagation. In this chapter we compare four different schemes that do some
amount of constraint propagation after each instantiation. Our experiments show
that forward checking, which does the least amount constraint propagation at
each step, is best on CSPs with many relatively loose constraints, while using the
strongest propagation, arc-consistency, is beneficial on problems with few relatively

tight constraints.

In the second part of the chapter we propose several new techniques for
interleaving backtracking search with arc-consistency enforcement, with the ulti-
mate goal of devising an approach that is highly effective on all varieties of CSPs.
One of these techniques, called arc-consistency domain checking, improves the per-
formance of arc-consistency. Three new heuristics, which control the amount of
arc-consistency enforced at each step in the search, result in run times between

those of forward checking and arc-consistency.

109

110

5.2 Introduction

In 1980, Haralick and Elliott ([40]) introduced the algorithms forward check-
ing, partial looking ahead, and full looking ahead. Recall that forward checking
ensures that each future variable has in its current domain, the D’ set, at least
one value that is compatible with the current instantiation. Partial and full look-
ing ahead each perform additional processing to ensure compatibility among the
future, uninstantiated variables. These three algorithms enforce a limited degree
of arc-consistency. Over the last 17 years, forward checking has become one of
the primary algorithms in the CSP-solver’s arsenal, while partial and full looking
ahead have received little attention. This neglect is due, no doubt, in large part
to the negative conclusions about full looking ahead reached in [40]: “The checks
of future with future units do not discover inconsistencies often enough to justify

the large number of tests required.”

One can envision a spectrum of backtracking-based algorithms, ordered from
low to high based on how much consistency enforcing they do after each instan-
tiation: backtracking (which does none), forward checking, partial looking ahead,
full looking ahead, arc-consistency, and even higher levels such as path-consistency.
Several algorithms which enforce arc-consistency during search have been proposed

90, 31, 61, 74].

In this chapter we have two goals. First, we want to determine empirically
the relative merits of the algorithms along this spectrum, paying particular atten-
tion to the impact of constraint tightness (parameter T') and constraint density
(parameter C') on the relative rankings. Because we concentrate on CSPs at the
cross-over point, (' and T' are not two independent parameters, but there is an
inverse relationship between them. Our results show that when € is high and T
is low, it is best to do the least amount of consistency enforcing, and thus forward
checking style look-ahead is best. When ' is low and T is high, more intensive con-

sistency enforcing pays off, and techniques that interleave full arc-consistency with

111

search are beneficial. Why do our conclusions differ from those of Haralick and
Elliott? There are two reasons. First, their experiments used CSPs with at most 10
variables, while we look at problems with well over 100 variables. The benefits of
stronger consistency propagation may not outweigh the costs on smaller problems.
Second, the problems in their experiments had complete (or almost complete) con-
straint graphs. Our results show that with many constraints forward checking is

superior, but that on sparser problems it often is not.

In the second part of the chapter we show that the cost of running the arc-
consistency subroutine can be substantially reduced by a minor technical modifica-
tion to the way in which search and arc-consistency are integrated. We also present
several new heuristics that enable the amount of arc-consistency performed to vary
from problem to problem. Because different amounts of constraint propagation are
superior on different types of problems, it would be useful to automatically recog-
nize the optimum for each instance. Our experiments indicate that the heuristics

are partially successful in achieving this goal.

Similar experimental studies on the effectiveness of enforcing arc-consistency
during search have been performed by Bessiere and Régin [7] and by El Sakkout
et al. [23]. Systematic studies regarding the merits of different arc-consistency

algorithms in the context of search have not been reported.

5.3 Look-ahead Algorithms

Arc-consistency and full and partial looking ahead, which all compare future
variables with other future variables, can be integrated with a backjumping based
algorithm such as BJ+DVO [70]. However, doing so makes backjumping’s parent
sets more difficult to maintain. Because our interest in this chapter lies primarily in

comparing algorithms that enforce different amounts of consistency, we compare

112

them in the context of backtracking only. Ultimately, the results learned with

backtracking should be carried over to backjumping as well.

The BT4+DVO algorithm, described in Fig. 5.1, is augmented to do addi-
tional consistency enforcing after each instantiation. The argument Algorithm
controls whether one of the propagation subroutines PARTIAL-LOOKING-AHEAD,
FULL-LOOKING-AHEAD, or AC-3 is to be invoked. If Algorithm is null (or any
unrecognized value), then simple forward checking style processing is performed.
BT+DVO forms the basis for all the algorithms compared in this chapter. When
we refer to, for example, BT4+DVO+PLA, or just PLA if the meaning is clear
by context, we mean the BT4+DVO algorithm with Algorithm = “PLA.” which
causes the PARTIAL-LOOKING-AHEAD subroutine to be invoked. Interleaving arc-
consistency (IAC) is our term for enforcing arc-consistency after each variable

instantiation.

When step 2 (d) does not call additional subroutines, BT4+DVO does the
same amount of look-ahead as forward checking. The difference between the two
is that forward checking rejects a value that it detects will cause the domain of some
future variable to be empty, while BT+DVO assigns the value (step 2 (b)) and
then relies on the VARIABLE-ORDERING-HEURISTIC to make the empty-domain
variable the next in the ordering. When that variable is selected, it is a dead-end.
There is no difference between the two approaches in terms of consistency checks

or search space.

The subroutines called by BT+DVO were described in Chapter 2, and are
reprinted here for convenience: AC-3 (Fig. 5.2); REVISE, which is called by Ac-
3 (Fig. 5.3); FULL-LOOKING-AHEAD (Fig. 5.4); and PARTIAL-LOOKING-AHEAD
(Fig. 5.5). We use AC-3 for the integrated arc-consistency algorithm because it is
the most widely used arc-consistency algorithm. Other algorithms, such as AC-4,

have better worst-case complexity, but in practice often do not perform as well.

113

Backtracking with DVO and varying amount of look-ahead
Input: Algorithm (one of {FLA, PLA, IAC})
0. (Initialize.) Set D} « D, for 1 <i <n.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the
index of the next variable, selected according to a
VARTIABLE-ORDERING-HEURISTIC (see Fig. 4.2).

2. Select a value x € D’ Do this as follows:

cur”®

(a) It D, =0, go to 3.

cur

(b) Pop x from D, and instantiate X.,, « x.

(c¢) (Forward checking style look-ahead) Examine the future variables
Xi,cur <t <n, For each v in D! if X; = v conflicts with Z.,, then
remove v from D’; if D! is now empty, go to (e) (without examining
other X;’s).

(d) (Additional looking ahead.)

i. If Algorithm = FLA, perform FULL-LOOKING-AHEAD(?);

ii. Else if Algorithm = PLA, perform
PARTIAL-LOOKING-AHEAD(?);

iii. Else if Algorithm = T1AC, perform AC-3(7).
(e) Go to 1.
3. (Backtrack.) If there is no previous variable, exit with “inconsistent.”

Otherwise, set cur equal to the index of the previous variable. Reset all
D' sets to the way they were before X, was last instantiated. Go to 2.

Figure 5.1: The backtracking with dynamic variable ordering algorithm
(BT+DVO) from Chapter 4, augmented to enforce varying degrees of arc-
consistency after each instantiation.

5.4 First Set of Experiments

Our first experiment was designed to explore how the differing degrees of
look-ahead embodied in BT+DVO, PLA, FLA, and TAC affect the performance
of these algorithms, particularly in response to variation of constraint density (pa-
rameter (') and tightness (parameter T'). We selected a diverse set of parame-

ters for our random problem generator, all at the 50% solvable cross-over point,

114

AC-3(d)

1 Q@ «{arc(e,g)|i > d, 5 > d}
2 repeat

3 select and delete any arc(p, ¢) in Q)
4 REVISE(p, ¢)

5 if D) =10

6 then return

7 if REVISE removed a value from D]
8 then @ — QU {arc(z,p)|i > d}

9 until Q =0

Figure 5.2: Algorithm AC-3.

and with each generated 500 problems. These problems were then solved with
each of the four algorithms, in each case coupled with dynamic variable ordering.
The results of this experiment are reported in Table 5.1 and Table 5.2. A clear
trend can be observed: less looking ahead is better with many constraints which
are loose, while more looking ahead is superior with fewer, tighter constraints.
We also note that the winner in each experiment was either forward-checking
style look-ahead or interleaved arc-consistency — the least consistency processing
or the most. FLA and PLA do an intermediate amount of constraint propaga-
tion, and for the parameters we selected it was too little or too much. Examining
the data on an instance by instance basis confirmed the conclusions indicated by
the means. For example, among the 232 unsolvable problems with parameters
(75,6,0.1038,0.333), BT+DVO was the best on 63 instances, BT+DVO+PLA on
0 instances, BT+DVO-+FLA on 28 instances, and BT+DVO+IAC (the leader in
mean CPU seconds) on 141 instances. However, we do not wish to over-generalize
our results, as there are very likely classes of problems for which PLA or FLA
exhibit the best balance between overhead and pruning, and would show the best

CPU time.

It is not surprising that, for any of the experiments we ran, when the four

algorithms are ranked in order of average number of search space nodes the result

is BT+DVO > PLA > FLA > TAC. This ordering corresponds, in reverse order, to

115

Parameters Algorithm cC Nodes CPU
(125,3,0.1199,0.111) | BT4+DVO 382,724 13,603 2.64
BT+PLA+DVO | 11,317,017 7,797 22.49
BT+FLA+DVO 12,666,962 4,091 23.43
BT+IAC+DVO 10,458,562 2,923 12.98
(175,3,0.0358,0.222) | BT+DVO 550,019 120,912 34.74
BT+PLA+DVO 2,029,996 16,076 15.70
BT+FLA+DVO 437,443 180 1.92
BT+IACH4+DVO 332,289 118 0.40
(150,3,0.0218,0.333) | BT+DVO 977,861 236,475 66.49
BT+PLA+DVO 414,706 3,898 4.17
BT+FLA+DVO 9,644 9 0.06
BT+IACH4+DVO 6,978 6 0.01
(40,6,0.7308,0.111) | BT4+DVO 1,720,649 29,624 2.65
BT+PLA+DVO | 13,101,786 14,161 10.63
BT+FLA+DVO 15,725,111 7,752 11.95
BT+IAC+DVO 15,832,306 5,981 18.13
(60,6,0.2192,0.222) | BT4+DVO 1,811,001 58,239 6.89
BT+PLA+DVO | 14,356,286 17,794 17.88
BT+FLA+DVO 13,208,022 7,134 15.02
BT+IAC+DVO 13,355,728 5,025 13.37
(75,6,0.1038,0.333) | BT+DVO 797,636 37,078 5.30
BT+PLA+DVO 4,632,079 5,895 8.21
BT+FLA+DVO 3,076,063 1,687 4.95
BT+IACH+DVO | 3,061,901 1,127 2.75
(100,6,0.0497,0.444) | BT+DVO 1,434,782 107,211 19.29
BT+PLA+DVO 2,629,167 3,096 6.82
BT+FLA+DVO 887,442 441 2.16
BT+IACH4+DVO 788,671 266 0.66
(100,6,0.0391,0.556) | BT+DVO 13,229,892 1,849,905 306.51
BT+PLA+DVO 4,923,844 64,683 24.79
BT+FLA+DVO 55,003 37 0.17
BT+IACH4+DVO 48,987 20 0.04

Table 5.1: Comparison of forward checking style look-ahead (BT+DVO), partial
looking ahead (PLA), full looking ahead (FLA), and interleaving arc-consistency
(IAC). Each number is the mean of about 250 unsolvable instances. The algorithm
with the lowest mean CPU seconds in each group is in boldface.

116

Parameters Algorithm CC Nodes CPU
(125,3,0.1199,0.111) | BT4+DVO 149,024 5,650 1.06
BT+PLA+DVO | 4,417,305 3,341 8.87
BT+FLA+DVO | 4,976,763 1,782 9.29
BT+IAC+DVO 4,134,198 1,313 5.24

(175,3,0.0358,0.222) | BT+DVO 206,538 62,927 18.14
BT+PLA+DVO | 1216937 6,529 8.32
BT+FLA+DVO 377,109 276 1.77
BT+IAC+DVO | 311,291 236 0.42
(150,3,0.0218,0.333) | BT+DVO 200,827 54,581 14.66
BT+PLA+DVO 96,959 166 0.76
BT+FLA+DVO 65,027 151 0.47
BT+IAC+DVO | 64,690 150 0.10
(10,6,0.7308,0.111) | BT+DVO 632,215 11,093 0.98

BT+PLA+DVO | 4,826,973 5,357 3.94
BT+FLA+DVO | 5,767,442 2,919 4.40
BT+IAC+DVO | 5,768,248 2,253 6.65
(60,6,0.2192,0.222) | BT+DVO 895240 29,792 3.47
BT+PLA+DVO | 7,129,740 9237 8.94
BT+FLA+DVO | 6,572,723 3,721 7.52
BT+IAC+DVO | 6,564,987 2,621 6.65
(75,6,0.1038,0.333) | BT+DVO 557,265 28,116 3.89
BT+PLA+DVO | 3,080,804 4331 5.53
BT+FLA+DVO |2,007,928 1228 3.27

BT+IAC+DVO | 1,931,008 833 1.79
(100,6,0.0497,0.444) | BT+DVO 1,267,104 128,593 21.59
BT+PLA+DVO | 1,578,365 2,341 4.14
BT+FLA+DVO 148,510 304 1.14
BT+IAC+DVO | 400,663 224 0.36
(100, 6,0.0391, 0.556) | BT+DVO 1,831,635 567,950 98.88
BT+PLA+DVO 109,625 946 1.40
BT+FLA+DVO 75,745 118 0.29
BT+IAC+DVO | 74,474 110 0.08

Table 5.2: Comparison of forward checking style look-ahead (BT+DVO), partial
looking ahead (PLA), full looking ahead (FLA), and interleaving arc-consistency
(IAC). Each number is the mean of about 250 solvable instances. The algorithm
with the lowest mean CPU seconds in each group is in boldface.

117

REVISE(Z, 7)
1 for each value y € D!
2 if there is no value z € D’ such that (Zewr, Xi=y, X;j=2) is consistent

3 then remove y from D)

Figure 5.3: The Revise procedure.

the amount of consistency enforcing each algorithm does after instantiating a vari-
able. It is well known that when subproblems have higher levels of local consistency
the search space is smaller. Another factor is that additional processing after each
instantiation eliminates values from the domains of future variables, and thus pro-
vides more information to guide the dynamic variable ordering heuristic. Consider
the experiments with parameters (150, 3,0.0218,0.333). For unsolvable problems,
the average number of nodes in the search space was 9 for BT+FLA+DVO and 6
for BT+IAC+DVO, much less than the 236,475 nodes searched by BT+DVO. FLA
and TAC rarely had to instantiate more than three variables before proving that
the instance had no solution. For solvable problems with the same parameters, the
average search space size is 151 for BT+FLA+DVO and 150 for BT4+IAC+DVO,
again much less than 54,584 required for BT+DVO. Recalling that these problems
have 150 variables, we see that performing a large amount of look-ahead results in
nearly backtrack-free search conditions. The overhead cost is that FLA and TAC
perform between 500 and 2,000 consistency checks per node, while FC performs
between 4 and six. For this set of parameters the intensive processing at each node

is clearly a good investment.

Another view of some of the data presented in Table 5.1 and Table 5.2 is
given in Figs. 5.6-5.11. The charts in these figures show the distribution of con-
sistency checks (top charts) and CPU seconds (bottom charts) for selected sets of
parameters. The distributions are represented by lognormal and Weibull curves

with parameters estimated from the data.

Viewing the entire distribution conveys much more information than seeing

only the average performance. In general, the distributions with BT+DVO has a

118

FULL-LOOKING-AHEAD(d)
1 fore—d+1ton

2 for j«—d+1ton
REVISE(Z, 7)

if D! =

then return

U= W

Figure 5.4: The full looking ahead algorithm.

higher o for unsolvable problems and a lower /3 for solvable problems than do the
distributions with greater consistency enforcing. High values of o and low values
of § reflect greater skewness in the data. We see in these experiments that the
impact of additional look-ahead is most pronounced on the hardest problems in

the distribution’s tail.

In Fig. 5.7, the y-axis indicates the proportional frequency of problems mak-
ing the number of consistency check or requiring the CPU time indicated on the
x-axis. The curve labeled “BT4+DVO” on the top chart of this Figure shows that
with this algorithm a large proportion of the problems used less than 62,500 consis-
tency checks. Of the four algorithms, the curves show that more problems required
a small number of consistency checks with BT+DVO than with the other algo-
rithms. Nevertheless, the mean number of consistency checks, for these problems,
was higher with BT4+DVO than with FLA or IAC (see Table 5.1). The reason
is that the BT+DVO lognormal curve has a “heavier” tail than that of the other
two algorithms. In other words, the hardest problems for BT4+DVO are harder

PARTIAL-LOOKING-AHEAD(d)
1 fore—d+1ton

2 for j«—i14+1ton
3 REVISE(Z, 7)

4 if D! =

5 then return

Figure 5.5: The partial looking ahead algorithm.

119

than the hardest problem for FLA or TAC (measuring consistency checks), and
this brings up the average for BT4+DVO.

On problems with high €' and low T', the extra work of arc-consistency can be
detrimental, while the benefits are great when C'is low and T is high [86]. Table 5.3
shows some relevant statistics gleaned from instrumenting the BT4+DVO+IAC
procedure. The first statistic, “Ratio CC / VR,” measures the average number of
consistency checks performed by AC-3 for each value removed from the domain of a
future variable. When this measure is high, arc-consistency is relatively inefficient.

The ratio tends to be lower with higher values of T'.

The primary reason for performing interleaved arc-consistency, or indeed
any amount of look-ahead, is to recognize future dead-ends. The second statis-
tic, “Probability Empty Domain,” in Table 5.3 shows how frequently the arc-
consistency procedure uncovers a future dead-end that was not discovered first by
forward checking style look-ahead. The table shows that this probability increases
with smaller " and higher T'. We also note that it tends to be lower for D=6 than
for D=3, which is not surprising, since variables with larger domains are less likely

to have all values removed, other factors being equal.

120

S

2 H

Frequency

A

BT+DVO

PLA

IAC —

L‘;FLA
= ! L

(175,3,0.0358, 0.222)

BT+DVO: \=2.57e-5 3=0.31 a=971
BT+PLA+DVO: A=2.91e-6 3=0.40 a=T6,754
BT+FLA+DVO: A=4.08¢-6 3=0.81 a=102.,459
BT+IAC+DVO: A=5.41e-6 3=0.83 a=106,743_|

0 62,500 250,000 437,500
Consistency Checks
T T T
(175,3,0.0358,0.222)
S (PLA BT+DVO: A=0.79 3=0.27 a=0 N
BT+DVO BT+PLA+DVO: \=1.23 5=0.30 a=0.43
TAC BT+FLA4+DVO: A=1.07 3=0.75 a=0.65
9 IL BT4+IAC+DVO: A\=5.44 3=0.73 a=0.20 B
Frequen(:}'/
A | rra -
= | |
0 1.25) 8.75

CPU Seconds

Figure 5.6: Weibull curves based on solvable problems generated from parameters
(175,3,0.0358,0.222). The top chart is based on consistency checks, the bottom
chart on CPU seconds. A, 3, and « parameters were estimated using the Modified
Moment Estimator (see Chapter 3).

121

T T T

<175,3,0.0358,0.222>

02 - BT+PLA+DVO: py=13.64 0=1.07 |
BT+FLA4+DVO: y=12.64 0=0.86
BT+IAC+DVO: p=12.30 ¢=0.98

Frequency
01 - _|
L l 1
0 62,500 250,000 437,500

Consistency Checks

(175,3,0.0358,0.222)
BT+DVO: y=0.48 0=1.68
02 - BT+PLA+DVO: p=1.41 0=1.12 —
BT+FLA4+DVO: ;¢=0.30 0=0.89
BT+IAC+DVO: p=—1.32 ¢=0.96

Frequency

.01

PLA |

0 1.25 5 8.75
CPU seconds

Figure 5.7: Lognormal curves based on unsolvable problems generated from pa-
rameters (175,3,0.0358,0.222). The top chart is based on consistency checks, the
bottom chart on CPU seconds. p and o parameters were estimated using the
Maximum Likelihood Estimator (see Chapter 3).

122

(60,6,0.2192, 0.222)
BT+DVO: A=1.10e-6 3=1.04 a=1,202 =
BT+PLA+DVO: A=1.38¢-7 3=1.04 a=11,026
BT+FLA+DVO: A=1.50e-7 3=1.05 a=18,236
BT+IAC+DVO: A=1.49¢-7 3=1.07 a=20,348]

.04

03 BT+DVO

Frequency
02 - —
01 —
PLA, FLA, and TAC
| | |
0 1,250,000 5,000,000 8,750,000

Consistency Checks

(60, 6,0.2192, 0.222)
02l BT+PLA+DVO: A=0.11 $=1.04 a=0.0 _
BT+FLA+DVO: A=0.13 5=1.05 a=0.0
BT+IAC+DVO: A=0.15 3=1.06 a=0.0

Frequency

.01

0 2.5 10 17.5
CPU seconds

Figure 5.8: Weibull curves based on solvable problems generated from parameters
(60,6,0.2192,0.222). The top chart is based on consistency checks, the bottom
chart on CPU seconds. A, 3, and « parameters were estimated using the Modified
Moment Estimator (see Chapter 3). The PLA, FLA, and IAC curves on the top

chart are almost indistinguishable.

123

(60, 6,0.2192, 0.222)

05 BT+DVO: p=14.30 0=0.47]
BT+PLA+DVO: y=16.38 0=0.46
04 - BT+DVO BT+FLA4+DVO: y=16.30 0=0.44 —
.03
.02
.01
0 2,500,000 10,000,000 17,500,000
Consistency Checks
T T T
(60,6,0.2192,0.222)
BT+DVO: p=1.81 0=0.49
BT+PLA+DVO: py=2.78 0=0.46
o1 BT+DVO BT+FLA+DVO: y=2.61 0=0.44
el BT+IAC+DVO: p=2.50 0=0.44
Frequency
005 -
0 2.5 10 17.5

CPU seconds

Figure 5.9: Lognormal curves based on unsolvable problems generated from pa-
rameters (60,6,0.2192,0.222). The top chart is based on consistency checks, the
bottom chart on CPU seconds. p and o parameters were estimated using the

Maximum Likelihood Estimator (see Chapter 3). The PLA, FLA, and IAC curves

on the top chart are almost indistinguishable.

124

07 (75,6,0.1038,0.333)
.06 BT+DVO: A=2.04e-6 5=0.80 a=1,573 —
BT+DVO BT+PLA+DVO: A\=3.63e-7 $=0.83 a=35,719
.05 BT+FLA4+DVO: A\=5.65e-7 3=0.83 a=55,344 —
o BT+HIAC+DVO: A=5.83e-7 5=0.84 a=57,869
Frequen;:y
.03 —

.02
.01

0 500,000 2,000,000 3,500,000
Consistency Checks

(75,6,0.1038, 0.333)

04 BT+DVO: \=0.29 3=0.80 a=0.01 7

IAC BT+PLA+DVO: A=0.20 3=0.83 a=0.07
BT+FLA+DVO: A=0.35 3=0.84 a=0.10

03 BT+IAC+DVO: \=0.64 3=0.83 a=0.06 7

Frequency

.02

.01

0 1 4 7

Seconds

Figure 5.10: Weibull curves based on solvable problems generated from parameters
(75,6,0.1038,0.333). The top chart is based on consistency checks, the bottom
chart on CPU seconds. A, 3, and « parameters were estimated using the Modified
Moment Estimator (see Chapter 3). The FLA and TAC curves on the top chart

are almost indistinguishable.

125

(75,6,0.1038,0.333)
BT+DVO: p=13.32 ¢=0.79 —
BT+PLA+DVO: py=15.10 0=0.72
BT+HIAC+DVO: p=14.71 ¢=0.67 —

04

.03
Frequency

.02
FLA and TAC

.01

0 1,000,000 4,000,000 7,000,000
Consistency Checks

(75,6,0.1038, 0.333)

03 = [\IAC BT+DVO: y=1.39 0=0.78
BT+PLA+DVO: ;=1.86 0=0.72
BT+FLA+DVO: p=1.38 0=0.68

ol BT+IAC+DVO: =078 0=0.69 |

Frequency

BT+

.01

0 2.5 10 17.5
CPU seconds

Figure 5.11: Lognormal curves based on unsolvable problems generated from pa-
rameters (75,6,0.1038,0.333). The top chart is based on consistency checks, the
bottom chart on CPU seconds. p and o parameters were estimated using the

Maximum Likelihood Estimator (see Chapter 3). The FLA and IAC curves on the

top chart are almost indistinguishable.

126

The statistics in Table 5.3 show that when €' is high and T is low, interleav-
ing arc-consistency does many extra consistency checks for very little pay-off, as
measured by dead-ends discovered. With low C' and high T the AC-3 procedure

is more efficient and produces a greater benefit.

Ratio Probability
Parameters CC / VR | Empty Domain
(125,3,0.1199,0.111) 81.2 0.0000
(175,3,0.0358,0.222) 33.4 0.0715
(150,3,0.0218,0.333) 19.1 0.1844
(40,6,0.7308,0.111) 191.8 0.0000
(60,6,0.2192,0.222) 100.4 0.0012
(75,6,0.1038,0.333) 59.7 0.0420
(100,6,0.0497,0.444) 40.0 0.0956
(100,6,0.0391, 0.556) 31.8 0.1771

Table 5.3: Statistics from experiments in Figs. 5.1 and 5.2; just algorithm
BT+DVO+IAC; solvable and unsolvable instances combined. The “Ratio CC /
VR column shows the ratio of consistency checks (CC) during the arc-consistency
procedure to domain values removed (VR) during arc-consistency. “Probability
Empty Domain” reports the observed probability that performing arc-consistency
created an empty domain in a future variable.

Table 5.1 and Table 5.2 show only one large value of N for each combination of
D and T'. To show that these numbers are indicative of the trend with increasing N.
Fig. 5.12 presents the results of experiments with BT+DVO, BT+DVO+FLA, and
BT+DVO+IAC over a variety of values of N. The figure shows consistency checks
and nodes expanded in the search tree, as well as CPU time. An approximately
linear relationship between N and the logarithm of each measure is apparent, with
the exception of BT+DVO on problems with T'=.333. In this case the slope of
the trend line increases around N=100, although more data points are required to

determine whether or not the trend continues.

127

5.5 Variants of Interleaved Arc-consistency

The experiments presented so far in the chapter have demonstrated that the
relative effectiveness of different consistency enforcing techniques is sensitive to
the number of constraints in a CSP and the tightness of those constraints. In this
section we define and evaluate several heuristics designed to adapt the amount
of look-ahead in a dynamic fashion to the characteristics of the current prob-
lem. Our approach is to modify BT4+IAC+DVO so that the amount of constraint
propagation can vary between forward checking and full arc-consistency. Before
turning to these heuristics, we first introduce a modification to the Interleaved

Arc-consistency algorithm that improves its performance.

5.5.1 Domain checking

Our first modification to BT4+IAC+DVO is quite simple, and is based on the
observation that the AC-3 algorithm is most efficient when the queue of unexam-
ined variable, called (), is as small as feasible. As presented in Fig. 5.2, every future
variable is entered in () after a new variable is instantiated. A better idea is to
put into @), after each instantiation, only those variables which had a domain value
removed during step 2 (¢) of BT+DVO. This change is reflected in Fig. 5.13 and
Fig. 5.14, which show a modified version of step 2 (¢) and of the AC-3 procedure.

We call the new arc-consistency procedure AC-DC, for domain checking.

Because the variables omitted from the queue () by AC-DC are those which
did not have any values removed by the forward checking style look-ahead, and
which thus have no impact on the arc-consistency processing, BT+IAC+DVO with
AC-DC explores exactly the same search space as BT+IAC+DVO with AC-3. The
difference is in the number of consistency checks which need to be made, and in
the CPU time required to solve a CSP instance. In general, using AC-DC requires
about half as much CPU time as using AC-3. We present in Table 5.4, the results

128

cC
108 |-
T =
111 107
10* |-
25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
CC NODES CPU
| | | | | | 10 _I | |
5
10° | ot
T= L
104 — 103 |
222 1k
10° - 100 |- o1k
| | | | | | | | | | |
2550 100 150 2550 100 150 2550 100 150
CC NODES CPU
105 | | | | | | | |
5 i 10 |
T: 104 — 1+
4
333 101 10° |- i
10° 100 |- 01}
| | | | | | | | |

25 50 75100 150 25 50 75100 150 25 50 75100 150

Figure 5.12: Comparison of BT+DVO (o), BT+DVO+FLA (o), and
BT+DVO+IAC (¢). Each data point is the mean of 500 solvable and unsolv-
able instances generated with D=3, T=.111 (first row), T=.222 (second row) or
T=.333 (third row), and N as indicated along the x-axis. Parameter C' was set
to the cross-over point. The left boxes on each row show consistency checks, the
middle boxes show nodes expanded in the search tree, and the right boxes show
CPU time in seconds. Note that the y-axes are logarithmic.

129

Backtracking with DVO and varying amount of arc-consistency

2. Select a value ...

(c¢) (Forward checking style look-ahead) Examine the future variables
Xi,cur <t <n, For each v in D! if X; = v conflicts with Z.,, then
remove v from D! and add X; to Q; if D} is now empty, go to (e)
(without examining other X,’s).

(d) (Additional looking ahead.)

iv. Else if Algorithm = IAC-DC perform AC-DC(7);
v. Else if Algorithm = IAC-UNIT perform AC-UNIT(z);

vi. Else if Algorithm = IAC-TRUNCATE perform
AC-TRUNCATE(?7);

vii. Else if Algorithm = IAC-FLA perform AC-FLA(?).

Figure 5.13: Extended version of Fig. 5.1.

of an empirical comparison of the two variations of interleaving arc-consistency, as

well as plain BT4+DVO and several other variations described below. Because we

did not find any significant difference in the performance of these algorithms on

solvable and unsolvable problems, we combine both types in Table 5.4. Note that

the generator parameters used in the Table 5.4 experiments are similar to those in

Figs. 5.1 and 5.2, but have larger values of N.

3
4
3
6
7
8

AC-DC(d)
1 repeat
2 select and delete any arc(p, ¢) in Q)

REVISE(p, ¢)

it D= 0

then return

if REVISE removed a value from D;

then @ — QU {arc(¢,p)|7 > d}
until Q =0

Figure 5.14: Algorithm AC-DC, a modification of AC-3.

130

5.5.2 The unit variable heuristic

The intuition behind the unit variable heuristic (IAC-U) is closely coupled
to the dynamic variable ordering scheme. One advantage of performing more
look-ahead is that more values in the domains of future variables are removed.
Consequently, the dynamic variable ordering heuristic is more likely to be effective.
In the absence of a dead-end, we hope to find a future variable with a domain size
of 1, as instantiating this single value represents a forced choice that will have to be
made eventually. The unit variable heuristic terminates its consistency enforcing
when the current domain of some future variable becomes 0 or 1. A future variable
with only one value is called a “unit” variable. If a dead-end or unit variable is
found, that variable will become the next in the ordering. The goal is to do enough

looking ahead to guide effectively the variable ordering heuristic.

AC-UNIT(d)
0.1 if any future variable has domain size 1
0.2 then return
1 repeat
select and delete any arc(p,¢) in Q)
REVISE(p, ¢)
if D) =0or|D)|=1
then return
if REVISE removed a value from D},
then @ «— Q U {arc(i,p)li > d}
until) =0

O =1 O O = W

Figure 5.15: Algorithm AC-DC with the unit variable heuristic.

Only two changes are required to the AC-DC algorithm in Fig. 5.14 to im-
plement the unit variable heuristic (see Fig. 5.15). Lines 0.1 and 0.2 check for any
future variable with only one value it its domain, and if one is found the algorithm
returns. Line 4 is modified to test if the variable on which arc-consistency has just
been enforced has just one value left; again the procedure returns immediately if

SO.

131

Empirical results of using the unit variable heuristic are reported in Table 5.4.
CPU time for IAC with the heuristic was between BT4+DVO and BT+IAC+DVO
in seven out of eight parameter settings. Similar results hold on an instance by
instance basis. Over all eight sets of parameters, including (75,6,.1744,.222),
where using the unit variable heuristic produced average CPU time worse than
both BT+DVO and BT+IAC+DVO, 87% of individual instance CPU times with
the heuristic were between the CPU times of BT+DVO and BT+IAC+DVO.

Unfortunately, using the unit variable heuristic severely degraded the perfor-
mance of BT+IAC4+DVO on problems with relatively tight constraints. Stopping
the arc-consistency procedure after a unit variable is produced is often harmful,
largely because further processing often uncovers a variable with an empty domain,

and the resulting dead-end cuts off an unfruitful branch of the search tree.

5.5.3 The full looking ahead method

Another method for guiding TAC to a reduced amount of arc-consistency can
be developed by combining full looking ahead with AC-3’s () data structure. The
result, called TAC-FLA, is a variant of IAC which performs a single pass over the
@ set (see Fig. 5.16). Just as full looking ahead does not consider the impact of
future variables on other future variables, [AC-FLA does not add variables to)

when they are modified by REVISE.

AC-FLA(d)

1 repeat

2 select and delete any arc(p, ¢) in Q)
3 REVISE(p, ¢)

4 if D, =10

5 then return

6 until Q =0

Figure 5.16: Algorithm AC-DC, with the full looking ahead method.

132

T=3/9

10 25 50 75 100 125 150

Figure 5.17: The fraction of future variable domain values removed by [AC (along
the y-axis), as a function of depth in the search tree (along the x-axis). Each line
represents the mean over 500 instances, for a single set of parameters with T'=3,

D=1/9, 2/9 or 3/9, and N and C as in Table 5.1.

The goal of achieving performance between BT4+DVO and BT4+IAC+DVO
was largely achieved with TAC-FLA. Nevertheless, the results of IAC-FLA are
unsatisfactory — slightly worse than IAC-U in all but one case in Table 5.4. As with
TAC-U, it seems that this heuristic is often causing useful constraint propagation

to be bypassed.

5.5.4 The truncation heuristic

To help us understand why ITAC is better for certain classes of problem than
for others, we modified our program to report what fraction of the values in the
domains of future variables are removed during arc-consistency process. This frac-
tion is a measure of the effectiveness of arc-consistency. In terms of the REVISE
procedure in Fig. 5.3, we measured the ratio of times a value y is removed in line 3
to the number of values y considered in line 1. We tabulated this ratio relative to
the value of d, the depth in the search tree which is a parameter to AC-DC. The

results are shown in Fig. 5.17.

Studying Fig. 5.17 prompted the observation that when arc-consistency is

most successful, that is, for T=3/9, most of its power seems to come at shallow

133

levels in the search tree, where d is small. When the constraints are loose, e.g.
T=1/9, arc-consistency is most likely to remove values somewhat deeper in the
tree, but in such cases the cost to do so does not seem to be justified. Thus it
seems that the most useful time to perform arc-consistency is after instantiating
variables relatively high in the search tree. Interestingly, this conclusion seems to
be counter to the intuition of Gaschnig, who proposed doing backtracking on the

top of the tree and adding arc-consistency lower in the tree [31].

AC-TRUNCATE(d)
1 ifd<10
2 then return

3 perform AC-DC

Figure 5.18: Algorithm AC-DC with the truncation heuristic.

We therefore developed a heuristic for IAC called truncation. The modifi-
cation is simple: arc-consistency is performed only when the newly instantiated

variable is at depth 10 or less in the search tree (see Fig. 5.18). At depth greater
than 10, BT+IAC+DVO with truncation is identical to BT+DVO.

The truncation heuristic did not turn out to be a good performer in our
experiments (see Table 5.4). We also tried truncation levels other than 10, but
with no improvement. We were unable to complete the experiments with the
truncation heuristic for some sets of parameters, because dozens of instances were

taking several hours each.

5.5.5 Experimental comparison

We compared the algorithms and heuristics described above using a variety
of parameters for the random problem generator. The average results are reported
in Table 5.4. This table does not separate results for satisfiable and unsatisfiable

instances, since we observed the same overall behavior on both types of problems.

134

Parameters BT+DVO TAC IAC-DC IAC-U IAC-F IAC-T
(150,3,.0995, .111) 3.02 19.55 8.99 7.07 10.50 7.38
(200, 3,.0313, .222) 3.77 1.92 4.05 3.60 12.78
(200, 3,.0160, .333) 3.53 1.01 12.29 19.83
(50,6,.5794, .111) 3.89 20.69 12.74 4.93 7.08 3.19
(75,6,.1744, .222) 17.50 41.28 15.92 23.44 29.00 25.01
(90,6,.0861,.333) 51.66 8.83 3.99 7.25 3.99 43.17
(125,6,.0395, .444) 4.04 2.51 8.87 10.55
(150, 6,.0209, .556) 6.38 4.34 29.45 26.15

Table 5.4: Comparison, by mean CPU seconds, of six algorithms based
on BT4+DVO: regular BT4+DVO, BT+DVO with interleaved arc-consistency
using AC-3 (IAC), BT+DVO with interleaved arc-consistency using domain
checking (IAC-DC), BT+IAC4+DVO-DC with the unit variable heuristic (IAC-
U), BT+IAC4+DVO-DC with the full looking ahead heuristic (IAC-F), and
BT+IAC+DVO-DC with truncation at level 10 (IAC-T). Each number is the mean
of 500 satisfiable and unsatisfiable instances. The best time in each row is in bold-
face. The BT+DVO and IAC-T positions are blank when we were unable to run

all instances because too much CPU time was required.

On the problems in these experiments, the best combination was BT+DVO+4IAC-
DC, which had the lowest mean CPU time in six out of eight sets of problems.

5.6 Conclusions

In this chapter we studied one of the most intriguing questions in solving
CSPs: what is the right balance between search and consistency enforcing? How
can we make consistency enforcing cost-effective most of the time? We cannot
provide definitive answers to these questions, but our experiments provide some in-
sight into how they will be resolved for any particular problem or class of problems.
We examined several known consistency methods interleaved with BT4+DVO. We
showed that when the constraints were tight and relatively few, interleaving an
arc-consistency procedure after each instantiation was very effective on the prob-
lems we tested. In particular, a new variation of AC-3 called AC-DC reduced the

number of consistency checks and was especially effective. When the constraints

135

were loose and there were many constraints, arc-consistency was detrimental, and
the best choice was to use lower levels of consistency, such as forward checking in
the BT+DVO algorithm. Because the experiments were all conducted at the 50%
satisfiable cross-over point, they cannot be considered a reliable guide to other

regions of the parameter space.

We also studied several consistency enforcing approaches that lie between
forward checking and interleaving arc-consistency in the amount of work performed
after each instantiation. Ideally an intermediate approach would always perform
close to the better of BT+DVO and BT+IAC+DVO. Two such algorithms were
proposed by Haralick and Elliott: full looking ahead and partial looking ahead. We
proposed three new heuristics: the unit variable heuristic, the full looking ahead
heuristic, and the truncation heuristic. On the problems we used none of these
techniques were successful enough to dislodge BT+DVO and BT+IAC+DVO as

the algorithms of choice when looking ahead.

An important question is whether the addition of backjumping would improve
the performance of an interleaved arc-consistency algorithm. On the problems
we have experimented with the answer is probably no, because TAC reduces the
search space so much that few opportunities arise for large jumps; however, a

BJ4+DVO+IAC algorithm might be effective on much larger problems.

Chapter 6
Look-ahead Value Ordering

6.1 Overview of the Chapter

Algorithms such as forward checking and integrated arc-consistency speed up
backtracking by causing dead-ends to occur earlier in the search, and by providing
information that is useful for dynamic variable ordering. In this chapter, we show
that another use of looking ahead is a domain value ordering heuristic, which
we call look-ahead value ordering or LVO!. LVO ranks the values of the current
variable, based on the number of conflicts each value has with values in the domains
of future variables. Our experiments show that look-ahead value ordering can be

of substantial benefit, especially on hard constraint satisfaction problems.

6.2 Introduction

In this chapter we present a new heuristic for prioritizing the selection of
values when searching for the solution of a constraint satisfaction problem. If a
constraint satisfaction problem has a solution, knowing the right value for each
variable would enable a solution to be found in a backtrack-free manner. When
a CSP has only a small number of solutions, much time is often spent search-

ing branches of the search space which do not lead to a solution. To minimize

IThis work was first reported in Frost and Dechter [28].

136

137

backtracking, we should first try the values which are more likely to lead to a con-
sistent solution. Our new algorithm, look-ahead value ordering (LVO), implements
a heuristic that ranks the values of the current variable based on information gath-
ered during a forward checking style look-ahead, determining the compatibility of
each value with the values of all future variables. Although the heuristic does not
always correctly predict which values will lead to solutions, it is frequently more
accurate than an uninformed ordering of values. Our experiments show that while
the overhead of LVO usually outweighs its benefits on easy problems, the improve-
ment it provides on very large problems can be substantial. Interestingly, LVO

often improves the performance of backjumping on problems without solutions.

Look-ahead value ordering does the same type of look-ahead as does the
forward checking algorithm [40]. Because forward checking rejects values that it
determines will not lead to a solution, it can be viewed as doing a simple form
of value ordering. In this regard LVO is more refined, because it also orders the

values that may be part of a solution.

6.3 Look-ahead Value Ordering

Look-ahead value ordering ranks the values of the current variable, based
on the impact each value would have on the domains of the future variables.
Combining BJ+DVO with LVO results in BJ+DVO+LVO; a description of this
algorithm appears in Fig. 6.1. The algorithm is essentially the same as BJ4+DVO
from Chapter 4; the differences are in steps 1A, 2 (b), and 2 (c).

Step 1A of BJ4+DVO+LVO is where the algorithm’s look-ahead phase takes
place. The current variable is tentatively instantiated with each value x in its

domain D’

cur *®

BJ+DVO+LVO looks ahead, in a forward checking style manner,

to determine the impact each x will have on the D’ domains of uninstantiated

138

Backjumping with DVO and LVO
0. (Initialize.) Set D} « D, for 1 <i <n.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur to be the index
of the next variable, according to a VARIABLE-ORDERING-HEURISTIC.
Set P.,. — 0.

1A. (Look-ahead value ordering.) Rank the values in D’ as follows: For
each value z in D), and for each value v of a future variables

X, cur <t < n, determine the consistency of (Zeyr—1, Xewr=1, X;=0).

Using a heuristic function, compute the rank of based on the number

and distribution of conflicts with future values v.

2. Select a value x € D’ Do this as follows:

cur”®

(a) It D!, =10, go to 3.

cur

(b) Pop the highest ranked value @ from D', = and instantiate X.,, « .

r

(c¢) (This step can be avoided by caching the results from step 1A.)
Examine the future variables X;, cur < ¢ < n. For each v in D!, if
X; = v conflicts with Z.,, then remove v from D! and add X, to
P;; if D! becomes empty, go to (d) without examining other X;’s.

(d) Go to 1.

3. (Backjump.) If P.,, = 0 (there is no previous variable), exit with
“inconsistent.” Otherwise, set P «— P.,,; set cur equal to the index of

the last variable in P. Set P.,, « P., UP —{X.,}. Reset all D' sets to
the way they were before X.,, was last instantiated. Go to 2.

Figure 6.1: Backjumping with DVO and look-ahead value ordering (LVO).

variables. In section 6.4, we discuss three heuristic functions that can be called in

this step to rank the values.

In step 2 (b), the current variable is instantiated with the highest ranking
value. If the algorithm returns to a variable because of a backjump, the highest
ranked remaining value in its domain is selected. If the variable is re-instantiated
after earlier variables have changed, then the ranking of the values has to be

repeated in step 1A.

139

Step 2 (c) essentially disappears in BJ+DVO+LVO; once a value is actually
selected, it would not make sense to repeat the look-ahead that has already been
done. To avoid repeating consistency checks, our implementation saves in tables
the results of step 1A. After a value is chosen in 2 (b), the appropriate D's and
Ps of future variables are copied from these tables instead of being recomputed
in step 2(c). The space required for these tables is not prohibitive. BJ+DVO
uses O(n?d) space for the D' sets, where d is the size of the largest domain: n
levels in the search tree (D’ is saved at each level so that it does not have to be
recomputed after backjumping) x n future variables x d values for each future
variable. Our implementation of BJ4+DVO+LVO uses O(n*d*) space. There is an
additional factor of d because at each level in the search tree up to d values are
explored by look-ahead value ordering. Similarly, the space complexity for the P
sets increases from O(n?) in BJ+DVO to O(n?d) for BJ4+DVO+LVO. To solve a
typical problem instance described in the next section, BJ+DVO required 1,800
kilobytes of random access memory, and BJ+DVO+LVO required 2,600 kilobytes.
On our computer the additional space requirements of LVO had no discernable

impact.

6.4 LVO Heuristics

We experimented with several LVO heuristics that rank values based on their

conflicts with values of future variables.

The first heuristic, called min-conflicts (MC), considers each value in D’
and associates with it the number of values in the D’ domains of future variables
with which it is not compatible. The current variable’s values are then selected
in increasing order of this count. In other words, this heuristic chooses the value

which removes the smallest number of values from the domains of future variables.

140

The second heuristic is inspired by the intuition that a subproblem is more
likely to have a solution if it doesn’t have variables with only one value. Each of
the search trees rooted at some instantiation of X.,, is a different subproblem. A
variable with only one remaining value makes a subproblem “fragile,” in the sense
that if that value is removed the subproblem has no solution. The max-domain-size
(MD) heuristic therefore prefers the value in D’ that creates the largest minimum
domain size in the future variables. For example, if after instantiating X, with

value z1 the min;efeurt1,...ny | Di| is 2, and with X.,,=z, the min is 1, then 2 will

be preferred.

Our third heuristic function for selecting a value is based on the Advised
Backtracking (ABT) algorithm of Dechter and Pearl [18]. ABT uses an estimate
of the number of solutions in each subproblem to choose which value to instantiate
next. The ES (Estimate Solutions) heuristic for LVO computes an upper bound
on the number of solutions by multiplying together the domain size of each future
variable, after values incompatible with a value in D! have been removed. The
upper bound is higher than the actual number of solutions if there are constraints
between the future variables, as is usually the case. The value that leads to the

highest upper bound on the number of solutions is chosen first.

In addition to the three LVO heuristics, we also experimented with a static
value ordering heuristic we call static least-conflicts (S-LC). We call this heuristic
static because it runs once, before search, and the order it assigns to the values
does not change. Values are ranked in ascending order by the number of values
of other variables with which they conflict. For instance, consider variable X1 in
the coloring problem of Chapter 2 (Fig. 2.2). Its value red conflicts with three
values in other variables, blue conflicts with four values, and green conflicts with
one value. The S-LC heuristic will rank the values in order (green, red, blue), and
the values will always be considered in this order when X1 has to be instantiated.
We developed the S-L.C heuristic as a “straw-man” so that we could compare LVO

heuristics against not just plain BJ+DVO, but also against BJ4+DVO augmented

141

with a value ordering that was very cheap to compute. As described in the following

section, the S-L.C heuristic performed quite well.

It is worth mentioning that we experimented with several other heuristics
which were not as good as those reported in this chapter. In general, we found
value ordering heuristics that seemed more “sophisticated” to be slightly poorer
in practice. For example, we tried modifying the MD heuristic with several tie-
breaking functions, because often more than one value results in the same minimum
future domain size. Fach tie breaker degraded the average performance of the

algorithm. We have no explanation for this puzzling result.

6.5 Experimental Results

6.5.1 Comparing LVO heuristics

We conducted an experiment to determine the relative performance of the
LVO heuristics. Eight sets of parameters near the cross-over point were selected,
and with each set we generated 500 random CSPs. Five algorithms were applied
to each instance: BJ+DVO (without a value ordering heuristic), BJ+DVO with
S-LC, and BJ+DVO+LVO with the three heuristics described in the previous
section. The results are reported in Tables 6.1 and 6.2. The tables show mean

CPU time; mean consistency checks and number of nodes correlated closely with

CPU time.

Tables 6.1 and 6.2 together contain 16 rows comparing the five algorithms.
BJ4+DVO+ILVO with the MC heuristic had the lowest CPU time in 9 out of 16
cases. dSecond best was BJ4+DVO with the S-L.C heuristic, which was best in 5 out
of 16. The MD and ES heuristics were each fastest in one case. The differences

in average CPU time were mostly relatively small, but MC was clearly the best

142

Mean CPU seconds (250 unsolvable instances)
Parameters No VO S-LC LVO-MC LVO-MD LVO-ES
<150,3,.0995,.111> 11.90 11.40 12.50 12.28 13.39
<200, 3,.0313, .222> 515 4.79 4.81 5.04 4.97
(250,3,.0125,.333) | 14.8% 8.52 8.03 12.00 8.44
<50,6,.5796,.111> 21.72 21.24 21.58 21.00 21.61
<60,6,.2192,.222> 10.53 10.48 10.37 10.38 10.62
(75,6,.1038,.333) 7.55 749 7.36 7.46 7.56
<100,6,.0497, .444> 13.48 12.07 11.49 12.70 11.91
(100,6,.0319, .556) 7.94 5.03 5.37 6.98 5.68

Table 6.1: Comparison of BJ4+DVO without LVO (“No VO”), with a static least-
conflicts value ordering (“S-LC”), and with LVO using three heuristics described
in the text.

heuristic for BJ+DVO+LVO. In the rest of the chapter, reference to LVO implies
the MC heuristic.

6.5.2 Further experiments with LVO

We experimented further with value ordering by selecting several additional
sets of parameters and with each set generating 500 instances that were solved
with BJ+DVO, BJ+DVO+SLC, and BJ4+DVO+LVO. Based on the experiments
in Tables 6.1 and 6.2, as well as other tests, we concluded that LVO is most effective
on problems with large numbers of variables, large domains, and near the cross-
over point. Problems with these characteristics tend to take a large amount of
computer time to solve. We adopted two strategies that allowed us to demonstrate
the value of LVO on problems that were not too computationally expensive. The
first strategy was to use problems with tight constraints and sparse constraint
graphs. For instance, problems at N=100 and D=12 at the cross-over point might
be extremely time consuming to solve, except that we used a small number (120,
or C'=.0242) of extremely tight constraints (7=.764 or 110/144). Another method

for generating easier problems with large N and D is to select parameters that are

143

Mean CPU seconds (250 solvable instances)
Parameters No VO S-LC LVO-MC LVO-MD LVO-ES
(150,3,.0995, .111) 546 4.09 4.53 5.58 4.76
(200,3,.0313,.222) | 427 3.96 3.62 3.89 3.64
(250, 3,.0125, .333) 1.85 1.00 0.86 1.40 0.79
(50,6,.5796,.111) 8.93 6.57 6.71 7.75 6.66
<60, 6,.2192, .222> 5.28 4.01 3.83 4.94 4.04
(75,6,.1038,.333) 551 4.65 4.36 5.02 4.38
(100,6,.0497, 444) | 9.81 8.60 8.22 10.09 8.01
(100,6,.0319, .556) 3.36 2.32 1.90 3.40 2.38

Table 6.2: Comparison of BJ4+DVO without LVO (“No VO”), with a static least-
conflicts value ordering (“S-LC”), and with LVO using three heuristics described
in the text.

not exactly at the cross-over point. We used this approach for the experiment with

(100,9,.0606, .444), where C' is 95% of the estimated cross-over value of .0672.

The results of these experiments are summarized in Table 6.3 (unsolvable
instances) and Table 6.4 (solvable instances). Because we used some parameter
combinations that were not at the cross-over point, two experiments with few or
no unsolvable problems do not appear in Table 6.3. Tables 6.3 and 6.4 are designed
to present a multi-faceted view of our experimental results, and therefore several
different statistics are reported. The first column shows the four parameters to
the random problem generator in the format (N, D, C,T), and the percentage of
instances that had solutions. The columns titled “Mean CC” and “Mean CPU”
show the average values for the count of consistency checks made and the number of
CPU seconds used (on a SparcStation 4, 110 MHz processor). Two columns show
the estimated values of the p and o parameters of the lognormal distribution, in
Table 6.3), and in Table 6.4 the estimated values of the A and 3 parameters of
the Weibull distribution (the A value has been multiplied by 1,000,000 to make
the units more convenient). These parameters are based on the distribution of
the number of consistency checks. As discussed in Chapter 3, in the lognormal
distribution the mean and the variance both increase with larger p and o. The

variance is particularly sensitive to increases in . With the Weibull distribution,

144

Parameters Mean Parameters %
% Solvable Algorithm cC CPU @ o | Best
(150,6,0.0209,0.556) | No VO 2,476,071 76.13 | 12.27 2.55 34.3
49% S-LC 1,718,777 52.87 | 11.81 2.47 24.4

LVO 1,358,316 44.48 | 11.66 2.38 41.3

(250,3,0.0236,0.222) | No VO 2,024,230 104.27 | 13.07 1.82 10.4
87% S-LC 1,630,480 83.12 | 12.88 1.78 85.1
LVO 1,484,038 92.47 | 12.79 1.80 4.5

(100, 12,0.0242,0.764) | No VO 592,041 1242 | 10.80 2.10 41.4
64% S-LC 532,075 10.63 | 10.59 2.04 15.5
LVO 434,904 9.88 | 10.56 1.96 43.1

Table 6.3: Results of several experiments on CSPs with various parameters; this
table show results for unsolvable problems.

a larger value of A or 3 results in smaller mean and variance. The final column in
the tables indicates the relative frequency with which each algorithm had the best
CPU time.

The experiments indicate that using either value order technique substan-
tially improves the performance of BJ+DVO on these relatively large problems,
both on problems with solutions and on those which do not have solutions. In all
but one case, unsolvable problems with parameters (250, 3,.0236, .222), the ranking
by either consistency checks or CPU timeis BJ+DVO+LVO first, BJ+DVO+5S-LC
second, and plain BJ4+DVO last. The data in the “% Best” column indicate that
even when the presence of LVO substantially improves the mean performance of
BJ+DVO, on an instance by instance basis LVO does not always help; in fact, in
only one case, (100,9,.0638,.444), does LVO beat the other two algorithms in more
than half the instances. Moreover, according to the estimated o and 3 parameters,
adding LVO (or S-LC) to BJ+DVO does not result in a substantial impact on the

overall shape of the distribution of computational effort.

To understand how LVO affects the entire set of random CSP instances and
produces substantially lower means in consistency checks and CPU time, it is

important to take into account the extremely skewed nature of the distributions.

145

Consistency Checks LVO worse
T T T T T T T 1 100%
07|
(100, 12,.0242, .764)
5%
10°
50%
10°
25%
10*
0%

1 2 3 4 5 6 7 8 9 10
BJ+DVOe——e BJ+DVO+LVOe---9

% of times LVO is worse -~

Figure 6.2: The 500 instances in one experiment were divided into 10 groups, based
on the number of consistency checks made by BJ4+DVO. Each point is the mean
of 50 instances in one group; its position is based on the left-hand scale, which
is logarithmic. The dotted line, showing the percentage of times BJ+DVO was
better than BJ4+DVO+LVO when measuring consistency checks, is related to the
right-hand scale.

[[[[[
. (100, 12, 0242, .764)
(0]
107 |- o
O o
Consistency Checks 3 .
y 106 _. . o. . .o. .ﬁ [N n
- BJ4DVO+LVO R X
% o O °. o°* °
105 B ‘o.. .0 ..'0' (0] ’ o:.. ¢ |
.°.o ..O:Jg . ".'“0. ¢
07 3 Mt B
. ® o ‘o g L3
(0]
| | | | |

10 105 10% 107 108
Consistency Checks - BJ4+DVO
Figure 6.3: Each point (e = has solution, o = no solution) represents one instance
out of 500. Note that both axes use logarithmic scales. Points below the diagonal
line required fewer consistency checks with LVO.

146

Parameters Mean Parameters %
% Solvable Algorithm cC CPU A [| Best
(150,6,0.0209, 0.556) No VO 1,654,753 52.57 1.84 0.41 | 36.2
49% S-LC 1,007,961 33.07 3.06 0.41 | 24.0
LVO 713,982 25.75 3.86 0.43 | 39.8

(250, 3,0.0236, 0.222) No VO 273,155 14.36 6.27 0.55 | 37.0
87% S-LC 259,352 14.11 8.63 0.47 | 25.9
LVO 175,334 11.10 | 10.43 0.53 | 37.2

(100,9,0.0638, 0.444) No VO 26,079,853 518.72 0.06 0.57 | 38.8
98% S-LC 25,801,270 506.25 0.07 0.55 7.1
LVO 17,746,277 386.91 0.12 0.49 | 54.1

(100,9,0.0606, 0.444) No VO 1,930,435 32.78 0.86 0.56 | 25.6
100% S-LC 1,349,394 23.41 1.58 0.48 | 29.0
LVO 910,869 17.40 2.12 0.51 | 45.4

(100, 12,0.0242,0.764) | No VO 991,401 30.38 3.45 0.40 | 48.6
64% S-LC 1,098,223 23.43 3.65 0.38 9.1
LVO 434,904 9.88 8.57 0.46 | 42.3

Table 6.4: Results of several experiments on CSPs with various parameters; this
table show results for solvable problems. The A value has been multiplied by 10°.

Lognormal distributions with ¢ > 1.80 and Weibull distributions with 5 < .60,
which correspond to the empirical distributions of the data in the experiments, have
long, heavy tails. For example, in our experiments with (100, 12,0.0242,0.764),
about half the CPU time was spent solving the hardest 25 of the 500 problems.
It is therefore important to observe how the impact of LVO varies according to
the hardness of the instances. Fig. 6.2 illustrates the skew in the distribution,
and how LVO affects problems of different difficulties. For this figure, the 500
instances in one experiment were divided into ten groups of 50, based on the
number of consistency checks required by BJ4+DVO. The easiest 50 were put in
the first group, the next easiest 50 in the second group, and so on. LVO is harmful
for the first several groups, and then produces increasingly larger benefits as the

problems become more difficult.

The scatter chart in Fig. 6.3 also indicates the distribution of the data. In
this chart each bullet or circle represents one instance, its position on the chart

indicating the number of consistency checks used by BJ4+DVO (z-axis position)

147

T T T
106
106 |-
Consistency 10°
CheCkle5 i 104
10°
10* & l =

30 75 100 100 200 300

number of variables (N)

BJ4+DVOe——e BJ+DVO+LVOe---»

Figure 6.4: The benefits of LVO increases on problems with more variables. Each
point is the mean of 500 instances. ' is always set to the cross-over point. y-axis
is logarithmic.

and by BJ+DVO+4LVO (y-axis position). Many instances lie along or near the
diagonal, demonstrating an approximately equal performance by both algorithms.
Several dozen instances are very easy for one algorithm, requiring around 100 to 200
consistency checks, and somewhat harder for the other, requiring up to 100,000
consistency checks. The overall means are strongly affected by a few instances,

both solvable and unsolvable, which require 10 or more times as much work with

BJ4+DVO than with BJ+DVO+LVO.

Figs. 6.2 and 6.3 show data drawn from just one set of parameters. The pat-
tern of data from experiments with other parameters is quite similar. The overall
conclusion we draw from our experiments with BJ+DVO and BJ4+DVO+LVO is
that on sufficiently difficult problems LVO almost always produces substantial im-
provement; on medium problems LVO usually helps but frequently hurts; and on
easy problems the overhead of LVO is almost always worse than the benefit. Very
roughly, “sufficiently difficult” is over 1,000,000 consistency checks and “easy” is

under 10,000 consistency checks.

In general the statistics for CPU time are slightly less favorable for LVO

than are the statistics for Consistency Checks, reflecting the fact that, in our

148

106 |-

Consistency 105 |-

Checks
10* N=300 A
D=3
T=.111
10° || | | | L7

50 75 100 125 150

as percentage of cross-over value
BJ+DVOe——se BJ4+DVO+4+LVOe---9

Figure 6.5: The varying effectiveness of LVO on problems not at the cross-over
point. Each point on the chart represents the mean number of consistency checks
from solving 500 CSP instances, using BJ+DVO and BJ+DVO+LVO. On over-
constrained problems, the means of BJ+DVO and BJ+DVO+LVO are almost

identical.

implementation, there is approximately a 5%—-10% performance penalty in CPU
time for LVO. This is caused by the need to store and copy the large tables that
hold the results of looking ahead on different values of a variable (Step 2(c) of
Fig. 6.1). One way to measure the overhead in the program which shows up in
the CPU time but not in the count of consistency checks is to compute the ratio
of consistency checks to CPU seconds. In the solvable problems with parameters
(250, 3,0.0236,0.222), the number of consistency checks per CPU second is 19,022
for BJ+DVO, 18,381 for BJ4+DVO+5-LC, and 15,796 for BJ4+DVO+LVO.

The graphs in Fig. 6.4 show that the impact of LVO increases as the number
of variables increase. This is not surprising, as we have seen that within one set of
parameters LVO is more effective on harder problems. Moreover, when variables
have small domain sizes, a larger number of variables is required for LVO to have
a beneficial impact. For instance, at N=75 and D=12, LVO improves BJ4+DVO
substantially (see Fig. 6.4), while with the small domain size D=3, the impact of
LVO does not appear until N is larger than 200.

149

Figure 6.6: The constraint graph representing a CSP with 5 variables. The domain
of each variable is listed inside its oval, and the constraints are indicated by arcs,
with the disallowed value pairs noted.

The efficacy of LVO also depends on how near the parameters are to the 50%
solvable crossover point. As the data in Fig. 6.5 indicate, LVO is detrimental on
very easy underconstrained problems, when (' is less than 80% of the cross-over
point value. These problems have many solutions, and the extra work LVO does
exploring all values of a variable is almost always unnecessary. When problems
are sufficiently overconstrained, C' greater than 125% of cross-over value, LVO has
very little effect on the number of consistency checks, and the points for BJ4+DVO
and BJ4+DVO+LVO on Fig. 6.5 are indistinguishable.

6.6 LVO and Backjumping

With backtracking the order in which values are chosen does not affect the
size of the search space on problems which have no solution, or when searching for
all solutions. Therefore it may be surprising that a value ordering scheme can help
BJ+DVO on instances that are unsatisfiable, as the data in Table 6.3 and Fig. 6.3
indicate. Nonetheless, our experiments show that adding LVO to BJ4+DVO almost
always changes the number of consistency checks used on unsolvable problems,
often reducing them. One unsolvable instance required 442 million consistency
checks without LVO and 52 million with LVO. As the following observation states,

the reason is the interaction between backjumping and look-ahead value ordering.

Observation 1 When searching for all solutions, or on problems which have no

solution,

150

1. the order in which values are chosen does not affect the search space which

backtracking explores;

2. the order in which values are chosen can affect the search space which back-

Jumping explores.

Proof. Part 1: Consider a search tree rooted at variable X. The n children
of X are X1, Xs,...,X,. The size of the search space SS(.X) of this tree is 1 +
Som SS(X;). Since addition is commutative and the search spaces of the children
do not interact, the order in which the search spaces rooted at the children of X

are expanded will not affect SS(.X).

Part 2: We will use a simple example; consider the problem depicted in
Fig. 6.6, and assume X = «a is assigned first. There are two value orders for X,. If
X, = ¢ is considered first, then X5 will be a dead-end. X3 = d will be instantiated
next, and an eventual dead-end at X5 will lead to a jump back to X, and then
to Xi. X3 and X3 will be jumped over because they are not connected to X, or
X5. On the other hand, if Xy = d is considered first, a different search space is
explored because X; = ¢ is never encountered. Instead, X, and X3 are jumped

over after the dead-ends at X4 and X5.

Note that the observation holds whether a look-ahead or look-back method
is used, and whether the variable ordering is static or dynamic. LVO can help on
unsatisfiable problems, and on unsatisfiable branches of problems with solutions,
by more quickly finding a consistent instantiation of a small set of variables which

are later jumped over by backjumping.

6.7 Related Work

In general, domain-independent value ordering schemes have not been con-

sidered effective on CSPs, and relatively little work has been done on them. The

151

success of our static least-conflicts heuristic was therefore unexpected, and is prob-
ably due to its being evaluated on larger and harder problems than previously used.
This heuristic is similar to the Min-Conflicts heuristic developed by Minton et al.
[56], although Minton et al.’s version is not static, and is used primarily for variable

selection.

Geelen [32] describes an approach to value selection similar to ours. It is
based on a forward checking style look-ahead, but does not employ backjumping.

Empirical evaluation in [32] is based on the N-Queens problem.

Pearl [66] discusses similar value ordering heuristics in the context of the
8-Queens problem. His “highest number of unattacked cells” is the same as our
max-conflicts heuristic, and his “row with the least number of unattacked cells”

heuristic is the same as max-domain-size.

Dechter and Pearl [18] developed an Advised Backtrack algorithm which
estimates the number of solutions in the subproblem created by instantiating each
value. The estimate is based on a tree-like relaxation of the remainder of the
problem. For each value, the number of solutions is counted, and the count is
used to rank the values. Advised Backtrack was the first implementation of the
general idea that heuristics can be generated from a relaxed version of the problem

instance.

Sadeh and Fox [76] also use a tree-like relaxation of the remaining problem,
in the context of job-shop scheduling problems. Their value ordering heuristic con-

siders as well the impact of capacity constraints and demand on scarce resources.

6.8 Conclusions and Future Work

We have introduced look-ahead value ordering, an algorithm for ordering the

values in a constraint satisfaction problem. Our experiments showed that for large

152

and hard problems, LVO could improve the already very good BJ+DVO algorithm

by over a factor of five.

We also evaluated a simple static value ordering heuristic called static least-
conflicts. Although it is not able to react to changing conditions during search,

this heuristic often was an improvement over plain BJ4+DVO.

One drawback of LVO is that it is somewhat complex to implement, as it uses
a set of tables to cache the results of values that have been examined during the
ranking process but not yet instantiated. Manipulating these tables incurs a small
CPU overhead. Another disadvantage of LVO is that on easy solvable problems,
where there are many solutions and hence many acceptable value choices, it is
usually detrimental. LVO needlessly examines every value of each variable along

the almost backtrack-free search for a solution.

LVO is almost always beneficial on difficult instances that require over one
million consistency checks. Unexpectedly, it even helps on problems without solu-

tions when used in conjunction with backjumping.

We tested LVO using a forward checking level of look-ahead. It would also
be interesting to explore the possibility that a more computationally expensive
scheme, such as interleaved arc-consistency (see Chapter 5) or directional arc-
consistency [18], will pay off in the increased accuracy of the value ordering.
Another research direction is to reduce the overhead of LVO on easy problems.
This might be achieved by only employing value ordering in the earlier levels of
the search, or by having value ordering automatically “turn off” when it notices
that current values are in conflict with relatively few future values, indicating an
underconstrained problem. A simple way to eliminate the overhead of LVO on
very easy problems would be to always run a non-LVO algorithm first; if that
algorithm has not completed by, say, 100,000 consistency checks, it is cancelled
and problem solving is restarted with an LVO version. At the price of 100,000

153

extra consistency checks on some difficult problems, the costs of LVO on the easy

majority of problems would be avoided.

Chapter 7

Dead-end Driven Learning

7.1 Overview of the chapter

This chapter evaluates the effectiveness of learning for speeding up the so-

lution of constraint satisfaction problems!

. It extends previous work [15] by in-
troducing a new and powerful variant of learning and by presenting an extensive
empirical study on much larger and more difficult problem instances. Our re-
sults show that the addition of learning can speed up backjumping with dynamic

variable ordering.

7.2 Introduction

Our goal in this chapter is to study the effect of learning in speeding up
the solution of constraint problems. Learning has been studied in many branches
of Artificial Intelligence. Shavlik and Dietterich [80] distinguish two fundamental
ways in which a computer system can learn: it can “acquire new knowledge from
external sources,” which is usually called empirical learning or inductive learning,
or it can “modify itself to exploit its current knowledge more effectively.” This

latter type of learning is often called speedup learning, and it is into this category

that CSP learning falls.

!This research was first reported in Frost and Dechter [26].

154

155

The function of learning in search-based problem solving is to record in a
useful way some information which is explicated during the search, so that it
can be reused either later on the same problem instance, or on similar instances
which arise subsequently. One application of this notion involves the creation of
macro-operators from sequences and subsequences of atomic operators that have
proven useful in solutions to earlier problem instances of the domain. This idea
was exploited in STRIPS with MACROPS [24, 48]. A more recent approach is to

learn heuristic control rules using explanation-based learning [54, 55].

The approach we take involves a during-search transformation of the problem
representation into one that may be searched more effectively. This is done by
enriching the problem description by new constraints, also called nogoods, which
do not change the set of solutions, but make certain information explicit. The new
constraints are essentially uncovered by resolution during the search process [52].
The idea is to learn from dead-ends; whenever a dead-end is reached we record a
constraint explicated by the dead-end. Learning during search has the potential for
reducing the size of the remaining search space, since additional constraints may
cause unfruitful branches of the search to be cut off at an earlier point. The cost
of learning is that the computational effort spent recording and then consulting
the additional constraints may overwhelm the savings. Minton [55] refers to this
trade-off as the utility problem: “the cumulative benefits of applying the knowledge
[additional constraints] must outweigh the cumulative costs of testing whether the
knowledge is applicable.” Another potential drawback of the type of learning we

propose with CSPs is that the space complexity can be exponential.

This type of learning has been presented in dependency-directed backtrack-
ing strategies by researchers interested in truth maintenance systems [84], and
within intelligent backtracking for Prolog [9]. It was treated more systematically
by Dechter [15] within the constraint network framework. In [15], different variants

of learning were examined, taking into account the trade-off between the overhead

156

X1 X2 X3 X4 X5 X6 e X10

Q € B—6 G-

Figure 7.1: The constraint graph representing a CSP with ten variables. The
domains of variables X; through X; are listed inside the ovals and constraints
are indicated by arcs. Each constraint specifies that the two variables cannot be
assigned the same value.

of learning and performance improvement. The results, although preliminary, indi-
cated that learning during CSP search can be cost-effective. The empirical results
in [15] indicate that on randomly generated instances only very restricted forms
of learning paid off. When experimenting with the Zebra puzzle deeper forms of
learning were quite effective; however, instances were solved with random variable
orderings, and it remained unclear whether learning would still be effective under
well-chosen orderings. Overall, the empirical evidence to-date is based on a small
number of small-sized instances, under learning that restricts the size of constraints

recorded.

The present study extends [15] in several ways. First, a new variant of
learning, called jump-back learning, is introduced and is shown empirically to be
superior to other types of learning. Secondly, we experiment with and without
restrictions on the size of the constraints learned. Thirdly, we use the highly
effective BJ4+DVO algorithm from Chapter 4 as a comparison reference. Finally,

our experiments use larger and harder problem instances than previously studied.

Because learning in CSPs operates by recording additional constraints, it is
a variation of constraint propagation. Recall that a CSP is called k-consistent if
every consistent instantiation of & — 1 variables can be extended consistently to
any kth variable. 2-consistency is often called arc-consistency, and 3-consistency is

known as path-consistency. Arc-consistency is enforced by removing values from

157

the domains of variables; higher levels of consistency are enforced by adding con-
straints or tightening existing constraints, so that k& — 1 size instantiations which

cannot be consistently extended are themselves prohibited.

A desired level of consistency can be enforced on a CSP before search, or
instead of search. Consistency enforcing can also be interleaved with search (see
Chapter 5). In the latter case, the consistency enforcing algorithm is applied to
a subproblem which results from instantiating a subset of the variables. If one
of these variables is assigned a new value after backtracking, then the results of
the earlier consistency enforcing are out-of-date and must be recalculated. As an
example, consider the small CSP shown in Fig. 7.1, and assume that the problem
has no solution due to the constraints among variables X¢g through Xio. Enforcing
arc-consistency before search will not change the problem, since in all constrained
pairs of variables each value is compatible with at least one value in the domain
of the other variable. If path-consistency is enforced, a constraint will be added
between X3 and X5 which prohibits the assignment (Xy=w, X3=y), since with these
values there is no compatible extension to X4. Now let us look at the behavior
of various search algorithms, assuming that the variables are considered in order
of increasing subscript, and the values are selected in alphabetical order. Forward
checking will instantiate (X1=a, Xo=w) and upon considering Xs3=y will discover
an empty domain in X4, therefore rejecting y for X5. Since the variables from X5
on lead to a dead-end, at some point forward checking will return to Xi. It will
assign X1=b, then X,=w, and then again discover that X3=y is not acceptable. The
discovery has to be made twice since it was not remembered when the algorithm

backtracked to Xj.

" and re-discovery will happen on this prob-

A similar discovery, “forgetting,’
lem if interleaved arc-consistency (IAC from Chapter 5) is used. Look-ahead al-
gorithms forget when they backtrack, so that what they learn — that particular
values cannot be part of a solution — can be stored with low-order polynomial space

requirements.In Fig. 7.1’s example CSP, it might make sense to record that the

158

cause of the dead-end in variable X, is the combination (X;=w, X5=y). Adding
a constraint prohibiting this combination to the problem’s database of constraints

means the dead-end at X, will not have to be discovered again.

7.3 Backjumping

It will be useful to briefly review the conflict-directed backjumping algorithm,
since the new learning technique we propose is based in part on the mechanics of

backjumping.

When a variable is encountered such that none of its possible values is con-
sistent with previous assignments, a dead-end occurs and a backjump takes place.
The idea is to jump back over several irrelevant variables to a variable which is
more directly responsible for the current conflict. The backjumping algorithm
identifies a parent set, that is, a subset of the variables preceding the dead-end
variable which are inconsistent with all its values, and continues search from the
last variable in this set. If that variable has no untried values left, then a interior

dead-end arises and further backjumping occurs.

Consider, for instance, the CSP represented by the graph in Fig. 7.3. Each
node represents a variable that can take on a value from within the oval, and
the binary constraint between connected variables is specified along the arcs by
the disallowed value pairs. If the variables are ordered (Xi, X5, X5, X3, X4) and a
dead-end is reached at Xy, the backjumping algorithm will jump back to X5, since

X4 1s not connected to X5 or X.

159

7.4 Learning Algorithms

Upon a dead-end at X;, when the current instantiation S=(X;=x1,..., X;_1=
x;_1) cannot be extended by any value of X;, we say that S is a conflict set. Note
that when using a look-ahead approach, as BJ4+DVO does, X; may be any future,
uninstantiated, variable, and a dead-end at X; means that the domain D! has
become empty. An opportunity to learn new constraints is presented whenever
backjumping encounters a dead-end, since had the problem included an explicit
constraint prohibiting the dead-end’s conflict-set, the dead-end would have been
avoided. To learn at a dead-end, we record one or more new constraints which
make explicit an incompatibility among variable assignments that already existed,

implicitly.

There is no point in recording S as a constraint at this stage, because under
the backtracking control strategy this state will not recur. However, if S contains
one or more subsets that are also in conflict with X;, then recording these smaller
conflict sets as constraints may prove useful in the continued exploration of the

search space.

Varieties of learning differ in the way they identify smaller conflict sets. In
[15] learning is characterized as being either deep or shallow. Deep learning only
records minimal conflict sets, that is, those that do not have subsets which are also
conflict sets. Shallow learning allows non-minimal conflict sets to be recorded as
well. Non-minimal conflict sets are easier to discover, but may be more expensive

to store and applicable less frequently in the remaining search.

Learning can also be characterized by order, the maximum constraint size
that is recorded. In [15] experiments were limited to recording unary and binary
constraints, or first and second order learning. A loose upper-bound on the space
complexity of i-th order learning is (nd)’, where n is the number of variables and

d is the largest domain size.

160

Learning methods can also be distinguished by the type of dead-end at which
learning takes place. Leat dead-ends occur when the search algorithm moves to a
new variable deeper in the search tree and cannot assign it a compatible value. In
terms of BJ4+DVO (see Fig. 7.2), the sequence of steps 1-2(a)-3 is a leaf dead-end.
When the algorithm backtracks or backjumps to a variable and that variable has no
remaining compatible values, an interior dead-end takes place. The corresponding
steps of BJ+DVO are 3-2a-3. Learning can take place at either type of dead-end,
but the conflict sets at interior dead-ends tend to be larger. The conflict set of
a leaf dead-end must account for the incompatibility of each value in the domain
of the dead-end variable. The conflict set of an interior dead-end must account
for the incompatibility of all values on the leaves of the sub-tree rooted at the

dead-end variable.

161

Backjumping with DVO
Input: type, order, leaf-only
0.

1.

. Select a value z € D’

(Initialize.) Set D} « D, for 1 <i <n.

(Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur to be the index
of the next variable, according to a VARIABLE-ORDERING-HEURISTIC.
Set P.,. — 0.

Do this as follows:

cur”®

(a) It D, =0, go to 3.

cur

(b) Pop x from D, and instantiate X.,, « x.

cur

(c) Examine the future variables X;, cur < ¢ < n. For each v in D!, if
X; = v conflicts with Z.,, then remove v from D! and add X, to
P;; if D! becomes empty, go to (d) (without examining other X;’s).

(d) Go to 1.
Learn, then backjump.

(a) If P.,, = 0 (there is no previous variable), exit with “inconsistent.”
(b) If leaf-only = TRUE and X, was reached by a backjump, go to (g).

(
(

c) If type = VALUE, perform VALUE-BASED-LEARNING (order);

(e) else if type = DEEP, perform DEEP-LEARNING (order);
(
(g) Set P« P.,; set cur equal to the index of the last variable in P.

Set P., «— P., UP —{X.,}. Reset all D" sets to the way they
were before X, was last instantiated. Go to 2.

)
)
)
d) else if type = GRAPH, perform GRAPH-BASED-LEARNING (order);
)
f) else if type = JUMP, perform JUMP-BACK-LEARNING(order).

)

Figure 7.2: The BJ+DVO algorithm, augmented to call a learning procedure.

162

Figure 7.3: A small CSP. Note that the disallowed value pairs are shown on each
arc.

We experimented with four types of learning. Three were proposed by
Dechter [15]: graph-based shallow learning, value-based shallow learning (called
full shallow learning in [15]), and deep learning. We introduce a new variety of
learning, called jump-back learning because of its reliance on backjumping’s parent
or “jump-back” set of variables. As described below, each learning algorithm re-
lies on a subprocedure RECORD to add a new constraint or nogood to the problem
representation. (We do not define RECORD, because it relies on the specific data
structures used in the computer program.) In general, graph-based learning records
the largest new constraints, and deep learning the smallest. Value-based learning
and jump-back learning are intermediate forms that take different approaches to
the tradeoff between minimizing the cost at each dead-end and learning useful

constraints.

7.4.1 Value-based learning

In value-based learning, which is described in Fig. 7.4, all irrelevant variable-
value pairs are removed from the initial conflict set 5. If a variable-value pair X; =
x; does not conflict with any value of the dead-end variable then it is redundant and
can be eliminated. For instance, if we try to solve the problem in Fig. 7.3 with the
ordering (X1, X2, X3, X4, X5), after instantiating X1 =a, Xo=05, X5=0, Xy=c¢, the

dead-end at X5 will cause value-based learning to record (X7 =a, Xy =0, Xy =¢),

163

VALUE-BASED-LEARNING(order)

1 CS«10 ; initialize conflict-set

2 for each instantiated variable X;=x;,1 <1 < cur,
3 if X,=z; conflicts with some value of X_.,,

4 then add X;=z; to C'S
5 1f size of C'S < order
6 then RECORD(C'S)

Figure 7.4: The value-based learning procedure.

since the pair X3 = b is compatible with all values of X5. If all constraints in a
CSP are binary, a three-dimensional table CONF of boolean values can be pre-
computed before search. CONF, ;; is TRUE if X;=x; is in conflict with any value
of X}, and FALSE otherwise. Creating this table requires O(n?d) space and time
complexity. Since there are at most n—1 variable preceeding the dead-end variable,

by consulting CONF the time complexity of value-based learning at each dead-end
is O(n).

It the CSP has non-binary constraints, the same look-up table can be em-
ployed, but CONF; ;; = TRUE will mean that X;=2; in combination with some
other variables is in conflict with at least one value of Xj. This approach main-
tains the efficient preprocessing requirement and the O(n) time complexity per
dead-end, but is undesirable because some variables will be retained in the conflict
set unnecessarily. The alternatives are to construct a larger table in advance, or
to do more extensive analysis of the conflict set at each dead-end, which will take

more time.

7.4.2 Graph-based learning

Graph-based shallow learning is a relaxed version of value-based learning,
where information on conflicts is derived from the constraint graph alone, without
consulting the values currently assigned to variables (see Fig. 7.5). This approach

may be particularly useful on sparse graphs. For instance, when applied to the CSP

164

GRAPH-BASED-LEARNING(order)

1 CS «10

2 for each instantiated variable X;, 1 <1 < cur,

3 if there exists a constraint between X; and X,,,
4 then add X;=z; to C'S
5 1f size of C'S < order
6 then RECORD(C'S)

Figure 7.5: The graph-based learning procedure.

in Fig. 7.3, graph-based shallow learning might record (Xi=a, X2=b, X5=b, X4=c¢)
as a conflict set relative to a dead-end at X5, since these variables are connected to
X5. The complexity of learning at each dead-end here is O(n), since each variable

is connected to at most n — 1 other variables.

7.4.3 Jump-back learning

Jump-back learning uses as its conflict-set the parent set P that is explicated
by the backjumping algorithm itself. Recall that BJ+DVO examines each future
variable X; and includes X.,, in the parent set P; if X.,,, as instantiated, conflicts
with a value of P; that previously did not conflict with any variable. For instance
in Fig. 7.3, when using the same ordering and reaching the dead-end at X5, jump-
back learning will record (X;=a, X2=b) as a new constraint. These two variables
are selected because the algorithm first looks at X1=a and, noting that it conflicts
with Xs=x and Xs=y, adds X; to P5. Proceeding to X,=b, the conflict with X;==
is noted and X3 is added to Ps. At this point all values of X5 have been ruled

out, and the conflict set is complete. Since the conflict set needed for learning is

JUMP-BACK-LEARNING (order)
1 CS « P.,,

2 1if size of C'S < order

3 then RECORD(C'S)

Figure 7.6: The jump-back learning procedure.

165

DEEP-LEARNING(order)
1 for each subset S of the instantiated variables Z.,,_1,
2 in order from smallest to largest,
if every value of X,,, is in conflict with S and
S is not a superset of any existing nogood,
then if size of C'S < order
then RECORD(C'S)

Sy Ot = W

Figure 7.7: The deep learning procedure.

already assembled by the underlying backjumping algorithm, the added complexity
of computing the conflict set is constant. To achieve constant time complexity at
each dead-end the parent set must be modified to include not only the parent

variables but also their current values.

The conflict set identified by backjumping is not necessarily minimal. Refering
to the problem in Fig. 7.3, if the variable ordering starts with (Xi, X3), then the
dead-end at X5 will result in the minimal conflict set (Xy1=a, Xy=b), as discussed
in the previous paragraph. But if the variable ordering is (X35, X1, X3), then the

parent set for X5 will be (Xs=a, X1=a, X3=b), which is not a minimal conflict set.

7.4.4 Deep learning

In deep learning all and only minimal conflict sets are recorded. With the
CSP in Fig. 7.3, a dead-end at X5 will cause deep learning will record two minimal
conflict sets, (X1=a, Xy=0b) and (X1=a, X4=c). The deep learning algorithm can
start with the value-based conflict set, generate its subsets and test whether they
are conflict sets. Although this form of learning is the most accurate, its cost is
prohibitive and in the worst-case is exponential in the size of the initial conflict
set. As noted in [15], if r is the cardinality of the starting conflict set, we can

envision a worst case where all the subsets of this set having r/2 elements are in

166

Parameters Algorithm CC Nodes CPU | Size
(125,3,0.1199,0.111) | None 242,293 8,760 2.02
Graph 1,253,404 8,692 15.73 | 3.6
Value 619,059 8,000 5.19 | 3.3
Jump 518,454 7,828 3.14 | 3.3
Deep 2,067,166 7,183 10.17 | 3.2
(175,3,0.0358,0.222) | None 72,289 6,221 2.01
Graph 785,564 6,201 832 | 3.5
Value 398,451 5,163 3.86 | 3.0
Jump 26,637 2,008 0.56 | 2.5
Deep 823,306 1,299 417 | 2.1
(150,3,0.0218,0.333) | None 5,120 749 0.22
Graph 112,674 579 3.01 | 2.3
Value 84,711 571 091] 1.9
Jump 1,332 188 0.07 | 1.8
Deep 57,881 165 0.54 | 1.5

Table 7.1: Comparison of BJ+DVO, without learning (“None”) and with four vari-
eties of learning: Graph-based learning (“Graph”), Value-based learning (“Value”),
Jump-back learning (“Jump”), and Deep Learning (“Deep”). All learning was re-
stricted to 4th-order. Fach number is the mean of 500 solvable and unsolvable
instances. The “Size” column displays the average number of variables in the
learned constraints.

conflict with X,,.. The number of minimal conflict sets will then be:

”
#min-conflict-sets = =2,
r/2

which amounts to exponential time and space complexity at each dead-end.

7.5 Experimental Results

We evaluated the learning algorithms by combining them with BJ4+DVO and
solving several sets of random CSPs. The results are presented in the following

subsections.

167

7.5.1 Comparing learning algorithms

The first experiment was designed to compare the effectiveness of the four
learning schemes. Fig. 7.1 presents a summary of experiments with problems
generated from three sets of parameters. 500 problems in each sets were generated
and solved by five algorithms: BJ+DVO without learning, and then BJ4+DVO
with each of the four types of learning. In all cases a bound of four was placed on

the size of the constraints recorded, and learning was limited to leaf dead-ends.

Looking at the size of the search space, the results reported in Fig. 7.1 indicate
that the algorithms can be ranked as follows: no learning > Graph-based > Value-
based > Jump-back > Deep. This result is expected: learning adds additional
constraints which should reduce the size of the search space. Within the learning
schemes, the size of the search space is inversely related to the average size of
the learned constraints, since larger constraints tend to be less effective in the

remainder of the search.

Because learning adds new constraints, it can increase the number of consis-
tency checks performed later in the search. Moreover, learning applied to binary
CSPs can add constraints with more than two variables, and these constraints can
be more expensive to query?. Deep learning makes a particularly large number of
consistency checks because at each dead-end it has to verify whether each subset

of the value-based conflict set is a minimal conflict set.

This experiment demonstrates that only the new jump-back type of learning
is effective on these reasonably large size problems. In the following discussion and

figures, all references to learning should be taken to mean jump-back learning.

?In our implementation, binary constraints are represented by a four-dimensional array with
one dimension for each variable and value, and a binary consistency check is therefore a constant
time operation. Higher order constraints are stored in ordered lists, and checking consistency
with one of these constraints is proportional to r x logs, where r is the size of the constraint,

and s is the number of high-order constraints.

168

o—e cons. chks. 193,000K
o—o nodes 1,461
+—+ CPU '

-0 avg. size 96.05
@@ num learned e 7.0

294K

A7.76
6,248K

151K

41 @
Lo

No 2 3 4 5 6 7 8 9
Figure 7.8: Results from experiments with parameters (100,6,.0772,.333) and
varying orders of jump-back learning, as indicated on the x-axis (“No” signifies
BJ4+DVO without learning). Note that each statistic is on a different scale.

7.5.2 Testing i-th order learning

We now describe a set of experiments designed to investigate the impact on
learning of restricting the size of the learned constraints. Recall that in ¢th-order
learning, new constraints are recorded only if they include ¢ or fewer variables. The
experiments used random problems generated with parameters (100, 6,.0772,.333)
(reported in Fig. 7.8) and (125,6,.0395,.444) (reported in Fig. 7.9). For both ex-
periments we generated 500 instances and processed them using BJ+DVO without
learning, and using BJ4+DVO with :-th order learning, where ¢ ranged from 2 to
9. The graphs in the figures show the averages for number of consistency checks,
the size of the search space, the CPU time in seconds, the number of constraints
learned, and the size of the learned constraints. Each set of figures is plotted using
a different y-axis scale, with the beginning and ending values indicated on the
charts. In general, a higher order of learning results in a smaller search space,

a larger number of learned constraints, and a larger average size of the learned

169

e—e cons. chks. 25 583K

e—o nodes ’
47,60 +—+ CPU . 4 698

& --© avg. size [

& -4 num learned

930K © 5.8
27.65
3,527TK KA

No 2 3 4 5 6 7 8 9

Figure 7.9: Results from experiments with parameters (125,6,.0395,.444) and
varying orders of jump-back learning, as indicated on the z-axis. “No” signifies
BJ+DVO without learning. Note that each statistic is on a different scale.

constraints. Although this relationship usually holds true on average, it is not nec-
essarily the case on an instance by instance basis, since new constraints affect the
dynamic variable ordering and occasionally produces a worse ordering. Charting
the CPU time and number of consistency checks produces a U-shaped curve in
respect to the learning order: a low order (2 — 4 for the problems with T=.333 and
2 — 8 for the problems with 7'=.444) reduces the average CPU time required, but
if the order of learning is too high learning impairs the performance of BJ4+DVO.
This pattern holds true on many other sets of data we have examined: learning
is best when limited. When the constraints are tighter in the original CSP, the
optimum order of learning is higher. The problems with T'=.444 in Fig. 7.9 are
solved with in 23.23 CPU seconds, on average, with 8th-order learning, although
this is perhaps negligibly lower than 24.40 CPU seconds with 2nd-order learning.

When the constraints are quite loose, the order of learning can have little

effect. For example, on problems with D=3 and T'=.111=1/9 almost all learned

170

constraints have exactly 3 variables, since each of the three values of the dead-
end variable is incompatible with a different previous variable. After non-binary
constraints are added to the problem, it is possible for a dead-end to have a conflict
set of more or less than 3 variables. Thus 2nd-order learning on such problems
results in no learning, while learning without an order restriction is almost identical

to 3rd-order learning.

7.5.3 Increasing the number of variables

Learning tends to have a greater impact on harder problems; an easy problem
with relatively few dead-ends presents few opportunities for learning to come into
play. To verify that learning is more beneficial on larger problems, we ran an
experiment on six sets of random problems, where the number of variables varied
from 50 in the first set to 300 in the sixth. The results are reported in Fig. 7.10.
Only data from unsolvable problems is included so that estimates of the lognormal
distribution’s p and o parameters can be shown (see Chapter 3), but the growth

in mean consistency checks for solvable problems is similar.

171

T T T T T T
LB-g log(mean) BJ+DVO+Irn B
>4 log(mean) BJ4+DVO
14| ® p BJ+DVO+learning -0.0252N + 6.1138
* 1 BJ+DVO x !
s o o BJ4+DVO+learning o B
o o BJ4DVO 9
& 0.0192N + 6.3944
12 -
11+
10
9L
g —2.0
o 0.0042N 4 4177
' 0.0034N 4 .3753 |1
—1.0
o
—.5
| | l l | I 0

50 100 150 N200 250 300
Figure 7.10: Data on number of consistency checks required on unsolvable problems
in experiments with parameters D=3, T'=.222, N varying from 50 to 300, and C
set to the cross-over point, using BJ4+DVO with and without 4th-order learning.
Points represent estimated p (left hand scale) and o (right hand scale) for each
algorithm, assuming a lognormal distribution. Lines (solid for BJ4+DVO with
learning, dotted for BJ+DVO without) show best linear fit. The formula to the
right of each line shows the slope and the y-axis intercept. The graph also shows
the natural logarithm of the mean number of consistency checks (left hand scale).

172

Mean CPU seconds
Decile | No learning Learning | Ratio
1 951.09 67.46 | 14.10
2 333.70 52.22 | 6.39
3 159.94 27.72 | 5T
4 100.43 19.70 | 5.10
5 65.92 7.76 | 8.49
6 43.35 5.85 | T7.41
7 28.63 517 | 5.54
8 12.55 238 | 5.27
9 6.30 1.35 | 4.66
10 1.57 0.56 | 2.79

Figure 7.11: Results from experiments comparing BJ+DVO with and without
learning on random instances with parameters (300,2,.0089,.333). Mean CPU
time for each decile of the data is reported.

The results in Fig. 7.10 are similar to those in Fig. 4.12 from Chapter 4. The
presence of learning slows the growth in both p and o, so that the distribution
of BJ+DVO is less skewed with learning than without. Fig. 7.11 shows the CPU
times from the largest set of problems in Fig. 7.10, those with N =300. The
500 instances, both solvable and unsolvable, have been divided into 10 groups of
50, based on the CPU time required by BJ+DVO without learning to solve each
instance. The hardest 50 were put in the first group, the next hardest in the second
group, and so on. On the hardest instances, the improvement due to learning was
a factor of 14; for the easiest 50 problems learning still helps, but only by a factor
of about three. As expected, learning is more effective on problem instances that
have more dead-ends and larger search spaces, where there are more opportunities

for each learned constraint to be useful.

173

CPU seconds

1000 -]
100 |- -
10 | -
1k]
I R R R R B [T Y O O N B M
1,100 1,300 1,800 2,000 2,200
number of constraints
No learning e——e Fourth-order learningo------- G)

Figure 7.12: BJ4+DVO without learning and with third-order learning, for N=500,
D=3, T=.222, and non-crossover point values of C. All problems with fewer than
1,350 constraints were solvable; all problems with more than 1,800 had no solution.

7.5.4 Problems not at the cross-over point

Fig. 7.12 shows that with large enough N, problems do not have to be drawn
from the 50% satisfiable area in order to be hard enough for learning to help. We
experimented with problems not at the cross-over point by setting N=500, D=3,
T=.222, and selecting values of ' that are larger or smaller than the estimated
cross-over point of .0123 (1,534 constraints). 250 instances were generated with
each set of parameters. Learning was especially valuable on extremely hard solvable
problems generated by slightly underconstrained values for C'. For instance, at
(500, 3,.0100, .222), the hardest problem took 47 CPU hours without learning,
and under one CPU minute with learning. The next four hardest problems took

4% as much CPU time with learning as without.

174

7.6 Average-case Space Requirements

It is worth noting that we did not find the space requirements of learning to be
overwhelming, as has been reported by some researchers. For instance, even with
a learning order of 9, only 698 constraints were learned, on average, for reasonably
hard problems with parameters (125, 6,.0395,.444) (see Fig. 7.9). On the hardest
problem in the set, which took 86 CPU minutes and made over two and a half
billion consistency checks, 10,524 new constraints were added, with an average
size of 7.37. Allowing 500 bytes to store such a large constraint and index it by
each included variable-value pair, the run-time addition to computer memory is
about five megabytes. Such an amount is not trivial, but does not pose a problem
for modern computer systems. Furthermore, the order of learning can be limited
to control the space used, if necessary. We have found that computer memory is

not the limiting factor; time is.

7.7 Conclusions

We have introduced a new variant of learning, called jump-back learning,
which is more powertul than previous versions because it takes advantage of pro-
cessing already performed by the conflict-directed backjumping algorithm. Our
experiments show that it is very effective when augmented on top of the strong
BJ+DVO version of backjumping, resulting in at least an order of magnitude re-

duction in CPU time for some problems.

Learning seems to be particularly effective when applied to instances that are
large or hard, since it requires many dead-ends to be able to augment the initial
problem in a significant way. However, on easy problems with few dead-ends,
learning will add little if any cost, thus perhaps making it particularly suitable for
situations in which there is a wide variation in the hardness of individual problem:s.

In this way learning is superior to other CSP techniques which modify the initial

175

problem, such as by enforcing a certain order of consistency, since the cost will not

be incurred on very easy problems.

An important parameter when applying learning is the order, or maximum
size of the constraints learned. With no restriction on the order, it is possible to
learn very large constraints that will be unlikely to prune the remaining search

space.

Chapter 8

Comparison and Synthesis

8.1 Overview of Chapter

The previous chapters have described and evaluated a number of CSP al-
gorithms. Fach was shown to have interesting properties and to be useful on
certain problems. This chapter reports several experiments designed to draw to-
gether the earlier results into a single coherent picture. BT+DVO, BJ+DVO,
BT+DVO+IAC, BJ+DVO+LVO, and BJ+DVO+Learning are compared on both
random problems and on a suite of problems from the Second DIMACS Implemen-
tation Challenge. We also introduce a new algorithms, BJ+DVO+LRN+LVO,
which adds both jump-back learning and look-ahead value ordering to BJ4+DVO.

8.2 Combining Learning and LVO

The look-ahead value ordering heuristic from Chapter 6 tentatively instanti-
ates each value of the current variable and uses forward checking style look-ahead
to gauge the value’s impact on the remaining search space. The jump-back learn-
ing algorithm described in Chapter 7 records as constraints the conflict sets built
by conflict-directed backjumping and used when a dead-end is encountered. These

two orthogonal improvements to the BJ4+DVO algorithm can be combined into a

176

177

single algorithm, which we call BJ+DVO+LRN+LVO. The algorithm is described
in Fig. 8.1.

BJ+DVO+LRN+LVO is modeled on BJ+DVO+LVO. The primary differ-
ence lies in step 1A (b). In learning algorithms without LVO, an opportunity to
learn occurs at each dead-end. In the presence of LVO, the algorithm can learn
a new nogood for each value of the current variable which will lead to a dead-
end. For instance, suppose the current variable X5 has three values in its domain,
{a,b,¢}. The LVO mechanism in step 1A records the impact that Xso=a, X50=0b,
and Xsg=c, each have on future variable domains. If it happens that each value
causes a future domain to be empty, then three nogoods will be recorded, differing

only in their value for Xsq.

8.3 Experiments on Large Random Problems

The first set of experiments reported in this chapter were based on the same
Model B random problem generator used elsewhere in this thesis. Because the best
algorithms from earlier chapters are compared in this experiment, it was possible
to test them on larger problems than previously reported. We briefly review the

algorithms compared in this chapter:

e BT+DVO. Backtracking with a dynamic variable ordering heuristic.
e BT+DVO+4IAC. Backtracking with a dynamic variable ordering heuristic

and arc-consistency performed after each instantiation. Arc-consistency is
achieved by the Ac-3 algorithm, using the AC-DC domain checking technique
described in Chapter 4.

e BJ+DVO. Conflict-directed backjumping with a forward checking look-ahead
and dynamic variable ordering.

e BJ+DVO-+LVO. The BJ4+DVO algorithm with the look-ahead value order-
ing heuristic described in Chapter 5.

178

Backjumping with DVO and Learning and LVO

Input: order
0. (Initialize.) Set D} « D, for 1 <i <n.

1. (Step forward.) If X, is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur to be the index
of the next variable, determined according to a
VARIABLE-ORDERING-HEURISTIC. Set P.,, « 0.

1A. (Look-ahead value ordering.) Rank the values in D’ as follows:

(a) For each value x in D', , and for each value v of a future variables

cur?
X, cur <1 < n, determine the consistency of

(fcur—l 5 XcuT:xa XZ:U)

(b) If instantiating a value leads to an empty domain of some future
variable X, then add X.,,=z to P; and learn by recording Ps as a
new constraint, unless its size is greater than order.

(c¢) Using a heuristic function, compute the rank of based on the
number and distribution of conflicts with future values v.

2. Select a value x € D’ Do this as follows:

cur”®

(a) It D, =0, go to 3.

cur

(b) Pop the highest ranked value & from D, and instantiate X.,, « .

(c¢) (This step can be avoided by caching the results from step 1A.)
Examine the future variables X;, cur < ¢ < n. For each v in D!, if
X, = v conflicts with Z., then remove v from D¢ and add X.,, to
P;; if D! becomes empty, go to (d) (without examining other X;’s).

(d) Go to 1.

3. (Backjump.) If P.,, = 0 (there is no previous variable), exit with
“inconsistent.” Otherwise, set P «— P.,,; set cur equal to the index of
the last variable in P. Set P.,, « P., UP —{X.,}. Reset all D' sets to
the way they were before X.,, was last instantiated. Go to 2.

Figure 8.1: Algorithm BJ+DVO+LRN+LVO, which combines backjumping, dy-

namic variable ordering, jump-back learning, and look-ahead value ordering.

179

Parameters Algorithm CC Nodes CPU
(200,3,0.0592,0.111) | BT+DVO 5,871,215 207,183 68.46
BT+DVO+IAC 23,836,368 40,098 55.44
BJ+DVO 5,365,467 188,726 69.28
BJ+DVO+LVO 4,793,417 167,211 73.78
BJ+DVO+LRN 5,731,244 186,582 63.39
BJ+DVO+LRN+LVO | 5,622,825 159,739 74.00
(300, 3,0.0206,0.222) | BT+DVO+IAC 141,606 632 0.65
BJ+DVO 2,483,520 222,285 119.26
BJ+DVO+LVO 1,623,455 131,593 86.76
BJ+DVO+LRN 419,193 32,221 15.62
BJ+DVO+LRN+LVO 392,606 25,771 13.98
(350, 3,0.0089,0.333) | BT+DVO+IAC 24,641 494 0.43
BJ+DVO 1,238,479 182,328 140.81
BJ+DVO+LVO 969,224 118,854 111.79
BJ+DVO+LRN 3,727 464 0.46
BJ+DVO+LRN+LVO 22,688 1,036 3.78

Table 8.1: Comparison of five algorithms on random CSPs with D =3. Each
number is the mean of 2,000 solvable and unsolvable instances. The algorithm
with the lowest mean CPU seconds in each group is in boldface.

e BJ4+DVO+LRN. BJ+DVO with jump-back learning, as defined in Chapter 7.
Only nogoods with four or fewer variables are learned, and learning is only

performed at leaf dead-ends.

e BJ+DVO+LRN+LVO. BJ+DVO with fourth-order jump-back learning and

look-ahead value ordering, as described in the previous section.

Various combinations of parameters N, D, ', and T, were selected, all near
the cross-over region where 50% of the problem have solutions. For each set of
parameters were generated 2,000 instances and applied the algorithms to each in-
stance. Experiments reported in Chapter 4 demonstrated that on large problems
with tight constraints, BT4+DVO does not perform well. We therefore applied that
algorithm only to problems with relatively loose constraints, specifically parameter
combinations (200, 3,0.0592,0.111), (60,6,0.4797,0.111), and (75,6, 0.1744, 0.222).
The results of the experiments are reported in Table 8.1 and Table 8.2.

180

Parameters Algorithm CC Nodes CPU
(60,6,0.4797,0.111) | BT+DVO 24,503,115 412,494 59.72
BT+DVO+IAC 104,319,923 65,432 130.54
BJ+DVO 24,228,726 407,253 63.10
BJ+DVO+LVO 23,904,430 401,131 66.47
BJ+DVO+LRN 24,368,062 406,332 57.43
BJ4+DVO+LRN+LVO | 24,103,544 405,899 65.75
(75,6,0.1744,0.222) | BT+DVO 7,766,594 249,603 40.77
BT+DVO+IAC 18,419,580 16,395 22.22
BJ+DVO 7,530,726 241,124 42.67
BJ+DVO+LVO 7,228,548 230,073 44.05
BJ+DVO+LRN 7,856,321 230,367 42.13
BJ+DVO+LRN+LVO 7,321,890 231,455 43.79
(100,6,0.0772,0.333) | BT+DVO+IAC 4,718,685 4,625 5.67
BJ+DVO 6,248,608 293,922 67.30
BJ+DVO+LVO 6,581,314 305,121 76.49
BJ+DVO+LRN 5,979,767 232,780 54.34
BJ+DVO+LRN+LVO 6,034,538 235,509 61.22
(125,6,0.0395,0.444) | BT+DVO+IAC 479,228 566 0.60
BJ+DVO 3,526,619 238,584 66.17
BJ+DVO+LVO 3,007,791 195,720 62.54
BJ+DVO+LRN 2,050,232 108,482 28.80
BJ+DVO+LRN+LVO 1,970,645 102,788 29.45
(150,6,0.0209,0.555) | BT+DVO+IAC 32,537 111 0.06
BJ+DVO 3,253,255 359,095 111.70
BJ+DVO+LVO 1,328,189 124,415 47.08
BJ+DVO+LRN 339,191 28,056 8.25
BJ+DVO+LRN+LVO 601,454 25,769 12.87

Table 8.2: Comparison of five algorithms on random problems with D=6. Fach
number is the mean of 2,000 solvable and unsolvable instances. The algorithm
with the lowest mean CPU seconds in each group is in boldface.

181

We also present graphically some of the data from Tables 8.1 and 8.2, which
permits more information than just averages to be conveyed. Fig. 8.2 shows the
distribution of consistency checks made and nodes expanded for three algorithms
on unsatisfiable problems with parameters (350, 3,0.0089,0.333). The distribu-
tions are approximated by lognormal curves with estimated p and o parame-
ters. Fig. 8.3 is a scatter chart, in which each point indicates the relative per-
formance of BT4+DVO+IAC and BJ+DVO-+LRN on a problem with parameters
(75,6,0.1744,0.222).

8.4 Experiments with DIMACS Problems

The Second Dimacs Implementation Challenge in 1993 [44] collected a set
of satisfiability problem instances for the purpose of providing benchmarks for
comparison of algorithms and heuristics. We compared our algorithms against six
of the problems that were derived from circuit fault analysis. The problems are
encoded as Boolean satisfiability problems in conjunctive normal form. Clauses

contain from one to six variables.

Each of our six algorithms was applied to these benchmark problems. The
results are displayed in Table 8.3 and Table 8.4. The tables show other CPU times
on these problems reported in [44]. Dubois et al. [21] uses a complete algorithm
based on the Davis-Putnam procedure; computer is a Sun SparcStation 10 model
40. Hampson and Kibler [39] use a randomized hill climbing procedure; computer
is a Sun SparcStation II. Jaumard et al. [43] use a complete Davis-Putnam based
algorithm with a tabu search heuristic; computer is a Sun SparcStation 10 model
30. Pretolani’s H2R algorithm [67] is based on the Davis-Putnam procedure and
uses a pruning heuristic; computer is a Sun SparcStation 2. Resende and Feo
[72] present a greedy randomized adaptive search procedure called GRASP-A; the
computer used was not reported. Spears [83] uses a simulated annealing based

algorithm; computer is a Sun SparcStation 10. Van Gelder and Tsuji [87] use

182

T T T
(350, 3,0.0089, 0.333)
BT+DVO+IAC: ¢p=9.09 0=1.45
BJ4+DVO+LRN: u=7.77 0=1.18
02 BJ+DVO+LRN+LVO: ¢=9.55 0=1.16 _|
Frequency
.01 |
LRN4+LVO
| | i
0 5,000 10,000 15,000
Consistency Checks
T T T
A2 —
(350, 3,0.0089, 0.333)
10 BT+DVO+IAC: p=4.00 0=2.07
‘ AC BJ4+DVO+LRN: y=5.42 0=1.29
08 BJ+DVO+LRN+LVO: y=5.98 0=1.28
Frequency
.06 —
04 = |
LRN+4+LVO
0 250 500 750
Nodes

Figure 8.2: Lognormal curves based on unsolvable problems generated from pa-
rameters (350, 3,0.0089,0.333). The top graph is based on consistency checks, the
bottom graph on search space nodes. p and o parameters were estimated using
the Maximum Likelihood Estimator (see Chapter 3).

183

T T E——— T T
[e]
1251 000y, .
© [e]
100+ 03%3.97900]
o)

CPU seconds - dﬁ%: B

_BJ+DVO+LRN 248 %

(Je]

25 —
0 ! ! ! ! ! —

0 25 50 75 100 125
Consistency Checks - BT+DVO+IAC

Figure 8.3: Each point (e = has solution, o = no solution) represents one instance
from the experiment with (75,6,0.1744,0.222). Points above the diagonal line
required less CPU time with BT+DVO+IAC than with BJ+DVO-+LRN.

a complete algorithm that combines search and resolution; computer is a Sun

SparcStation 10 model 41.

Among our six algorithms, no clear trend is discernible. BT+DVO+IAC had
the best CPU time on three problems, including one tie with BJ+DVO-+LRN,
and BJ+DVO+LRN was best on two, including the tie. BJ4+DVO+LVO and
BJ+LVO+LRN+LVO were each best one on problem. On the hardest problem,
ssa2670-141, we cancelled BT+DVO after 24 CPU hours had passed without the

algorithm completing.

8.5 Discussion

The experiments in this chapter confirm and amplify the results reported in
earlier chapters. The additional effort expended by enforcing arc-consistency after

each instantiation often paid off in the form of a sharply reduced search space and

184

Problem Algorithm cC Nodes CPU
$5a0432-003 BT+DVO 51,190 901 0.73
435 variables | BT+DVO+IAC 73,817 512 0.70
1,027 clauses BJ+DVO 48,811 865 0.81
unsatisfiable BJ+DVO+LVO 69,100 823 0.92
BJ+DVO+LRN 52,505 827 0.71
BJ+DVO+LRN+LVO 59,091 816 0.78
Dubois 1.40
Jaumard 9.00
Pretolani 0.83
Van Gelder 0.55
Wallace 499.30

ssa2670-141 BT+DVO
1,359 variables | BT+DVO+IAC 535,875,109 1,279,009 1,943.51
3,321 clauses BJ+DVO 173,446,699 7,117,071 2,791.01
unsatisfiable BJ+DVO+LVO 41,073,083 1,858,408 803.81
BJ+DVO+LRN 35,689,610 1,036,554 488.25
BJ4+DVO+LRN+LVO | 31,854,918 843,099 449.76
Dubois 2,674.40
Van Gelder 164.58
ss5a7552-038 BT+DVO 755,034 45,796 14.52
1,501 variables | BT+DVO4IAC 1,274,887 3,766 3.51
3,575 clauses BJ+DVO 687,122 40,008 12.17
satisfiable BJ+DVO+LVO 578,909 31,899 11.01
BJ+DVO+LRN 439,755 22,884 5.50
BJ+DVO+LRN+LVO 398,541 16,001 3.78
Dubois 1.20
Pretolani 3.67
Hampson 152.2
Resende 8.31
Van Gelder 1.85

Table 8.3: Comparison of five algorithms on DIMACS problems. The names refer
to authors who participated in the DIMACS challenge; references are given in
the text. Numbers for our algorithms are all results from single instances. Some
CPU times from other authors are averages over multiple randomized runs on the
problem.

Problem Algorithm CC Nodes CPU
ssa7552-158 BT+DVO 1,009,736 51,756 19.98
1,363 variables | BT+DVO+IAC 1,863,152 17,938 8.25
3,034 clauses BJ+DVO 845,991 25,611 10.72
satisfiable BJ+DVO+LVO 445,172 8,122 4.55
BJ+DVO+LRN 612,791 19,088 8.64
BJ+DVO+4+LRN+LVO 467,890 12,876 7.07

Dubois 0.80

Hampson 82.50

Jaumard 43.00

Pretolani 2.28

Resende 2.42

Van Gelder 1.14

ssa7552-159 BT+DVO 883,614 39,110 14.45
1,363 variables | BT+DVO+IAC 1,378,253 4,167 3.20
3,032 clauses BJ+DVO 674,091 20,093 6.07
satisfiable BJ+DVO+LVO 691,654 18,987 6.98
BJ+DVO+LRN 503,122 12,077 3.20
BJ+DVO+4+LRN+LVO 563,871 12,890 3.67

Dubois 0.90

Hampson 82.30

Jaumard 6.00

Pretolani 2.68

Resende 1.63

Van Gelder 1.14

s5a7552-160 BT+DVO 712,009 35877 12.92
1,391 variables | BT+DVO+IAC 1,265,887 4,098 3.02
3,126 clauses BJ+DVO 687,833 22,088 6.28
satisfiable BJ+DVO+LVO 792,615 23,766 7.14
BJ+DVO+LRN 453,788 9,745 3.67
BJ+DVO+4+LRN+LVO 495,166 10,687 4.50

Dubois 0.90

Hampson 86.00

Jaumard 6.00

Pretolani 2.80

Resende 22.79

Van Gelder 1.44

Table 8.4: Continuation of Table 8.3.

185

186

great savings in CPU time. This pattern was most pronounced on problems with
tight constraints. Look-ahead value ordering and jump-back learning both tended
to improve substantially the efficacy of BJ+DVO. These enhancements too were
more effective on problems with tight constraints. Combining jump-back learning
and LVO into BJ+DVO+LRN+LVO did not tend to be particularly useful: in only
one experiment with random problems, based on parameters (300, 3, 0.0206, 0.222),
was this combination superior in CPU time to the other BJ4+DVO variants. On the
other hand, BJ+DVO+LRN+LVO showed the best performance on the hardest
DIMACS Challenge problem, which suggests that the combination can be useful

on problems of sufficient size.

The effectiveness of interleaving arc-consistency was partly contingent on
the relatively low cost of performing a consistency check in our program. In the
experiment with parameters (200, 3,0.0592,0.111), for instance, BT+DVO+IAC
performed about 430,000 consistency checks per CPU second (23,836,368 / 55.44).
It consistency checking had been more expensive, the ranking of BT+DVO+IAC
relative to the other algorithms might have changed. Indeed, BT+DVO+IAC was
not quite such a strong performer on the DIMACS problems, which have a large
number on non-binary constraints. In our implementation, binary constraints were
stored in a table, which permits fast look-up, while higher order constraints were

stored in lists, to which access is slower.

8.6 Conclusions

We have shown that the trends observed in earlier chapters continue to hold
both for larger random problems and for a set of satisfiability problems drawn
from circuit analysis. Fnforcing arc-consistency after each variable instantiation
improved the performance of BT+DVO by orders of magnitude on problems with

relatively tight constraints. Jump-back learning and look-ahead value ordering,

187

both individually and in combination, substantially improved the performance of

BJ+DVO.

Chapter 9

Encoding Maintenance

Scheduling Problems as CSPs

9.1 Overview of Chapter

This chapter focusses on a well-studied problem of the electric power in-
dustry: optimally scheduling preventative maintenance of power generating units
within a power plant. We define a formal model which captures most of the in-
teresting characteristics of these problems, and then show how the model can be
cast as a constraint satisfaction problem. Because maintenance scheduling is an
optimization problem, we use a series of CSPs with ever-tightening constraints
to discover a locally optimal schedule. Empirical results show that applying the
learning algorithm from Chapter 7 significantly reduces the CPU time required to

solve this series of maintenance scheduling CSPs.

9.2 Introduction

The problem of scheduling off-line preventative maintenance of power gen-
erating units is of critical interest to the electric power industry. A typical power

plant consists of one or two dozen power generating units which can be individually

188

189

scheduled for maintenance. Both the required duration of each unit’s preventa-
tive maintenance and a reasonably accurate estimate of the power demand that
the plant will be required to meet throughout the planning period are known in
advance. The general purpose of determining a maintenance schedule is to deter-
mine the duration and sequence of outages of power generating units over a given
time period, while minimizing operating and maintenance costs over the planning
period, subject to various constraints. A maintenance schedule is often prepared
in advance for a year at a time, and scheduling is done most frequently on a week-
by-week basis. The power industry generally considers shorter term scheduling,
up to a period of one or two weeks into the future, to be a separate problem called

“unit commitment.”

Computational approaches to maintenance scheduling have been intensively
studied since the mid 1970’s. Dopazo and Merrill [20] formulated the maintenance
scheduling problem as a 0-1 integer linear program. Zurm and Quintana [93] used a
dynamic programming approach. Egan [22] studied a branch and bound technique.
More recently, techniques such as simulated annealing, artificial neural networks,

genetic algorithms, and tabu search [45] have been applied.

This chapter reports the results of applying the constraint processing tech-
niques developed in the earlier chapters to the maintenance scheduling problem.
The task is of interest for several reasons. Primary, of course, is the opportu-
nity to take our research results “out of the lab,” and to put them to use on
problems of substantial economic interest. Within the context of evaluating CSP
algorithms, applying the algorithms to maintenance scheduling-based problems
provides a testbed of problem instances that have an interesting structure and
non-binary constraints. Qur preliminary empirical results indicate that algorithms
which are superior on random uniform binary CSPs are also superior on mainte-
nance scheduling problems, providing some validation of the empirical approach

in the earlier parts of this dissertation.

190

@ /\/\l\;

)

V)'\V’

\

5

)

&

-
-
N \

Figure 9.1: A diagrammatic representation of a maintenance scheduling constraint
satisfaction problem. Each circle stands for a variable representing the status of
one unit in one week. The dashed vertical ovals indicate constraints between all
of the units in one week: meeting the minimum power demand and optimizing
the cost per week. The horizontal ovals represent constraints on one unit over the
entire period: scheduling an adequate period for maintenance.

We also present a new use for learning. The constraint framework we use
consists entirely of so-called hard constraints, those which must be satisfied for a
solution to be valid. Optimization problems sometimes make use of soft constraints,
which can be partially satisfied. To avoid introducing soft constraints, we approach
optimization as solving a series of related CSPs, each consisting solely of hard
constraints. The CSPs in the series differ in that the constraint being optimized
is tighter in each succeeding problem in the series. The tighter constraints results
from a reduced cost bound in the function being optimized. Constraints learned

during one instance of the series can be applied again on later instances.

9.3 The Maintenance Scheduling Problem

As a problem for an electric power plant operator, maintenance scheduling

must take into consideration such complexities as local holidays, weather patterns,

191

constraints on suppliers and contractors, national and local laws and regulations,
and other factors that are germane only to a particular power plant. We have
developed a slightly simplified model of the maintenance scheduling problem. Our
model is similar to those appearing in most scholarly articles, and follows closely
the approach of Yellen and his co-authors [2, 92]. The maintenance scheduling
problem can be represented by a rectangular matrix (see Fig. 9.1). Each entry in
the matrix represents the status of one generating unit for one week. (Since the
time minimum period considered is almost always the week, we will use the terms
week and time period interchangeably.) A unit can be in one of three states: ON,

OFF, or MAINT.

9.3.1 Parameters

A specific maintenance scheduling problem, in our formulation, is defined
by a set of parameters, which are listed in Fig. 9.2. Parameters U, the number
of units, and W, the number of weeks, control the size of the schedule. Many
power plants have a fixed number of crews which are available to carry out the
maintenance; therefore the parameter M specifies the maximum number of units

which can be undergoing maintenance at any one time.

In this paragraph and elsewhere in the chapter we adopt the convention
of quantifying the subscript ¢ over the number of units, 1 < ¢ < U, and the
subscript ¢ over the number of weeks, 1 <t < W. Several parameters specity the
characteristics of the power generating units. The costs involved in preventative
maintenance, my;, can vary from unit to unit and from week to week; for instance,
hydroelectric units are cheaper to maintain during periods of low water flow. The
predicted operating cost of unit ¢ in week ¢ is given by ¢;. This quantity varies
by type of unit and also in response to fuel costs. For example, the fuel costs
of nuclear units are low and change little over the year, while oil-fired units are

typically more expensive to operate in the winter, when oil prices often increase.

192

Input:
U number of power generating units
W number of weeks to be scheduled
M maximum number of units which can be maintained simultaneously
m;; cost of maintaining unit ¢ in period ¢

Cit operating cost of unit ¢ in period ¢

k; power output capacity of unit ¢

€; earliest maintenance start time for unit 2
{; latest maintenance start time for unit
d; duration of maintenance for unit :

set of pairs of units which cannot be maintained simultaneously
Dy energy (output) demand in period ¢
Output:
Ty status of unit 2 in period ¢: ON, OFF or MAINT

Figure 9.2: Parameters which define a specific maintenance scheduling problem.

Parameter k; specifies the maximum power output of unit . Most formula-
tions of maintenance scheduling consider this quantity constant over time, although

in reality it can fluctuate, particularly for hydro-electric units.

The permissible window for scheduling the maintenance of a unit is controlled
by parameters e;, the earliest starting time, and [;, the latest allowed starting time.
These parameters are often not utilized (that is, e; is set to 1 and [; is set to W)
because maintenance can be performed at any time. However, the maintenance
window can be used to prevent hydro-electric power plants from being maintained
during periods of high water flow, or for accommodating holiday and vacation

seasons. The duration of maintenance is specified by parameter d;.

Sometimes the maintenance of two particular units cannot be allowed to
overlap, since they both require a particular unique resource, perhaps a piece of
equipment or a highly trained crew member. Such incompatible pairs of units are

specified in the set N = {(i1,72), ..., (tn-1,tn)}-

The final input parameter, D;, is the predicted power demand on the plant

in each week t.

193

The parameters z;; are the output of the scheduling procedure, and define

the maintenance schedule. z;; can take on one of three values:

e ON: unit ¢ is on for week ¢, can deliver k; power for the week, and will cost
¢y to Tun;
e OFF: unit ¢ is off for week ¢, will deliver no power and will not result in any

cost;

® MAINT: unit ¢ is being maintained for week ¢, will deliver no power, and will

cost my;.

It is worth pointing out that generating units can often be operated at any level
of output between zero power and full power, with a corresponding decrease in
the cost of operating the unit. Some maintenance scheduling systems schedule
all non-maintained units as on, and assume that to meet the demand of each
period, units which are not on maintenance pick up power in ascending order of
fuel cost [45]. However, determining operating levels is usually not considered part
of maintenance scheduling, and a two- or three-value approach such as we have

adopted (e.g. ON, OFF, MAINT) is more widely followed.

9.3.2 Constraints

A valid maintenance schedule must meet the following constraints or domain
requirements, which arise naturally from the definition and intent of the parame-

ters.

First, the schedule must permit the overall power demand of the plant to be
met for each week. Thus the sum of the power output capacity of all units not
scheduled for maintenance must be greater than the predicted demand, for each
week. Let z;; = 1 if 2;; = ON, and 0 otherwise. Then the schedule must satisfy the

following inequalities.

Z zik; > Dy for each time period ¢ (9.1)

194

The second constraint is that maintenance must start and be completed
within the prescribed window, and the single maintenance period must be con-
tinuous, uninterrupted, and of the desired length. The following conditions must

hold true for each unit 2.

(start) if t < e; then x;; # MAINT (9.2)
(end) ift >1; +d; then x;; # MAINT (9.3)
(continuous) if x4, = MAINT and z;;, = MAINT and ¢; < 1,
then for all ¢,¢; < < 1y, ;; = MAINT (9.4)
(length) if t = mtin(:zjﬁ = MAINT) and t5 = meX(l'it = MAINT)
then ty —t + 1 = d; (9.5)

(existence) Jt such that z;; = MAINT (9.6)

The third constraint is that no more than M units can be scheduled for

maintenance simultaneously. Let y;; = 1 if x;; = MAINT, and 0 otherwise.

Z yi; < M for each time period ¢ (9.7)

The final constraint on a maintenance schedule is that incompatible pairs of units

cannot be scheduled for simultaneous maintenance.

if (11,72) € N and x;,; = MAINT then x;,; # MAINT for each time period ¢
(9.8)

After meeting the above constraints, we want to find a schedule which min-
imizes the maintenance and operating costs during the planning period. Let

wy = myy if x;; = MAINT, ¢ if 2, = ON, and 0 if x;, = OFF.

Minimize ZZwﬁ (9.9)
Pt

Objective functions other than (9.9) can also be used. For example, it may be

necessary to reschedule the projected maintenance midway through the planning

195

period. In this case, a new schedule which is as close as possible to the previous

schedule may be desired, even if such a schedule does not have a minimal cost.

We have now stated precisely the parameters, constraints and optimization

function that define a maintenance scheduling problem.

9.4 Formalizing Maintenance Problems as CSPs

Given the definition of the maintenance scheduling problem presented in the
previous section, there exist several ways to encode the problem in the constraint
satisfaction framework. Formalizing a maintenance scheduling problem as a con-
straint satisfaction problem entails deciding on the variables, the domains, and
the constraints which will represent the requirements of the problem. The goal of
course is to develop a scheme that is conducive to finding a solution — a schedule
— speedily. A CSP in general will be easier to solve if it has a smaller number of
variables, a smaller number of values per variable, and constraints of smaller arity.
(The arity of a constraint is the number of variables it refers to.) Since these three
conditions cannot be met simultaneously, compromises must be made to achieve a

satisfactory representation as a constraint satisfaction problem.

Our system encodes maintenance scheduling problems as CSPs with 3xU x W
variables. The variables can be divided into a set of U/ x W visible variables, and two
U x W size sets of hidden variables. Of course the distinction between visible and
hidden variables is used for explanatory purposes only; the CSP solving program
treats each variable in the same way. Each variable has two or three values in its

domain. Both binary and higher arity constraints appear in the problem.

We label the visible variables Xj;; they correspond directly to the output
parameters x;; of the problem definition. Because ¢ ranges from 1 to U and ¢
ranges from 1 to W, there are U x W visible variables. Each X;; has the domain

{ON, OFF, MAINT}, corresponding exactly to the values of z;;.

196

The first set of hidden variables, Y, signifies the maintenance status of unit
¢ during week ¢. The domain of each Y variable is {FIRST, SUBSEQUENT, NOT}.
Y;: = FIRST indicates that week ¢ is the beginning of unit ¢’s maintenance period.
Y;; = SUBSEQUENT indicates that unit ¢ is scheduled for maintenance during week
t and for at least one prior week. If ¥;; = NOT, then maintenance for unit ¢ is not
planned during week ¢. The following constraint between each X;; and Y;; variable

is required to keep the two variables synchronized (we list the compatible value

combinations):
Xt Yis
ON NOT
OFF NOT
MAINT FIRST
MAINT | SUBSEQUENT

The second set of hidden variables, Z;;, are boolean variables which indicate
whether unit ¢ is producing power output during week ¢. The two values for each
Z variable are {NONE, FULL}, corresponding to no power output and full power
output. Binary constraints between each X;; and the corresponding Z;; variable

are as follows, again listing the legal combinations:

X; Z;

ON FULL

OFF NONE

MAINT | NONE
The hidden variables triple the size of the CSP. The reasons for creating them
will become clear as we now discuss how the constraints are implemented.

Constraint (9.1) — weekly power demand

Each demand constraint involves the U visible variables that relate to a
particular week. The basic idea is to enforce a U-ary constraint between these

variables which guarantees that enough of the variables will be ON to meet the

197

power demand for the week. This constraint can be implemented as a table of either
compatible or incompatible combinations, or as a procedure which takes as input
the U variables and returns TRUE or FALSE. Our implementation uses a table of
incompatible combinations. For example, suppose there are four generating units,
with output capacities k=100, k;=200, k3=300, k4,=400. For week 5, the demand
D5=800. The following 4-ary constraint among variables (715, Z25, Z35, Z45) 18

created (incompatible tuples are listed).

AR Zas Zs 5 Zs5 comment (output level)
NONE | NONE | NONE | NONE 0
NONE | NONE | NONE | FULL 400
NONE | NONE | FULL | NONE 300
NONE | NONE | FULL | FULL 700
NONE | FULL | NONE | NONE 200
NONE | FULL | NONE | FULL 600
NONE | FULL | FULL | NONE 500
FULL | NONE | NONE | NONE 100
FULL | NONE | NONE | FULL 500
FULL | NONE | FULL | NONE 400
FULL | FULL | NONE | NONE 300
FULL | FULL | NONE | FULL 700
FULL | FULL | FULL | NONE 600

Because the domain size of the Z variables is 2, a U-ary constraint can have as
many as 2 — 1 tuples. If this constraint were imposed on the X variables directly,
which have domains of size 3, there would be 79 tuples (3* — 5) instead of 13
(2* —3). This is one reason for creating the hidden Z variables: to reduce the size

of the demand constraint.

A relation such as that in the above table may be projected onto a subset
of its variables, by listing the combinations of values which are restricted to this

subset. The relation’s projection onto (715, Z25), for example, is

198

Z15 Z25

))

NONE | NONE

NONE | FULL

FULL | NONE

FULL | FULL

Tuples in the new, projected relation which appear with all possible combinations
of the remaining variables in the original relation may be recorded as smaller
constraints. That is, the binary constraint over the pair (715, Z2 5), allowing (71 5=
NONE, Z3 5=NONE) while the remaining tuples are not allowed, is implied by the
4-ary constraint. It is clearly desirable to recognize these smaller constraints prior
to search, and our system does so. In effect, the system notices that if Z; 5 is NONE
and Z; 5 is NONE, then the demand constraint for week 5 cannot be met, whatever

the status of the other units.
Constraints (9.2) and (9.3) — earliest and latest maintenance start date

These constraints are easily implemented by removing the value FIRST from
the domains of the appropriate Y variables. The removal of a domain value is

often referred to as imposing a unary constraint.
Constraint (9.4) — continuous maintenance period

To encode this domain constraint in our formalism, we note that if the fol-

lowing three conditions hold, then maintenance will be for a continuous period:

1. There is only one first week of maintenance.
2. Week 1 cannot be a subsequent week of maintenance.
3. Every subsequent week of maintenance must be preceded by a first week of

maintenance or a subsequent week of maintenance.

Each of these conditions can be enforced by unary or binary constraints on the

Y variables. To enforce condition 1, for every unit ¢ and pair of weeks #; and

199

ty, 11 # 12, we add the following binary constraint to the CSP (disallowed tuple
listed):
Yi, | Vi

FIRST ‘ FIRST

2

Condition 2 is enforced by a unary constraint removing SUBSEQUENT from the
domain of each Y;; variable. Condition 3 is enforced by the following constraint

for all t > 1 (disallowed tuple listed):

Yia| Vi

NOT ‘ SUBSEQUENT

Constraint (9.5) — length of maintenance period

A maintenance period of the correct length cannot be too short or too long.
If unit o’s maintenance length d;=1, then too short is not possible (constraint (9.6)
prevents non-existent maintenance periods); otherwise, for each unit ¢, each time
period ¢, and every t1,t < t; < t + d;, the following binary constraint exists to

prevent a short maintenance period (disallowed tuple listed):

v | v,

FIRST ‘ NOT

To ensure that too many weeks of maintenance are not scheduled, it is only neces-
sary to prohibit a subsequent maintenance week in the first week that maintenance
should have ended. This results in the following constraint for each ¢ and ¢, letting

t1 =t + d; (disallowed tuple listed):

vo | v,

FIRST ‘ SUBSEQUENT

Constraint (9.6) — existence of maintenance period

This requirement is enforced by a high arity constraint among the Y variables

for each unit. Only the weeks between the earlist start week and the latest start

200

week need be involved. At least one Yy, e; < ¢ < [;, must have the value START.
It is simpler to prevent them from all having the value NOT, and let constraints
(9.4) and (9.5) ensure that a proper maintenance period is established. Thus the
(l; — e; + 1)-arity constraint for each unit ¢ is (disallowed tuple listed):

1/ili ‘ ‘ }/iei

NOT ‘ NOT ‘ NOT

Constraint (9.7) — no more than M units maintained at once

If M units are scheduled for maintenance in a particular week, constraints
must prevent the scheduling of an additional unit for maintenance during that
week. Thus the CSP must have (M + 1)-ary constraints among the X variables
which prevent any M 4 1 from having the value of MAINT in any given week. There
will be (M[j_l) of these constraints for each of the W weeks. They will have the
form (disallowed tuple listed):

Mt

Xoo | | X

MAINT ‘ MAINT ‘ MAINT

Constraint (9.8) — incompatible pairs of units

The requirement that certain units not be scheduled for overlapping mainte-
nance is easily encoded in binary constraints. For every week ¢, and for every pair

of units (¢1,22) € N, the following binary constraint is created (incompatible pair
listed):
Xoo | Vi

MAINT ‘ MAINT

Objective function (9.9) — minimize cost

To achieve optimization within the context of our constraint framework, we
create a constraint that specifies the total cost must be less that or equal to a set
amount. In order to reduce the arity of the cost constraint, we optimize cost by

week instead of over the entire planning period. The system therefore achieves a

201

local optimum in that sense and not necessarily a global optimum. Further study

is need to assess the trade-offs between constraint size and global optimality.

We implemented the cost constraint as a procedure in our CSP solving pro-
gram. This procedure is called after each X type variable is instantiated. The
input to the procedure is the week, ¢, of the variable, and the procedure returns
TRUE if the total cost corresponding to week ¢ variables assigned ON or MAINT
is less than or equal to C}, a new problem parameter (not referenced in Fig. 9.2)

which specifies the maximum cost allowed in period t.

9.4.1 Solution Procedure

In order to achieve a locally optimal schedule, the C'; parameters are initially
set to high values, for which it is easy to find an acceptable maintenance schedule.
The C} values are gradually lowered in unison, until a cost level is reached for which
no schedule exists. The previously discovered schedule is then reported. To make
this process more efficient, we can incorporate jump-back learning, as described
in Chapter 7. After the problem with a certain level of C} is solved successfully,
the new constraints recorded by learning are used in subsequent attempts to find

a schedule with lower C}.

Two improvements to our procedure can be envisioned. Currently, we reduce
(', and stop when no schedule can be found. A more efficient approach is inspired
by binary search: set Cj to a high value H (for which a schedule is found quickly),
then to a low value L (for which the non-existence of a schedule is found quickly),
then to (H + L)/2 (for which a schedule may or may not be found), and so on,
according to the dictates of binary search. Implementing this strategy requires an
enhancement to our learning scheme, for after a round where no schedule is found
and C} must be adjusted upwards, the new constraints recorded in the latest pass
must be removed from the database of constraints. Currently our system has

no way to distinguish constraints added by learning from those which existed at

202

the beginning of the search. (It may be possible to distinguish between learned
constraints that are based on the cost constraint and those that are not. Only the

former kind would have to be “forgotten.”)

The second needed improvement to our cost optimization procedure is to
allow different values of C, for different weeks. In our current implementation all

values of (' are identical.

9.5 Problem Instance Generator

The previous two sections defined the maintenance scheduling problem as we
have formalized it and implemented it in the constraint satisfaction framework.
One of our goals is to be able to determine the efficacy of various CSP algorithms
and heuristics when applied to Maintenance Scheduling CSPs (MSCSPs). To per-
form an experimental average-case analysis, we need a source of many MSCSPs.
We have therefore developed an MSCSP generator, which can create any number
of problems that adhere to a set of input parameters. In this section we define how

the generator works.

A flowchart of the overall system is below:

¢

‘.scheme”)
that defines a class or generic type of MSCSP. Here is an example of a .scheme file:

A “scheme” file is an ACII file (with a name usually ending in

lines beginning with # are comments
first line has weeks, units, maximum simultaneous units
6 2

next few lines have several points on the demand curve,
given as week and demand. Other weeks are interpolated.

#
#
4
#
#
#
0 700

3 1000

end this list
EOL

#

next line has
60000 3000

#

next line has
200 25

#

next line has
21

#

next line has
1000

203

with EOL

initial max cost per week, and decrement amount

average unit capacity and standard deviation

average unit maintenance time and std. dev.

standard deviation for maintenance costs

next few lines have some points on the maintenance cost curve,

first number is week, then one column per unit

13000 16000 19000 10000 7000 10000

#
#
#
0 10000 10000 10000 10000 10000 10000
3
#
#

next number is standard deviation for operating costs

2000

the next line

H N H O H#H H

and that’s it!

next few lines have some points on the operating cost curve,
first number is week, then one column per unit
5000 5000 5000 5000 5000 5000

specifies the number of incompatible pairs

The maintgen program reads in a scheme file and creates one or more specific

MSCSP instances in a .def file which can be solved by the CSP solver. The maint-

gen program reads from the command line a random number generator seed and

a number indicating how many individual problems should be written to the .def

file created as output. With one scheme file and a seed, any number of MSCSPs

can be created; the same instances can easily be recreated later, provided that the

same seed is used.

204

1500 — o e 0 o
0
Demand o © © ©
1000 Lo © o
0
800 oo o e ° 0
500 o
e demand specified in scheme file
o interpolated demand
| | | | |
5 10 15 20 24

Week

Figure 9.3: Weekly demand generated by the maintgen program when the following
(week, demand) points are specified: (5, 800), (10, 10,000), (18, 1,500), (20, 1,500),
(24, 500).

The first line (ignoring comment lines which begin with “#7”) of the scheme
file specifies the fundamental size parameters of the MSCSPs which will be gener-
ated: the number of weeks W, the number of generating units U, and the number

of units which can be maintained at one time M.

The scheme file specifies the demand for any number of weeks. The demand
for weeks that are not explicitly specified is computed by a linear interpolation
between the surrounding specified weeks. The process is shown diagrammatically
in Fig. 9.3. There is no randomness in the demand “curve” that is created based
on a scheme file. Note that the weeks are numbered starting from 0, so that in

this example the last of the 25 weeks is week #24.

The following line in the scheme file specifies the initial maximum cost per

week, and the amount it is to be decremented after each successful search for a

schedule.

The characteristics of the units, that is, their output capacities and required
maintenance times, are not specified individually in the scheme file. Instead, these

values are randomly selected from normal distributions that have the means and

205

standard deviations specified on the following two lines. Currently the earliest and

latest maintenance start dates are not specified in the scheme file, and are always

set to 0 and W — 1 in the .def file.

Maintenance costs are specified in the following lines of the scheme file by
entering first the standard deviation (1,000 in the example), and then a table which
has a “week” column and then one column per unit. As with demand, values for
weeks that are not entered are interpolated. However, for maintenance costs there
is a random element; the interpolated value is used as the mean, together with the
specified standard deviation. Operating costs are defined in the lines following the

maintenance costs, with exactly the same structure.

The last piece of information is the number of incompatible pairs of units.
The requested number of pairs is created randomly from a uniform distribution of

the units.

Here is an example of the .def file created using the scheme file above and

the random number seed 12345:

comments begin with

first line has weeks W, units U, max-simultaneous M
46 2

demand, one line per week

700

800

9200

1000

next few lines has maximum cost per week.

Cost must be <= max.

60000 3000

one line per unit:

capacity maint length earliest maint start latest maint start
194 1 0 3

171 3 0 3
20910 3
166 1 0 3
219 2 0 3
217 2 0 3

206

maintenance costs, one line per week, one column per unit
11085 10034 9374 8945 10858 10045

11056 11988 13670 10465 9301 10625

12745 14625 15422 10422 8099 7629

12534 15394 21098 9841 6748 9364

operating costs, one line per week, one column per unit
4284 6857 3847 5050 5145 4998

5987 7352 1967 4635 6152 4635

3746 6475 5151 3988 8172 4131

6152 3436 5475 5600 4366 6070

incompatible pairs of units (numbering starts from 0)
13

23

EOL

and that’s 1it!

The def file is in a format which is recognized by our CSP solver. The data
in the file follows directly from the scheme file, and corresponds to the parameters
in Fig. 9.2. The first line defines parameters W, U, and M. Next are W lines with
demand informations, D;. The following line holds the maximum cost C; (they

are all set to the same value) and the amount by which C is decremented.

The subsequent lines of the def file specity, for each unit, the parameters £;,
d;, e;, and [;. Following them is a maintenance cost table with one value for each
m;; and an operating cost table with one value for each ¢;;. The incompatible pairs
of units from which the N set is constructed are listed, one pair per line. “EOL”

marks the end of this list.

207

test4d.scheme
W, U, M
13 156 3
#
Some weeks on the demand curve.
0 10000
12 13000
EOL
Initial max cost per week, and decrement amount
110000 5000
#
Average unit capacity and standard deviation
1000 100
#
Average unit maintenance time and std. dev.
21
#
Standard deviation for maintenance costs
1000
#
Some points on the maintenance cost curve,
0 10000 10000 10000 10000 10000 10000 10000 10000 \
10000 10000 10000 10000 10000 10000 10000
12 10000 10000 10000 10000 10000 10000 10000 10000 \
10000 12000 12000 12000 12000 12000 12000
#
Standard deviation for operating costs
1000
Operating costs
0 5000 6000 4000 5000 6000 4000 5000 6000 \
4000 5000 4000 6000 5000 5000 8000
the next line specifies the number of incompatible pairs
5

Figure 9.4: The scheme file used to generate MSCSPs.

208

9.6 Experimental Results

To demonstrate the effectiveness of the constraint processing framework, we
present the results of experiments with two sets of MSCSPs. Experiments were
based on 100 random MSCSP generated according to the parameters in the scheme
file listed in Fig. 9.4, and 100 larger random instances based on a similar scheme
file. The smaller problems had 15 units and 13 time periods, creating 585 variables.
The larger problems had 20 units and 20 time periods, creating 1200 variables.

9.6.1 Optimization with learning

In the first experiment, we tried to find an optimal schedule for each MSCSP
in the smaller and larger sets. We used the iterative cost-bound procedure de-
scribed above. The results are shown in Fig. 9.5 and Fig. 9.6. BJ+DVO was the
base algorithm, with jump-back learning as described in Chapter 7. The learning
order was set to six; new constraints above that size were not recorded. We also

found schedules using BJ+DVO without learning.

Among the 100 smaller problems, all 100 MSCSPs had schedules at cost
bound 85,000 and above. Only 38 had schedules within the 80,000 bound; at 75,000
only four problems were solvable. On the set of 100 larger MSCSPs, schedules
were found for all instances at cost bound 120,000 and above. 97 instances had
schedules at cost bound 115,000 and 110,000; 11 at cost bound 105,000; and two
at cost bound 100,000 and 95,000.

The use of learning improved the performance of the BJ+DVO algorithm
on these random maintenance scheduling problems. For instance, on the smaller
problems, after finding a schedule with cost bound 95,000, the average number of
learned constraints was 214. Tightening the cost bound to 90,000 resulted in over
twice as much CPU timeneeded for BJ+DVO without learning (54.01 CPU seconds
compared to 23.28), but only a 71% increase for BJ+DVO with learning (29.41

209

with learning
without learning
cum. constraints

O * @

80 |+
70

60 |
CPU
30

— 400

— 300

40 -
30 -
20 -
10

— 200

— 100

| | | | |
110 105 100 95 90) 30 75

cost bound (in thousands)

Figure 9.5: Average CPU seconds on 100 small problems (15 units, 13 weeks)
to find a schedule meeting the cost bound on the y-axis, using BJ+DVO with
learning () and without learning (x). Cumulative number of constraints learned
corresponds to right-hand scale.

compared to 17.20). Learning was less effective on the larger MSCSPs. Although
using learning reduced average CPU time, the improvement over BJ4+DVO without

learning was much less than on the smaller problems.

9.6.2 Comparison of algorithms

The second experiment utilized the same sets of 100 smaller MSCSP instances
and 100 larger instances, but we did not try to find an optimal schedule. For the
smaller problems we set the cost bound at 85,000 and for the larger problems we
set the cost bound at 120,000. Fach bound was the lowest level at which schedules
could be found for all problems. We used five of the six algorithms compared in

Chapter 8 to find a schedule for each problem. BT4+DVO was omitted because in

210

T T T T T T T T T T T T
| o with learnin
1000 * without lear%ing {500
900 |- | © cum. constraints gy
800 = e 1400
700 [~
CPE00 — — 300
500 |-
400 - — 200
300 |-
200 | . 100
@
100
Py | | | | | | | | |

150 145 140 135 130 125 120 115 110 105 100 95

cost bound (in thousands)

Figure 9.6: Average CPU seconds on 100 large problems (20 units, 20 weeks)
to find a schedule meeting the cost bound on the y-axis, using BJ+DVO with
learning () and without learning (x). Cumulative number of constraints learned
corresponds to right-hand scale.

preliminary experiments it required several CPU hours per small problem, com-
pared to approximately a minute per problem for the other algorithms. The results

are summarized in Table 9.1.

Among the five algorithms, BJ+DVO performed least well on the smaller
problems and best on the larger problems, when average CPU time is the crite-
rion. BT4+DVO+4IAC was the best performer on the smaller problems and the
worst on the larger problems. This reversal in effectiveness may be related to the
increased size of the higher arity constraints on the larger problems. The high
arity constraints, such as those pertaining to the cost bound, the weekly power
demand, and the existence of a maintenance period, become looser as the number
of units and number of weeks increase. Results from earlier chapters indicated that
more look-ahead was effective on problems with tight constraints, and detrimental

on problems with loose constraints. Although as similar pattern was observed in

211

Average
Algorithm CC Nodes CPU
100 smaller problems:
BT+DVO+IAC 315,988 3,761 51.65
BJ+DVO 619,122 8,981 70.07
BJ+DVO+LVO 384,263 5,219 54.48
BJ+DVO+LRN 671,756 8,078 67.51

BJ+DVO+LRN+LVO | 476,901 5,085 57.45
100 larger problems:

BT+DVO-+IAC 7,673,173 32,105 694.02
BJ+DVO 2,619,766 28,540 460.42
BJ+DVO+LVO 6,987,091 26,650 469.65
BJ+DVO+LRN 5,802,065 27,342 521.89

BJ+DVO+LRN+LVO | 6,811,663 26,402 475.12

Table 9.1: Statistics for five algorithms applied to MSCSPs.

Chapter 4 for backjumping, nevertheless backjumping remains an effective tech-
nique on the larger problems. Further experiments are required to determine how
the relative efficacy of different algorithms is influenced by factors such as the
size of the problem (number of weeks and units) and characteristics such as the

homogeneity of the units.

As we have done in earlier chapters, we also summarize our experiments by
estimating the parameters of the Weibull distribution. Fig. 9.7 shows plots of
Weibull distributions curves, based on data from the experiment with 100 large
scheduling problems. Data on consistency checks is represented in the top chart
of Fig. 9.7, and data on CPU time in the bottom chart. The procedure, as in
earlier chapters, was to estimate the parameters of the Weibull distribution using
techniques described in Chapter 3. Each curve on the charts in Fig. 9.7 shows
the estimated Weibull distribution for one algorithm. The estimated A values are
between 0.39 and 0.61. This range is similar to what we observed on experiments
with random binary problems. These small values of A denote a large variance

in the results, with many problem instances being relatively easy and a few much

harder.

212

90 lLBI+DVO o _ | _
large maintance scheduling problems
BT+DVO+IAC: A\=4.42¢-7 3=0.39 a=587,912
BJ4+DVO: A=1.13e-6 =0.42 a=51,711

A5 | IAC BJ+DVO+LVO: A=2.7le-7 =0.51 a=78,514
BJ4+DVO+LRN: A\=2.64e-7 3=0.58 a=41,985

Frequency BJ+DVO+LRN4+LVO: A=2.11e-7 3=0.62
A0 H a=37,644 —
.05 —
L L
0 1,000,000 4,000,000 7,000,000

Consistency Checks

large maintance scheduling problems
20 BT+DVO+IAC: A=0.0536 $=0.43 a=45.8
BJ+DVO: A=0.00627 3=0.42 a=3.7

BJ4+DVO+LVO: A=0.00420 $=0.50 a=3.6

A5 IAC BJ+DVO+LRN: A=0.00294 3=0.59 a=3.5
Frequency BJ+DVO+LRN4+LVO: A\=0.00311 5=0.61
a=3.5
A0 H —
05 H —

SN . .

0 50 200 350
CPU seconds

Figure 9.7: Weibull curves based on solvable “large” maintenance scheduling prob-
lems generated with whatever. The top chart is based on consistency checks, the
bottom chart on CPU seconds. A, 3, and « parameters were estimated using the
Modified Moment Estimator (see Chapter 3). The LVO, LRN, and LRN+LVO
curves on the top chart are almost indistinguishable, as are all distributions except

the one for BT+DVO-+IAC in the bottom chart.

213

9.7 Conclusions

The constraint satisfaction problems derived from the maintenance schedul-
ing needs of the electric power industry are an interesting testbed for the CSP
algorithms developed in the earlier chapters. The problems have a mixture of
tight binary constraints, such as those that bind the X and Y variables together,
and loose high arity constraints, such as those that ensure that at least one main-
tenance period is scheduled for each unit. Perhaps the most promising algorithm
for these problems is learning, which seems from preliminary evidence to be a
useful part of performing optimization in the CSP framework. Further studies on
larger maintenance scheduling CSPs is required to determine whether one algo-

rithm dominates the others as problem size increases.

A challenging problem that is difficult to formalize is to find the best way
to encode the requirements of a problem such as maintenance scheduling into
constraints of a CSP. In section 9.4 we discussed some of the trade-offs involved
in, for example, adding “hidden” variables in return for a smaller number of tuples
in high arity constraints. This is a challenging area for future research that has
the potential of greatly impacting the applicability of the constraint satisfaction

framework to problems from science and industry.

Chapter 10

Conclusions

10.1 Contributions

The hypothesis underlying this research is that backtracking based search al-
gorithms that incorporate sophisticated “look-ahead” techniquesthat query, prune,
evaluate, and rearrange the future search space can be particularly effective algo-
rithms for constraint satisfaction problems. One premise we have relied on and
seen borne out multiple times is that most techniques for solving constraint sat-
isfaction problems are not competitors, but potential allies. On sufficiently large

and difficult problems, multiple arrows in the quiver will not be redundant.

The algorithms presented in the work are new combinations of previously
existing, well-proven techniques. The BJ4+DVO algorithm is based on Prosser’s
conflict-directed backjumping [68], which is itself a “marriage,” as Prosser calls it,
of Gaschnig’s backjumping [31] and Dechter’s graph-based backjumping [15]. The
look-ahead technique and dynamic variable ordering heuristic in BJ4+DVO are due
to Haralick and Elliott [40], but both ideas appear earlier in the literature. Our
experiments showed that the components of BJ+DVO work together in a way that

is more effective than any of the constituent parts individually.

Look-ahead value ordering processes the variables which have not yet been
assigned values in order to choose a value for the current variable. This idea first

appeared in Dechter [19], using a different scheme to examine the future variables.

214

215

LVO uses the same look-ahead effort already employed by BJ4+DVO, allowing
the combination BJ4+DVO+LVO to benefit twice from its processing of future
variables. The LVO heuristic proved in our experiments to be especially helpful

on the hardest constraint satisfaction problems.

The new learning algorithm we presented, jump-back learning, takes advan-
tage of the conflict set already maintained by backjumping for search control. This
technique makes the additional cost of recording constraints at dead-ends almost
negligible. Whether the costs of accessing the learned constraints is more or less
than the benefit they provide by pruning the search space was investigated em-
pirically. Our experiments showed that when the order of learning (the maximum
size of a new constraint) was limited, the benefits of learning usually outweighed
the costs. We showed that learning can also play an important role in solving
optimization problems in the CSP framework. In the context of maintenance
scheduling problems for the electric power industry, optimization was presented
as solving a series of CSP decision problems, with cost bound constraints being
iteratively adjusted until an optimum is reached. Our experiments idicated that
if constraints learned in one iteration are applied again in subsequent attempts to

solve the problem, a substantial benefit is realized.

In addition to proposing new combination algorithms, the dissertation pro-
vides extensive empirical evaluation of them. Algorithms were run and compared
on three types of problems: random binary CSPs, circuit problems encoded as
CSPs, and maintenance scheduling problems encoded as CSPs. A distinguishing
feature of the research presented in this dissertation is that experiments were per-
formed on larger and harder random CSP instances than have previously been
reported. Our empirical results indicated that each of the new algorithm combi-
nations became increasingly more effective as problems became larger and harder.
This is good news, because scheduling, planning, optimization, and configuration
problems of interest to science and industry are often quite large. Combining

multiple techniques will no doubt be necessary to attack these problems as CSPs.

216

We proposed in Chapter 3 that when backtracking-based algorithms are ap-
plied to random binary CSPs, the distribution of sizes of the resulting search trees
can be closely approximated by standard continuous probability distributions. It
is necessary to segregate solvable and unsolvable problem instances. After doing
so, the empirical distribution of unsolvable problems is close to a lognormal dis-
tribution, and the empirical distribution of solvable problems is close to a Weibull
distributions. We used these distribution functions, along with estimated param-

eters, to report the results of several experiments in the dissertation.

10.2 Future Work

There are many directions in which this research can be extended. One
promising technique for combining multiple algorithms or heuristics is not to inte-
grate them into a single executable unit, but to run several algorithms in tandem,
either on parallel computers, or via time-slicing on a single CPU. All algorithms
then stop when a single algorithm returns an answer. The potential benefit of this
scheme stems from the great variance in the time required to solve instances. This
variance has been observed not only over multiple instances drawn from a distribu-
tion of problems (as was the focus of Chapter 3), but also over multiple applications
of a single algorithm to a single instance, when points of non-determinacy in the
algorithm (for instance, variable and value ordering) are decided randomly [77]. It
may be possible to extend the analysis of distributions started in Chapter 3 to pro-
vide guidance in how much time should be allocated to each time-sliced algorithm.
In Chapter 3 the “completion rate” of an algorithm was defined as equivalent to
the well-known concept of the hazard rate in reliability theory. It is a measure
of the probability of completing the search in the next time unit. Knowledge of
the completion rate function can be used in resource-limited situations to suggest

an optimum time-bound for an algorithm to process a single instance. Examples

217

would be running multiple algorithms on a single instance in a time-sliced man-
ner, as proposed in [42], and environments where the goal is to complete as many

problems as possible in a fixed time period.

An exciting trend in CSP algorithms that has received intense interest re-
cently is the use of randomized or “local search” algorithms. These algorithms
essentially guess a solution, and if the guess proves wrong (as of course it almost
always does, initially) they are able to follow a gradient in the search space which,
it is hoped, leads towards a solution. A critical feature of these algorithms is that
if no solution is found after a certain bound on CPU time or subroutine calls,
the process is restarted with a new random guess. Several ways to combine ran-
domized search with techniques developed for backtracking have been proposed.
Because randomized approaches almost always involve multiple restarts on the
same instance, incorporating learning in random algorithms seems particularly
promising. For instance, if a new constraint is learned before each restart, then
as with backtracking-based search algorithms, the randomized algorithm will be

prevented from making the same mistake again.

A third interesting direction for further research is continued study of the
correlation between empirical distributions of effort and standard probability dis-
tributions from statistics. Perhaps the starting point should be to put the specula-
tions in the last section of Chapter 3 on a more rigorous footing. An explanation of
why the lognormal and Weibull distributions approximate the empirical distribu-
tions, based on both the mathematical derivation of the distribution functions, and
on the known properties of the CSP algorithms and the random problem distribu-
tions, might provide a deeper understanding of the search process, might lead to
improved algorithms, and might aid in the reporting of experiments with random

problems.

Our experiments with backjumping and look-ahead all relied on an amount
of look-ahead identical to that of forward checking. However, in Chapter 5 we

observed that for some types of problems a stronger amount of look-ahead, such

218

as arc-consistency, was beneficial. We left open the interesting question of whether
there exist problem classes for which the combination of backjumping and inte-

grated arc-consistency is effective.

10.3 Final Conclusions

The goal of this dissertation has been to define and evaluate algorithms that
combine several effective techniques. Most of the evaluation has been based on
random binary constraint satisfaction problems, an approach that has been used
in the field for over twenty years. Our interest in accurately summarizing the
results of large-scale experiments led to the study of the distribution of problem
difficulty. Because many real world problem have distinct structure and non-binary
constraints, we also used problems from DIMACS and the electric power industry
as a testbed for the algorithms. The conclusion we draw from all the experiments
is that no one algorithm is best for all problems, but that by combining several
techniques into one algorithm, and by selecting the right algorithm based on the
characteristics of the problem instance, a substantial increase in performance can

be achieved.

1]

2]

Bibliography

J. Aitchison and J. A. C. Brown. The Lognormal Distribution. Cambridge
University Press, Cambridge, England, 1960.

T. M. Al-Khamis, S. Vemuri, L.. Lemonidis, and J. Yellen. Unit maintenance
scheduling with fuel constraints. IEEFE Trans. on Power Systems, 7(2):933—
939, 1992.

Fahiem Bacchus and Paul van Run. Dynamic Variable Ordering In CSPs.
In Ugo Montanari and Francesca Rossi, editors, Principles and Practice of

Constraint Programming, pages 258-275, 1995.

Andrew B. Baker. [Intelligent Backtracking on Constraint Satisfaction
Problems: Fzxperimental and Theoretical Results. PhD thesis, University of
Oregon, Eugene, OR 97403, 1995.

Roberto Bayardo and Daniel Mirankar. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 298-304, 1996.

Christian Bessiére. Arc-consistency and arc-consistency again. Artificial

Intelligence, 65:179-190, 1994.

Christian Bessiere and Jean-Charles Régin. MAC and Combined Heuristics:
Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In Eugene C.

Freuder, editor, Principles and Practice of Constraint Programming — CP96,
pages 61-75, 1996.

James R. Bitner and Edward M. Reingold. Backtrack Programming
Techniques. Communications of the ACM, 18(11):651-656, 1975.

219

[9]

[10]

[11]

[12]

[18]

[19]

220

M. Bruynooghe and L. M. Pereira. Deduction revision by intelligent back-
tracking. In J. A. Campbell, editor, Implementation of Prolog, pages 194-215.
Ellis Horwood, 1984.

Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really
hard problems are. In Proceedings of the International Joint Conference on

Artificial Intelligence, pages 331-337, 1991.

A. C. Cohen and B. J. Whitten. Parameter Estimation in Reliability and Life
Span Models. Marcel Dekker, Inc., New York, 1988.

J. M. Crawford and L. D. Auton. Experimental results on the crossover point
in satisfiability problems. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 21-27, 1993.

M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem
Proving. Communications of the ACM, 5:394-397, 1962.

Martin Davis and Hilary Putnam. A Computing Procedure for Quantification

Theory. Journal of the ACM, 7(3):201-215, 1960.

Rina Dechter. Enhancement Schemes for Constraint Processing:

Backjumping, Learning, and Cutset Decomposition. Artificial Intelligence,

41:273-312, 1990.

Rina Dechter. Constraint networks. In Encyclopedia of Artificial Intelligence,
pages 276-285. John Wiley & Sons, 2nd edition, 1992.

Rina Dechter and Itay Meiri. Experimental evaluation of preprocessing algo-
rithms for constraint satisfaction problems. Artificial Intelligence, 68:211-241,
1994.

Rina Dechter and Judea Pearl. Network-based heuristics for constraint-

satisfaction problems. Artificial Intelligence, 34:1-38, 1987.

Rina Dechter and Judea Pearl. Tree-clustering schemes for constraint pro-

cessing. Artificial Intelligence, 38:353-366, 1989.

[20]

[21]

[22]

23]

[27]

28]

[29]

221

J. F. Dopazo and H. M. Merrill. Optimal Generator Maintenance Scheduling
using Integer Programming. IFEE Trans. on Power Apparatus and Systems,
PAS-94(5):1537-1545, 1975.

O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT.
In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and
Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

G. T. Egan. An Experimental Method of Determination of Optimal
Maintenance Schedules in Power Systems Using the Branch-and-Bound

Technique. IEEE Trans. SMC, SMC-6(8), 1976.

Hani El Sakkout, Mark G. Wallace, and E. Barry Richards. An Instance of
Adaptive Constraint Propagation. In Eugene C. Freuder, editor, Principles
and Practice of Constraint Programming — CP96, pages 164-178, 1996.

R. E. Fikes and N. J. Nilsson. A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

E. C. Freuder. A sufficient condition for backtrack-free search. JACM,
21(11):958-965, 1982.

Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings
of the Twelfth National Conference on Artificial Intelligence, pages 294-300,
1994.

Daniel Frost and Rina Dechter. In search of the best constraint satisfac-
tion search. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 301-306, 1994.

Daniel Frost and Rina Dechter. Look-ahead value ordering for constraint
satisfaction problems. In Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence, pages 572-578, 1995.

Daniel Frost, Irina Rish, and Lluis Vila. Summarizing csp hardness with con-
tinuous probability distributions. In Proceedings of the Sizteenth International

Joint Conference on Artificial Intelligence, pages 327-333, 1997.

30]

31]

32]

33]

[35]

[36]

37]

38]

[39]

222

John G. Gaschnig. A General Backtrack Algorithm That Eliminates Most
Redundant Tests. In Proceedings of the International Joint Conference on

Artificial Intelligence, page 247, 1977.

John G. Gaschnig. Performance Measurement and Analysis of Certain Search
Algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213,
May 1979.

Peter Andreas Geelen. Dual Viewpoint Heuristics for Binary Constraint
Satisfaction Problems. In 10th European Conference on Artificial Intelligence,
pages 31-35, 1992.

Richard Génisson and Phillippe Jégou. Davis and Putnam were already check-
ing forward. In 12th Furopean Conference on Artificial Intelligence, pages
180-184, 1996.

[an P. Gent, Ewan Maclntyre, Patrick Prosser, Barbara M. Smith, and Toby
Walsh. An Empirical Study of Dynamic Variable Ordering Heuristics for the
Constraint Satisfaction Problem. In Eugene C. Freuder, editor, Principles and

Practice of Constraint Programming — CP96, pages 179-193, 1996.

[an P. Gent and Patrick Prosser. The 50% Point in Constraint-Satisfaction
Problems. Technical Report 95/180, Department of Computer Science,
University of Strathclyde, 1995.

Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial
Intelligence Research, 1:25-46, 1993.

Solomon W. Golomb and Leonard D. Baumert. Backtrack Programming.

Communications of the ACM, 12(4):516-524, 1965.

Carla Gomes, Bart Selman, and Nuno Crato. Heavy-Tailed Distributions in
Combinatorial Search. In Gert Smolka, editor, Principles and Practice of

Constraint Programming — CP97, pages 121-135, 1997.

Steven Hampson and Denis Kibler. Large Plateaus and Plateau Search

in Boolean Satisfiability Problems: When to Give Up Searching and Start

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

223

Again. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring,
and Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

R. M. Haralick and G. L. Elliott. Increasing Tree Search Efficiency for
Constraint Satisfaction Problems. Artificial Intelligence, 14:263-313, 1980.

Tad Hogg and Colin P. Williams. The hardest constraint satisfaction prob-
lems: a double phase transition (Research Note). Artificial Intelligence,
69:359-377, 1994.

Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An Economics
Approach to Hard Computational Problems. Science, 275:51-54, 1997.

Brigette Jaumard, Mihnea Stan, and Jacques Desrosiers. Tabu Search and a
Quadratic Relaxation for the Satisfiability Problems. In David S. Johnson and
Michael A. Trick, editors, Cliques, Coloring, and Satifiability, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1996.

David S. Johnson and Michael A. Trick, editors. Cliques, Coloring, and
Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Providence,

Rhode Island, 1996.

Hyunchul Kin, Yasuhiro Hayashi, and Koichi Nara. An Algorithm for Thermal
Unit Maintenance Scheduling Through Combined Use of GA SA and TS5.
IEEE Trans. on Power Systems, 12(1):329-335, 1996.

Donald E. Knuth. Estimating the Efficiency of Backtrack Programs.
Mathmatics of Computation, 29(129):121-136, 1975.

Grzegorz Kondrak and Peter van Beek. A Theoretical Evaluation of Selected
Backtracking Algorithms. Artificial Intelligence, 89:365-387, 1997.

R. E. Kort. A program than learns how to solve Rubik’s cube. In Proceedings
of the National Conference on Artificial Intelligence, pages 164-167, 1982.

[49]

[50]

[51]

[52]

[53]

[59]

224

Alvin C. M. Kwan. Validity of Normality Assumption in CSP Research. In
PRICAT96: Topics in Artificial Intelligence. Proc. of the jth Pacific Rim
International Conference on Artificial Intelligence, pages 253-263, 1996.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

A. K. Mackworth and E. C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artificial

Intelligence, 25:65-74, 1985.

Alan K. Mackworth. The logic of constraint satisfaction. Artificial
Intelligence, 58:3-20, 1992.

Nancy R. Mann, Ray E. Schafer, and Nozer D. Singpurwalla. Methods for
Statistical Analysis of Reliability and Life Data. John Wiley and Sons, New
York, 1974.

Steven Minton. Learning Search Control Knowledge: An Fzxplanation-based

Approach. Kluwer Academic Publishers, 1988.

Steven Minton. Qualitative Results Concerning the Utility of Explanation-
Based Learning. Artificial Intelligence, 42:363-392, 1990.

Steven Minton, Mark D. Johnson, Andrew B. Phillips, and Philip Laird.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a
Heuristic Repair Method. In Proceedings of the Fighth National Conference
on Artificial Intelligence, pages 17-24, 1990.

David Mitchell. Respecting Your Data (I). In AAAI-94 Workshop on
Experimental Fvaluation of Reasoning and Search Methods, pages 28-31, 1994.

David Mitchell, Bart Selman, and Hector Levesque. Hard and Fasy
Distributions of SAT Problems. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 459465, 1992.

R. Mohr and T. Henderson. Arc and path consistency revisited. Artificial
Intelligence, 25:65-74, 1986.

[60]

[61]

[62]

[63]

[64]

[65]

[68]

[69]

[70]

225

U. Montanari. Networks of constraints: Fundamental properties and applica-

tions to picture processing. Inf. Sci., 7:95-132, 1974.

Bernard A. Nadel. Tree search and arc consistency in constraint satisfac-
tion algorithms. In L. Kanal and V. Kumar, editors, Search in Artificial
Intelligence, pages 287-342. Springer, 1988.

Bernard A. Nadel. Constraint satisfaction algorithms. Computational

Intelligence, 5:188-224, 1989.

Bernard A. Nadel. Some applications of the constraint satisfaction problem.

Technical report, Wayne State University, 1990.

Wayne Nelson. Accelerated Testing: Statistical Models, Test Plans, and Data
Analyses. John Wiley & Sons, New York, 1990.

Bernard Nudel. Consistent-Labeling Problems and their Algorithms:
Expected-Complexities and Theory-Based Heuristics. Artificial Intelligence,
21:135-178, 1983.

Judea Pearl. Heuristics. Addison-Wesley, Reading, Mass., 1985.

Daniele Pretolani. Efficiency and Stability of Hypergraph SAT Algorithms.
In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and
Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, 9(3):268-299, 1993.

Patrick Prosser. Binary Constraint Satistfaction Problems: Some are Harder
than Others. In Proceedings of the 11th Furopean Conference on Artificial
Intelligence (ECAI 94), pages 95-99, 1994.

Patrick Prosser. Mac-cbj: maintaining arc consistency with conflict-directed
backjumping. Technical Report 95/177, The University of Strathclyde,
Glasgow, Scotland, Dept. of Computer Science, 1995.

[71]

[72]

73]

[74]

[79]

[30]

226

Paul Walton Purdom. Search Rearrangement Backtracking and Polynomial

Average Time. Artificial Intelligence, 21:117-133, 1983.

Mauricio G. C. Resende and Thomas A. Feo. A GRASP for Satisfiability.
In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and
Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

Irina Rish and Daniel Frost. Statistical analysis of backtracking on incon-
sistent csps. In Gert Smolka, editor, Principles and Practice of Constraint

Programming — CP97, pages 150-162r, 1997.

Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom
in Constraint Satisfaction. In Principles and Practice of Constraint

Programmaing, pages 10-20, 1994.

Lothar Sachs. Applied Statistics: A Handbook of Techniques. Springer-Verlag,
New York, second edition, 1984.

Norman Sadeh and Mark S. Fox. Variable and Value Ordering Heuristics
for Activity-based Job-shop Scheduling. In Proceedings of the Fourth

International Conference on Frpert Systems in Production and Operations

Management, pages 134-144, 1990.

Bart Selman and Scott Kirkpatrick. Critical behavior in the computational

cost of satisfiability testing. Artificial Intelligence, 81:273-295, 1996.

Bart Selman, Hector Levesque, and David Mitchell. A New Method for Solving
Hard Satisfiability Problems. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 440-446, 1992.

Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard
satisfiability problems. Artificial Intelligence, 81:17-29, 1996.

Jude W. Shavlik and Thomas G. Dietterich. General aspects of machine
learning. In Jude W. Shavlik and Thomas G. Dietterich, editors, Readings in
Machine Learning, pages 1-10. Morgan Kaufmann, 1990.

[81]

[82]

[83]

[84]

[33]

[89]

227

Barbara M. Smith. Phase Transition and the Mushy Region in Constraint
Satisfaction Problems. In Proceedings of the 11th European Conference on
Artificial Intelligence (ECAI 94), pages 100-104, 1994.

Barbara M. Smith and M. E. Dyer. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence, 81:155-181, 1996.

William M. Spears. Simulated Annealing for Hard Satisfiability Problems.
In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and
Satifiability, volume 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

R. M. Stallman and G. S. Sussman. Forward reasoning and dependency-

directed backtracking in a system for computer-aided circuit analysis.

Artificial Intelligence, 9:135-196, 1977.

H. S. Stone and J. M. Stone. Efficient search techniques: An empirical study
of the n-queens problem. Technical Report Tech. Rept. RC 12057 (54343),
IBM T. J. Watson Research Center, Yorktown Heights, NY, 1986.

Peter van Beek and Rina Dechter. Constraint tightness and looseness versus

local and global consistency. Journal of the ACM, 44(4):549-566, 1997.

Allen Van Gelder and Yumi K. Tsuji. Satisfiability Testing with More
Reasoning and Less Guessing. In David S. Johnson and Michael A.
Trick, editors, Cliques, Coloring, and Satifiability, volume 26 of DIMACS

Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, 1996.

P. Van Hentenryck, Y Deville, and C. M. Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57:291-321, 1992.

R. J. Walker. Combinatorial Analysis (Proceedings of Symposia in Applied
Mathematics, Vol. X), chapter An enumerative technique for a class of com-

binatorial problems, pages 91-94. American Mathematical Society, 1960.

228

[90] David Waltz. Understanding Line Drawings of Scenes with Shadows. In
Patrick Henry Winston, editor, The Psychology of Computer Vision, pages
19-91. McGraw-Hill, 1975.

[91] Colin P. Williams and Tad Hogg. Exploiting the deep structure of constraint
problems. Artificial Intelligence, 70:73-117, 1994.

[92] J. Yellen, T. M. Al-Khamis, S. Vemuri, and L. Lemonidis. A decomposition
approach to unit maintenance scheduling. IEEE Trans. on Power Systems,
7(2):726-731, 1992.

[93] H. H. Zurm and V. H. Quintana. Generator Maintenance Scheduling Via

Successive Approximation Dynamic Programming. [EEFE Trans. on Power

Apparatus and Systems, PAS-94(2), 1975.

