
Constraint processing for optimal maintenance

scheduling

Daniel Frost and Rina Dechter�

Dept. of Information and Computer Science,

University of California, Irvine, CA 92697-3425

ffrost, dechterg@ics.uci.edu

Abstract

A well-studied problem in the electric power industry is that of optimally schedul-
ing preventative maintenance of power generating units within a power plant. We
show how these problems can be cast as constraint satisfaction problems and provide
an \iterative learning" algorithm which solves the problem in the following manner.
In order to �nd an optimal schedule, the algorithm solves a series of CSPs with suc-
cessively tighter cost-bound constraints. For the solution of each problem in the series
we use constraint learning, which involves recording additional constraints that are
uncovered during search. However, instead of solving each problem independently,
after a problem is solved successfully with a certain cost-bound, the new constraints
recorded by learning are used in subsequent attempts to �nd a schedule with a lower
cost-bound.

We show empirically that on a class of randomly generated maintenance schedul-
ing problems iterative learning reduces the time to �nd a good schedule. We also
provide a comparative study of the most competitive CSP algorithms on the main-
tenance scheduling benchmark.

�The authors thank the Electric Power Research Institute for its support through grant RP 8014-06.

1

Contents

1 Introduction 3
1.1 Overview of the Research : 3
1.2 Structure of the Report : 4
1.3 Related Work : 5

2 Constraint Satisfaction 5
2.1 De�nition of CSPs : 5
2.2 An Example of a CSP : 7
2.3 CSP Algorithms : 8
2.4 BT+DVO : 9
2.5 BT+DVO+IAC : 10
2.6 BJ+DVO : 10
2.7 BJ+DVO+LVO : 10
2.8 BJ+DVO+LRN : 13
2.9 BJ+DVO+LRN+LVO : 16

3 The Maintenance Scheduling Problem 16
3.1 Parameters : 17
3.2 Constraints : 19
3.3 Formalizing Maintenance Problems as CSPs : : : : : : : : : : : : : : : 20

4 Solution Procedure 24

4.1 Finding an Optimal CSP : 24
4.2 Optimization with Learning : 25
4.3 Problem Instance Generator : 25

5 Experimental Results 30
5.1 A Single Problem : 30
5.2 Random Problems : 34

6 Conclusions 36

2

1 Introduction

1.1 Overview of the Research

This report describes our research on a well-studied problem of the electric power
industry: optimally scheduling preventative maintenance of power generating units
within a power plant. Our goal was to investigate the e�cacy of both standard and
new constraint processing techniques on these problems. We took the approach of
de�ning a formal model of maintenance scheduling problem, casting the model in
the constraint satisfaction framework, and then evaluating some of the most pow-
erful constraint solving algorithms on the resulting constraint satisfaction problems
(CSPs).

Constraint problems are usually treated as decision problems: the algorithm can
return any acceptable solution, or a proof that no acceptable solution exists. Because
maintenance scheduling is an optimization problem, we developed the use a series of
CSPs in which the constraints are tightened until an optimal schedule is found. Our
empirical results showed that when applying this optimization scheme, a constraint
learning algorithm signi�cantly reduced the CPU time required to �nd an optimal
schedule.

Our research focused on the problem of devising a schedule for the preventa-
tive maintenance of power generating units. A typical power plant consists of one
or two dozen power generating units which can be individually scheduled for pre-
ventive maintenance. Both the required duration of each unit's maintenance and a
reasonably accurate estimate of the power demand that the plant will be required
to meet throughout the planning period are known in advance. The general purpose
of determining a maintenance schedule is to determine the duration and sequence of
outages of power generating units over a given time period, while minimizing operat-
ing and maintenance costs over the planning period, subject to various constraints.
The schedule is in
uenced by many factors, including the length of the maintenance
period for each unit, restrictions on when maintenance can be performed, the antic-
ipated power demand for the entire plant, and the cost of maintenance and fuel at
various times of the planning period. A maintenance schedule is often prepared in ad-
vance for a year at a time, and scheduling is done most frequently on a week-by-week
basis.

We propose an approach to maintenance scheduling based on the constraint satis-
faction problem framework [5]. In this model, there are a �nite number of variables,
and associated with each variable is a �nite domain of values. A solution to a CSP
assigns to each variable a value from its domain, subject to a set of constraints that
specify that some combinations of assignments are not allowed. Algorithms for CSPs
usually �nd one or more solutions, or report that no solution exists. Many CSP search
algorithms are based on backtracking, or depth-�rst, search. The general constraint
satisfaction problem is NP-complete.

3

We report the results of applying some of the most powerful constraint pro-
cessing techniques developed in recent years [11, 10, 12, 4, 24] to the maintenance
scheduling problem. Most of the empirical evaluation of constraint algorithms was
done with purely random binary CSPs. Applying the algorithms to maintenance
scheduling-based CSPs (MSCSPs) provides a testbed of problem instances that have
an interesting structure and non-binary constraints. Our empirical results indicate
that algorithms which are superior on random uniform binary CSPs are also superior
on maintenance scheduling problems, thus providing some validation to the empirical
approach based on pure random problems.

The constraint framework consists entirely of so-called hard constraints, those
which must be satis�ed for a solution to be valid. Optimization problems have a cost
function as well. To avoid explicitly representing the cost function, or objective func-
tion as it is called in the Operations Research literature, we approach optimization as
solving a series of related CSPs, each consisting solely of hard constraints. The CSPs
in the series di�er in that a hard constraint (or group of constraints) corresponding
to the objective function with a particular cost-bound is tighter in each succeeding
problem in the series. The tighter constraints result from a reduced cost-bound in
the function being optimized. An optimal solution is found by determining the lowest
cost-bound for which the corresponding constraint satisfaction problem has a solu-
tion. A similar approach was used recently to �nd a shortest plan using satis�ability
and CSP techniques [15, 2].

We present experiments with �ve algorithms that have proven most useful when
tested on random problems. In general, when an algorithm is applied to a main-
tenance problem instance, it solves each of the corresponding CSPs independently.
For the new \iterative learning" procedure, an algorithm that learns new constraints
during the search is used, and constraints learned during one instance of the series
are applied on later instances. This approach was particularly bene�cial for the
optimization task.

1.2 Structure of the Report

This report consists of six sections. Following the Introduction, the second section
describes the Constraint Satisfaction framework and several algorithms that can be
used to solve Constraint Satisfaction Problems. Constraint satisfaction techniques
have been used to solve a wide variety of scheduling and con�guration problems. The
development of new algorithms for these problems is an area of intense research in
the �eld of Arti�cial Intelligence, and in this report we report on the performance of
several state of the art algorithms.

Section 3 of the report describes the maintenance scheduling problem and how
we have encoded it as a constraint problem. Our approach generally follows that of
several other authors, except that we consider how best to interpret the problems
as CSPs. The
exibility of the CSP framework means that this procedure can be

4

resolved in many di�erent ways. We present one formulation that is e�ective.
In section 4 we address the issue of optimization. The constraint framework con-

sists entirely of so-called hard constraints, those which must be satis�ed for a solution
to be valid. Optimization problems can be viewed as having also soft constraints,
which can be partially satis�ed. The problem then is to �nd the \best" partially
satis�ed solution. We show how this can be done in the CSP framework.

The results of experimental comparisons of various CSP algorithms are given in
Section 5. Our experimental procedure is distinguish by a reliance on a random prob-
lem generator, which is described. Using the generator allows us to run algorithms
on a large number of problems with de�ned characteristics, thus reducing the chance
that our results will be unduly swayed by the unusual characteristic of one sample
instance. We also describe in detail the application of constraint algorithms to a
single maintenance scheduling problem.

In the �nal section we present our conclusions and a summary of our results.

1.3 Related Work

Computational approaches to maintenance scheduling have been intensively studied
since the mid 1970's. Dopazo and Merrill [6] formulated the maintenance scheduling
problem as a 0-1 integer linear program. Zurm and Quintana [30] used a dynamic
programming approach. Egan [7] studied a branch and bound technique. More
recently, techniques such as simulated annealing, arti�cial neural networks, genetic
algorithms, and tabu search have been applied [16].

2 Constraint Satisfaction

In this section we de�ne the constraint satisfaction framework, and describe several
algorithms that have been developed for it.

2.1 De�nition of CSPs

A constraint satisfaction problem (CSP) consists of a set of n variables, X1; . . . ; Xn,
and a set of constraints. For each variable Xi a domain Di = fxi1; xi2; . . . ; xidg with
d elements is speci�ed; a variable can only be assigned a value from its domain.
A constraint speci�es a subset of the variables and which combinations of value
assignments are allowed for that subset. A constraint is a subset of the Cartesian
product Di1 � . . .�Dij , consisting of all tuples of values for a subset (Xi1 ; . . . ; Xij)
of the variables which are compatible with each other. A constraint can also be
represented in other ways which may be more convenient. For instance, if X1, X2,
and X3 each have a domain consisting of the integers between 1 and 10, a constraint
between them might be the algebraic relationship X1 +X2 +X3 > 15.

5

A solution to a CSP is an assignment of values to all the variables such that
no constraint is violated. A problem that has a solution is termed satis�able or
consistent; otherwise it is unsatis�able or inconsistent. Sometimes it is desired to
�nd all solutions; in this thesis, however, we focus on the task of �nding one solution,
or proving that no solution exists. A binary CSP is one in which each constraint
involves at most two variables. A constraint satisfaction problem can be represented
by a constraint graph that has a node for each variable and an arc connecting each
pair of variables that are contained in a constraint.

A variable is called instantiated when it is assigned a value from its domain. A
variable is called uninstantiated when no value is currently assigned to it. Re
ecting
the backtracking control strategy of assigning values to variables one at a time,
we sometimes refer to instantiated variables as past variables and uninstantiated
variables as future variables. We use \Xi=xj" to denote that the variable Xi is
instantiated with the value xj , and \Xi xj" to indicate the act of instantiation.

The variables in a CSP are often given an order. We denote by ~xi the instanti-
ated variables up to and including Xi in the ordering. If the variables were instanti-
ated in order (X1; X2; . . . ; Xn), then ~xi is shorthand for the notation (X1=x1; X2=
x2; . . . ; Xi=xi).

A set of instantiated variables ~xi is consistent or compatible if no constraint is
violated, given the values assigned to the variables. Only constraints which refer ex-
clusively to instantiated variables X1 through Xi are considered; if one or more vari-
ables in a constraint have not been assigned values then the status of the constraint
is indeterminate. A value x for a single variable Xi+1 is consistent or compatible
relative to ~xi if assigning Xi+1 = x renders ~xi+1 consistent.

A variable Xi is a dead-end when no value in its domain is consistent with ~xi�1.
We distinguish two types of dead-ends. Xi is a leaf dead-end if there are constraints
prohibiting each value in Di, given ~xi�1. Xi is found to be an interior dead-end when
some values in Di are compatible with ~xi�1, but the subtree rooted at Xi does not
contain a solution. Di�erent algorithms may de�ne or test for consistency in di�erent
ways. The term dead-end comes from analogy with searching through a maze. At
a dead-end in a maze, one cannot go left, right, or forward, and must retrace one's
steps.

The most basic consistency enforcing algorithm enforces arc-consistency. A con-
straint satisfaction problem is arc-consistent, or 2-consistent, if every value in the
domain of every variable is consistent with at least one value in the domain of any
other selected variable [20, 17, 8]. In general, i-consistency algorithms guarantee that
any consistent instantiation of i�1 variables can be extended to a consistent value
of any ith variable.

An individual constraint among variables (Xi1 ; . . . ; Xij) is called tight if it permits
a small number of the tuples in the Cartesian product Di1 � . . .�Dij , and loose if
it permits a large number of tuples. For example, assume variables X1 and X2 have
the same domain, with at least three elements in it. The constraint X1=X2 is a

6

Q

Q

Q

Q

Figure 1: A solution to the 4-Queens problem. Each \Q" represents a queen. No two
queens share the same row, column, or diagonal.

tight constraint. Once one variable is assigned a value, only one choice exists for the
other variable. On the other hand, the constraint X1 6= X2 is a loose constraint, as
instantiating one variable prohibits only one possible value for the other.

2.2 An Example of a CSP

As a concrete example of a CSP, consider the N -Queens puzzle. An illustration of
the 4-Queens puzzle is shown in Fig. 1. The desired result is easy to state: place N
chess queens on an N by N chess board such that no two queens are in the same row,
column, or diagonal. In comparison to this short statement of the goal, a speci�cation
of a computer program that solves the N -Queens puzzle would be quite lengthy, and
would deal with data structures, looping, and possibly function calls and recursion.
The usual encoding of the N -Queens problem as a CSP is based on the observation
that any solution will have exactly one queen per row. Each row is represented by a
variable, and the value assigned to each variable, ranging from 1 to N , indicates the
square in the row that has a queen. A constraint exists between each pair of variables.
Fig. 2 shows a constraint satisfaction representation of the 4-Queens problem, using
this scheme. The four rows are represented by variables R1, R2, R3, R4. The four
squares in each row, on one of which a queen must be placed, are called c1, c2, c3
and c4. The constraints are expressed as relations, that is, tables in which each row
is an allowable combination of values. The task of a CSP algorithm is to assign a
value from fc1, c2, c3, c4g to each variable R1, R2, R3, R4, such that for each pair
of variables the respective pair of values can be found in the corresponding relation.
The constraint graph of the N -Queens puzzle is fully connected, for any value of N ,
because the position of a Queen on one row a�ects the permitted positions of Queens
on all other rows.

Another example of a constraint satisfaction problem is Boolean satis�ability
(SAT). In SAT the goal is to determine whether a Boolean formula is satis�able.

7

Variables: R1, R2, R3, R4. (rows)

Domain of each variable: fc1, c2, c3, c4g (columns)

Constraint relations (allowed combinations):
R1 R2 R1 R3 R1 R4 R2 R3 R2 R4 R3 R4

c1 c3 c1 c2 c1 c2 c1 c3 c1 c2 c1 c3
c1 c4 c1 c4 c1 c3 c1 c4 c1 c4 c1 c4
c2 c4 c2 c1 c2 c1 c2 c4 c2 c1 c2 c4
c3 c1 c2 c3 c2 c3 c3 c1 c2 c3 c3 c1
c4 c1 c3 c2 c2 c4 c4 c1 c3 c2 c4 c1
c4 c2 c3 c4 c3 c1 c4 c2 c3 c4 c4 c2

c4 c1 c3 c2 c4 c1
c4 c3 c3 c4 c4 c3

c4 c2
c4 c3

Figure 2: The 4-Queens puzzle, cast as a CSP.

A Boolean formula is composed of Boolean variables that can take on the values
true and false, joined by operators such as _ (and), ^ (or), : (negation), and \()"
(parentheses). For example, the formula

(P _ Q) ^ (:P _ :S)

is satis�able, because the assignment (or \interpretation") (P=true; Q=true; S=false)
makes the formula true.

2.3 CSP Algorithms

Over the last 20 years many algorithms and heuristics have been developed for con-
straint satisfaction problems. Our CSP solver system includes backtracking [3], back-
marking [13, 14], forward checking [14], and a version of backjumping [13, 4] proposed
in [24] and called there con
ict-directed backjumping. Space does not permit more
than a brief discussion of these algorithms. All are based on the idea of considering
the variables one at a time, during a forward phase, and instantiating the current
variable V with a value from its domain that does not violate any constraint either
between V and all previously instantiated variables (backtracking, backmarking, and
backjumping) or between V and the last remaining value of any future, uninstan-
tiated variable (forward checking). If V has no such non-con
icting value, then a
dead-end occurs, and in the backwards phase a previously instantiated variable is
selected and re-instantiated with another value from its domain. With backtracking,
the variable chosen to be re-instantiated after a dead-end is always the most recently

8

Backtracking with DVO

0. (Initialize.) Set D0

i Di for 1 � i � n.

1. (Step forward.) If Xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the index of
the next variable, selected according to a variable-ordering-heuristic (see
Fig. 4).

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ;, go to 3.

(b) Pop x from D0

cur and instantiate Xcur x.

(c) (Forward checking style look-ahead) Examine the future variables
Xi; cur < i � n, For each v in D0

i, if Xi = v con
icts with ~xcur then remove
v from D0

i; if D
0

i is now empty, go to 1 (without examining other Xi's).

3. (Backtrack.) If there is no previous variable, exit with \inconsistent."
Otherwise, set cur equal to the index of the previous variable. Reset all D0 sets
to the way they were before Xcur was last instantiated. Go to 2.

Figure 3: The BT+DVO algorithm.

instantiated variable; hence backtracking is often called chronological backtracking.
Backjumping, in contrast, can in response to a dead-end identify a variable U , not
necessarily the most recently instantiated, which is connected in some way to the
dead-end. The algorithm then \jumps back" to U , uninstantiates all variables more
recent than U , and tries to �nd a new value for U from its domain. The version of
backjumping we use is very e�ective in choosing the best variable to jump back to.

In the following sections we describe in more detail the algorithms that we used
in our experimental evaluation of applying the constraint processing framework to
maintenance scheduling problems.

2.4 BT+DVO

We �rst describe a relatively simple CSP algorithm. This algorithm, called BT+DVO,
combines simple backtracking with a dynamic variable ordering scheme called DVO.
The algorithm is described in Fig. 3.

The main idea of the variable ordering heuristic, described in Fig. 4, is to select
the future variable with the smallest remaining domain as the one which will be
instantiated next. This idea was proposed by Haralick and Elliot [14] under the
rubric \fail �rst." We have found that augmenting the fail-�rst strategy with the

9

VARIABLE-ORDING-HEURISTIC

1. If no variable has yet been selected, select the variable that participates in the
most constraints. In case of a tie, select one variable arbitrarily.

2. Let m be the size of the smallest D0 set of a future variable.

(a) If there is one future variable with D0 size = m, then select it.

(b) If there is more than one, select the one that participates in the most con-
straints (in the original problem), breaking any remaining ties arbitrarily.

Figure 4: The dynamic variable ordering heuristic used by DVO.

tie-breaking rules described in step 1 and step 2 (b) of Fig. 4 produces a 10% to 30%
improvement in performance, when compared to BT+DVO without the tie-breakers.
The guiding intuition behind the tie-breakers is to select the variable that is the most
constraining, and thus most likely to reduce the size of the D0 sets of those variables
selected after it.

2.5 BT+DVO+IAC

Another algorithm which does more work at each instantiation, by integrating an
AC-3 based arc-consistency procedure [18] is BT+DVO+IAC (Fig. 5. Several other
algorithms which enforce arc-consistency during search have been proposed [27, 13,
21, 26]. In all versions, values for future variables are removed not only if they are
inconsistent with the current partial assignment, but also if they are not compatible
with at least one value in the remaining domain of each other future variable. At
the cost of more processing per node, BT+DVO+IAC increases the likelihood of
detecting early that a partial assignment cannot lead to a solution.

2.6 BJ+DVO

The remaining algorithms are based on backjumping. Backjumping is a variant
of backtracking, but after a dead-end it can return to an earlier variable than the
immediatedly previous one. The version of backjumping we use is called con
ict-
directed backjumping [24]. Combining backjumping with dynamic variable ordering
is called BJ+DVO.

2.7 BJ+DVO+LVO

The processing of future variables which provides information for dynamic variable
ordering can also be used to priorize the values of the current variables, using a tech-

10

Backtracking with DVO and Integrated Arc-consistency.

0. (Initialize.) Set D0

i Di for 1 � i � n.

1. (Step forward.) If Xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the index of
the next variable, selected according to a variable-ordering-heuristic (see
Fig. 4).

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ;, go to 3.

(b) Pop x from D0

cur and instantiate Xcur x.

(c) (Forward checking style look-ahead) Examine the future variables
Xi; cur < i � n, For each v in D0

i, if Xi = v con
icts with ~xcur then remove
v from D0

i; if D
0

i is now empty, go to (e) (without examining other Xi's).

(d) (Arc-consistency.) Perform ac-3(i).

(e) Go to 1.

3. (Backtrack.) If there is no previous variable, exit with \inconsistent."
Otherwise, set cur equal to the index of the previous variable. Reset all D0 sets
to the way they were before Xcur was last instantiated. Go to 2.

Figure 5: The BT+DVO+IAC algorithm.

nique called look-ahead value ordering (LVO). LVO ranks the values of the current
variable, based on the number of con
icts each value has with values in the domains
of future variables. Experiments in [9] show that look-ahead value ordering can be of
substantial bene�t, especially on hard constraint satisfaction problems. Although the
LVO heuristic does not always correctly predict which values will lead to solutions,
it is frequently more accurate than an uninformed ordering of values.

Combining BJ+DVO with LVO results in BJ+DVO+LVO; a description of this
algorithm appears in Fig. 9. The algorithm is essentially the same as BJ+DVO; the
di�erences are in steps 1A, 2 (b), and 2 (c).

Step 1A of BJ+DVO+LVO is where the algorithm's look-ahead phase takes place.
The current variable is tentatively instantiated with each value x in its domain D0

cur.
BJ+DVO+LVO looks ahead, in a forward checking style manner, to determine the
impact each x will have on the D0 domains of uninstantiated variables. Speci�cally,
the domain value which is in con
ict with the fewest values in the domain of future
variables is selected �rst.

In step 2 (b), the current variable is instantiated with the highest ranking value.
If the algorithm returns to a variable because of a backjump, the highest ranked

11

ac-3(d)
1 Q farc(i; j)ji > d; j > dg
2 repeat
3 select and delete any arc(p; q) in Q

4 revise(p; q)
5 if D0

p = ;
6 then return

7 if revise removed a value from D0

p

8 then Q Q [farc(i; p)ji > dg
9 until Q = ;

Figure 6: Algorithm AC-3.

revise(i; j)
1 for each value y 2 D0

i

2 if there is no value z 2 D0

j such that (~xcur; Xi=y;Xj=z) is consistent

3 then remove y from D0

i

Figure 7: The Revise procedure.

remaining value in its domain is selected. If the variable is re-instantiated after
earlier variables have changed, then the ranking of the values has to be repeated in
step 1A.

Step 2 (c) essentially disappears in BJ+DVO+LVO; once a value is actually se-
lected, it would not make sense to repeat the look-ahead that has already been done.
To avoid repeating consistency checks, our implementation saves in tables the results
of step 1A. After a value is chosen in 2 (b), the appropriate D0s and P s of future vari-
ables are copied from these tables instead of being recomputed in step 2(c). The space
required for these tables is not prohibitive. BJ+DVO uses O(n2d) space for the D0

sets, where d is the size of the largest domain: n levels in the search tree (D0 is saved
at each level so that it does not have to be recomputed after backjumping) � n future
variables � d values for each future variable. Our implementation of BJ+DVO+LVO
uses O(n2d2) space. There is an additional factor of d because at each level in the
search tree up to d values are explored by look-ahead value ordering. Similarly, the
space complexity for the P sets increases from O(n2) in BJ+DVO to O(n2d) for

12

Backjumping with DVO

0. (Initialize.) Set D0

i Di for 1 � i � n. Set Pi ; for 1 � i � n.

1. (Step forward.) If Xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur equal to the index of
the next variable, selected according to a variable-ordering-heuristic (see
Fig. 4). Set Pcur ;.

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ;, go to 3.

(b) Pop x from D0

cur and instantiate Xcur x.

(c) Examine the future variables Xi; cur < i � n. For each v in D0

i, if Xi = v

con
icts with ~xcur then remove v from D0

i and add Xcur to Pi; if D0

i

becomes empty, go to (d) (without examining other Xi's).

(d) Go to 1.

3. (Backjump.) If Pcur = ; (there is no previous variable), exit with
\inconsistent." Otherwise, set P Pcur ; set cur equal to the index of the last
variable in P . Set Pcur Pcur [P � fXcurg. Reset all D

0 sets to the way they
were before Xcur was last instantiated. Go to 2.

Figure 8: The BJ+DVO algorithm.

BJ+DVO+LVO. To solve a typical problem instance described in the next section,
BJ+DVO required 1,800 kilobytes of random access memory, and BJ+DVO+LVO
required 2,600 kilobytes. On our computer the additional space requirements of LVO
had no discernable impact.

2.8 BJ+DVO+LRN

Learning in CSPs, also known as constraint recording, involves a during-search trans-
formation of the problem representation into one that may be search more e�ectively.
This is done by enriching the problem description by new constraints, also called no-

goods, which do not change the set of solutions, but make the problem more explicit.
Learning comes into play at dead-ends; whenever a dead-end is reached a constraint
explicated by the dead-end is recorded. Learning during search has the potential
for reducing the size of the search space, since additional constraints may cause un-
fruitful branches of the search to be cut o� at an earlier point. The cost of learning
is that the computational e�ort spent recording and then consulting the additional
constraints may overwhelm the savings. The kind of learning employed here takes
advantage of processing already performed by the backjumping algorithm to identify

13

Backjumping with DVO and LVO

0. (Initialize.) Set D0

i Di for 1 � i � n.

1. (Step forward.) If Xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur to be the index of the
next variable, according to a variable-ordering-heuristic. Set Pcur ;.

1A. (Look-ahead value ordering.) Rank the values in D0

cur as follows: For each
value x in D0

cur, and for each value v of a future variables Xi; cur < i � n,
determine the consistency of (~xcur�1; Xcur=x;Xi=v). Rank of x based on the
number of con
icts it has with future values v.

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ;, go to 3.

(b) Pop the highest ranked value x from D0

cur and instantiate Xcur x.

(c) (This step can be avoided by caching the results from step 1A.) Examine
the future variables Xi; cur < i � n. For each v in D0

i, if Xi = v con
icts
with ~xcur then remove v from D0

i and add Xcur to Pi; if D
0

i becomes
empty, go to (d) without examining other Xi's.

(d) Go to 1.

3. (Backjump.) If Pcur = ; (there is no previous variable), exit with
\inconsistent." Otherwise, set P Pcur ; set cur equal to the index of the last
variable in P . Set Pcur Pcur [P � fXcurg. Reset all D0 sets to the way they
were before Xcur was last instantiated. Go to 2.

Figure 9: Backjumping with DVO and look-ahead value ordering (LVO).

the new constraint to be learned. It can be combined with backjumping and dynamic
variable ordering and is called BJ+DVO+LRN. See Fig. 10.

14

Backjumping with DVO and Learning
Input: order

0. (Initialize.) Set D0

i Di for 1 � i � n.

1. (Step forward.) If Xcur is the last variable, then all variables have value
assignments; exit with this solution. Otherwise, set cur to be the index of the
next variable, according to a variable-ordering-heuristic. Set Pcur ;.

2. Select a value x 2 D0

cur . Do this as follows:

(a) If D0

cur = ;, go to 3.

(b) Pop x from D0

cur and instantiate Xcur x.

(c) Examine the future variables Xi; cur < i � n. For each v in D0

i, if Xi = v

con
icts with ~xcur then remove v from D0

i and add Xcur to Pi; if D0

i

becomes empty, go to (d) (without examining other Xi's).

(d) Go to 1.

3. Learn, then backjump.

(a) If Pcur = ; (there is no previous variable), exit with \inconsistent."

(b) If Xcur was reached by a backjump, go to (dg).

(c) Perform learning(order).

(d) Set P Pcur ; set cur equal to the index of the last variable in P . Set
Pcur Pcur [P � fXcurg. Reset all D

0 sets to the way they were before
Xcur was last instantiated. Go to 2.

Figure 10: The BJ+DVO+LRN algorithm.

15

The learning procedure uses as its con
ict-set the parent set P that is explicated
by the backjumping algorithm itself. Recall that BJ+DVO examines each future
variable Xi and includes Xcur in the parent set Pi if Xcur , as instantiated, con
icts
with a value of Pi that previously did not con
ict with any variable. Since the
con
ict set needed for learning is already assembled by the underlying backjumping
algorithm, the added complexity of computing the con
ict set is constant. To achieve
constant time complexity at each dead-end the parent set must be modi�ed to include
not only the parent variables but also their current values.

2.9 BJ+DVO+LRN+LVO

We have combined many of the techniques discussed above into a single algorithm,
called BJ+DVO+LRN+LVO. Speci�cally, this algorithm can be viewed as a merger
between BJ+DVO+LRN (Fig. 11) and the look-ahead value ordering heuristic de-
scribed in Fig. 10. The algorithm uses backjumping, dynamic variable ordering,
learning, and look-ahead value ordering.

3 The Maintenance Scheduling Problem

The problem of scheduling o�-line preventative maintenance of power generating
units is of critical interest to the electric power industry. A typical power plant con-
sists of one or two dozen power generating units which can be individually scheduled
for preventive maintenance. Both the required duration of each unit's maintenance
and a reasonably accurate estimate of the power demand that the plant will be re-
quired to meet throughout the planning period are known in advance. The general
purpose of determining a maintenance schedule is to determine the duration and
sequence of outages of power generating units over a given time period, while mini-
mizing operating and maintenance costs over the planning period, subject to various
constraints. A maintenance schedule is often prepared in advance for a year at a
time, and scheduling is done most frequently on a week-by-week basis. The power
industry generally considers shorter term scheduling, up to a period of one or two

learning(order)

1 CS Pcur
2 if size of CS � order

3 then record(CS)

Figure 11: The jump-back learning procedure.

16

Week 1

Unit 1

Week 1

Unit 2

Week 1

Unit 3

Week 1

Unit 4

Week 1

Unit 5

Week 2

Unit 1

Week 2

Unit 2

Week 2

Unit 3

Week 2

Unit 4

Week 2

Unit 5

� � �

� � �

� � �

� � �

� � �

Wk 12

Unit 1

Wk 12

Unit 2

Wk 12

Unit 3

Wk 12

Unit 4

Wk 12

Unit 5

Figure 12: A diagrammatic representation of a maintenance scheduling constraint satisfac-
tion problem. Each circle stands for a variable representing the status of one unit in one
week. The dashed vertical ovals indicate constraints between all of the units in one week:
meeting the minimum power demand and optimizing the cost per week. The horizontal
ovals represent constraints on one unit over the entire period: scheduling an adequate
period for maintenance.

weeks into the future, to be a separate problem called \unit commitment."
As a problem for an electric power plant operator, maintenance scheduling must

take into consideration such complexities as local holidays, weather patterns, con-
straints on suppliers and contractors, national and local laws and regulations, and
other factors that are germane only to a particular power plant. Our simpli�ed
model is similar to those appearing in most scholarly articles, and follows closely the
approach of Yellen and his co-authors [1, 28]. The maintenance scheduling problem
can be represented by a rectangular matrix (see Fig. 12). Each entry in the matrix
represents the status of one generating unit for one week. We will use the terms
week and time period interchangeably. A unit can be in one of three states: on, off,
or maint.

3.1 Parameters

A speci�c maintenance scheduling problem, in our formulation, is de�ned by a set
of parameters, which are listed in Fig. 13. Parameters U , the number of units, and
W , the number of weeks, control the size of the schedule. Many power plants have
a �xed number of crews which are available to carry out the maintenance; therefore
the parameter M speci�es the maximum number of units which can be undergoing

17

maintenance at any one time.

Input:
U number of power generating units
W number of weeks to be scheduled
M maximum number of units which can be maintained simultaneously
mit cost of maintaining unit i in period t

cit operating cost of unit i in period t

ki power output capacity of unit i
ei earliest maintenance start time for unit i
li latest maintenance start time for unit i
di duration of maintenance for unit i
N set of pairs of units which cannot be maintained simultaneously
Dt energy (output) demand in period t

Output:
xit status of unit i in period t: on, off or maint

Figure 13: Parameters which de�ne a speci�c maintenance scheduling problem.

In this paragraph and elsewhere in the paper we adopt the convention of quanti-
fying the subscript i over the number of units, 1 � i � U , and the subscript t over
the number of weeks, 1 � t � W . Several parameters specify the characteristics of
the power generating units. The costs involved in preventative maintenance, mit, can
vary from unit to unit and from week to week; for instance, hydroelectric units are
cheaper to maintain during periods of low water
ow. The predicted operating cost
of unit i in week t is given by cit. This quantity varies by type of unit and also in
response to fuel costs. For example, the fuel costs of nuclear units are low and change
little over the year, while oil-�red units are typically more expensive to operate in
the winter, when oil prices often increase.

Parameter ki speci�es the maximum power output of unit i. Most formulations of
maintenance scheduling consider this quantity constant over time, although in reality
it can
uctuate, particularly for hydro-electric units.

The permissible window for scheduling the maintenance of a unit is controlled
by parameters ei, the earliest starting time, and li, the latest allowed starting time.
These parameters are often not utilized (that is, ei is set to 1 and li is set to W)
because maintenance can be performed at any time. The duration of maintenance
is speci�ed by parameter di.

Sometimes the maintenance of two particular units cannot be allowed to overlap,
since they both require a particular unique resource, perhaps a piece of equipment

18

or a highly trained crew member. Such incompatible pairs of units are speci�ed in
the set N = f(i1; i2); . . . ; (in�1; in)g.

The �nal input parameter, Dt, is the predicted power demand on the plant in
each week t. The parameters xit are the output of the scheduling procedure, and
de�ne the maintenance schedule. xit can take on one of three values:

� on: unit i is on for week t, can deliver ki power for the week, and will cost cit
to run;

� off: unit i is o� for week t, will deliver no power and will not result in any
cost;

� maint: unit i is being maintained for week t, will deliver no power, and will
cost mit.

3.2 Constraints

A valid maintenance schedule must meet the following constraints or domain require-
ments, which arise naturally from the de�nition and intent of the parameters.

First, the schedule must permit the overall power demand of the plant to be met
for each week. Thus the sum of the power output capacity of all units not scheduled
for maintenance must be greater than the predicted demand, for each week. Let
zit = 1 if xit = on, and 0 otherwise. Then the schedule must satisfy the following
inequalities. X

i

zitki � Dt for each time period t (1)

The second constraint is that maintenance must start and be completed within
the prescribed window, and the single maintenance period must be continuous, un-
interrupted, and of the desired length. The following conditions must hold true for
each unit i.

(start) if t < ei then xit 6= maint (2)

(end) if t � li + di then xit 6= maint (3)

(continuous) if xit1 = maint and xit2 = maint and t1 < t2

then for all t; t1 < t < t2; xit = maint (4)

(length) if t1 = min
t
(xit = maint) and t2 = max

t
(xit = maint)

then t2 � t1 + 1 = di (5)

(existence) 9t such that xit = maint (6)

The third constraint is that no more than M units can be scheduled for mainte-
nance simultaneously. Let yit = 1 if xit = maint, and 0 otherwise.

X

i

yit �M for each time period t (7)

19

The �nal constraint on a maintenance schedule is that incompatible pairs of units
cannot be scheduled for simultaneous maintenance.

if (i1; i2) 2 N and xi1t = maint then xi2t 6= maint for each time period t (8)

After meeting the above constraints, we want to �nd a schedule which minimizes
the maintenance and operating costs during the planning period. Let wit = mit if
xit = maint, cit if xit = on, and 0 if xit = off.

Minimize
X

i

X

t

wit (9)

Objective functions other than (9) can also be used. For example, it may be
necessary to reschedule the projected maintenance midway through the planning
period. In this case, a new schedule which is as close as possible to the previous
schedule may be desired, even if such a schedule does not have a minimal cost.

3.3 Formalizing Maintenance Problems as CSPs

There are several ways to encode the maintenance scheduling problem in the con-
straint satisfaction framework. The formulation involves a tradeo� between the num-
ber of variables, the number of values per variable, and the constraints arity.

We de�ned the problem's output variables as variables in the CSP, and speci�ed
the problem's constraints in a relational manner in order to allow our general purpose
CSP algorithms to be applied with minimal modi�cation.

We encode maintenance scheduling problems as CSPs with 3�U �W variables.
The variables can be divided into a set of U �W visible variables, and two U �W

size sets which we call hidden variables. Of course the distinction between visible
and hidden variables is used for explanatory purposes only; the CSP solving program
treats each variable in the same way. Each variable has two or three values in its
domain. Both binary and higher arity constraints appear in the problem. The
visible variables Xit correspond directly to the output parameters xit of the problem
de�nition, having the corresponding domain values fon, off, maintg.

Because i ranges from 1 to U and t ranges from 1 to W , there are U �W visible
variables. Each Xit has the domain fon, off, maintg, corresponding exactly to the
values of xit.

The �rst set of hidden variables, Yit, signi�es the maintenance status of unit i
during week t. The domain of each Y variable is ffirst, subsequent, notg. Yit =
first indicates that week t is the beginning of unit i's maintenance period. Yit =
subsequent indicates that unit i is scheduled for maintenance during week t and
for at least one prior week. Yit = not, indicates no maintenance. Binary constraints
between each Xit and Yit are required to keep the two variables synchronized (we list
the compatible value combinations):

20

Xit Yit
on not

off not

maint first

maint subsequent

The second set of hidden variables, Zit, are boolean variables having domains
fnone, fullg, which indicate whether unit i is producing power output during week
t. The binary constraints between each Xit and the corresponding Zit variable are
as follows, again listing the legal combinations:

Xit Zit

on full

off none

maint none

The hidden variables triple the size of the CSP. The reasons for creating them
will become clear as we now discuss how the constraints are implemented.

Constraint (1) { weekly power demand
Each demand constraint involves the U visible variables that relate to a particular

week. The basic idea is to enforce a U -ary constraint between these variables which
guarantees that enough of the variables will be on to meet the power demand for
the week. This constraint can be implemented as a table of either compatible or
incompatible combinations, or as a procedure which takes as input the U variables
and returns true or false. Our implementation uses a table of incompatible combi-
nations. For example, suppose there are four generating units, with output capacities
k1=100; k2=200; k3=300; k4=400. For week 5, the demand D5=800. The following 4-
ary constraint among variables (Z1;5; Z2;5; Z3;5; Z4;5) is created (incompatible tuples
are listed).

Z1;5 Z2;5 Z3;5 Z4;5 comment (output level)
none none none none 0
none none none full 400
none none full none 300
none none full full 700
none full none none 200
none full none full 600
none full full none 500
full none none none 100
full none none full 500
full none full none 400
full full none none 300
full full none full 700
full full full none 600

21

Because the domain size of the Z variables is 2, a U -ary constraint can have as many
as 2U � 1 tuples. If this constraint were imposed on the X variables directly, which
have domains of size 3, there would be 79 tuples (34� 5) instead of 13 (24� 3). This
is one reason for creating the hidden Z variables: to reduce the size of the demand
constraint.

A relation such as that in the above table may be projected onto a subset of its
variables, by listing the combinations of values which are restricted to this subset.
The relation's projection onto (Z1;5; Z2;5), for example, is

Z1;5 Z2;5
none none

none full

full none

full full

Tuples in the new, projected relation which appear with all possible combinations of
the remaining variables in the original relation may be recorded as smaller constraints.
That is, the binary constraint over the pair (Z1;5; Z2;5), allowing (Z1;5=none; Z2;5=
none) while the remaining tuples are not allowed, is implied by the 4-ary constraint.
It is clearly desirable to recognize these smaller constraints prior to search, and our
system does so. In e�ect, the system notices that if Z1;5 is none and Z2;5 is none,
then the demand constraint for week 5 cannot be met, whatever the status of the
other units.

Constraints (2) and (3) { earliest and latest maintenance start date
These constraints are easily implemented by removing the value first from the

domains of the appropriate Y variables. The removal of a domain value is often
referred to as imposing a unary constraint.

Constraint (4) { continuous maintenance period

To encode this domain constraint in our formalism, we enforce three conditions
using binary relational constraints over the Y 's:

1. There is only one �rst week of maintenance.

2. Week 1 cannot be a subsequent week of maintenance.

3. Every subsequent week of maintenance must be preceded by a �rst week of
maintenance or a subsequent week of maintenance.

Each of these conditions can be enforced by unary or binary constraints on the Y
variables. To enforce condition 1, for every unit i and pair of weeks t1 and t2; t1 6= t2,
we add the following binary constraint to the CSP (disallowed tuple listed):

Yit1 Yit2
first first

22

Condition 2 is enforced by a unary constraint removing subsequent from the domain
of each Yi1 variable. Condition 3 is enforced by the following constraint for all t > 1
(disallowed tuple listed):

Yit�1 Yit
not subsequent

Constraint (5) { length of maintenance period

A maintenance period of the correct length cannot be too short or too long. If unit
i's maintenance length di=1, then too short is not possible (constraint (6) prevents
non-existent maintenance periods); otherwise, for each unit i, each time period t, and
every t1; t < t1 < t+ di, the following binary constraint prevent a short maintenance
period (disallowed tuple listed):

Yit Yit1
first not

To ensure that too many weeks of maintenance are not scheduled, it is only necessary
to prohibit a subsequent maintenance week in the �rst week that maintenance should
have ended. This results in the following constraint for each i and t, letting t1 = t+di
(disallowed tuple listed):

Yit Yit1
first subsequent

Constraint (6) { existence of maintenance period
This requirement is enforced by a high arity constraint among the Y variables for

each unit. Only the weeks between the earlist start week and the latest start week
need be involved. At least one Yit; ei � t � li, must have the value start. It is
simpler to prevent them from all having the value not, and let constraints (4) and
(5) ensure that a proper maintenance period is established. Thus the (li�ei+1)-arity
constraint for each unit i is (disallowed tuple listed):

Yili . . . Yiei
not not not

Constraint (7) { no more than M units maintained at once
If M units are scheduled for maintenance in a particular week, constraints must

prevent the scheduling of an additional unit for maintenance during that week. Thus
the CSP must have (M + 1)-ary constraints among the X variables which prevent
any M + 1 from having the value of maint in any given week. There will be

� U
M+1

�

of these constraints for each of the W weeks. They will have the form (disallowed
tuple listed):

Xi1t . . . XiM t

maint maint maint

23

We see that this requires an exponential number in M of no-goods. If M is big,
it may be bene�cial to leave this constraint in a procedural (rather than relational)
form.

Constraint (8) { incompatible pairs of units

The requirement that certain units not be scheduled for overlapping maintenance
is easily encoded in binary constraints. For every week t, and for every pair of units
(i1; i2) 2 N , the following binary constraint is created (incompatible pair listed):

Xi1t Yi2t
maint maint

Objective function (9) { minimize cost
To achieve optimization within the context of our constraint framework, we cre-

ate a constraint that speci�es that the total cost must be less than or equal to a set
amount. In order to reduce the arity of the cost constraint, we introduce a simpli�-
cation to the problem: we optimize cost by week instead of over the entire planning
period. Therefore, the algorithm achieves an optimal solution to a more restricted
cost function which may not optimize the original one. Further study is need to
assess the trade-o�s between constraint size and global optimality.

We implemented the cost constraint as a procedure in our CSP solving program.
This procedure is called after each X type variable is instantiated. The input to
the procedure is the week, t, of the variable, and the procedure returns true if the
total cost corresponding to week t variables assigned on or maint is less than or
equal to Ct, a new problem parameter (not referenced in Fig. 13) which speci�es the
maximum cost allowed in period t. This is the only constraint in our formulation
that is implemented procedurally.

4 Solution Procedure

In this section we show a novel use of CSP algorithms to solve an optimization
problem and in particular how constraint learning can be exploited for optimization.

4.1 Finding an Optimal CSP

A constraint optimization problem is a CSP augmented with a cost function, de�ned
as follows. Let X = x1; . . . ; xn, and let f1; . . . ; fl be real-valued functions de�ned
over subsets of variables Si1 ; . . . ; Sil; Sij � X , such that for �x = (x1; . . . ; xn)

C(�x) =
lX

j=1

fj(xj):

24

The optimization task is to �nd �xO = (x1; . . . ; xn) satisfying all constraints, such
that

C(�xO) = min
x

C(x):

In general, we can �nd a solution with optimal cost by solving a series of CSPs. Each
problem P i is augmented with a constraint

lX

j=1

fj(xj) � Ci;

where C1 � C2 � . . . � Cj � If problem P i has a solution and problem P i+1

does not, we know that the solution obtained for P i is optimal.
The procedure as implemented is described in Fig. 14. Initially, a schedule is

found with a very high cost-bound. For the maintenance scheduling problems, this
is Ct, the maximum cost per week. The cost-bound is then gradually lowered, with a
new schedule found each time. Eventually, the cost-bound is so low that no schedule
exists which meets it, and the last schedule found is optimal, within the limit of
the amount by which the cost-bound was lowered. A more sophisticated control
algorithm, based on a binary search approach, can be envisioned. In the experiments
reported below, we used the simple decrement only technique. Another enhancement
would be to permit di�erent cost-bounds for di�erent weeks.

4.2 Optimization with Learning

To make the optimization process more e�cient, we introduce the notion of a memory
that exists between successive iterations of step 2 in Fig. 14 The idea is to use a
learning algorithm, such as BJ+DVO+LRN, to solve the maintenance scheduling
CSPs (MSCSPs), and the new constraints introduced by learning are retained for
use in later iterations. We call this approach iterative learning.

Retaining a memory of constraints is safe because as the cost-bound is lower the
constraints become tighter. Any solution to an MSCSP with a certain cost-bound
is also a valid solution to the same problem with a higher cost-bound. If the the
cost-bound were both lowered and raised, as suggested in the previous section with a
binary search approach, then some learned constraints would have to be \forgotten"
when the cost-bound was raised.

4.3 Problem Instance Generator

One of our goals is to be able to determine the e�cacy of various CSP algorithms
and heuristics when applied to Maintenance Scheduling CSPs. To perform an exper-
imental average-case analysis, we need a source of many MSCSPs. We have therefore
developed an MSCSP generator, which can create any number of problems that ad-
here to a set of input parameters.

25

Solution Procedure for Optimization

Input: A MSCSP with hard constraints, and an objective function.
Output: The lowest cost-bound for which a solution was found, and a solution with
that cost-bound.

1. Set the cost-bound to a high value.

2. Until no solution can be found,

(a) Add a constraint (or set of constraints) to the MSCP specifying that the
value of the objective function is less than the cost-bound.

(b) Solve the MSCSP using a constraint algorithm.

(c) Decrement the cost-bound.

3. Return the last solution found, and the corresponding cost-bound.

Figure 14: The solution procedure for optimization.

A
owchart of the overall system is below:

.scheme

�le
maintgen

.def

�le
CSP solver

A \scheme" �le is an ACII �le (with a name usually ending in \.scheme") that
de�nes a class or generic type of MSCSP. Here is an example of a .scheme �le:

The input to the generator is a �le containing most of the basic parameters, ei-
ther explicitly enumerated or a kernel for generating all the necessary parameters
by interpolation or by some parameterized distribution. The generator generates
as many problem instances as necessary using the input parameters and then the
problem instance is solved by the various algorithms. The maintgen program gener-
ator reads in a �le and creates one or more MSCSP instances which can be solved
by the CSP solver. The maintgen program uses a random number generator seed
and a number indicating how many individual problems should be generated. The
parameters given to the generator specify the fundamental size parameters: the num-
ber of weeks W , the number of generating units U , and the number of units which
can be maintained at one time M . Also, the demand for some number of weeks is
speci�ed. The demand for weeks that are not explicitly speci�ed is computed by a
linear interpolation between the surrounding speci�ed weeks. The process is shown
diagrammatically in Fig. 16. There is no randomness in the demand \curve" that is
created based on a scheme �le. Note that the weeks are numbered starting from 0,
so that in this example the last of the 25 weeks is week #24.

The following line in the scheme �le speci�es the initial maximum cost per week,

26

Backjumping with learning

1. If all variables have been assigned values, then return this solution. Otherwise,
select a variable using the dynamic variable ordering heuristic.

2. Find a compatible value for the current variable. If successful, go to 1.
Otherwise, go to 3.

3. (Dead-end.) Find a subset of the variables with values assigned that are
responsible for the dead-end. Add a new constraint which prohibits that
combination from reoccuring. Select the latest variable in that subset to be the
current variable, and go to 2.

Figure 15: Sketch of the BJ+DVO+LRN algorithm.

and the amount it is to be decremented after each successful search for a schedule.
The characteristics of the units, that is, their output capacities and required

maintenance times, are not speci�ed individually. Instead, these values are randomly
selected from normal distributions whose means and standard deviations are spec-
i�ed. Currently the earliest and latest maintenance start dates are not speci�ed in
the scheme �le, and are always set to 0 and W � 1 in the .def �le.

Maintenance costs are speci�ed by the standard deviation (1,000 in the example),
and by a sample of weekly demands per unit. As with demand, values for weeks that
are not given explicitly are interpolated. However, for maintenance costs there is
a random element; the interpolated value is used as the mean, together with the
speci�ed standard deviation. Operating costs are de�ned in the lines following the
maintenance costs, with exactly the same structure. The last piece of information is
the number of incompatible pairs of units. The requested number of pairs is created
randomly from a uniform distribution of the units.

Here is an example of an input �le to the generator followed by a speci�cation of
the problem instance that was generated.

lines beginning with # are comments

first line has weeks, units, maximum simultaneous units

4 6 2

#

next few lines have several points on the demand curve,

given as week and demand. Other weeks are interpolated.

0 700

3 1000

end this list with EOL

EOL

27

5 10 15 20 24

500

800

1000

1500

�

�

� �

�
� �

� �
�

� �
� �

�
�
�
�
�
�
�

�

�

�

�

� demand speci�ed in scheme �le
� interpolated demand

Week

Demand

Figure 16: Weekly demand generated by the maintgen program when the following (week,
demand) points are speci�ed: (5, 800), (10, 10,000), (18, 1,500), (20, 1,500), (24, 500).

#

next line has initial max cost per week, and decrement amount

60000 3000

#

next line has average unit capacity and standard deviation

200 25

#

next line has average unit maintenance time and std. dev.

2 1

#

next line has standard deviation for maintenance costs

1000

#

next few lines have some points on the maintenance cost curve,

first number is week, then one column per unit

0 10000 10000 10000 10000 10000 10000

3 13000 16000 19000 10000 7000 10000

#

next number is standard deviation for operating costs

2000

next few lines have some points on the operating cost curve,

first number is week, then one column per unit

0 5000 5000 5000 5000 5000 5000

the next line specifies the number of incompatible pairs

2

28

and that's it!

Below is a corresponding generated problem instance.

comments begin with

first line has weeks W, units U, max-simultaneous M

4 6 2

demand, one line per week

700

800

900

1000

next few lines has maximum cost per week.

Cost must be <= max.

60000 3000

one line per unit:

capacity maint length earliest maint start latest maint start date

194 1 0 3

171 3 0 3

209 1 0 3

166 1 0 3

219 2 0 3

217 2 0 3

maintenance costs, one line per week, one column per unit

11085 10034 9374 8945 10858 10045

11056 11988 13670 10465 9301 10625

12745 14625 15422 10422 8099 7629

12534 15394 21098 9841 6748 9364

operating costs, one line per week, one column per unit

4284 6857 3847 5050 5145 4998

5987 7352 1967 4635 6152 4635

3746 6475 5151 3988 8172 4131

6152 3436 5475 5600 4366 6070

incompatible pairs of units (numbering starts from 0)

1 3

2 3

EOL

and that's it!

The output problem instance is in a format which is recognized by our CSP
solver.

29

5 Experimental Results

In this section we describe in detail an experiment with a single maintenance schedul-
ing problem, and then summarize the results of several experiments based on sets of
100 randomly generated problem instances.

5.1 A Single Problem

To demonstrate the e�ectiveness of the constraint processing framework, we will show
how it operates on a small test example, drawn from [1, 28]. The problem has �ve
units and a 12 week time horizon. Table 1 shows the characteristics of the units.
Table 2 shows the load demand for each week. The operating and maintenance costs
are speci�ed in Tables 3 and 4. There are two maintenance crews, and units 1, 2 and
3 are to be maintained by a single crew.

Because there are �ve units and 12 time periods, this problem has 60 visible
variables, each indicating whether a unit is being maintained, or if not what its
utilization level for the week is. To solve this example problem we used BT+DVO.
This is a relatively simple and unsophisticated approach; it does not take advantage
of any special structure of the problem.

Table 1: Unit Operating Characteristics

.....Maintenance.....
Unit Capacity Window Duration

1 150 1|11 2
2 150 1|11 2
3 130 1|11 2
4 90 1|11 2
5 50 1|11 2

Optimizing the schedule to minimize cost is an iterative cost-bounded procedure.
We start with an unoptimized schedule which meets extremely loose cost bounds.
The cost bounds specify the maximum allowable cost (summing operating and main-
tenance costs) per week. The cost bounds are modi�ed iteratively using a schedule
(for instance, reducing the cost in �xed amounts or binary search) until we reach an
optimal or near-optimal solution.

For the problem under consideration, we �rst generated a schedule with no cost
bounds; the resulting unoptimized schedule had a total cost of $179,673, and gener-
ated much more power each week than the minimum demand required (as speci�ed
in Table 2). In fact, in this initial schedule every unit was set to be operating at full
power when it was not being maintained. Finding this schedule took less than one
second of processing time. We then reduced the weekly cost bounds to 90% of the

30

cost for each week in this unoptimized schedule. This forced the algorithm to reduce
the power for some units, or to move maintenance times to weeks when the mainte-
nance cost was less. We repeated 8 times this cycle of generating a schedule, noting
the resulting costs, and then creating a new schedule with lower costs. Eventually no
lower-cost schedule could be found. The optimum schedule we generated is shown in
Table 5. The total computer processing time was about an hour.

Optimizing the schedule to minimize cost is an iterative cost-bounded procedure.
We start with an unoptimized schedule which meets extremely loose cost bounds.
The cost bounds specify the maximum allowable cost (summing operating and main-
tenance costs) per week. The cost bounds are modi�ed iteratively using a schedule
(for instance, reducing the cost in �xed amounts or binary search) until we reach an
optimal or near-optimal solution.

For the problem under consideration, we �rst generated a schedule with no cost
bounds; the resulting unoptimized schedule had a total cost of $179,673, and gener-
ated much more power each week than the minimum demand required (as speci�ed
in Table 2). In fact, in this initial schedule every unit was set to be operating at full
power when it was not being maintained. Finding this schedule took less than one
second of processing time. We then reduced the weekly cost bounds to 90% of the
cost for each week in this unoptimized schedule. This forced the algorithm to reduce
the power for some units, or to move maintenance times to weeks when the mainte-
nance cost was less. We repeated 8 times this cycle of generating a schedule, noting
the resulting costs, and then creating a new schedule with lower costs. Eventually no
lower-cost schedule could be found. The optimum schedule we generated is shown in
Table 5. The total computer processing time was about an hour.

Table 2: Total Energy Demand for Each Week

Week Demand

1 36170
2 38398
3 36170
4 38398
5 36855
6 37707
7 36427
8 37250
9 38379
10 36170
11 36248
12 36855

31

Table 3: Weekly Operating Cost (/MWh)

Week Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

1 8.2 9.3 10.6 11.9 12.0
2 8.0 9.5 10.7 11.4 12.5
3 8.8 9.7 10.7 11.1 12.0
4 8.0 9.6 10.5 11.2 12.3
5 8.7 9.8 10.6 11.3 12.3
6 8.6 9.7 10.1 11.2 12.1
7 8.7 9.0 10.3 11.2 12.4
8 8.5 9.3 10.2 11.1 12.4
9 8.8 9.4 10.5 11.6 12.9
10 8.7 9.6 10.8 11.8 12.8
11 8.0 9.9 10.0 11.3 12.9
12 8.0 9.9 10.4 11.4 12.7

Table 4: Weekly Maintenance Cost
Week Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

1 8,700 9,100 9,300 9,350 9,550
2 8,700 9,100 9,300 9,350 9,550
3 8,700 9,100 9,300 9,350 9,550
4 8,700 9,100 9,300 9,350 9,550
5 8,700 9,100 9,300 9,350 9,550
6 8,700 9,100 9,300 9,350 9,550
7 8,900 9,300 9,600 9,650 9,850
8 8,900 9,300 9,600 9,650 9,850
9 8,900 9,300 9,600 9,650 9,850
10 8,700 9,100 9,300 9,350 9,550
11 8,700 9,100 9,300 9,350 9,550
12 8,700 9,100 9,300 9,350 9,550

The schedule found by our scheme is shown in Tables 5(a) and 5(b). Because
the operating cost in $/MWh for Unit 1 are always lower than the operating cost
for any other unit, that unit was always selected to be running at full power when it
was not undergoing maintenance. Unit 2, the second most e�cient unit, was always
selected next, running at full or half power, as controlled by the demand for the week.
Note that since the weekly demand for Week 2, 38,398 MWh, is slightly higher than
the demand during Week 1, 36,170 MWh, it is necessary during Week 2 to schedule
Unit 2 to run at full power and not half power, as is su�cient for Week 1. Because
the demand is not high relative to the generating capacity of the units, it is not

32

necessary to schedule Units 3, 4 and 5 to run except when Units 1 or 2 are being
maintained.

It is also interesting to note that the schedule avoids any maintenance during
weeks 7, 8 and 9. According to the schedule of maintenance costs in Table 4, the
costs are higher in these weeks.

Table 5(a): Optimum Schedule Computed by Constraint
Processing

First 6 weeks

Week
Unit 1 2 3 4 5 6

Status per Unit per Week:

1 F F F F M M
2 H F H F F F
3 M M O O F F
4 M M O O O O
5 O O O O O O

Cost per Unit per Week:

1 1,377 1,344 1,478 1,344 8,700 8,700
2 781 1,596 814 1,612 1,646 1,629
3 9,300 9,300 0 0 1,780 1,696
4 9,350 9,350 0 0 0 0
5 0 0 0 0 0 0

Total 20,808 21,590 2,292 2,956 12,126 12,025
Total for all 12 weeks: 143,662

33

Table 5 (b): Optimum Schedule Computed by Constraint
Processing

Last 6 Weeks

Week
Unit 7 8 9 10 11 12

Status per Unit per Week:

1 F F F F F F
2 H H F H M M
3 O O O O F F
4 O O O O O O
5 O O O M M O

Cost per Unit per Week:

1 1,461 1,428 1,478 1,461 1,344 1,344
2 756 781 1,579 806 9,100 9,100
3 0 0 0 0 1,680 1,747
4 0 0 0 0 0 0
5 0 0 0 9,550 9,550 0

Total 2,217 2,209 3,057 11,817 21,674 12,191
Total for all 12 weeks: 143,662

The schedule generated by our system is similar to, and compares favorably with,
the schedule reported in [28]. A direct comparison is not entirely possible, since we
have used a slightly di�erent objective function and made some di�erent assumptions
about costs. Nevertheless, if the schedule in [28] were evaluated according to our
objective function, the cost would be $151,337, compared to our cost of $143,662.

5.2 Random Problems

We now present the results of experiments with two sets of 100 MSCSPs each. The
smaller problems had 15 units and 13 time periods, resulting in 585 variables. The
larger problems had 20 units and 20 time periods, resulting in 1200 variables. We
conducted two experiments with each set of 100 problems. In the �rst we used the
algorithms BJ+DVO and iterative learning based on BJ+DVO+LRN to solve the
optimization task. In the second we compared the performance of all �ve algorithms
described in section 4, using a �xed cost-bound that is close to the lowest feasible
one.

Determining whether a potential value for a variable violates a constraint with
another variable is called a consistency check. Because consistency checking is per-
formed so frequently, it constitutes a major part of the work performed by all of these

34

algorithms. Hence a count of the number of consistency checks is a common measure
of the overall work of an algorithm.

In the �rst experiment on random problems, we tried to �nd an optimal schedule
for each MSCSP in the smaller and larger sets, using BJ+DVO and iterative learning.
Iterative learning used 6th-order BJ+DVO+LRN. The results are shown in Fig. 17
and Fig. 18.

For the 100 smaller problems, the cost-bound was set initially at 110,000 per
week, and then reduced by 5,000 for each iteration. All 100 MSCSPs had schedules
at cost-bound 85,000 and above. Only 38 had schedules within the 80,000 bound;
at 75,000 only four problems were solvable. On the set of 100 larger MSCSPs, the
cost-bound started at 150,000 per week and was reduced by 5,000. Schedules were
found for all instances at cost-bound 120,000 and above. 97 instances had schedules
at cost- bound 115,000 and 110,000; 11 at cost-bound 105,000; and two at cost-bound
100,000 and 95,000.

Iterative learning performed better, on average, than BJ+DVO on these random
maintenance scheduling problems. For instance, on the set of smaller problems, after
�nding a schedule with cost-bound 95,000 the average number of learned constraints
was 214. Tightening the cost-bound to 90,000 resulted in over twice as much CPU
time needed for BJ+DVO (54.01 CPU seconds compared to 23.28), but only a 71%
increase for iterative learning (29.41 compared to 17.20). Iterative learning was less
e�ective on the larger MSCSPs. Although it required less CPU time on average, the
improvement over BJ+DVO was much less than on the smaller problems.

The second experiment with random problems utilized the same sets of 100
smaller MSCSP instances and 100 larger instances, but we did not try to �nd an
optimal schedule. For the smaller problems we set the cost-bound at 85,000 and for
the larger problems we set the cost-bound at 120,000. Each bound was the lowest
level at which schedules could be found for all problems. We used the �ve algorithms
described earlier to �nd a schedule for each problem. The results are summarized
in Fig. 19.

Among the �ve algorithms, BJ+DVO performed least well on the smaller prob-
lems and best on the larger problems, when average CPU time is the criterion.
BT+DVO+IAC was the best performer on the smaller problems and the worst on
the larger problems. This reversal in e�ectiveness may be related to the increased
size of the higher arity constraints on the larger problems. The high arity con-
straints, such as those pertaining to the cost-bound, the weekly power demand, and
the existence of a maintenance period, become looser as the number of units and
number of weeks increase. Earlier results [9] have indicated that more look-ahead is
e�ective on problems with tight constraints, and detrimental on problems with loose
constraints. Nevertheless backjumping remains an e�ective technique on the larger
problems. Further experiments are required to determine how the relative e�cacy of
di�erent algorithms is in
uenced by factors such as the size of the problem (number
of weeks and units) and characteristics such as the homogeneity of the units.

35

� with learning
? without learning
� cum. constraints

110 105 100 95 90 85 80 75

cost bound (in thousands)

10

20

30

40

50

60

70

80

90

CPU

� � �

�

�
�

�

�

? ? ?

?

?

?

?

?

100

200

300

400

� �

�

�

�

� � �

Figure 17: Average CPU seconds on 100 small problems (15 units, 13 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with learning (�) and
without learning (?). Cumulative number of constraints learned corresponds to right-hand
scale.

6 Conclusions

The research presented in this report has demonstrated that maintenance scheduling
problems can be successfully addressed using the constraint satisfaction framework.
We have shown that a variety of general-purpose algorithms and heuristics for CSPs
work well on these problems.

The constraint satisfaction problems derived from the maintenance scheduling
needs of the electric power industry are an interesting testbed for CSP algorithms.
The problems have a mixture of tight binary constraints, such as those that bind
the X and Y variables together, and loose high arity constraints, such as those
that ensure that at least one maintenance period is scheduled for each unit. The
most promising algorithm for these problems is iterative learning. Further studies on
larger maintenance scheduling CSPs is required to determine whether one algorithm
dominates the others as problem size increases.

A challenging problem that is di�cult to formalize is to �nd the best way to
encode the requirements of a problem such as maintenance scheduling into constraints
of a CSP. In section 3 we discussed some of the trade-o�s involved in, for example,

36

� with learning
? without learning
� cum. constraints

150 145 140 135 130 125 120 115 110 105 100 95

cost bound (in thousands)

100

200

300

400

500

600

700

800

900

1000

CPU

� � �
�

�

�
�

�

�

�
� �

? ? ?

?

?

?
?

?

?

? ?
?

100

200

300

400

500

� �

�

�

�

� � � �
� �

�

Figure 18: Average CPU seconds on 100 large problems (20 units, 20 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with learning (�) and
without learning (?). Cumulative number of constraints learned corresponds to right-hand
scale.

adding \hidden" variables in return for a smaller number of tuples in high arity
constraints. This is an important area for future research that has the potential
of greatly impacting the applicability of the constraint satisfaction framework to
problems from science and industry.

References

[1] T. M. Al-Khamis, S. Vemuri, L. Lemonidis, and J. Yellen. Unit maintenance
scheduling with fuel constraints. IEEE Trans. on Power Systems, 7(2):933{939,
1992.

[2] Roberto Bayardo and Daniel Mirankar. A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem. In Proceedings of the

Thirteenth National Conference on Arti�cial Intelligence, pages 298{304, 1996.

[3] James R. Bitner and Edward M. Reingold. Backtrack Programming Techniques.
Communications of the ACM, 18(11):651{656, 1975.

37

Average
Algorithm CC Nodes CPU

100 smaller problems:

BT+DVO+IAC 315,988 3,761 51.65
BJ+DVO 619,122 8,981 70.07
BJ+DVO+LVO 384,263 5,219 54.48
BJ+DVO+LRN 671,756 8,078 67.51
BJ+DVO+LRN+LVO 476,901 5,085 57.45

100 larger problems:

BT+DVO+IAC 7,673,173 32,105 694.02
BJ+DVO 2,619,766 28,540 460.42
BJ+DVO+LVO 6,987,091 26,650 469.65
BJ+DVO+LRN 5,892,065 27,342 521.89
BJ+DVO+LRN+LVO 6,811,663 26,402 475.12

Figure 19: Statistics of �ve algorithms on MSCSPs.

[4] Rina Dechter. Enhancement Schemes for Constraint Processing: Backjumping,
Learning, and Cutset Decomposition. Arti�cial Intelligence, 41:273{312, 1990.

[5] Rina Dechter. Constraint networks. In Encyclopedia of Arti�cial Intelligence,
pages 276{285. John Wiley & Sons, 2nd edition, 1992.

[6] J. F. Dopazo and H. M. Merrill. Optimal Generator Maintenance Scheduling
using Integer Programming. IEEE Trans. on Power Apparatus and Systems,
PAS-94(5):1537{1545, 1975.

[7] G. T. Egan. An Experimental Method of Determination of Optimal Maintenance
Schedules in Power Systems Using the Branch-and-Bound Technique. IEEE

Trans. SMC, SMC-6(8), 1976.

[8] E. C. Freuder. A su�cient condition for backtrack-free search. JACM,
21(11):958{965, 1982.

[9] Daniel Frost. Algorithms and Heuristics for Constraint Satisfaction Problems.
PhD thesis, University of California, Irvine, CA 92697-3425, 1997.

[10] Daniel Frost and Rina Dechter. Dead-end driven learning. In Proceedings of the

Twelfth National Conference on Arti�cial Intelligence, pages 294{300, 1994.

[11] Daniel Frost and Rina Dechter. In search of the best constraint satisfaction
search. In Proceedings of the Twelfth National Conference on Arti�cial Intelli-

gence, pages 301{306, 1994.

[12] Daniel Frost and Rina Dechter. Look-ahead value ordering for constraint satis-
faction problems. In Proceedings of the Fourteenth International Joint Confer-

ence on Arti�cial Intelligence, pages 572{578, 1995.

38

[13] John G. Gaschnig. Performance Measurement and Analysis of Certain Search

Algorithms. PhD thesis, Carnegie Mellon University, Pittsburgh, PA 15213, May
1979.

[14] R. M. Haralick and G. L. Elliott. Increasing Tree Search E�ciency for Constraint
Satisfaction Problems. Arti�cial Intelligence, 14:263{313, 1980.

[15] Henry Kautz and Bart Selman. Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search. In Proceedings of the Thirteenth National Confer-

ence on Arti�cial Intelligence, pages 1194{1201, 1996.

[16] Hyunchul Kin, Yasuhiro Hayashi, and Koichi Nara. An Algorithm for Thermal
Unit Maintenance Scheduling Through Combined Use of GA SA and TS. IEEE
Trans. on Power Systems, 12(1):329{335, 1996.

[17] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,
8:99{118, 1977.

[18] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial net-
work consistency algorithms for constraint satisfaction problems. Arti�cial In-

telligence, 25:65{74, 1985.

[19] Alan K. Mackworth. The logic of constraint satisfaction. Arti�cial Intelligence,
58:3{20, 1992.

[20] U. Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing. Inf. Sci., 7:95{132, 1974.

[21] Bernard A. Nadel. Tree search and arc consistency in constraint satisfaction
algorithms. In L. Kanal and V. Kumar, editors, Search in Arti�cial Intelligence,
pages 287{342. Springer, 1988.

[22] Bernard A. Nadel. Constraint satisfaction algorithms. Computational Intelli-

gence, 5:188{224, 1989.

[23] Patrick Prosser. BM + BJ = BMJ. In Proceedings of the Ninth Conference on

Arti�cial Intelligence for Applications, pages 257{262, 1993.

[24] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem.
Computational Intelligence, 9(3):268{299, 1993.

[25] Paul Walton Purdom. Search Rearrangement Backtracking and Polynomial
Average Time. Arti�cial Intelligence, 21:117{133, 1983.

[26] Daniel Sabin and Eugene C. Freuder. Contradicting Conventional Wisdom in
Constraint Satisfaction. In Principles and Practice of Constraint Programming,
pages 10{20, 1994.

[27] David Waltz. Understanding Line Drawings of Scenes with Shadows. In
Patrick Henry Winston, editor, The Psychology of Computer Vision, pages 19{
91. McGraw-Hill, 1975.

39

[28] J. Yellen, T. M. Al-Khamis, S. Vemuri, and L. Lemonidis. A decomposition
approach to unit maintenance scheduling. IEEE Trans. on Power Systems,
7(2):726{731, 1992.

[29] Ramin Zabih and David McAllester. A Rearrangement Search Strategy for
Determining Propositional Satis�ability. In Proceedings of the Seventh National

Conference on Arti�cial Intelligence, pages 155{160, 1988.

[30] H. H. Zurm and V. H. Quintana. Generator Maintenance Scheduling Via Succes-
sive Approximation Dynamic Programming. IEEE Trans. on Power Apparatus

and Systems, PAS-94(2), 1975.

40

