
Bucket elimination: A unifying framework for probabilistic
inference

Rina Dechter
Department of Information and Computer Science

University of California, Irvine
dechter@ics.uci.edu

Abstract

Probabilistic inference algorithms for �nd-
ing the most probable explanation, the max-
imum aposteriori hypothesis, and the maxi-
mum expected utility and for updating belief
are reformulated as an elimination{type al-
gorithm called bucket elimination. This em-
phasizes the principle common to many of
the algorithms appearing in that literature
and clari�es their relationship to nonserial
dynamic programming algorithms. We also
present a general way of combining condition-
ing and elimination within this framework.
Bounds on complexity are given for all the al-
gorithms as a function of the problem's struc-
ture.

1 INTRODUCTION

An external observer attempting to sort out the core
ideas behind current algorithms for processing in
u-
ence diagrams or Bayesian networks normally �nd the
topic confusing; the variety of paradigmnomenclatures
and implementation considerations in the literature is
enormous. Some of the ideas are translations of each
other, others involve combinations of existing ideas,
others are extensions. Yet, the relationships among
the various approaches are not always explicitly stated.

Here, I wish to present a purely algorithmic view of
the core idea behind the main approach to probabilis-
tic reasoning, in the hope that this view will make
the current literature more accessible to newcomers.
This view, called bucket elimination, is a generaliza-
tion of nonserial dynamic programming �a la Bertele
and Briochi [BeBr 72]. It allows a uniform way of
combining elimination with conditioning, and provides
insight into the relationship between clustering and
elimination.

To emphasize the generality of bucket elimination we
start with a similar algorithm in the area of deter-
ministic reasoning. Consider the following algorithm
for deciding the satis�ability of a propositional the-

ory in Conjunctive Normal Form (CNF). Given a set
of clauses and given an ordering of the propositional
variables, assign to each clause the index of the high-
est ordered literal in that clause. Then resolve only
clauses having the same index, and only on their high-
est literal. The result of this restriction is a system-
atic elimination of literals from the set of clauses that
are candidates for future resolution. This algorithm,
which we call directional resolution (DR), is the core
of the well-known Davis-Putnam algorithm for satis�-
ability [DaPu 60; DeRi 94].

Algorithm DR (see Figure 1) is described using buck-
ets partitioning the set of clauses in the theory '. We
call its output theory, Ed('), the directional extension
of '. Given an ordering d = Q1; :::; Qn, all the clauses
containing Qi that do not contain any symbol higher
in the ordering are placed in the bucket of Qi, denoted
bucketi. The algorithm processes the buckets in a re-
verse order of d. When processing bucketi, it resolves
over Qi all possible pairs of clauses in the bucket and
inserts the resolvents into the appropriate lower buck-
ets. It was shown [DeRi 94] that:

Theorem 1.1 (model generation)
Let ' be a cnf formula, d = Q1; :::; Qn an ordering,
and Ed(') its directional extension. Then, if the ex-
tension is not empty, any model of ' can be generated
in a backtrack-free manner, consulting Ed(') in the
order d as follows: assign to Q1 a truth value that
is consistent with clauses in bucket1 (if the bucket is
empty, assign Q1 an arbitrary value); after assigning
values to Q1; :::; Qi�1, assign a value to Qi so that to-
gether with the previous assignments it will satisfy all
clauses in bucketi.

It was also shown [DeRi 94], that the complexity of
DR is exponentially bounded (time and space) in the
induced width (also called tree-width) of the interac-
tion graph of the theory, where a node is associated
with a proposition and an arc connects any two nodes
appearing in the same clause.

The collection of belief network algorithms we present
next have a lot in common with the resolution pro-
cedure above. They all possess similar properties of

directional resolution
Input: A cnf theory ', an ordering d =
Q1; :::; Qn,
Output: A decision of whether ' is satis�able.
If it is, a theory Ed('), equivalent to '; else, an
empty directional extension.
1. Initialize: Generate an ordered partition
of the clauses, bucket1; :::; bucketn, where bucketi
contains all the clauses whose highest literal is Qi.
2. For p = n to 1 do:
� If bucketp contains a unit clause, perform only
unit resolution. Put each resolvent in the appro-
priate bucket.
� else, resolve each pair f(� _ Qp); (� _ :Qp)g �
bucketp. If
 = � _ � is empty, return Ed(') = ;,
the theory is not satis�able; else, determine the
index of
 and add it to the appropriate bucket.
3. Return Ed(')(=

S
i bucketi.

Figure 1: Algorithm directional resolution

compiling a theory into a backtrack-free (e.g., greedy)
theory and their complexity is dependent on the same
graph parameters. The algorithms are, for the most
part, not new in the sense that the basic ideas have
existed for some time [Pear 88; Spie 86; TaSh 90;
Jens 94; Shac 90; Bacc 95; Shac 86; Shac 88; ShCh 91;
Shen 92]. What we advocate is a syntactic and uni-
form exposition emphasizing the algorithm's form as
a straightforward elimination algorithm. The main
virtue of this presentation, beyond uniformity, is that
it facilitates transfer of ideas and techniques across ar-
eas of research. In particular, having noted that elim-
ination algorithms and clustering algorithms are very
similar [DePe 89], we propose a uniform way for im-
proving such algorithms based on conditioning. We
show that the idea of conditioning, which is as uni-
versal as that of elimination, can be incorporated and
exploited naturally within the elimination framework.
This leads to a hybrid algorithm, one trading o� time
for space [Dech 96].

The work we present here also �ts into the framework
of [Arnb 85; ArPr 89]. Arnborg presents table-based
reductions for various NP-hard graph problems such as
the independent set problem, network reliability, ver-
tex cover, graph k-colorability, and Hamilton circuits.
Our paper as well as [DeBe 95] extends this approach
to a di�erent set of problems.

2 PRELIMINARIES

A belief network (BN) is a concise description of a com-
plete probability distribution. It is de�ned by a di-
rected acyclic graph over nodes representing random
variables, where each variable is annotated with the
conditional probability matrices specifying its proba-
bility given each value combination of its parent vari-

ables. A BN uses the concept of a directed graph.

De�nition 2.1 (graph concepts) A directed graph
is a pair, G = fV;Eg, where V = fX1; :::; Xng is a
set of elements and E = f(Xi; Xj)jXi; Xj 2 V g is the
set of edges. If (Xi; Xj) 2 E, we say that Xi points
to Xj . For each variable Xi, pa(Xi) is the set of vari-
ables pointing to Xi in G, while the set of child nodes
of Xi, denoted ch(Xi), comprises the variables that Xi

points to. The family of Xi, Fi, includes Xi and its
child variables. A directed graph is acyclic if it has
no directed cycles. In an undirected graph, the direc-
tions of the arcs are ignored: (Xi; Xj) and (Xj ; Xi) are
identical. An ordered graph is a pair (G; d) where G is
an undirected graph and d = X1; :::; Xn is an ordering
of the nodes. The width of a node in an ordered graph
is the number of its neighbors that precede it in the or-
dering. The width of an ordering d, denoted w(d), is
the maximum width over all nodes. The induced width
of an ordered graph, w�(d), is the width of the induced
ordered graph obtained as follows: nodes are processed
from last to �rst; when node X is processed, all its pre-
ceding neighbors are connected. The induced width of
a graph, w�, is the minimal induced width over all its
orderings; it is also known as the tree-width. A graph
has an induced width k i� it can be embedded into a
k-tree, in which case it is called a partial k-tree [Arnb
85]. A cycle-cutset is a subset of nodes in the graph
that, when removed, results in a graph without cycles.

De�nition 2.2 (belief networks)
Let X = fX1; :::; Xng be a set of random variables
over multivalued domains, D1; :::; Dn. A BN is a
pair (G;P) where G is a directed acyclic graph and
P = fPig. Pi is the conditional probability matrices
associated with Xi, Pi = fP (Xijpa(Xi))g. An assign-
ment (X1 = x1; :::; Xn = xn) can be abbreviated to
x = (x1; :::; xn). The BN represents a probability dis-
tribution over X having the product form

P (x1; ::::; xn) = �n
i=1P (xijxpa(Xi))

xS denotes the projection of a tuple x over a subset of
variables S. An evidence set e is an instantiated subset
of variables. A = a denotes a partial assignment to a
subset of variables in A. Whenever no confusion can
arise, we abbreviate pa(Xi) by pai and ch(Xi) by chi.
If u is a tuple over a subset X, then uS denotes that
assignment, restricted to the variables in S \X. Let
u be a tuple over a subset of variables, S denote a
subset of variables, and Xp be a variable not in S. In
the following, we frequently use (uS ; xp) to denote the
tuple uS appended by a value xp of Xp. We abbreviate

�xi = (x1; :::; xi) and �xji = (xi; xi+1; :::; xj).

Next, we focus on several fundamental queries, all de-
�ned over a belief network BN and given some evi-
dence e:

De�nition 2.3 (queries)

A

B C

E

D

G

D

G

E

CB

A

A

G

D

E

C

B

(a)
(b)

(c)

Figure 2: A belief network representing
P (g; e; d; c; b; a)=
P (gje)P (ejc; b)P (djb; a)P (bja)P (cja)

1. Belief assessment: The belief assessment task
of Xi = xi is to �nd bel(xi) = P (Xi = xije).

2. Most prob-
able explanation (MPE): The MPE task is
to �nd an assignment xo = (xo1; :::xon) such that
p(xo) = max�xn �

n
i=1P (xijxpai ; e).

3. Maximum aposteriori hypothesis (MAP):
Given a set of hypothesized variables A =
fA1; :::Akg, A � X, the MAP task is to �nd an
assignment ao = (ao1; :::aok) such that p(ao) =
max�ak

P
xX�A

�n
i=1P (xijxpai ; e).

4. Maximum expected utility (MEU): Given a
real-valued utility function u(x); u(x)! R, which
is additively decomposable relative to Q1; :::; Qj,
Qi � X, as follows u(x) =

P
Qj2Q

fj(xQj),

and given a subset of decision variables D =
fD1; :::; Dkg that are root variables in BN ,
D � X, the MEU task is to �nd an as-
signment do = (do1; :::; dok) such that (do) =
argmaxd

P
xk+1;:::;xn

�n
i=1P (xijxpai;d)u(x).

It is known that these tasks are NP-hard. Neverthe-
less, a polynomial propagation algorithm for singly-
connected networks [Pear 88] exists. The two main
approaches to extending this propagation algorithm
to multiply-connected networks are the cycle-cutset
approach, also called conditioning, and tree-clustering
[Pear 88; Spie 86; Shac 86]. These methods work well
only for sparse networks with small cycle-cutsets or
small clusters. Complexity is time exponential in the
cutset size for the former, time and space exponential
in the cluster sizes, bounded by the induced-width, for
the latter.

3 DYNAMIC PROGRAMMING

We now present elimination algorithms for the var-
ious tasks. The algorithms generalize the family of

nonserial dynamic programming [BeBr 72]. Because
dynamic programming algorithms work by eliminating
variables one by one while computing the e�ect of each
eliminated variable on the remainder of the problem,
they can be viewed as elimination algorithms. It is
known that most such algorithms have worst-case com-
plexity bounded exponentially by the induced width
[Dech 90; Arnb 85] of their underlying graph. In belief
networks the graph, often called the moral graph, is ob-
tained by connecting all the parents of each node in the
acyclic graph and ignoring directionality. When the
graph is a tree, the elimination algorithms largely co-
incide with the linear propagation algorithms for trees.
Various elimination-type algorithms for processing in-

uence diagrams and BN have been studied [Shac 86;
Shac 88; TaSh 90; Shac 90; Jens 94; ShPe 92; Shen 92].
Lack of space prevents us from showing explicitly how
they map into the elimination framework.

3.1 AN ELIMINATION ALGORITHM FOR
MPE

Following Pearl's propagation algorithm for singly-
connected networks [Pear 88], researchers have in-
vestigated various approaches to �nding the MPE in
BN. Early attempts are given in [Coop 84; PeRe 86;
PeRe 89]. Recent proposals include best �rst-search
algorithms [ShCh 91] and algorithms based on linear
programming [Sant 91].

The problem is to maximize the function maxx P (x) =
maxx�iP (xijxpai) when x = (x1; :::; xn). Consider an
arbitrary ordering of the variables (X1; :::; Xn). Par-
tition the conditional probability matrices fPig into
buckets. In the bucket of Xi put all the matrices men-
tioning Xi that do not mention any variable higher in
the ordering. The procedure has backward and for-
ward parts and is justi�ed by the following symbolic
manipulation (see also [Shac 90]).

(1) Backward part. Consider variableXn �rst (remem-
ber �xi = (x1; :::; xi)),

M = max
�xn

P (x) = max
�xn�1

max
xn

�n
i=1P (xijxpai)

All the expressions that do not mention Xn can be
migrated to the left of the maximization on Xn since,
relative to Xn, they are constants. The only matrices
mentioningXn are those relating to its Markov neigh-
borhood: its parents, children, and children's parents.
Let Un be the set of all the variables mentioned in the
bucket of Xn, excluding Xn. Initially, prior to process-
ing, this set coincides with Un = pan[chn[jFnj�Xn,
where Fnj are the parents of Xn's j

th child node. We
get (Remember that Fi includes Xi and ch(Xi)).

M = max
�xn�1

�fXi2X�FngP (xijxpai)�

max
xn

�Xi2FnP (xijxpai) =

max
�xn�1

�fXi2X�FngP (xijxpai) � hn(xUn)

Hence, the �rst step consists of processing the con-
ditional probability matrix in the bucket of Xn and
computing the function hn : Un ! R, hn(x) =
maxxn �Xi2FnP (xijxpai). The new function, hn, is
placed in the bucket of the largest-index variable
amongst Un. The optimizing value of Xn for each
tuple x is de�ned by xoptn (x) = argmaxXn

hn(x). The
procedure continues recursively with the next variable.
During processing, the functional components in each
bucket are either the original conditional probabilities
or functions computed when processing earlier buck-
ets. We will denote all such functions (also called ma-
trices) in each bucket uniformly as h1; :::; hk and the
variable subsets on which they are de�ned as S1; :::; Sk.

(2) Forward part (processing variable Xi after select-
ing the partial assignment x = (x1; :::; xi�1)). Choose

value xopti (xUi) recorded in the backward phase.

The algorithm is described in Figure 3. We will
demonstrate the backward elimination part of the al-
gorithm using the example in Figure 2. We will assume
no evidence for now.

Example 3.1 Consider the variables in the order
A;C;B;E;D;G. Process the variables from last to
�rst and partition the conditional probability ma-
trices into buckets, yielding bucketG = fP (GjE)g,
bucketE = fP (EjB;C)g, bucketD = fP (DjB;A)g,
and bucketB = fP (BjA)g. First, eliminate vari-
able G, by computing the maximum probability ex-
tension to G of each value of E, namely, hG(e) =
maxg2G P (ejg), and place hG(e) in bucketE . Then,
record the maximizing values Gopt(e) = argmaxhG(e)
and place the result in bucketG. Subsequently, pro-
cess bucketD. To eliminate D, compute hD(b; a) =
maxd2D P (b; ajd), place the result in bucketB , and
record the values eopt(b; a). Next, process variable
E. Its bucket now contains two matrices: P (EjB;C)
and hG(E). To eliminate E, compute hE(b; c) =
maxe2E p(ejb; c)�hG(e) and place the resulting function
in bucketB. To eliminate B, compute and record the
function hB(a; c) = maxb2B P (bja) �hD(b; a) �hE(b; c),
placing it in bucketC. To eliminate C, compute
hC(a) = maxc2C P (cja) � hB(a; c). Finally, compute
the maximum value associated with A by computing
hmax = maxa2A hB(a) � hC(a).

This backward process can be viewed as a compilation
(or learning) phase, in which we compile information
that allows the most probable tuple to be generated
later without searching or backtracking. We gener-
ate the most probable tuple by following the pointers
in the recorded tables. In Example 3.1, we recorded
two-dimensional functions at the most, and therefore
the complexity is at most time and space cubic in the
domain sizes.

3.1.1 Handling Observations

Given evidence e, we will compute the most likely tu-
ple that maximizes the joint probability when the ob-

served variables are assigned their values in e. Namely,
we compute maxx P (x^ e). The same tuple will max-
imize also the probability function conditioned on e,
since those two functions are related by the normal-
ization constant P (e). To accomplish that within the
elimination scheme, observed variables are handled by
putting each observation in its corresponding bucket.
Continuing with our example, suppose we wish to com-
pute the MPE having observed B = 1. This observa-
tion will have an e�ect only when processing bucketB.
When the algorithm arrives at that bucket, it con-
tains the three matrices P (bja), hD(b; a), and hE(b; c),
as well as the observation B = 1. According to the
processing rule, we will compute, had we not had spe-
cial case-handling for observations, hB(a; c) = P (b =
1ja)hD(b = 1; a)hE(b = 1; c). Namely, we will gener-
ate a two-dimensioned function. This is unnecessary,
however. It would be more e�ective to apply the as-
signment B = 1 to each matrix separately and put the
resulting functions into buckets separately. In this case
we generate P (b = 1ja) and hD(b = 1; a) which will be
placed in the bucket of A, and hE(b = 1; c) that will be
placed in the bucket ofC. We thus avoid increasing the
dimensionality of recorded functions. Processing buck-
ets containing observations in this manner exploits the
cutset e�ect of conditioning automatically [Pear 88].

Another important point is that, had the bucket of
B been at the top of our ordering, the advantage of
this observation could have been exploited earlier in
the computation. For example, if we use the ordering
A;C;E;G;D;B, then we start by processing bucketB
containing P (bja); P (djb; a); P (ejc; b);B = 1. The spe-
cial rule for processing buckets holding observations
will place P (b = 1ja) in bucketA, P (djb = 1; a) in
bucketD, and P (ejc; b = 1) in bucketE . In subse-
quent processing, only one-dimensional functions will
be recorded, as if the underlying graph is a tree. Con-
sequently, to have the full computational bene�t of
observations, we may assume that observed variables
are placed last in the ordering and therefore, processed
�rst.

3.1.2 Complexity

The complexity of algorithm elim-max is bounded by
the time and space needed to process a bucket, which
is bounded exponentially by the number of variables
mentioned in a bucket. It is possible to show, by
graph manipulation only, that the maximum number
of variables in the bucket of Xi along ordering d is
bounded by w�

d(Xi), the induced width of Xi. For in-
stance, the moral graph of the DAG in Figure 2a, is
depicted in Figure 2b, the induced graph relative to
d = A;B;C;E;D;G is depicted in 2c. The induced
width of that ordering (which equals the width in this
case) is 2, and, indeed, the maximumarity of functions
recorded by elim-max is also 2. The induced width of
the reversed ordering is 3, and so is the recorded func-
tion's dimensionality. We conclude:

Algorithm elim-max
Input: A belief network BN = fP1; :::; Png; an
ordering of the variables, o; observations e.
Output: The most probable assignment.
1. Initialize: Generate an ordered partition of
the conditional probability matrices, bucket1, . . .,
bucketn, where bucketi contains all matrices whose
highest variable is Xi. Put each observed variable
in its appropriate bucket. Let S1; :::; Sj be the sub-
set of variables in the processed bucket, on which
matrices (new or old) are de�ned.
2. Backward: for p n downto 1 do
for all the matrices h1; h2; :::; hj in bucketp do
� If (bucket with observed variable) bucketp con-
tains Xp = xp, assign Xp = xp to each hi and put
each in appropriate bucket.
� else, Up

Sj
i=1 Si � fXpg. For all Up =

u, hp(u) = maxxp �
j
i=1hi(xp; uSi). xoptp (u) =

argmaxXp
hp(u).

Add hp to bucket of largest-index variable in Up.
3. Forward: Assign values in the ordering o using
the recorded functions xopt in each bucket.

Figure 3: Algorithm elim-max

Theorem 3.2 Given a belief network having n vari-
ables, algorithm elim-max is guaranteed to solve the
MPE task. The complexity of the algorithm is time
and space exponentially bounded in the induced width
of the network's ordered moral graph, O(n�exp(w�(d)).
2

3.2 AN ELIMINATION ALGORITHM FOR
BELIEF ASSESSMENT

The algorithm for belief assessment is identical to elim-
max with one change: maximization is replaced by
summation. Let X1 = x1 be an atomic proposition.
The problem is to assess and later update the belief in
x1 given evidence e. Namely, to compute

P (X1 = x1je) =
X

x=�xn2

�n
i=1P (xijxpai ; e)

Consider an ordering of the variables (X1; :::; Xn).
Partition the conditional probability matrices as be-
fore. The procedure has only a backward phase. Con-
sider variable Xn �rst.

P (x1je) =
X

x=�xn2

P (�xnje) =
X

�x
(n�1)
2

X

xn

�iP (xijxpai; e) =

X

x=�x
(n�1)
2

�Xi2X�FnP (xijxpai ; e)�

X

xn

P (xnjxpan ; e))�Xi2chnP (xijxpai ; e) =

X

x=�x
(n�1)
2

�Xi2X�FnP (xijxpai ; e) � �n(xUn)

Algorithm elim-bel
Input: A belief network BN = fP1; :::; Png, and
an ordering of the variables, o = X1; :::; Xn.
Output: the belief of X1 given evidence e.
1. Initialize: generate an ordered partition of
the conditional probability matrices into buckets.
bucketi contains all matrices whose highest vari-
able is Xi. Put each observation in its bucket.
Let S1; :::; Sj be the subset of variables in the pro-
cessed bucket on which matrices (new or old) are
de�ned.
2. Backwards: for p n downto 1 do
for all the matrices �1; �2; :::; �j in bucketp do
� If (bucket with observed variable) Xp = xp ap-
pear in bucket, then substitute Xp = xp in each
matrix �i and put each in appropriate bucket.
� else, Up

Sj
i=1 Si � fXpg For all Up = u,

�p(u) =
P

xp
�j
i=1�i(xp; uSi).

Add �p to the largest index variable in Up.
3. Return Bel(x1) = �P (x1) ��i�i(x1)
(where the �i are in bucket1, � is a normalizing
constant.)

Figure 4: Algorithm elim-bel

Processing bucketn amounts to computing the func-
tion �n. Therefore, when processing each bucket we
multiply all the bucket's matrices, �1; :::; �j, de�ned
over subsets S1; :::; Sj, and then eliminate the bucket's
variable by summation. The computed function is
�n : Un ! R, �n(u) =

P
xn

�j
i=1�i(xn; uSi), where

Un = [iSi � Xn. As before, the computed function
is placed in the bucket of its largest-index variable in
Un. The procedure continues recursively, processing
the bucket of the next variable. After all the buck-
ets are processed, the answer is available in the �rst
bucket. Algorithm elim-bel is described in Figure 4.
Observed variables are handled as before.

Example 3.3 Consider again the variables in the or-
der A;C;B;E;D;G, and assume evidence that G =
1. Process variables from last to the �rst and par-
tition the conditional probability matrices into buck-
ets, getting bucketG = fP (GjE); G = 1g, bucketE =
fP (EjB;C)g, bucketD = fP (DjB;A)g, bucketB =
fP (BjA)g. bucketC = fP (CjA)g, and bucketA =
fP (A)g. To process G, assign G = 1, get �G(e) =
P (g = 1je), and place the result in bucketE . Sub-
sequently, process bucketD by computing �D(b; a) =P

d2D P (djb; a) and putting the result in bucketB. The
bucket of E, to be processed next, now contains two
matrices: P (EjB;C) and �G(E). Compute �E (b; c) =P

e2E p(ejb; c) ��G(e), and place the resulting function
in bucketB . To eliminate B we record the function
�B(a; c) =

P
b2B P (bja) � �D(b; a) � �E(b; c), placing it

in bucketC, and to eliminate C we compute �C(a) =P
c2C P (cja) � �B(a; c). Finally, in bucketA, we com-

pute the belief in A = a, to be � �P (a) � �B(a) � �C(a),
when � is a normalization constant.

As before, the complexity of elim� bel is bounded ex-
ponentially by the dimension of the recorded matrices,
which in turns, can be bounded by the induced width
of the moral graph relative to the elimination ordering.
In summary,

Theorem 3.4 Algorithm elim-bel computes the belief
of X1. Its complexity is O(n �exp(w�(d)), when w�(d)
is the induced width along d of its moral graph, where
n is the number of variables. 2

3.3 AN ELIMINATION ALGORITHM FOR
MAP

We next present an elimination algorithm for the
MAP task. To simplify exposition we assume that ev-
erything is conditioned on subset of observations with-
out explicitly mentioning it. The algorithm is a com-
bination of the prior two; some of the variables are
eliminated by summation, others by maximization.

Given a belief network, a subset of hypothesis vari-
ablesA = fA1; :::; Akg and some evidence, the problem
is to �nd an assignment to the hypothesized variable
that maximizes their probability. Formally we wish to
compute max�ak P (�ak) = max�ak

P
�xn
k+1

�n
i=1P (xijxpai)

when x = (a1; :::; ak; xk+1; :::; xn). When manipulat-
ing this expression we can push the maximization to
the left of the summation. This means that in the
elimination algorithm the maximized variables should
initiate the ordering (they would be eliminated last).
Therefore, orderings that optimize elimination over
X�A should be considered independently of orderings
of the summation variables. In algorithm elim �map
in Figure 5, we will consider only orderings in which
the hypothesized variables appear before the rest. The
algorithm has a backward phase and its forward phase
is only relative to the hypothesis variables. Maximiza-
tion and summation can be somewhat interleaved al-
lowingmore e�ective orderings. We do not incorportae
this option here.

Theorem 3.5 Algorithm elim-map computes the
MAP task. Its complexity is O(n � exp(w � (d)), when
w � (d) is the induced width along d of its moral graph
where n is the number of variables. 2

3.4 AN ELIMINATION ALGORITHM FOR
MEU

The last and most complicated task is to determine
a set of decisions that maximize the expected util-
ity, de�ned on the network. Given a Belief net-
work BN , evidence e, and a real-valued utility func-
tion u(x); u(x) ! R, additively decomposable rela-
tive to Q = fQ1; :::; Qjg, Qi � X, and de�ned by
u(x) =

P
Qj2Q

fj(xQj), and given a subset of decision

variables D = fD1; :::Dkg which are root nodes, the
MEU task is to �nd a set of decisions do = (do1; :::; dok)
that maximizes the expected utility. We assume that
the variables not in D are indexed Xk+1; :::; Xn.

Algorithm elim-map
Input: A belief network BN = fP1; :::; Png, a
subset of variables A = fA1; :::; Akg and an order-
ing of the variables, o in which the A's are �rst in
the ordering.
Output: A most probable assignment A = a.
1. Initialize: generate an ordered partition of
the conditional probability matrices into bucket1,
. . ., bucketn, where bucketi contains all matrices
whose highest variable is Xi.
2. Backwards: for p n downto 1 do
for all the matrices �1; �2; :::; �j in bucketp do
� If (bucket with observed variable) bucketp con-
tains the observation Xp = xp, then assign Xp =
xp to each �i and put in appropriate bucket.

� else, Up
Sj
i=1 Si � fXpg. If Xp is not a

member of A then, For all Up = u, �p(u) =P
xp
�j
i=1�i(xp; uSi),

else, (Xp 2 A) �p(u) = maxxp �
j
i=1�i(xp; uSi)

and a0(u) = argmaxxp�p(u). Add �p to the
bucket of the largest-index variable in Up.
3. Forward: Assign values, in the ordering
o = A1; :::; Ak using the information recorded in
each bucket.

Figure 5: Algorithm elim-map

Formally, we want to maximize the function (while
assuming e condition all expressions) and denoting by
Fi the set including Xi and its child nodes,

E = max
d1;:::;dk

X

xk+1;:::xn

�n
i=1P (xijxpai ; d1; :::; dk)u(x)

Applying algebraic manipulations (and denoting d =

(d1; :::; dk) and �xj
k = (xk; :::; xj)):

E = max
d

X

�xn�1
k+1

X

xn

�n
i=1P (xijxpai; d)

X

Qj2Q

fj(xQj):

We can now separate the components in the utility
functions into those mentioning Xn, denoted by the
index set tn, and those not mentioning Xn, labeled
with indexes ln = f1; :::; jg � tn. We separate the
utility into two parts as well. We get

E = max
d

[
X

�x(n�1)
k+1

X

xn

�n
i=1P (xijxpai; d)

X

j2ln

fj(xQj)

+
X

�x
(n�1)
k+1

X

xn

�n
i=1P (xijxpai ; d)

X

j2tn

fj(xQj)]

By migrating to the left of the summation in Xn all of
the elements that are not a function of Xn, we get:

= max
d

[
X

�xn�1
k+1

�Xi2X�FnP (xijxpai ; d)�

(
X

j2ln

fj(xSj))
X

xn

�Xi2FnP (xijxpai ; d)

+
X

�xn�1
k+1

�Xi2X�FnP (xijxpai ; d)�

X

xn

�Xi2FnP (xijxpai ; d)
X

j2tn

fj(xQj)]

We denote by Un the subset of variables that appear
with Xn in a probabilistic component, excluding Xn

itself, and by Wn the union of variables appearing in
probabilistic and utility components with Xn, but ex-
cluding Xn itself. We de�ne �n over Un as follows (x
is a tuple over Un [Xn):

�n(xUn jd) =
X

xn

�Xi2FiP (xijxpai; d): (1)

We de�ne �n over Wn,

�n(xWn
jd) =

X

xn

�Xi2FnP (xijxpai ; d)
X

j2tn

fj(xQj)):

We get

E = max
d

X

�xn�1
k+1

�Xi2X�FnP (xijxpai ; d)�

�n(xUn jd)[
X

j2ln

fj(xSj) +
�n(xWn

jd)

�n(xUn jd)
]

�n and �n compute the e�ect of eliminatingXn. When
there is no evidence, �n is a constant. The result is an
expression that does not include Xn where the prod-
uct has one more matrix �n and the utility compo-
nents have one more element
n = �n

�n
. Applying this

recursively yields the elimination algorithm in Figure
6. We assume that decision variables are processed
last by elim-meu. Each bucket contains utility compo-
nents and probability components. The �i are viewed
as utility components. The algorithm generates the �i
of a bucket by multiplying all its probability compo-
nents and summing over the variable's bucket. The �
of a bucket is computed as the average utility of that
bucket, normalized by its �. The resulting � and � are
placed into the appropriate bucket.

The maximization over the decision variables can be
accomplished subsequently by using maximization as
the elimination operator. Clearly maximization and
summation can be interleaved to some degree, allow-
ing more e�cient orderings. The algorithm in [Kjae
93] can be viewed as a variation of elim-meu tailored
to dynamic probabilistic networks. As before, the al-
gorithm's performance can be bounded as a function
of the structure of the augmented graph. The aug-
mented graph is the moral graph augmented with arcs
connecting any two variables appearing in the same
utility component.

Theorem 3.6 Algorithm elim-meu computes the
MEU of an in
uence diagram in O(n � exp(w � (o)),
when w � (o) is the induced width along o of its aug-
mented moral graph, and n is the number of variables.
2

Algorithm elim-meu
Input: A belief network BN = fP1; :::; Png; a
subset of variablesD1; :::; Dk are decision variables
which are all root nodes; a utility function over X,
u(x) =

P
j fj(xQj); an ordering of the variables,

o, in which the D's appear �rst.
Output: An assignment d1; :::; dk that maximizes
the expected utility.
1. Initialize: Partition components into buckets,
where bucketi contains all matrices whose highest
variable is Xi. Call probability matrices �1; :::; �j
and utility matrices �1; :::; �l. Let S1; :::; Sj be the
probability variable subsets while Q1; :::; Ql be the
utility variable subsets.
2. Backward: For p n downto 1 do
for all the matrices �1; :::; �j; �1; :::; �l in bucketp
do
� If (bucket with observed variable) bucketp con-
tains the observation Xp = xp, then
assign Xp = xp to each �i; �i and put each result-
ing matrix in the appropriate bucket.

� else, Up
Sj
i=1 Si � fXpg and Wp Up [

(
Sl
i=1Qi � fXp)g. For all Up = u, �p(u) =P
xp
�i�i(xp; uSi) and for all Wp = w, �p(w) =

1
�p(wUp)

P
xp
�j
i=1�i(xp; wSi)

Pl

j=1 �j(xp; wQj),

Add �p and �p to the bucket of the largest-index
variable in Wp and Up, respectively.
3. Forward: Assign values in the ordering o =
D1; :::; Dk using the information recorded in each
bucket of the decision variable. (This can be ac-
complished using elimination with maximization
on the rest of the decision buckets)

Figure 6: Algorithm elim-meu

Algorithm elim-cond-max
Input: A belief network BN = fP1; :::; Png; an
ordering of the variables, o; a subset C of condi-
tioned variables.
Output: The most probable assignment, given
evidence e.
Initialize: pmax = 0.

1. For every combination C = c,
put each conditioned variable with its new
value in its bucket.
2. p elim � max(o; e; c)(apply elim-max
when C = c added as observation).
3. pmax maxfpmax; pg (keep the current
maximum probability assignment).

2. Return pmax and argmaxx(pmax).

Figure 7: Algorithm elim-cond-max

4 COMBINING ELIMINATION

AND CONDITIONING

A serious drawback of elimination algorithms is that
they require considerable memory to record interme-
diate functions. Conditioning, on the other hand, re-
quires only linear space. Combining conditioning with
eliminationmay reduce memory needs but still provide
performance bounds.

We will demonstrate the idea on the MPE task:

max
x

P (x) = max
x

�iP (xijxpai)

when x = (x1; :::; xn). Let C be a subset of condition-
ing variables, C � X, V = X �C. Clearly,

max
x

P (x) = max
xC

max
xV

P (xV ; xC)

Therefore, for every xC , we compute maxxV P (xV ; xc)
and a maximizing tuple

(xoptV)(xC) = argmaxV f�
n
i=1P (xijxpai)jC = xCg

using the elimination algorithm as before, treating the
conditioned variables as observed variables. This basic
step can be enumerated for all value combinations of
the conditioning variables, and the tuple retaining the
maximum probability will be kept. Given a particu-
lar value assignment c, the time and space complex-
ity of computing the maximizing the joint probability
over the rest of the variables is bounded exponentially
by the induced width of the graph whose conditioning
variables were deleted. We de�ne the conditional in-
duced width of a graph relative to C along o, w�

C(o), as
the induced width, along ordering o, of the graph after
deleting the nodes in C. The algorithm is presented
in Figure 7.

Theorem 4.1 Given a set of conditioning variables,
the space complexity of algorithm elim � cond �max
is O(n � exp(w�

C(o)), while its time complexity is O(n �
exp(w�

C(o) + jCj)).

Clearly, the algorithm can be implemented more ef-
fectively by taking advantage of shared partial assign-
ments to the conditioned variables in C.

5 SUMMARY AND CONCLUSION

Using the bucket elimination framework, we have pre-
sented a uniform way of expressing algorithms for
probabilistic reasoning. In this framework, algorithms
require no special mechanism to move from singly-
connected to multiply-connected networks and no con-
scious e�ort to manage the topological features of the
network. For example, if algorithm elim-max is given a
singly-connected network and we use an ordering hav-
ing width 1 (always possible for trees), it reduces to
Pearl's algorithm for that task [Pear 88]. Likewise,
elim-bel is identical to Pearl's tree-propagation algo-
rithm for belief update with the exception that it an-
swers singleton queries. Each new query requires run-
ning elim-bel where the queried variables appear �rst
in the ordering.

Clustering and elimination are closely related; in fact,
elimination may be viewed as a directional version of
tree-clustering which is \goal oriented" or \query ori-
ented." Thus, preprocessing by elimination is geared
to the particular query at hand (instead of all future
queries).

The performance of elimination algorithms (as well as
tree-clustering) is likely to su�er from the known dif-
�culty with dynamic programming algorithms: expo-
nential space (for recording the tables) and exponen-
tial time unless the problem has a small induced width.
Such performance de�ciencies also exist in resolution
algorithms like DR [DeRi 94]. One important method
for reducing the space complexity is conditioning. We
have shown that conditioning can be incorporated nat-
urally on top of elimination, and that it can reduce the
space complexity while still exploiting the structure
(see also [Dech 96]). The combination of conditioning
with elimination can be viewed as an elegant way for
combining the virtues of forward and backward search.

The ideas underlying the algorithmswe present are not
new, and the role of dynamic programming in proba-
bilistic reasoning has already been made explicit in
the context of in
uence diagrams [TaSh 90]. What we
provide here is a concise and uniform exposition across
many tasks, which will facilitate transfer of ideas be-
tween areas of research.

From a practical point of view, bucket elimination is
very easy to implement, since structure building is not
separated from inference propagation. A student was
able to implement elim-bel within a few weeks of being
introduced to it. (The code is available by ftp.)

Acknowledgement

I would like to thank Irina Rish for commenting on the
last version of this paper. This work was partially sup-

ported by NSF grant IRI-9157636, Air Force O�ce of
Scienti�c Research grant, AFOSR F49620-96-1-0224,
Rockwell MICRO grant #ACM-20775 and 95-043 and
Electrical Power Research Institute RP8014-06.

References

[Arnb 85] S. Arnborg, \E�cient algorithms for
combinatorial problems on graphs with
bounded decomposability - A survey" Bit
25 (1985):2-23.

[ArPr 89] S. Arnborg and A. Proskourowski, \Linear
time algorithms for NP-hard problems re-
stricted to partial k-trees" Discrete and Ap-
plied Mathematics 23 (1989) 11-24.

[BeBr 72] U. Bertele and F. Brioschi, Nonserial Dy-
namic Programming, New York, 1972.

[Bacc 95] F. Bacchus and A. Groove, \Graphical
models for preference and utility," inUncer-
tainty in Arti�cial Intelligence (UAI-95),
pp 3-10, 1995.

[Coop 84] G.F. Cooper, \Nestor: A computer-based
medical diagnosis aid that integrates causal
and probabilistic knowledge," Ph.D. disser-
tation, Department of Computer Science,
Stanford University, 1984.

[DePe 89] R. Dechter and J. Pearl, \Tree clustering for
constraint networks," Arti�cial Intelligence
(1989):353-366.

[Dech 90] R. Dechter, \Constraint networks" in Ency-
clopedia of Arti�cial Intelligence, 2nd ed.,
New York, 1990.

[DeBe 95] R. Dechter and P. van Beek, \Local and
global relational consistency - Summary of
recent results," in Principles and Practice of
Constraint Programming (CP-95),, Cadec,
France, 1995.

[Dech 96] R. Dechter, \Topological parameters for
time-space trade-o�," in Proceedings of the
12th Conference on Uncertainty in Arti�-
cial Intelligence (UAI-96), 1996.

[Jens 94] F. Jensen, F. Jensen and S. Dittmer \From
in
uence diagrams to junction trees," in
Uncertainty in Arti�cial Intelligence (UAI-
94), pp. 367-373, 1994.

[DeRi 94] R. Dechter and I. Rish, \Directional reso-
lution: The Davis-Putnam procedure, re-
visited," in Principles of Knowledge Repre-
sentation and Reasoning (KR-94), 1994.

[DaPu 60] M. Davis and H. Putnam, \A computing
procedure for quanti�cation theory," Jour-
nal of the ACM 7 (1960):201-216.

[Pear 88] J. Pearl, Probabilistic Reasoning in Intel-
ligent Systems, 2nd ed., San Mateo, CA,
1988.

[PeRe 86] Y. Peng and J.A. Reggia \Plausability
of diagnostic hypothesis", in Proceedings
(AAAI-86), Philadelphia, 1986, pp. 140-
145.

[PeRe 89] Y. Peng and J. Reggia, \A connection-
ist model for diagnostic problem solving,"
IEEE Transactions on Systems, Man and
Cybernetics 19 (1989): pp. .

[Sant 91] E. Santos, \On the generation of alterna-
tive explanations with implications for be-
lief revision," Uncertainty in Arti�cial In-
telligence (UAI-91), pp. 339-347, 1991.

[Shac 86] R.D. Shachter \Evaluating in
uence dia-
grams," Operations Research, 34 (1986).

[Shac 88] R.D. Shachter, \Probabilistic inference and
in
uence diagrams," Operations Research,
36 (1988).

[ShPe 92] R.d. Shachter and P. Peot, \Decision mak-
ing using probabilistic inference methods,"
in Uncertainty in Arti�cial Intelligence
(UAI-92), pp. 276-283, 1992.

[Shac 90] R.D. Shachter, B. D'Ambrosio, and B.A.
Del Favro, \Symbolic probabilistic inference
in belief networks," Automated Reasoning
(1990): 126-131.

In Operations Research Vol. 36, No.4, 198b.

[Shen 92] P.P. Shenoy, \Valuation-based systems for
Bayesian decision analysis," em Operations
Research, 40 (1992): 463-484.

[ShCh 91] S.E. Shimony and E. Charniack, \A new
algorithm for �nding MAP assignments to
belief networks,". In P. Bonissone, M. Hen-
rion, L. Kanal, and J. Lemmer ed., Uncer-
tainty in Arti�cial Intelligence 6, pp. 185-
193, New York, 1991.

[Spie 86] D.J. Spiegelhalter, \Probabilistic reasoning
in predictive expert systems," in Uncer-
tainty in Arti�cial Intelligence, ed. L.N.
Kanal and J.F. Lemmer, pp. 47-68, Ams-
terdam, 1986.

[Kjae 93] U. Kjaerul�, \A computational scheme
for reasoning in dynamic probabilistic
networks," in Uncertainty in Arti�cial
Intelligence(UAI-93), pp. 121-129, 1993.

[TaSh 90] J.A. Tatman and R.D. Shachter, \Dy-
namic programming and in
uence dia-
grams," IEEE Transactions on Systems,
Man, and Cybernetics 20 (1990): 365-379.

