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Abstract

Distributed architectures and solutions are described for classes of constraint
satisfaction problems, called network consistency problems. An inherent assump-
tion of these architectures is that the communication network mimics the structure
of the constraint problem. The solutions are required to be self-stabilizing and to
treat arbitrary networks, which makes them suitable for dynamic or error-prone
environments. We �rst show that even for relatively simple constraint networks,
such as rings, there is no self-stabilizing solution that guarantees convergence
from every initial state of the system using a completely uniform, asynchronous
model (where all processors are identical). An almost-uniform, asynchronous,
network consistency protocol with one specially designated node is shown and
proven correct. We also show that some restricted topologies such as trees can
accommodate the uniform, asynchronous model when neighboring nodes cannot
take simultaneous steps.

1 Introduction

Consider the distributed version of the graph coloring problem, where each node must
select a color (from a given set) that is di�erent from any color selected by its neigh-
bors. This NP-complete problem belongs to the class of constraint satisfaction prob-
lems (csp's) which present interesting challenges to distributed computation. We call
the distributed versions of this class of problems network consistency problems. Since
constraint satisfaction is inherently intractable for the general case, the interesting
questions for distributed models are those of feasibility rather than e�ciency. The
main question we wish to answer is: what types of distributed models admit a self-
stabilizing algorithm, namely, one that converges to a solution, if such exists, from any
initial state of the network. For models that do admit solutions, we present and prove
the correctness of appropriate algorithms that converge to a solution for any speci�c
problem.

�This author was partially supported by the National Science Foundation, Grant #IRI-8821444
and by the Air Force O�ce of Scienti�c Research, Grant #AFOSR-90-0136.

yThis author was partially supported by the Argentinian Research Fund at the Technion
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The motivation for addressing this question stems from attempting to solve con-
straint satisfaction problems in environments that are inherently distributed. For in-
stance, an important family of constraint satisfaction problems in telecommunications
involve scheduling transmissions in radio networks [RL92]. A radio network is a set of
n stations that communicate by broadcasting and receiving signals. Typical examples
of radio networks are packet radio networks and satellite networks. Every station has
a transmission radius. The broadcast scheduling problem involves scheduling broadcast
transmissions from di�erent stations in an interference-free way. In the time-division
multiplexing version, there are a �xed set of time slots, and each station must assign
itself one time slot such that any two stations that are within the transmission radius
of each other will be assigned di�erent time-slots. The frequency-division multiplexing
version is similar, with the �xed set of time slots replaced by a �xed set of frequencies.
One can easily see that the problem translates naturally to a graph coloring problem
where broadcasting radios are the nodes in the graph and any two nodes are connected
i� their transmission radii overlap.

Solving the broadcasting scheduling problem autonomously and distributedly by
the radio stations themselves is highly desirable because the environment is inherently
distributed: in some applications (e.g., in a military setting, when the radios are mov-
ing) no central control is feasible or practical. Moreover, a self-stabilizing distributed
solution has the important virtue of being fault tolerant.

Another motivating area, Distributed Arti�cial Intelligence (DAI), has become very
popular in recent years [Les90]. The issues addressed are problem solving in a multi-
agent environment where agents have to cooperate to solve a problem and to carry
out its solution in a distributed manner. As in the broadcast scheduling problem,
the distributed environment is a physical necessity rather than a programmer's design
choice.

One possible architecture considered for solving the network consistency problem is
neural networks. Such networks perform distributed computation with uniform units
and are normally self-stabilizing. However, current connectionist approaches to con-
straint problems [BGS86, Dah87] lack theoretical guarantees of convergence to a so-
lution, and the conditions under which such convergence can be guaranteed (if at all)
have not been systematically explored. This paper aims to establish such guaran-
tees by studying the feasibility of solving a csp in uniform, self-stabilizing distributed
architectures.

Intuitively, a distributed algorithm is self-stabilizing [Dij74] if it converges to a
solution from any initial state of both the network and the algorithm. Our aim will
be to determine what types of distributed models admit self-stabilizing algorithms
and, whenever possible, to present such an algorithm. Self-stabilization is a desirable
property since it yields robustness in the face of dynamically changing environments.
This is especially true if the solution treats any network con�guration, and thus within
some time after a change to the network, will converge to a solution. Some changes
can be imposed externally (e.g., adding new components to the problem, changing the
values of variables or bu�ers); others may occur to the system internally, by errors in the
implementing hardware. The accepted model we use for self-stabilization [Dij74] treats
the part of the computation from after a perturbation to the next perturbation as a
normally executing algorithm with abnormal initial values, including control locations.
The implicit assumption is that perturbations occur infrequently, so that the system
stabilizes and does most of its work in consistent states.

In this paper, we characterize architectures that allow a self-stabilizing distributed
solution for classes of constraint satisfaction problems, and present algorithms when
possible. As noted above, the self-stabilization can model dynamically changing con-
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straint networks as well as transient network perturbations, thus increasing the ro-
bustness of the solutions. Following some background on constraint networks and
self-stabilization (Section 2) we show that uniform networks, in which all nodes run
identical procedures and any scheduling policy is allowed, cannot admit algorithms
that guarantee convergence to a consistent solution from any initial state using an
asynchronous model (Section 3). In Section 4, we depart slightly from uniformity by
allowing one unit to execute a di�erent algorithm. We call this model almost uniform
and use it to present an asynchronous, network consistency protocol. It combines a
subprotocol to generate a DFS spanning tree, with a value-assignment subprotocol.
The value assignment exploits the potential parallelism of the spanning tree, using
a special form of backtracking appropriate for constraint problems. In Section 5,
we show that some restricted topologies such as trees can accommodate the uniform,
asynchronous model. Preliminary versions of some of these results �rst appeared in
[CDK91].

2 Background

2.1 Constraint networks

A constraint satisfaction problem (csp)1 is de�ned over a constraint network that con-
sists of a �nite set of variables, each associated with a domain of values, and a set of
constraints. A solution is an assignment of a value to each variable from its domain
such that all the constraints are satis�ed. Typical constraint satisfaction problems are
to determine whether a solution exists, to �nd one or all solutions and to �nd an opti-
mal solution relative to a given cost function. An example of a constraint satisfaction
problem is the k-colorability problem mentioned in the Introduction. The problem is
to color, if possible, a given graph with k colors only, such that any two adjacent nodes
have di�erent colors. A constraint satisfaction formulation of this problem associates
the nodes of the graph with variables, the possible colors are their domains and the
inequality constraints between adjacent nodes are the constraints of the problem. Each
constraint of a csp may be expressed as a relation, de�ned on some subset of variables,
denoting their legal combinations of values. In addition, constraints can be described
by mathematical expressions or by computable procedures.

The structure of a constraint network is depicted by a constraint graph whose nodes
represent the variables and in which any two nodes are connected if the correspond-
ing variables participate in the same constraint. In the k-colorability formulation, the
graph to be colored is the constraint graph. Constraint networks have proven suc-
cessful in modeling mundane cognitive tasks such as vision, language comprehension,
default reasoning, and abduction, as well as in applications such as scheduling, design,
diagnosis, and temporal and spatial reasoning. In general, constraint satisfaction tasks
are computationally intractable (NP-hard)

Techniques for processing constraints can be classi�ed into two categories: [Dec91]:
(1) search and (2) consistency inference, and these techniques interact. Search al-
gorithms traverse the space of partial instantiations while consistency-inference algo-
rithms reason through equivalent problems. Search is either systematic and complete,
or stochastic and incomplete. Likewise, consistency-inference has complete solution
algorithms (e.g., variable-elimination), or incomplete versions in the form of local con-
sistency algorithms. Formally,

1Obviously, with no connection to CSP, Hoare's Communicating Sequential Processes notation
[Hoa85].
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De�nition: A network of binary constraints is a set of n variables X = fX1; : : : ; Xng,
a domainDi of possible values for each variable Xi, 1 � i � n, and a set of constraints
RS1 ; :::; RSt

where Si � X. A binary constraint denoted Rij over two variables Xi

and Xj is a subset of the product of their domains, Rij � Di � Dj . A solution is
an assignment of a value to each variable, x�=(x1; :::; xn), xi 2 Di such that 8i; j 1 �
i; j;� n; (xi; xj) 2 Rij. A constraint graph has a node for each variable and links
connecting pairs of variables which appear in the same constraint.

General constraint satisfaction problems may involve constraints of any arity, but
since network communication is only pairwise we focus on this subclass of problems.
Figure 1a presents a csp constraint graph, where each node represents a variable having
values fa; b; cg, and each link is associated with a strict lexicographic order (Xi � Xj

in the lexicographic order i� i < j). The domains are explicitly indicated on the nodes
X3 and X4 and the constraints are explicitly listed near the link between them, where
a pair (m;n) corresponds to possible values for X3 and X4, respectively. This means
that solutions can have (X3 = a ^X4 = b), (X3 = a ^X4 = c), or (X3 = b ^X4 = c).

(a,b,c)

- b -- a -

x2

x1

x7x6

x5

x4

x3(b,c)

(a,c)

(a,b)

(a,b,c)
x3

x4x7

x5x6

x1

x2

Figure 1: csp constraint graph and a DFS spanning tree

For a survey of sequential solution methods for csp's see [Mac91, Dec91].

2.2 The communication model

The model consists of n processors arranged in a network architecture. Each node
(processor) can communicate only with its neighbors via the communication links. The
network can be viewed as a communication graph where nodes represent processors
and links correspond to communication registers. The communication link between
two neighboring processors, i and j, is implemented by two communication registers at
both ends of the link. In each register, one processor writes and the other reads. The
communication register denoted rij is written into by node i and may be read only
by neighbor j. We also de�ne a general communication register that is written into
only by node i, but may be read by all of i's neighbors, as a shorthand for a set of
communication registers between i and its neighbors that are always assigned the same
value. A communication register may have several �elds, but is regarded as one unit.
We expect that the amount of memory used by every processor is relatively small, thus
limiting the communications. This eliminates solution schemes that require massive
data storage [Mor93] or transmit the whole problem to one processor to solve. Instead
of all of the constraints in the system, any one node needs only the constraints between
itself and its neighbors. A detailed analysis of the space requirements of our solution
is in Section 4.5.2. We assume that the communication and the constraint graphs are
identical, and thus two nodes communicate i� they are constrained.

A node can be modeled as a �nite state-machine whose state is controlled by a
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transition function that is dependent on its current state and the states of its neigh-
bors. In other words, an activated node performs an atomic step consisting of reading
the states of all its neighbors (if necessary), deciding whether to change its state, and
then moving to a new state2. A state of the processor encodes the values of its com-
munication registers and its internal variables. A con�guration c of the system is the
state vector of all nodes.

Let c1; c2 be two con�gurations. We write c1 ! c2 if c2 is a con�guration which is
reached from con�guration c1 by some subset of processors simultaneously executing a
single atomic step. An execution of the system is an in�nite sequence of con�gurations
E = c0; c1 : : : such that for every i, ci ! ci+1. The initial con�guration is denoted
c0. An execution is considered fair if every node participates in it in�nitely often.

We present the transition functions as sequential code in each process. Assuming
that the \program counter" is one of the local variables encoded by the state, an exe-
cution of the code step by step is equivalent to a sequence of state transitions. The col-
lection of all transition functions is called a protocol. The processors are anonymous,
i.e., have no identities (we use the terms \node i" and \processor Pi" interchangeably
and as a writing convenience only). This assumption is crucial throughout the paper,
since it assures that the processors are truly identical and cannot use their identities
to di�erentiate among sections of code.

We consider two types of scheduling policies. The execution of the system can be
managed either by a central scheduler (also called an asynchronous demon) de�ned
in [Dij74, DIM93] or by a distributed scheduler de�ned in [BGW87, DIM93] (also
called a synchronous demon). A distributed scheduler activates a subset of the system's
nodes at each step, while a central scheduler activates only one node at a time. All
activated nodes execute a single atomic step simultaneously. The central/distributed
scheduler can generate any speci�c schedule (also called an execution) consistent with
its de�nition. Thus, the central scheduler can be viewed as a speci�c case of the
distributed one, since its executions are included in the executions of the distributed
scheduler. We say that a problem is impossible for a scheduler, if for every possible
protocol there exists a fair execution generated by such a scheduler that does not
�nd a solution to the problem even if such exists. Note that for di�erent protocols the
scheduler can generate di�erent kinds of speci�c schedules, as long as the condition that
de�nes the type of scheduler is maintained. Since all the speci�c schedules generated by
a central scheduler can also be generated by a distributed scheduler, what is impossible
for the central scheduler is impossible also for the distributed one.

When a central scheduler is assumed, an interleaving of single operations is su�cient
for the analysis of the protocol. Nevertheless, non-neighboring nodes can actually take
atomic steps at the same time, even when a central scheduler is assumed, because every
such execution can be shown equivalent to one where the operations are interleaved
(done one-by-one)[KP90, KP92].

2.3 Self-stabilization

A self-stabilizing protocol [Dij74] is one with a particular convergence property. The
system con�gurations are partitioned into two classes | legal, denoted by L, and
illegal. The protocol is self-stabilizing if in any in�nite fair execution, starting from any
initial con�guration (and with any input values) and given \enough time", the system
eventually reaches a legal con�guration and all subsequently computed con�gurations

2In fact, a �ner degree of atomicity, requiring only a test-and-set operation, is su�cient, but is
not used here in order to simplify the arguments.
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are legal. Thus, a self-stabilizing protocol converges from any point in its con�guration
space to a stable, legal region.

The self-stabilization model is inherently suited for adapting to changes in the
environment and to being fault tolerant. When the protocol can be applied to any
network, failure of a link is viewed as self-stabilization of an initial con�guration without
that link. For instance, in the broadcast transmission problem, the topology of the
network may change continuously, if the radios are not stationary (such as in war
scenarios). A self-stabilizing algorithm may, in some cases, adapt to such changes
automatically, without an external control. Moreover, adaptation to local changes
may be quick in many cases. In the worst case, though, a local change may require
processing through the whole network. Clearly, the legality of a con�guration depends
on the aim of the protocol.

2.4 The network consistency problem

The network consistency problem is de�ned by mapping a binary constraint network
onto a distributed communication model where the variables are associated with pro-
cessors and communication links with explicit binary constraints. Consequently, the
constraint graph and the communication graph are identical.

Since we wish to design a protocol for solving the network consistency problem,
the set of legal con�gurations are those having a consistent assignment of values to all
the nodes in the network, if such an assignment exists, and any set otherwise. This
de�nition allows the system to oscillate among various solutions, if more than one
consistent assignment is possible. However, the protocols that are presented in this
paper converge to one of the possible solutions.

2.5 Related work

In the context of constraint satisfaction, most closely related to our work are attempts
to represent csp's and optimization problems on symmetric neural networks, with the
hope that the network will converge to a full solution [Hop82, HT85, BGS86, Dah87].
Typically, the problem at hand (e.g., a graph coloring) is formulated as an energy-
minimization problem on a Hop�eld-like network in which the global minima represent
the desired solutions. A general method for translating any csp into such a network
is presented in [Pin91]. Unfortunately, since the network may converge to a local
minimum, a solution is not guaranteed. Another class of algorithms inspired by the
connectionist approach is the class of so-called \repair methods" [MJPL90, SLM92,
Mor93] also known as stochastic local search (SLS).

Additional related work is in the literature on parallel search for constraint satis-
faction. Most of that work di�ers from ours in that the parallel models do not lend
themselves easily to distributed communication. Speci�cally, those models either are
not self-stabilized, or are non-uniform, or they deal with a restricted class of problems
[KD94, KR90, FM87, ZM94, YDIK92, Yok95, DD88].

In the self-stabilizing literature many speci�c algorithms could be framed as con-
straint satisfaction problems, or treat subtasks useful for constraint satisfaction. Thus
a speci�c algorithm for coloring planar graphs is in [GK93] while self-stabilizing dy-
namic programming on trees is seen in [GGKP95]. The basic approach for achieving
self-stabilization in tree-structured systems is introduced in [Kru79], while one of many
algorithms to construct self-stabilizing spanning trees is in [CYH91] with a breadth-�rst
version in [HC92]. Work on local adjustments for self-stabilization [DH97, GGHP96]
is also relevant to how we solve constraint systems. Additional details on modeling
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self-stabilization for dynamic systems is found in [DIM93]. In [AVG96], constraints are
used in a very di�erent context than here: they are logical predicates associated with
a program (e.g., to describe invariants), and actions are provided by the user that will
reestablish a constraint once violated.

3 The limits of uniform self-stabilization

A protocol is uniform if all the nodes are logically equivalent and identically pro-
grammed (i.e., have identical transition functions). Following an observation made by
Dijkstra [Dij74] regarding the computational limits of a uniform model for performing
the mutual exclusion task, we show that the network consistency problem cannot be
solved using a uniformprotocol. This is accomplished by presenting a speci�c constraint
network and proving that its convergence cannot be guaranteed using any uniform pro-
tocol. A crucial point in the proof is that an algorithm that solves a problem relative
to a scheduler must solve it for any speci�c schedule realizable by the scheduler.

Consider the task of numbering a ring of processors in a cyclic ascending order |
we call this csp the \ring ordering problem". The constraint graph of the problem
is a ring of nodes, each with the domain f0; 1; : : : ; n � 1g. Every link has the set
of constraints f(i; (i + 1) mod n)j 0� i� n � 1g i.e., the left node is smaller by one
than the right. A solution to this problem is a cyclic permutation of the numbers 0,
. . . , n� 1, which means that there are n possible solutions, and in all of them di�erent
nodes are assigned di�erent values.

Theorem 1: No uniform, self-stabilizing protocol can solve the ring ordering problem
with a central scheduler.

Proof: To obtain a contradiction, assume that there exists a uniform self-stabilizing
protocol for solving the problem. In particular, it would solve the ring ordering problem
for a ring having a composite number of nodes, n = r � q (r; q > 1). Since convergence
to a solution is guaranteed from any initial con�guration, the protocol also converges
when initially all nodes are in identical states. We construct a fair execution of such a
protocol that satis�es the restriction on the scheduler but for which the network never
converges to a consistent solution, contradicting the self-stabilization property of the
protocol. Assume the following execution:

P0; Pq; P2q; : : : ; P(r�1)q;
P1; Pq+1; P2q+1; : : : ; P(r�1)q+1;
...
Pq�1; P2q�1; P3q�1; : : : ; Prq�1;
P0; : : :
...

Note that nodes P0, Pq, P2q, . . . ,P(r�1)q move to identical states, after their �rst
activation, because their inputs, initial states, and transition functions are identical,
and when each one of them is activated its neighbors are in identical states too. The
same holds for any sequential activation of processors fPiq+jj 0 � i < r; 0 � j <
qg. Thus, cycling through the above schedule assures that P0 and Pq, for instance,
move to identical states over and over again, an in�nite number of times. Since a
consistent solution requires their states to be di�erent, the network will never reach
a consistent solution, thus yielding a contradiction. Figure 2 demonstrates such a
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. . . .

Figure 2: The ring ordering problem (n = 6)

counterexample execution for a ring with six nodes. The indicated nodes are scheduled
in each con�guration. Di�erent colors refer to di�erent states.

Theorem 1 is proven above for a centralized scheduler, but as noted earlier it holds
also for a distributed scheduler. This theorem means that it is generally impossible to
guarantee convergence to a consistent solution using a uniformprotocol, if no additional
restrictions are made on the possible executions. In particular, convergence cannot be
guaranteed for a class of sequential algorithms using so called \repair" methods, as
in [MJPL90], if completely random order of repair is allowed. It does not, however,
exclude the possibility of uniform protocols for restricted scheduling policies or for
special network topologies (not including a ring). In practice it is fair to assume that
adversarial scheduling policies are not likely to occur or, can be deliberately avoided.

When using a distributed scheduler, convergence (to a solution) cannot be guar-
anteed even for tree networks. Consider, for instance, the coloring problem in a
tree network constructed from two connected nodes, each having the domain fblack,
whiteg. Since the two nodes are topologically identical, if they start from identical
initial states and both of them are activated simultaneously, they can never be as-
signed di�erent values, and will never converge to a legal solution, although one exists.
This trivial counterexample can be extended to a large class of trees, where there is
no possible way to distinguish between two internal nodes. However, we will later
show (Section 5) that for a central scheduler, a uniform self-stabilizing tree network
consistency protocol does exist.

Having proven that the network consistency problem cannot always be solved using
a uniform protocol, even with a central scheduler, we switch to a slightly more relaxed
model of an \almost uniform" protocol, in which all nodes but one are identical.
We denote the special node as node 0 (or P0). Note that such a special processor can
be determined by �nding a leader in a distributed network. Thus, if a leader could
be elected uniformly, it could be used to convert our almost uniform protocol to a
uniform one. Since we cannot solve the consistency problem for a central scheduler
with an almost uniform protocol, it follows from our impossibility result (as is well
known [Ang80]) that a leader cannot be elected in an arbitrary anonymous (where all
processors are identical) network. However, randomization can be used to break the
symmetry and to elect a leader in uniform networks [AM94].
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4 Consistency-Generation Protocol

This section presents an almost uniform, self-stabilizing network consistency (NC) pro-
tocol. The completeness of this protocol (i.e., the guarantee to converge to a solution if
one exists) stems from the completeness of the sequential constraint satisfaction algo-
rithm it simulates. It can accommodate changes to constraints, as long as the resulting
graph is connected and includes the special node (or one can be elected using random-
ization). We briey review some basic sequential techniques for constraint satisfaction.

4.1 Sequential aspects of constraint satisfaction

The most common algorithm for solving a csp is backtracking. In its standard version,
the algorithm traverses the variables in a predetermined order, provisionally assigning
consistent values to a subsequence (X1; : : : ; Xi) of variables and attempting to append
to it a new instantiation of Xi+1 such that the whole set is consistent (\forward"
phase). If no consistent assignment can be found for the next variableXi+1, a dead-end
situation occurs; the algorithm \backtracks" to the most recent variable (\backward"
phase), changes its assignment and continues from there.

One useful improvement of backtracking, graph-based backjumping [Dec90],
consults the topology of the constraint graph to guide its backward phase. Speci�cally,
instead of going back to the most recent variable instantiated, it jumps back several
levels to the �rst variable connected to the dead-end variable. If the variable to which
the algorithm retreats has no more values, it backs up further, to the most recent
variable among those connected either to the original variable or to the new dead-end
variable, and so on.

It turns out that when using a Depth-First Search (DFS) on the constraint graph (to
generate a DFS spanning tree) and then conducting backjumping in a preorder traversal
of the DFS tree [Eve79], the jump-back destination of variable X is the parent of X in
the DFS spanning tree [Dec91].

The nice property of a DFS spanning tree that allows a parallel implementation
is that any arc of the graph which is not in the tree connects a node to one of its
tree ancestors (i.e., to a node residing along the path leading to it from the root).
Consequently, the DFS spanning tree represents a useful decomposition of the graph: if
a variableX and all its ancestors in the tree are removed from the graph, the remaining
subtrees rooted at the children of X will be disconnected. Figure 1b presents a DFS
spanning tree of the constraint graph presented in Figure 1a. Note that if X2 and
its ancestor X1 are removed from the graph, the network becomes two disconnected
trees rooted at X3 and X5. This translates to a problem decomposition strategy: if
all ancestors of variable X are instantiated, then the solutions of all its subtrees are
completely independent and can be performed in parallel [FQ87].

4.2 General protocol description

The distributed version of the binary csp is called the Network Consistency (NC) prob-
lem. Our network consistency protocol is based on a distributed version of graph-based
backjumping implemented on a variable ordering generated by a depth-�rst traversal
of the constraint graph.

The NC protocol is logically composed of two self-stabilizing subprotocols that can
be executed interleaved, as long as one self-stabilizes for any con�guration, and then
establishes a condition guaranteeing the self-stabilization of the second [DIM93]. The
subprotocols are:
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1. DFS spanning tree generation

2. value assignment (using the graph traversal mechanism)

The second subprotocol assumes the existence of a DFS spanning tree in the net-
work. However, the implementations of these subprotocols are unrelated to each other
and, thus, can be independently replaced by any other implementation.

Until the �rst subprotocol establishes a DFS spanning tree, the second subprotocol
will execute, but in all likelihood will not lead to a proper assignment of values. We
will use a self-stabilizing DFS spanning tree protocol which is described in [CD94]. The
spanning tree protocol is not a�ected by the interleaved second subprotocol, and thus
the existence of a DFS spanning tree is eventually guaranteed. The convergence of the
second subprotocol is also guaranteed starting from any con�guration and assuming the
existence of a DFS spanning tree (which will not be changed by continued operation of
the �rst subprotocol). Therefore, the combination is guaranteed to converge properly
after the DFS spanning tree has been completed.

The basic idea of the second subprotocol is to decompose the network (problem)
logically into several independent subnetworks (subproblems), according to the DFS
spanning tree structure, and to instantiate these subnetworks (solve the subproblems)
in parallel. Proper control over value instantiation is guaranteed by the graph traversal
mechanism presented in Section 4.4.

We would like to emphasize that using graph-based backjumping rather than naive
backtracking as the sequential basis for our distributed implementation is crucial for
the success of our protocol. First, naive backtracking leads naturally to algorithms in
which only one processor executes at a time. Second, it requires a total ordering of
the processors generally encoded in their identi�ers. Moreover, unless the nodes that
are consecutive in the backtracking order are connected in the communication graph,
passing activation from one node to another when going forward or upon a dead-end
seems feasible only using node identi�ers. Algorithm graph-based backjumping uses
a partial order that is derived from the DFS spanning tree, and thus provides more
opportunities for parallelism, and eliminates the need for node identi�ers.

4.3 Self-stabilizing DFS spanning tree generation protocol

First we describe an almost uniform, self-stabilizing protocol for generating a DFS
spanning tree. The full algorithm was described in [CD94], and thus will not be de-
scribed in detail or proven here. Alternative self-stabilizing algorithms for generating
a DFS spanning tree could be used instead, and may yield a better space complexity,
as discussed in Section 4.5.2.

This subprotocol is the source of non-uniformity for the whole NC protocol. The
root of the generated tree will be the distinguished node 0 (P0).

Each processor, Pi, has (at most) one adjacent processor, parent(i), designated as
its parent in the tree, and a set of child processors denoted as children(i). The set
of the processors that reside along the path from the root to Pi in the DFS spanning
tree is denoted by ancestors(i), while descendants(i) is the set of processors Pj so that
Pi is in ancestors(j). The set of Pi's neighboring processors that are in ancestors(i),
except the parent of Pi, are called Pi's predecessors and are denoted by predecessors(i).
Figure 3 indicates the environment of an internal processor. The ancestors(i) set is
empty if i is the root, while the descendants(i) set is empty if i is a leaf.
The links of every processor P are divided into the following categories (see Figure 3):

1. tree-edges { the edges that belong to the DFS spanning tree.
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- descendant edge

descendants(i)

i
parent(i)

predecessors(i) children(i)

ancestors(i)
- tree (forward) edge

- backward edge

Figure 3: The neighborhood set of i in a DFS-marked graph

(a) inlink { the edge that connects P to its parent. Every non-root processor
has one such link and the root has none.

(b) outlinks { the edges that connect P to its children.

2. backward edges { the edges that connect P to its predecessors.

3. descendant edges { the edges that connect P to its descendants, excluding its
children.

A distributed graph is called DFS-marked if there is a DFS spanning tree over the
graph such that every processor in the system can identify the category of each of its
adjacent edges with relation to this DFS spanning tree.

Each node has a local numbering (ranking) of its edges. During the execution of the
protocol the special node 0, which plays the role of the root, repeatedly assigns itself the
label ? (the minimal element) and suggests labels to its neighbors. The label suggested
to j by its neighbor i is constructed by concatenating i's ranking of the edge from i to
j to the right of i's own label. Thus a label is a sequence of elements each of which is
the minimal element or an edge rank. Labels are compared using lexicographic order.
The sequence in a label has a �xed maximal length, and the concatenation can lead to
`overow' where the leftmost element is removed (and this is needed for convergence).
Every non-root node chooses the smallest label suggested to it to be its label and the
suggesting neighbor to be its parent, and suggests labels to its neighbors in a similar
way.

The communication register between i and j contains the following �elds used by
the DFS spanning tree generation protocol:

rij:mark { contains the label that is \suggested" to j by i.

rij:par { a boolean �eld that is set to true i� i chose j as its parent.

The output of the DFS spanning tree algorithm, after the network has converged,
is a DFS-marked graph maintained in a distributed fashion.

4.4 Value assignment subprotocol

The second subprotocol assumes the existence of a DFS spanning tree in the network,
namely, each non-root node has a designated parent, children, and predecessors among
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its neighboring nodes (see Figure 3). When the DFS spanning tree generation sub-
protocol stabilizes, each node has a minimal label and a designated parent. Using
this information, each node can compute its children set, children(i), by selecting the
neighbors whose rji:par �eld is true, and its predecessors set, predecessors(i), by se-
lecting the neighbors whose minimal label (rji:mark without the last character) is a
pre�x of its own. This means that we can traverse the directed tree either towards the
leaves or towards the root.

The value assignment subprotocol presents a graph traversal mechanism that passes
control to the nodes in the order of the value assignment of the variables (in DFS
order), without losing the parallelism gained by the DFS structured network. Section
4.4.1 presents the basic idea of privilege passing that implements the graph traversal
mechanism, while Section 4.4.2 presents the value assignment strategy that guarantees
convergence to a solution.

Each node i (representing variable Xi) has a list of possible values, denoted as
Domaini, and a pairwise relation Rij with each neighbor j. The domain and the
constraints may be viewed as a part of the system or as inputs that are always valid
(though they can be changed during the execution, forcing the network to readjust
itself to the changes).

The state register of each node contains the following �elds:

valuei { a �eld to which it assigns one of its domain values or the symbol `?' (to
denote a dead-end).

modei { a �eld indicating the node's \belief" regarding the status of the network. A
node's mode is on if the value assignment of itself or one of its ancestors was
changed since the last time it was in a forward phase (to be explained in Section
4.4.2), or otherwise it is off . The modes of all nodes also give an indication of
whether they have reached a consistent state (all in an off mode).

parent tag and children tag { two boolean �elds that are used for the graph traver-
sal (Section 4.4.1).

Additionally, each node has a sequence set of domain values that is implemented as
an ordered list and is controlled by a local domain pointer (to be explained later), and
a local direction �eld indicating whether the algorithm is in its forward or backward
phase.

4.4.1 Graph traversal using privileges

The graph traversal is handled by a self-stabilizing privilege passing mechanism,
according to which a node obtains the privilege to act, granted to it either by its parent
or by its children. A node is allowed to change its state only if it is privileged.

Our privilege passing mechanism is an extension of a mutual exclusion protocol
for two nodes called balance-unbalance [Dij74, DIM93]. Once a DFS spanning tree
is established, this scheme is implemented by having every state register contain two
�elds: parent tag, referring to its inlink and children tag, referring to all its outlinks.
A link is balanced, if the children tag and the parent tag on its endpoints have the
same value, and the link is unbalanced otherwise. A node becomes privileged if its
inlink is unbalanced and all its outlinks are balanced. In other words, the following
two conditions must be satis�ed for a node i to be privileged:

1. parent tagi 6= children tagparent(i) (the inlink is unbalanced)

2. 8k 2 children(i) : children tagi = parent tagk (the outlinks are balanced)
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By de�nition, we consider the inlink of the root to be unbalanced and the outlinks of
the leaves to be balanced.

A node applies the value assignment subprotocol (described in Section 4.4.2) only
when it is privileged, otherwise it leaves its state unchanged. As part of the execution of
the subprotocol, the node passes the privilege. The privilege can be passed backwards
to the parent by balancing the inlink or forwards to the children by unbalancing the
outlinks (i.e., by changing the value of parent tag or children tag, respectively).

We use the following notations to de�ne the set of con�gurations that are legally
controlled relative to the graph traversal:

� Denote a chain to be a maximal sequence of unbalanced links, e1; e2 : : : ; en, s.t.
:

1. the inlink of the node whose outlink is e1 is balanced, unless the node is the
root.

2. every adjacent pair of links ei; ei+1 (1� i< n) is an inlink and an outlink,
respectively, of a common node.

3. all the outlinks of the node whose inlink is en are balanced.

� The chain begins at the node with e1 as one of its outlinks, denoted as the chain
head, and ends at the node with the inlink en, denoted as the chain tail.

� Denote a branch to be a path from the root to a leaf.

� A branch contains a chain (or a chain is on the branch) if all the links of the
chain are in the branch.

� A con�guration is legally controlled if it does not contain any non-root chain
heads, namely, every branch of the tree contains no more than one chain and its
chain head is the root.

Figure 4 shows a legally controlled con�guration. The DFS spanning tree edges are
directed, and the values (+ or �) of the parent tag and the children tag of every node
are speci�ed above and below the node, respectively. The privileged nodes are black.
In a legally controlled con�guration a node and its ancestors are not privileged at the
same time and therefore cannot reassign their values simultaneously. The privileges
travel backwards and forwards along the branches. We prove (Section 4.4.3) that using
the graph traversal mechanism, the network eventually converges to a set of legally
controlled con�gurations that are also legal with respect to the network consistency
task.

Once it has become privileged, a node cannot tell where the privilege came from (i.e.,
from its parent or from its children). Thus, a node uses its direction �eld to indicate the
source of its privilege. Since during the legally controlled period no more than one node
is privileged on every branch, the privileges travel along the branches backwards and
forwards. The direction �eld of each node indicates the direction of the next expected
wave. When passing the privilege to its children, the node assigns its direction �eld
the backward value, expecting to get the privilege back during the next backward
wave, while when passing the privilege to its parent it assigns the forward value,
preparing itself for the next forward wave. Thus, upon receiving the privilege again,
it is able to recognize the direction it came from: if direction = backward , the
privilege was recently passed towards the leaves and therefore it can come only from
its children; if direction = forward , the privilege was recently passed towards the
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Figure 4: Legally controlled con�guration

root and therefore it can come only from its parent. The value of the direction �eld can
be improper upon the initialization of the system. However, after the �rst time a node
passes the privilege, its direction �eld remains properly updated. Figure 5 presents
the privilege passing procedures for node i.

procedure pass-privilege-to-parent
Begin
1. directioni  forward f prepare for the next wave g
2. parent tagi  children tagparent(i) f balance inlink g
End.

procedure pass-privilege-to-children
Begin
1. directioni  backward f prepare for the next wave g
2. children tagi  :parent tagk2children(i) f unbalance outlinks g
End.

Figure 5: Privilege passing procedures

4.4.2 Value assignment

The value assignment has forward and backward phases, corresponding to the two
phases of the sequential backtracking algorithm. During the forward phase, nodes in
di�erent subtrees assign themselves (in parallel) values consistent with their predeces-
sors or verify the consistency of their assigned values. When a node senses a dead-end
(i.e., it has no consistent value to assign), it assigns its value �eld a `?' and initiates a
backward phase. Since the root has no ancestors, it does not check consistency and is
never dead-ended. It only assigns a new value at the end of a backward phase, when
needed, and then initiates a new forward phase.

When the network is consistent (all the nodes are in an off mode), the forward and
backward phases continue, where the forward phase is used to verify the consistency of
the network, while the backward phase just returns the privilege to the root to start a
new forward wave. Once consistency is violated, the node sensing the violation relative
to its predecessors moves to an on mode and initiates a new value assignment. A more
elaborate description follows.
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An internal node can be in one of three situations:

� Node i is activated by its parent which is in an on mode (this is the
forward phase of value assignments). In that case some change of value in one
of its predecessors might have occurred. It therefore �nds the �rst value in its
domain that is consistent with all its predecessors, puts itself in on mode, and
passes the privilege to its children. If no consistent value exists, it assigns itself
the `?' value (a dead-end) and passes the privilege to its parent (initiating a
backward phase).

� Node i is activated by its parent which is in an off mode. (this is the
forward phase of consistency veri�cation). In that case it veri�es the consistency
of its current value with its predecessors. If it is consistent, it stays in (or moves
to) an off mode and passes the privilege to its children. If not, it tries to �nd
the next value in its domain that is consistent with all its predecessors, and
continues as in the previous case. A leaf, having no children, is always activated
by its parent and always passes the privilege back to its parent (initiating a
backward phase).

� Node i is activated by its children (backward phase). If one of the children
has a `?' value, i selects the next value in its domain that is consistent with all
its predecessors, and passes the privilege back to its children. If no consistent
value is available, it assigns itself a `?' and passes the privilege to its parent. If
all children have a consistent value, i passes the privilege to its parent.

Due to the privilege passing mechanism, when a parent sees one of its children in a
dead-end it still has to wait until all of them have given it the privilege. This is done to
guarantee that all subtrees have a consistent view regarding their predecessors' values.
This requirement limits the amount of parallelism considerably. It can be relaxed in
various ways to allow more parallelism.

The algorithms performed by a non-root node (i 6= 0) and the root once they
become privileged and after reading the neighbors' states are presented in Figures 6
and 7.

The procedure compute-next-consistent-value (Figure 7) tests each value lo-
cated after the domain pointer for consistency. More precisely, the domain value is
checked against each of predecessor(i)'s values, and the next domain value consistent
with the values of the predecessors is returned. The pointer's location is readjusted
accordingly (i.e., to the found value) and the mode of the node is set to on . If no con-
sistent value is found, the value returned is `?' and the pointer is reset to the beginning
of the domain. The predicate consistent(val; set of nodes) is true if the value of
val is consistent with the value �elds of set of nodes and none of them is dead-ended
(has the value `?').

The algorithm performed by the root P0, when it is privileged, is simpler. The
root does not check consistency. All it does is assign a new value at the end of each
backward phase, when needed, and then initiate a new forward phase. The procedure
next-value increments the domain pointer's location and returns the value indicated
by the domain pointer. If the end of the domain list is reached, the pointer is reset to
the �rst (smallest) value.

The value assignment subprotocol can be regarded as uniform since each node may
have both the root's protocol and the non-root's protocol and decide between them
based on the role assigned to it by the DFS spanning tree protocol.
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root 0:
Begin
1. if :consistent(value0; children(0)) then
2. mode on

3. value next-value
4. else f all children are consistent g
5. mode off

6. pass-privilege-to-children
End.

non-root i:
Begin
1. if direction = forward then f forward phase g
2. if modeparent(i) = on then f a change in a value assignment occurred g
3. pointer  0 f reset domain pointer g
4. else f parent's mode is off g
5. if consistent(valuei; predecesors(i)) then
6. mode off

7. if (pointer = 0) _ :consistent(valuei; predecesors(i)) _
_ (direction = backward ^:consistent(valuei; children(i))) then

8. value compute-next-consistent-value
f privilege passing g

9. if leaf(i) _ (value = ?) _ (direction = backward ^ consistent(valuei; children(i)))
10. thenpass-privilege-to-parent
11. else pass-privilege-to-children
End.

Figure 6: Value assignment subprotocols for root and non-root nodes

procedure compute-next-consistent-value
Begin
1. modei  on

2. while pointer � endof Domaini do
3. pointer  pointer + 1
4. if consistent(Domaini[pointer]; predecessors(i)) then
5. return Domaini[pointer] f a consistent value was found g
6. pointer  0
7. return ? f no consistent value exists g
End.

Figure 7: Consistency procedure

16



4.4.3 Proof of self-stabilization

To prove the correctness of our NC protocol, we �rst prove that the graph traversal is
self-stabilizing, namely, that the system eventually reaches a legally controlled con�g-
uration (even if the values in the nodes are not yet consistent), and from that point it
remains legally controlled. Assuming the system is legally controlled, we show that if
a legal assignment exists, it is eventually reached and thereafter remains unchanged.
Thus the system reaches a legal set of con�gurations and stays there | and therefore
is self-stabilizing.

Note that a non-root node is privileged when its inlink is unbalanced (thus it is on
a chain) and all its outlinks are balanced. In other words, a non-root node is privileged
i� it is a chain tail. The root is privileged i� it is not a chain head. Also note that
passing the privilege by a node a�ects only the chains on the branches containing that
node because it has no interaction with other branches.

To prove the self-stabilization of the privilege passing mechanism, we �rst prove
some of its properties.

Lemma 1: In every in�nite fair execution, every non-root node that is on a chain
eventually passes the privilege to its parent.

Proof: We prove the lemma by induction on the node's height, h (i.e., its distance
from the nearest leaf), and on the possible value assignments from the domain of the
node.
Base: h=0. The node is a leaf and, therefore, when activated, can pass the privilege
only to its parent.
Step: Assume node i, whose height is h > 0, is on a chain. Node i eventually becomes
privileged because, if any of i's outlinks are unbalanced, then the corresponding children
are on chains and the induction hypothesis holds for them, namely they eventually pass
the privileges to i. Note that a node that passes its privilege to the parent (to i in our
case) does not become privileged again unless its parent had become privileged �rst
and passed the privilege to its children, since outlinks are unbalanced by a privileged
node only.

If, when becoming privileged, i passes the privilege to its parent, the claim is proven.
Otherwise, whenever i passes the privilege to its children the same argument holds, so
i eventually becomes privileged again. Moreover, i's domain pointer is advanced every
time it passes the privilege to its children. Therefore, after a �nite number of such
passings, bounded by the size of domaini, the domain pointer reaches a `?' and then,
following the code in Figures 6 and 7, i passes the privilege to its parent.

Theorem 2: The graph traversal mechanism is self-stabilizing with respect to the
set of legally controlled con�gurations. Namely, it satis�es the following assertions:

1. Reachability { Starting from any initial con�guration, the system eventually
reaches a legally controlled con�guration.

2. Closure { If c is a legally controlled con�guration and c ! c0, then c0 is also a
legally controlled con�guration.

Proof: We prove the theorem by showing that all the non-root chain heads in the
network eventually disappear. Note that passing a privilege by the root makes the root
a chain head, but does not increase the number of non-root chain heads. Passing a
privilege by any non-root node does not create any chain head. When a non-root node
passes the privilege, it is a chain tail (its outlinks are balanced). Thus, if the privilege
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is passed to the node's children, none of them become a chain head since their parent
is still on the same chains. On the other hand, if the privilege is passed to its parent,
the node balances its inlink, which cannot possibly create a new chain head. Thus the
number of the non-root chain heads in the network never increases. Moreover, Lemma
1 implies that every non-root node that is on a chain and particularly any non-root
chain head eventually passes the privilege to its parent, and stops being a chain head.
Therefore, the number of the non-root chain heads steadily decreases until no non-root
chain heads are left, hence the network is legally controlled. Since no non-root chain
heads are ever created, the network remains legally controlled forever.

The self-stabilization property of the NC protocol is inherited from its subproto-
cols: DFS spanning tree generation and value assignment. Once the self-stabilization
of privilege passing is established, it assures that the control is a correct, distributed
implementation of DFS-based backjumping, which guarantees the convergence of the
network to a legal solution, if one exists, and if not, repeatedly checks all the possibil-
ities.

4.5 Complexity analysis

4.5.1 Time complexity

A worst case complexity estimate of the value assignment subprotocol, once a DFS tree
already exists, can be given by counting the number of state changes until the network
becomes legally controlled and adding to it the number of state changes before a legal
consistent con�guration is reached. These two counts bound the sequential performance
of the value assignment protocol and thus, also, its worst-case parallel time. The bound
is tight since it can be realized when the depth of the DFS tree equals n. In that case
only one node is activated at a time. We next bound the sequential time and the
parallel time, as a function of the depth of the DFS tree, m. We will show that in some
cases an optimal speedup is realizable.

Let T 1
m stand for the maximal number of privilege passings in the subnetwork with

a DFS spanning subtree of depth m, before its root completes a full round of assigning
all of its domain values (if necessary) and passing the privilege forward to its children
for every assigned value (for a non-root node it is the number of privilege passings
in its subtree before the node passes the privilege backwards). Let b be the maximal
branching degree in the DFS spanning tree and let k bound the domain sizes. Since
every time the root of a subtree becomes privileged, it either tries to assign a new value
or passes the privilege backwards, T 1

m obeys the following recurrence:

T 1
m = k � b � T 1

m�1

T 1
0 = k

Solving this recurrence yields: T 1
m = bmkm+1, which is the worst-case number of

privilege passings before reaching the legally controlled con�guration where only the
root is privileged.

The worst-case number of additional state changes towards a consistent solution (if
one exists) is bounded by the worst-case time of sequential graph-based backjumping on
the DFS tree-ordering. Let T 2

m stand for the maximal number of value reassignments in
the subnetwork with a DFS spanning subtree of depth m, before it reaches a solution.
This equals the search space explored by the sequential algorithm. Since any assignment
of a value to the root node generates b subtrees of depth m � 1 or less that can be
solved independently, T 2

m obeys the same recurrence as T 1
m and will result in the same

expression: T 2
m = bmkm+1.
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Thus, the overall worst-case time complexity of the value assignment subprotocol
is: Tm = T 1

m + T 2
m = O

�
bmkm+1

�
. Note that when the tree is balanced, we have

Tm = O
�
(n=b) � km+1

�
since n = O(bm+1).

Next, we evaluate the parallel time of the value assignment subprotocol assuming
that the privilege passing mechanism has already stabilized into legally controlled con-
�gurations (namely, the root is activated). For this analysis we assume that the DFS
tree is balanced. Clearly, when the tree is not balanced the speed-up reduces as a
function of b. Consider now two cases. Assume that the network is backtrack-free. In
that case, since there are no dead-ends, the sequential time obeys the recurrence:

T 2
m = k + b � T 2

m�1

T 2
0 = 1

yielding
T 2
m = bm + k � (bm+1 � 1)=(b� 1) =

T 2
m = O(n=b � k):

The parallel time obeys the recurrence:

T 2
m = k + T 2

m�1

T 2
0 = 1

yielding: T 2
m = m � k + 1. The overall speedup in this case is bounded by n=(b �m)

where m = logbn.
Consider now the general case while still assuming that the tree is balanced. The

sequential complexity, as shown earlier, is O(n=b�km+1). In that case, since the subtrees
are traversed in parallel, the parallel complexity obeys the recurrence:

T 2
m = k � T 2

m�1

T 2
0 = k

yielding: T 2
m = km+1. In this case a speedup of (n=b) seems realizable.

In summary,we have shown that, as in the sequential case, our protocol's complexity
is exponentially proportional to the depth of the DFS spanning tree, i.e., the system
has a better chance for a \quick" convergence when the DFS spanning tree is of a
minimal depth. There is no gain in speedup when the depth of the tree is n. However,
for balanced trees having a depth of m = logbn, the speedup lies between n=b and
n=(b �m).

4.5.2 Space complexity

Each node needs to have the information about the constraints with its neighbors.
Assuming that the maximum degree in the graph is d and since a constraint can be
expressed in O(k2), each node needs space for O(d�k2) values. Among the subprotocols,
the DFS subprotocol requires the most space, O(n � logd) bits. Thus there is an overall
space requirement for each processor ofO(n�log d+d�k2) values, using our subprotocols.
In [DJPV98] a DFS spanning tree can be accomplished using only O(logd) space per
node, but the time needed for stabilization may be longer.

In order to store the whole network informationa processor needs space forO(n2�k2)
values, so our distributed treatment is clearly superior to a centralized solution. Note
that the log encoding common in the analysis of space requirements may not be feasible
in practice for this context because the communication registers are �xed, values must
be communicated, and constraints must be changed during execution.
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4.5.3 Speedup of incremental change

Our model allows adaptation to change without external intervention. Moreover, in
many cases a change may be locally, and thus quickly, stabilized. For example, sup-
pose that after the network has converged to a solution the domain of a variable is
made smaller by some external event or that a new constraint is introduced. If these
newly enforced restrictions are consistent with the current assignment, there will be
no change to the solution. Alternatively, if a current assignment does not satisfy the
new constraint, at least one processor will detect the problem since it repeatedly checks
consistency, and will try to choose an alternative value that satis�es its local environ-
ment. If it succeeds, and if the neighbors are happy with the new assignment, change
stops. It is clear, however, that in the worst case, local changes may cause a complete
execution of the algorithm that may be time exponential.

4.5.4 Adding arc consistency

The average performance of the NC protocol can be further improved by adding to it a
uniform self-stabilizing arc consistency subprotocol [MF85]. A network is said to be
arc consistent if for every value in each node's domain there is a consistent value in
all its neighbors' domains. Arc consistency can be achieved by a repeated execution of
a \relaxation procedure", where each node reads its neighbors' domains and eliminates
any of its own values for which there is no consistent value in one of its neighbors'
domains. This protocol is clearly self-stabilizing, since the domain sizes are �nite, and
they can only shrink or be left intact by each activation. As a result, after a �nite
number of steps all the domains remain unchanged.

Since arc consistency can be applied in a uniform and self-stabilizing manner, it
suggests that various constraint propagation methods can be incorporated to improve
backjumping [FD94], while maintaining properties of self-stabilization. In particular,
the well-known technique of Forward-Checking can be used along with arc consistency
during the value assignment subprotocol. If, as a result, a future variable's domain
becomes empty, that information can be propagated back to the current privileged
variable. The details and impact of such improvements remain to be worked out.

5 Network Consistency for Trees

It is well known that the sequential network consistency problem on trees is tractable,
and can be achieved in linear time [MF85]. A special algorithm for this task is composed
of an arc consistency phase (explained in the previous section) that can be e�ciently
implemented on trees, followed by a backtrack-free value assignment in an order created
by some rooted tree.

Since the DFS spanning tree subprotocol of our general algorithm was the source
for its non-uniformity, we reexamine the possibility that for trees, a rooted directed
tree can be imposed via a uniform protocol. We have already shown that when using a
distributed scheduler, a uniform, network consistency protocol for trees is not feasible.
Therefore, the only avenue not yet explored is whether under a central scheduler such
a protocol does exist. We next show that this conjecture is indeed correct.

In principle a uniform tree consistency (TC) protocol can be extracted from the
general NC protocol by replacing the DFS spanning tree protocol with a uniform rooted
tree protocol to direct an undirected tree, since in trees any rooted tree is a DFS
tree. Since the arc consistency protocol and the value assignment protocol are already
uniform, the resulting TC protocol will be uniform. Nevertheless, we will show that for
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trees, the value assignment protocol can be simpli�ed as well, while there is no need
for a special privilege-passing mechanism. The proposed TC protocol consists of the
three subprotocols: tree directing, arc consistency, and tree value assignment.

When the variables' domains are arc consistent and the tree has been directed,
value assignment is eventually guaranteed by having each node follow the rule (of
the tree value assignment protocol): \choose a value consistent with your parent's
assignment". Such a value must exist, since otherwise the value assigned by the parent
would have been removed by the arc consistency procedure. Since, as we will show, the
tree directing protocol is self-stabilizing, and since the arc consistency protocol is self-
stabilizing as well, the value assignment protocol eventually converges to a consistent
solution.

To direct the tree uniformly, we must exploit the topology of the tree to break the
symmetry reected by the identical codes and the lack of identi�ers. For this task
we use a distributed protocol for �nding the centers of a tree [KRS84, KPBG94]. A
center of a tree is a node whose maximal distance from the leaves is minimal. Consider
a sequential algorithm that works in phases, so that in every phase the leaves of the
previous phase are removed from the tree. In the last phase the tree has either one
or two connected nodes left. These nodes are the centers of the tree. Note, that if we
regard a center as the root of the tree, the children of every node are removed from
the tree in earlier phases than the node itself (except in the case of two centers that
are removed in the same, last, phase of the algorithm), which means that the removal
phase of a node is greater than the removal phase of any of its children, and the removal
phase of its parent is greater than (or, in the case of two centers, equals) its own. We
denote the removal phase of a node in this sequential algorithm as its level. The level
of the leaves is 0. Another way to de�ne the level of a node is as its maximal distance
to a leaf without passing through a center.

Our protocol distributedly simulates the above algorithm. If only one center exists,
it declares itself as a root and all the incident edges are directed towards it. When two
centers exist, one of them becomes a root and the link that connects them is directed
accordingly. The choice of which center becomes the root is not deterministic and
depends on the scheduling order and the initial values.

This approach yields a simple, uniform, tree directing protocol that simulates the
above description. Every node i has the following �elds:

li { level of i, a variable that eventually indicates the phase of the sequential algorithm
in which i is removed from the tree.

rooti { a boolean �eld that indicates whether i is the root.

parenti { a variable assigned the number of the edge leading to the neighbor that
becomes the parent of i.

The protocol works by having each node repeatedly compute its own l-value by
adding one to the second largest value among the l-values of its neighbors. Each node
except the centers ultimately chooses as its parent the neighbor that it is still connected
to whenever it becomes a leaf, namely that neighbor whose level is greater than its own.

A node views itself as a center when one of the following two conditions is satis�ed:

1. Its l-value is greater than all of its neighbors', which means that it is a single
center.

2. Its l-value is equal to that of its largest neighbor | the other center. In this case,
the node checks whether the other center is already the root. If so, it chooses the
other center to be its parent, and otherwise it becomes the root.
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Because the l-values converge to the correct values of the level of the node, the above
interpretation is ultimately accurate Clearly, once the l-values converge, each node
properly chooses its parent and the direction of the tree is completed. Therefore, it is
su�cient to prove the convergence of the l-values to the levels of the nodes. A proper
convergence of the l values can be proved by induction on the levels of the nodes. For
more details of the tree directing algorithm and its proof see [CDK94].

The parallel time can be linearly bounded by the diameter (dim) of the tree where
the diameter is the longest path between any two leaves of the tree. Since in the worst
case the diameter of a tree equals the number of nodes, n, the space that is required in
this case to hold the level of each node is O (logdim). A di�erent self-stabilizing tree-
directing algorithm is presented in [PD92]. In that algorithm, any node of the tree may
become the root, depending on the initial con�guration and the schedule. Although
that algorithm is usually better in its space requirements than the one presented above,
forcing a center to become the root, as is done here, yields a more balanced tree.

6 Conclusions

The results presented in this paper establish theoretical bounds on the capabilities
of distributed self-stabilizing architectures to solve constraint satisfaction problems.
The paper focuses on the feasibility of solving the network consistency problem using
self-stabilizing distributed protocols, namely, guaranteeing convergence to a consistent
solution, if such exists, from any initial con�guration.

We have proved that, when any scheduler is allowed, a uniform protocol (one in
which all nodes are identical), cannot solve the network consistency problem even if only
one node is activated at a time (i.e., when using a central scheduler). Consequently,
although such protocols have obvious advantages, they cannot guarantee convergence to
a solution. On the other hand, distinguishing one single node from the rest is su�cient
to guarantee such a convergence even when sets of nodes are activated simultaneously.
A protocol for solving the problem under such conditions is presented. Note that
the negative results were established under a model requiring convergence for every
central or distributed schedule and is not applicable to many cases where the schedule
is restricted. We then demonstrated that when the network is restricted to trees,
a uniform, self-stabilizing protocol exists for solving the problem with any central
scheduler, where only one neighboring node is activated at a time.

Note also that the restriction to a central scheduler is not as severe as it might at
�rst appear. Any protocol that works with a central scheduler can also be implemented
with a distributed scheduler which obeys the restriction that two neighboring nodes
are never activated together. It is still an open question whether a uniform protocol is
feasible for general graphs under restricted scheduling policies (e.g., round-robin).

Regarding time complexity, we have shown that in the worst case the distributed
and the sequential protocols have the same complexity bound: exponential in the depth
of the DFS tree. On the average, however, a speedup between n=b and n=(b � m) is
possible, where n is the number of nodes and m is the DFS's tree depth. We have also
argued that when the environment undergoes local change, the solution to the network
consistency problem can often be repaired quickly (but not for all cases), due to the
inherent local computation of the distributed architecture.
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