
CONSTRAINT NETWORKS1

Rina Dechter

Information and Computer Science

University of California

Irvine, CA 92717-3425

1 Introduction

Constraint-based reasoning is a paradigm for formulating knowledge as a set

of constraints without specifying the method by which these constraints are

to be satis�ed. A variety of techniques have been developed for �nding partial

or complete solutions for di�erent kinds of constraint expressions. These have

been successfully applied to diverse tasks such as design, diagnosis, truth

maintenance, scheduling, spatiotemporal reasoning, logic programming and

user interface. Constraint networks are graphical representations used to

guide strategies for solving constraint satisfaction problems (CSPs).

1.1 Basic de�nitions

A constraint network (CN) consists of a �nite set of variablesX = fX1; : : : ; Xng,
each associated with a domain of discrete values, D1; : : : ; Dn and a set of con-

straints, fC1; : : : ; Ctg. Each of the constraints is expressed as a relation, de-

�ned on some subset of variables, whose tuples are all the simultaneous value

assignments to the members of this variable subset that, as far as this con-

straint alone is concerned, are legal2 Formally, a constraint Ci has two parts:

(1) the subset of variables Si = fXi1
; : : : ; Xij(i)

g, on which it is de�ned, called

1Published in the Encyclopedia of Arti�cial Intelligence, second edition, Wiley and

Sons, pp 276-285, 1992
2This does not mean that the actual representation of any constraint is necessarily in

the form of its de�ning relation, but that the relation can, in principle, be generated using

the constraint's speci�cation without the need to consult other constraints in the network.

1

1 2 3

4

5

D1

D2 4

(a)
(b)

D

12
(snail, aron), (steer, earn))

C

3

5
D

= (hoses, laser, sheet, snail, steer)

= (hike, aron, keet, earn, same)= D

= (run, sun, let, yes, eat, ten)

= (no, be, us, it)

= ((hoses, same), (laser,same), (sheet, earn),

Figure 1: A crossword puzzle and its CN representation.

a constraint-subset, and (2) a relation, reli de�ned over Si : reli � Di1
�� � ��

Dij(i)
. Because many properties of a CN depend on the structure of the con-

straint subsets, the scheme of a CN is de�ned as the set of subsets on which

constraints are de�ned, namely, scheme(CN) = fS1; S2; : : : ; Stg; Si � X.

The projection of a relation � on a subset of variables U = U1; : : : ; Ul is

given by �U(�) = fxu = (xu1; : : : ; xul) j 9 x 2 �; x is an extension of xug.

An assignment of a unique domain value to each member of some subset of

variables is called an instantiation. An instantiation is said to satisfy a given

constraint Ci if the partial assignment speci�ed by the instantiation does not

violate Ci (i.e., it belongs to the projection of reli on the common variables).

An instantiation is said to be legal or locally consistent if it satis�es all the

(relevant) constraints of the network.

A legal instantiation of all the variables of a constraint network is called a

solution of the network, and the set of all solutions is a relation, �, de�ned

on the set of all variables. This relation is said to be represented by the

constraint network. Formally,

� = f(X1 = x1; : : : ; Xn = xn) j 8 Si 2 scheme; �Si
� � relig

Example 1: Figure 1a presents a simpli�ed version of a crossword puzzle

(see constraint satisfaction). The variables are X1 (1, horizontal), X2 (2,

2

vertical), X3 (3, vertical), X4 (4, horizontal), and X5 (5, horizontal). The

scheme of this problem is fX1X2; X1X3; X4X2; X4X3; X5X2g. The domains

and some constraints are speci�ed in Figure 1b. A tuple in the relation

associated with this puzzle is the solution: (X1 = sheet;X2 = earn;X3 =

ten;X4 = aron;X5 = no).

Typical tasks de�ned in connection with constraint networks are to determine

whether a solution exists, to �nd one or all of the solutions, to determine

whether an instantiation of some subset of the variables is a partial solution

(i.e., is part of a global solution), etc. These tasks are collectively called

constraint satisfaction problems.

Techniques used in processing constraint networks can be classi�ed into three

categories. The �rst category consists of search techniques for systematic ex-

ploration of the space of all solutions. The most common algorithm in this

class is backtracking which traverses the search space in a depth-�rst fash-

ion. The second category is consistency algorithms for transforming a CN

into more explicit representation. These are used primarily in a prepro-

cessing phase, to improve the performance of the subsequent backtracking

search, but can be incorporated into the search procedure itself. Third are

the structure-driven algorithms, which exploit the topological features of the

network to guide the search. Structure-driven algorithms can support both

the consistency algorithms as well as the backtracking search.

The survey concentrates on techniques of the third kind, namely, structure-

based algorithms. These together with backtracking and consistency algo-

rithms give a complete picture of the available techniques. A brief summary

of backtracking and consistency enforcing procedures is presented next.

2 Backtracking and Consistency-Enforcing Strate-

gies

The standard solution procedure for solving constraint satisfaction problems

is backtracking search. The algorithm typically considers the variables in

some order and, starting with the �rst, assigns a provisional value to each

successive variable in turn as long as the assigned values are consistent with

3

those assigned in the past. When, in the process, a variable is encountered

such that none of its domain values are consistent with previous assignments

(a situation referred to as a dead-end), backtracking takes place. That is,

the value assigned to the immediately preceding variable is replaced, and the

search continues in a systematic way until either a solution is found or until

it may be concluded that no such solution exists.

Improving backtracking eÆciency amounts to reducing the size of its ex-

panded search space. This depends on the way the constraints are repre-

sented, (i.e., on the extent of their explicitness), the order of variables in-

stantiation, and, when one solution suÆces, on the order in which values are

assigned to each variable.

Using these factors to improve the performance of backtracking algorithms,

researchers have developed procedures of two types: those that are employed

in advance of performing the search, and those that are used dynamically

during search. The former include a variety of consistency-enforcing algo-

rithms. [Montanari 74, Mackworth & Freuder 84a, Freuder 85] These trans-

form a given constraint network into an equivalent, yet more explicit, network

by deducing new constraints to be added on to the network.

Intuitively, a consistency-enforcing algorithm will make any partial solu-

tion of a small subnetwork extensible to some surrounding network. For

example, the most basic consistency algorithm, called arc-consistency or two-

consistency (also known as constraint propagation and constraint relaxation),

ensures that any legal value in the domain of a single variable has a legal

match in any other selected variable. Path-consistency (or three-consistency)

algorithms ensure that any consistent solution to a two-variable subnetwork

is extensible to any third variable, and, in general, i-consistency algorithms

guarantee that any locally consistent instantiation of i� 1 variables is exten-

sible to any ith variable.

Deciding the level of consistency that should be enforced on the network is

not a clear-cut choice. Generally speaking, backtracking will bene�t from

representations that are as explicit as possible, having higher consistency

level. However, the complexity of enforcing i-consistency is exponential in i.

As a result, there is a trade-o� between the e�ort spent on preprocessing and

that spent on search (backtracking.) Experimental analyses of this trade-o�

have been published [Dechter & Meiri 89, Dechter 90, Haralick & Elliott 80].

4

Variable orderings' decisions have also received much consideration, and

several heuristics have been proposed [Freuder 82, Dechter & Pearl 89], all

following the intuition that tightly constrained variables should come �rst.

Strategies for dynamically improving the pruning power of backtracking can

be conveniently classi�ed as look-ahead schemes and look-back schemes. Look-

ahead schemes are invoked whenever the algorithm is preparing to assign a

value to the next variable. Some of the functions that such schemes perform

are:

1. Calculate and record the way in which the current instantiations re-

strict future variables. This process has been referred to as constraint

propagation. Examples include Waltz's algorithm [Waltz 75] and for-

ward checking [Haralick & Elliott 80].

2. Decide which variable to instantiate next (when the order is not pre-

determined). Generally, it is advantageous to �rst instantiate variables

that maximally constrain the rest of the search space. Therefore, the

variable participating in the highest number of constraints is usually

selected. [Freuder 82, Purdom 83, Stone & Stone 86]

3. Decide which value to assign to the next variable (when there is more

than one candidate). Generally, for �nding one solution, an attempt is

made to assign a value that maximizes the number of options available

for future assignments

[Haralick & Elliott 80, Dechter & Pearl 87].

Look-back schemes are invoked when the algorithm encounters a dead-end

and prepares for the backtracking step. These schemes perform two functions:

1. Decide how far to backtrack. By analyzing the reasons for the dead-

end, it is often possible to go back directly to the source of failure

instead of to the immediate predecessor in the ordering. This idea is

often referred to as backjumping [Gaschnig 79].

2. Record the reasons for the dead-end in the form of new constraints so

that the same con
icts will not arise again in a later search. Terms used

to describe this idea are constraint recording and no-good constraints.

5

X5X2
X

4

X
3 X1

Figure 2: A constraint graph of the crossword puzzle.

Dependency-directed backtracking incorporates both backjumping and

no-goods recording [Stallman & Sussman 77]. Constraint recording can

also be viewed as a form of explanation-based learning (EBL).

3 Graph-Based Algorithms

3.1 Graphical representations

Graphical properties of CN were initially investigated through the class of

binary constraint networks. [Freuder 82] A binary constraint network is one

in which every constraint subset involves at most two variables. In this case

the network can be associated with a constraint graph, where each node rep-

resents a variable, and the arcs connect nodes whose variables are explicitly

constrained; namely, they are members of the network's scheme. Figure 2

shows the constraint graph associated with the crossword puzzle in Figure 1.

A graphical representation of higher order networks can be provided by hy-

pergraphs, where again, nodes represent the variables, and hyperarcs (drawn

as regions) group those variables that belong to the same constraint. Two

variations of this representation that can be used to facilitate structure-driven

algorithms are primal-constraint graph and dual-constraint graph. A Primal-

constraint graph (a generalization of the binary constraint graph) represents

variables by nodes and associates an arc with any two nodes residing in the

same constraint. A dual-constraint-graph represents each constraint subset

by a node (also called a c-variable) and associates a labeled arc with any two

6

BA

F

E D

C

A

CE

ACE

AEF ABC

ACECDE

A
B

C

D

E

F

(b)(a) (c)

Figure 3: Primal and dual constraint graphs of a CSP.

nodes whose constraint subsets share variables. The arcs are labeled by the

shared variables.

For example, Figure 3 depicts the primal, the dual, and the hypergraph repre-

sentations of a CN with variables A; B; C; D; E; F and constraints on the

subsets (ABC),(AEF), (CDE) and (ACE). The constraints themselves are

symbolically given by the inequalities: A+B � C, A+E � F , C+D � E,

A+C � E, where the domains of each variable are the integers [2; 3; 4; 5; 6].

The dual constraint graph can be viewed as a transformation of a nonbinary

network into a special type of binary network: the domain of the c-variables

ranges over all possible value combinations permitted by the correspond-

ing constraints, and any two adjacent c-variables must obey the restriction

that their shared variables should have the same values (i.e., the c-variables

are bounded by equality constraints). For instance, the domain of the the

c-variable ABC is f224, 225, 226, 235, 236, 325, 326, 246, 426, 336g and

the binary constraint between ABC and CDE is given by the relation:

relABC;CDE = f(224; 415); (224; 426)g. Viewed in this way, any network

can be solved by binary networks' techniques.

3.2 Solving Tree-Networks

Almost all the known structure-based techniques rely on the observation that

binary constraint networks whose constraint graph is a tree can be solved

in linear time [Freuder 82, Mackworth & Freuder 84b, Dechter & Pearl 87].

7

The solution of tree-structured networks are discussed, and later it is shown

how they can be used to facilitate the solution of general CN .

Given a tree-network over n variables (Fig. 4a), the �rst step of the tree-

algorithm is to generate a rooted-directed tree. Each node in this tree (exclud-

ing the root) has one parent node directed toward it and may have several

child nodes, directed away from it. Nodes with no children are called leaves.

An ordering, d = X1; X2; : : : ; Xn, is then enforced such that a parent always

precedes its children. In the second step, the algorithm processes each arc

(and its associated constraint) from leaves to root, in an orderly layered fash-

ion. For each directed arc from Xi to Xj it removes a value from the domain

of Xi if it has no consistent match in the domain of Xj. Finally, after the

root is processed, a backtracking algorithm is used to �nd a solution along

the ordering d.

It can be shown that the algorithm is linear in the number of variables.

In particular, backtracking, which in general is an exponential procedure,

is guaranteed to �nd a solution without facing any dead-ends. The tree

algorithm is sketched by the following procedures:

Tree-Algorithm (T)

1. begin

2. generate a rooted tree ordering, d = X1; : : : ; Xn:

3. for i=n to 1 by -1 do

4. revise (Xp(i); Xi);Xp(i)) denotes the parent of Xi.

5. if the domain of Xp(i) is empty, stop. (no solution exists).

6. end

7. use backtracking to instantiate variables along d.

8. end.

The revise procedure [Mackworth & Freuder 84a] is de�ned by:

Revise(Xj; Xi)

1. begin

2. for each v 2 Dj do

3. if there is no u 2 Dis:t:(Xj = v;Xi = u) is consistent,

4. delete v from Dj.

5. end.

6. end.

8

The complexity of the tree-consistency algorithm is bounded by O(nk2) steps

where k bounds the domain size, because an ordering (step 2) can be pro-

duced in linear time, whereas the revise procedure, which is bounded by k2

steps, is executed at most n times (loop 3-6).

The tree-algorithm is an instance of a general classes of ordered algorithms,

to be discussed next.

4 Directional and Adaptive-Consistency

In general, a problem is considered easy when it admits a solution in poly-

nomial time. In the context of constraint networks, a problem is easy if

an algorithm like backtracking can solve it in a backtrack-free manner, i.e.,

without dead-ends, thus producing a solution in time linear in the number

of variables and constraints. This concept has prompted a theoretical in-

vestigation (see Freuder [Freuder 82, Freuder2 85] and Dechter and Pearl)

[Dechter & Pearl 87, Dechter & Pearl 89], into the level of local consistency

that suÆces for ensuring a backtrack-free search. The theory had identi�ed

topological features that determine this level of consistency, and has yielded

tractable algorithms for transforming some networks into backtrack-free rep-

resentations. The following paragraphs present a summary of this theory.

The theory is centered on a graphical parameter called width, and the def-

initions are relative to the primal constraint graph. An ordered (primal)

constraint graph is de�ned as one in which the nodes are linearly ordered to

re
ect the sequence of variable assignments executed by backtracking algo-

rithm. The width of a node is the number of arcs that connect that node to

previous ones, the width of an ordering is the maximum width of all nodes,

and the width of a graph is the minimum width of all orderings of that graph.

Figure 5 presents three possible orderings of the constraint graph of Figure 2.

The width of node X2 in the �rst ordering (from the left) is three, whereas

in the second ordering it is two. It can be shown that no ordering can

achieve width lower than two, hence the width of this constraint graph is

two. (The graph has cycle, and it is known that only trees are width-one

graphs [Freuder 82].)

9

C D F

E

C

A

B

(a)

A

CB

C D E F

(b)

Direction of
arc-consistency

Figure 4: A tree network

The width of a graph can be determined by a greedy algorithm. The algo-

rithm selects a node having the least number of neighbors and puts it last in

the ordering. This node is then removed (together with its adjacent edges),

and the algorithm proceeds recursively on the remaining graph. The ordering

of Figure 5c, for instance, could have been generated by this procedure.

The connection between width and local consistency requires further elabo-

ration. A constraint network is said to be i-consistent if for any set of i � 1

variables along with values for each that satisfy all the constraints among

them, there exists a value for any ith variable, such that the i values together

satisfy all the constraints among the i variables. Strong i-consistency holds

when the problem is j-consistent for every j � i. Given an ordering d, direc-

tional i-consistency along d (or d�i�consistency) requires that any consistent
instantiation of i�1 variables can be consistently extended only by variables

that succeed all of them in the ordering d. Strong-d�i�consistency is de�ned
accordingly. The general relationship between the width of a network and

the amount of local consistency required for tractability is summarized in the

following theorem:

Theorem: An ordered constraint graph is backtrack-free if the

level of directional strong consistency along this order is greater

then the width of the ordered graph.

10

(a)

X

X

X

X

X

2

4

5

1

3

(b) (c)

X

X

X

X

X

X

X

X

X

X

1

2

5

4

3

5

4

3

2

1

Direction of

order

Figure 5: Three orderings of a constraint graph, representing widths of 3, 2,

and 2, respectively.

In particular, if the graph has width-one (i.e., it is a tree) a directional

two-consistency is suÆcient. If it is width-two, strong directional three-

consistency would suÆce. The intuition behind this theorem rests on the

fact that when backtrack works along a given ordering, it tests for consis-

tency only among past and current variables, considering the relevant local

constraints. If these constraints already ensure that a locally consistent par-

tial solution will remain consistent relative to future variables, dead-end will

not occur. This required level of local-consistency is related to the number

of constraints future variables have with current variables. That is, when a

future variable is constrained with many past variables (i.e. when it has a

high width) the required level of local consistency among past variables is

higher.

Because most problem instances will not satisfy the desired relationship be-

tween the width and the consistency level, it is possible to try to push one of

these two factors until the relationship holds. One possibility is to increase

the level of directional consistency until it matches the width of the problem.

Speci�cally, if a width-i� 1 problem is not i-consistent, algorithms enforcing

directional i-consistency can be applied to it. [Dechter & Pearl 87]

Consider, �rst, the case of width� 1. According to the theorem, if a tree is

11

ordered along a width-one ordering and then enforced with directional two-

consistency (i.e., arc consistency), the result is a backtrack-free problem. In-

deed, the tree-algorithm presented earlier does exactly that: the rooted-tree

ordering is a width-one ordering (each node has only one adjacent prede-

cessor) and its internal loop (steps 3-6) enforces directional arc consistency

along this ordering.

This seems to lead to a general scheme: given a constraint network, �nd its

width w and enforce directional (strong) (w+1) consistency along the appro-

priate ordering, followed by a backtrack-free instantiation of the variables.

Unfortunately, enforcing directional i-consistency (i > 2) often requires the

addition of new constraints, and these constraints are re
ected by additional

arcs in the constraint-graph, which may cause the width to increase. The

resulting problem will be directional consistent, but its width may now be

greater than w, thus backtrack-free search is no longer guaranteed. The next

algorithm [Dechter & Pearl 87, Siedel 81] overcomes this diÆculty.

Given an ordering d, algorithm adaptive consistency establishes directional

i-consistency recursively, when i changes from node to node to match its

width at the time of processing. This is accomplished by processing nodes

in decreasing order, so that by the time a node is processed its �nal width

is determined and the required level of consistency can be achieved. Let

parents(X) denote the set of predecessors connected to X, when it is called

for processing.

12

Adaptive-Consistency (X1; : : : ; Xn)

begin

1. for i=n to 1 by -1 do

2. Compute parents(Xi)

3. connect all elements in parents(Xi) (if they are not yet connected)

4. perform consistency(Xi, parents(Xi))

5. endfor

End

The procedure consistency(V , set) generates and records tuples of those vari-

ables in the set that are consistent both internally and with at least one value

of V . The procedure may impose new constraints over clusters of variables

as well as tighten existing constraints. When adaptive consistency termi-

nates, backtracking can solve the problem in the order prescribed without

any dead-ends. It is important to realize that the topology of the resulting

graph, called an induced graph, can be found prior to executing the procedure

by recursively (in a decreasing order) connecting any two parents sharing a

common successor.

Consider the ordering X1; X2; X3; X4; X5 shown in Figure 5c. Adaptive-

consistency proceeds from X5 to X1 and imposes constraints on the parents

of each processed variable. X5 is chosen �rst and because it has only one par-

ent, X2, the algorithm merely tightens the domain of X2, if necessary (which

amounts to enforcing arc consistency on (X2; X5).) X4 is selected next and,

having width two, the algorithm enforces a three-consistency on its parents

fX3; X2g. This operation may require that a constraint between X2 and X3

be added, and in that case an arc (X2; X3) is added to the constraint graph.

When the algorithm reaches node X3, its width is two and, therefore a three-

consistency is enforced on X3's parents fX2; X1g. The arc (X1; X2) already

exists so this operation may merely tighten the corresponding constraint.

The resulting graph is given in Figure 6b.

Let w(d) be the width of the ordering d and let w�(d) be the width of the

induced graph. The complexity of solving a problem using the adaptive con-

sistency preprocessing phase and then backtracking (freely) along the order d

is dominated by the former. The worst-case complexity of the consistency(V,

parents(V)) step, is exponential in the cardinality of V and its parent set, be-

13

Adaptive-
consistency

X5

X4

X3

X

X
1

X
5

X4

X3

X2

X1

(a) (b)

2

Figure 6: A constraint graph before (a) and after (b) adaptive consistency.

cause it actually solves a network of constraints having that many variables.

Because the maximal size of the parent set is equal to the width of the in-

duced graph, solving the constraint network along the ordering d is bounded

by O(n � exp(w�(d)+ 1)). Notice that had adaptive-consistency been applied

on the ordering in Figure 6b, the resulting induced width would have been

three.

4.1 w*-Tractability

It seems that w�, the minimum induced width, can be used to identify classes

of easy problems. Namely, if the primal graph of a constraint network has

w� � r then the problem can be solved in O(exp(r)) steps. However,

�nding the smallest induced width of a graph and its corresponding ordering

is an NP-complete problem [Arnborg 85]. Nevertheless, deciding whether

the w� of a problem is less or equal to r is polynomial in r. In particular,

deciding if a problem instance has small induced width, say w� = 1, w� = 2,

or w� = 3, can be eÆciently determined. In trees, the width is equal to the

induced width (= 1); hence any minimal width ordering, is also an optimal

14

induced-width ordering, and it can be found in linear time. A linear time

algorithm recognizing problems having w� > 2 is also available [Arnborg 85,

Bertele & Brioschi 72]. The algorithm selects as last a node having a smallest

degree, eliminates it, connects its neighbors in the residual graph (if they

were not previously connected), and continues recursively. If the result is an

ordering having w� > 2 it can be concluded that the graph, too, has w� > 2.

Otherwise, the network has induced width equals two (also called regular

width-two network).

In spite of the nice structure and complexity guarantees that are provided

by adaptive consistency, experimental results have shown that unless w� is

very low (namely, one or two) the algorithm is too expensive on the average.

Its cost stems from the determination to ensure an absolutely backtrack-

free search, often investing a disproportional amount of computation trying

to eliminate just a few remaining dead-ends. Simple backtracking, which

can potentially encounter all such dead-ends, would often be more eÆcient.

This suggests that a less vigorous consistency enforcing algorithm can be ap-

propriate, striking a compromise between preprocessing and search. Indeed,

bounded directional i-consistency algorithms [Dechter & Pearl 87] ful�ll such

a compromise by enforcing a limited directional consistency and eliminating

as many dead-ends as possible within some predetermined computational

bounds. Instead of recording one constraint on all the parents of a node,

these procedures record a set of smaller constraints on size-i subsets of the

parents. It was shown that on classes of arti�cially generated CN , direc-

tional two-consistency eliminates a large subset of the dead-ends whereas

directional three-consistency eliminates almost all [Dechter & Meiri 89].

4.2 Acyclic Networks and Tree-Clustering

Although w� provides a measure of tractability, some problems admit easy

solution, independently of their width. This happens when the induced width

of an ordering is identical to its width, (namely no arcs are added by adaptive

consistency), and when constraint recording consumes only a linear amount

of computation (in the problem input). Acyclic constraint networks (ACNs)

or acyclic CSPs have these two properties, and were �rst characterized and

evaluated in the relational database literature [Beeri, et al 83]. These can be

15

AEF
A

ABC

E AC
C AE

CDE ACE

CE

(a)

AEF ABC

CDE ACE
CE

ACAE

(b)

Figure 7: A dual-constraint graph and its join tree.

viewed as trees in the dual-graph representation. Clearly, if the dual-graph of

a nonbinary CN is a tree, the tree-algorithm would apply. But even when the

dual graph is not a tree, some of its arcs may be redundant, and their removal

might result in a tree structure. An arc in the dual graph can be deleted if

its variables are shared by every arc along an alternative path between the

two end points. The subgraph resulting from removal of redundant arcs is

called a join graph.

For instance, the arc between (AEF) and (ABC) in Figure 7a can be elimi-

nated because the variableA is common along the cycle (AEF)�A�(ABC)�
AC� (ACE)�AE� (AEF), and so a consistent assignment to A is ensured

by the remaining arcs. By a similar argument it is possible to remove the arcs

labeled C and E, thus turning the join graph into a tree, called a join tree.

(see Figure 7b). In general, �nding whether such a transformation exists is

a tractable problem [Maier 83].

Constraint networks that can be represented by a join tree, are called acyclic

networks and can be solved eÆciently as follows. If there are p constraints

in the join tree (i.e., p c-variables), each allowing at most l tuples, then a

straightforward application of the algorithm developed for a tree of single-

tons (using O(nk2) steps) would yield a solution in O(pl2) steps. A further

re�nement based on indexing can reduce the complexity to O(p � l � logl) steps
[Dechter & Pearl 89].

A generalization of acyclic networks called webs [Dalkey 91] permits backtrack-

16

free solutions for a larger class of network topologies. This requires, however,

that the constraints possess special properties, typical of causal mechanisms

[Dechter & Pearl 91]. Web structures are conveniently represented by a form

of directed constraint networks (or causal networks) which indicate the or-

dering along which solutions can be obtained backtrack-free.

4.2.1 Recognizing Acyclic Networks

Several eÆcient procedures for identifying an ACN and �nding a represen-

tative join tree have been described [Maier 83]. One scheme that proved

particularly useful is based on the observation that a CN is acyclic if, and

only if, its primal graph is both chordal and conformal [Beeri, et al 83]. A

graph is chordal if every cycle of a length of at least four has a chord, i.e., an

edge joining two nonconsecutive vertices along the cycle. A graph is confor-

mal if each of its maximal cliques (i.e. subsets of nodes that are completely

connected) corresponds to a constraint in the original CN . The cordality

of a graph can be identi�ed via an ordering called the maximal cardinality

ordering, (m-ordering); it always assigns the next number to the node having

the largest set of already numbered neighbors (breaking ties arbitrarily). For

instance, the ordering in 5c is an m-ordering, whereas in Figures 5a and 5b

it is not.

It can be shown [Tarjan & Yannakakis 84] that in an m-ordered chordal

graph, the parents of each node must be completely connected. If, in addi-

tion, the maximal cliques coincide with the constraint-subsets of the original

CN , both conditions for acyclicity would be satis�ed. Because for chordal

graphs each node and its parent set constitutes a clique, the maximal cliques

can be identi�ed in linear time, and then a join tree can be constructed by

connecting each maximal clique to an ancestor clique with which it shares

the largest set of variables.

As noted, acyclic networks have a chordal primal graph, thus their width and

induced width are identical along an m-ordering. Hence, if applied to such

ordered CNs, adaptive-consistency will add no arcs to the graph. Also, be-

cause all tuples on each parent set are already locally consistent, the amount

of constraint recording is bounded by O(l � log l), resulting in an overall

complexity bound of O(n � l � log l) steps.

17

4.2.2 Tree Clustering

The above recognition process suggests a scheme for combining subsets of

constraints into higher level constraints until a join tree emerges (when the

network is not acyclic to begin with). Such a tree-clustering scheme is based

on a triangulation algorithm [Tarjan & Yannakakis 84] that transforms any

graph into a chordal graph by �lling in edges (recursively) in a reverse order

of the m-ordering, connecting any two nonadjacent nodes that are connected

via nodes higher up in the ordering. The maximal cliques of the resulting

chordal graph are the clusters necessary for forming an ACN . These clusters

represent subproblems that must be independently solved, an operation that

is exponential in the clique's size.

It can be shown that the maximal clique size, generated that way, equals

w� + 1; thus the whole transformation (into a join tree) is, once again, ex-

ponential in w�. Although tree clustering di�ers conceptually from adaptive

consistency, it e�ectively results in the same behavior and same performance.

When applied on the same ordered constraint graph, both algorithms pro-

duce the same induced graph. In other words, adaptive consistency can be

viewed as an e�ective scheme for assembling ACNs. It seems desirable to

use adaptive consistency when one-time solutions are required, and to use

tree-clustering when the network is used as a knowledge base subjected to

repeated queries. Note that although tree clustering can be applied in any or-

dering, the m-ordering produces close to optimal induced width (for chordal

graphs it is indeed optimal.)

A subclass of ACNs for which all maximal cliques have the same size is often

characterized by a special class of chordal graphs called k-trees. A k-tree is a

chordal graph whose maximal cliques are of size k+ 1, and it can be de�ned

recursively as follows: (1) A complete graph with k vertices is a k-tree. (2)

A k-tree with r vertices can be extended to r + 1 vertices by connecting the

new vertex to the vertices in any clique of size k. In particular, one-trees are

ordinary trees.

The addition of each vertex (step 2) generates a new clique of size k+1, and

by associating each new clique with one parent clique that shares k vertices

with it, a join tree is obtained. The example of an acyclic CN given in

Figure 7 is indeed a two-tree because its primal graph could be constructed

18

in the order A;B;C;E;D; F . k-trees were investigated extensively in the

graph theoretical literature. In particular, it was shown that a graph can

be embedded in a k-tree if and only if it has an induced width w� = k.

Detailed discussions of the properties are available [Arnborg 85, Freuder 90,

Rossi & Montanari 89].

4.3 Decomposition into Nonseparable Components

Another approach that exploits the structure of the constraint graph involves

the notion of nonseparable components [Freuder2 85, Dechter & Pearl 87].

Similar to tree-clustering, the idea is to identify subsets of variables that,

when grouped together, transform the problem into a tree; the nonseparable

components of a graph have this property [Even 79].

A connected graph, G = (V;E) (V , a set of nodes, E, a set of edges), is

said to have a separation node v if there exists nodes a and b such that all

paths connecting a and b pass through v. A graph that has a separation

node is called separable, and one that has none is called nonseparable. A

subgraph with no separation nodes is called a nonseparable component. An

O(j E j) algorithm exists for �nding all the nonseparable components and the

separation nodes; it is based on a depth-�rst search traversal of the graph,

called a DFS ordering [Even 79].

Let G be a graph and super � G the tree whose nodes represents the com-

ponents C1; C2; : : : ; Cr and the separating nodes V1; V2; : : : ; Vt (Figure 8b).

Figure 8 shows a graph G, its components, and its separating vertices. Once

the components are recognized, each represents a subproblem that, when

solved, de�nes the domains of a new compound variable. The tree-algorithm

can then be applied to the resulting problem, treating each component as a

compound variable.

The complexity of this approach is O(nkr) where r is the size of the largest

component. Therefore, in cases where the constraint network has a decom-

position into small clusters of nonseparable components, the resulting perfor-

mance is improved. In comparing the nonseparable component method with

either tree clustering or adaptive consistency it is immediately realized that it

does not improve the worst-case complexity, namely, w� � r and, frequently

19

F

C 4

E

C 2

C

C 1

C 3

C 4

C 3

C 2

C 1

A

B C

D

G

F J

E

I

H

(a)
(b)

Figure 8: A Graph and its decomposition into nonseparable components.

w� < r. Nevertheless, this scheme is the most natural extension of trees

and can also be extended to the dual-graph representation.

4.4 The Cycle Cutset Scheme

The decomposition method presented in this section is based on identifying

a cycle cutset, that is, a set of nodes that, once removed, would render the

constraint graph cycle-free. The method uses trees in a di�erent way than

previous schemes, exploiting the fact that variable instantiation changes the

e�ective connectivity of the constraint graph. In Figure 9, for example,

instantiating X2 to some value, say hike, renders the choices of X1 and X5

independent as if the pathway X1 �X2 �X5 were blocked at X2. Similarly,

this instantiation blocks the pathway X1 � X2 � X4, leaving only one path

between any two variables. The e�ective constraint graph for the rest of

the variables is shown in Figure 9b, where the instantiated variable X2 is

duplicated for each of its neighbors.

When the group of instantiated variables constitutes a cycle cutset, the re-

maining network is cycle free, and can be solved by the tree algorithm. In

20

X2X4

X3 X1

(a)

X
3

X
4

X1

(b)

X
2

X
5

X2

X
2

X
5

Figure 9: An instantiated variable cuts its own cycles.

the example above, X2 cuts the single cycle X1 �X2 �X3�X4 and renders

the graph in Figure 9b cycle free. In most practical cases it would take more

than a single variable to cut all the cycles in the graph. Thus a general

way of solving a problem of which the constraint graph contains cycles is

to �nd a consistent instantiation of the variables in a cycle cutset and solve

the remaining problem by the tree algorithm. If a solution to the restricted

problem is found, then a solution to the entire problem is at hand. If not,

another instantiation of the cycle cutset variables should be considered until

a solution is found. Thus if the task is to solve our crossword puzzle (Figure

1), �rst X2 = hike must be assumed, and the remaining tree problem is

solved. If no solution is found, it is assumed that X2 = keel and another

attempt is made until a solution is found.

The complexity of the cycle cutset scheme is bounded by O(exp(c)) steps,

where c is the size of the cycle cutset because the utmost number of times the

tree algorithm is invoked equals the number of partial solutions to the cutset

variables. Because �nding a minimal-size cycle cutset is NP hard, it will be

more practical to incorporate this scheme within a general problem solver

such as backtracking. Because backtracking works by progressively instanti-

ating sets of variables, all that is necessary is to keep track of the connectivity

status of the constraint graph. As soon as the set of instantiated variables

constitutes a cycle cutset, the search algorithm is switched to the tree algo-

rithm on the remaining problem, i.e., either �nding a consistent extension

21

for the remaining variables (thus �nding a solution to the entire problem) or

concluding that no such extension exists (in which case backtracking takes

place and another instantiation tried) [Dechter 90].

4.5 Graph-Based Schemes for Improving Backtracking

Two ideas for improving the look-back phases of backtracking have received

wide attention [Gaschnig 79, Stallman & Sussman 77, Doyle 79, Dechter 90].

These have often been referred to as backjumping and constraint recording

in the constraint literature, but are more commonly recognized under the

umbrella name dependency-directed backtracking, in the truth-maintenance

literature. Backjumping suggests jumping back several levels in the search

tree to a variable that may have relevance to the current dead-end, whereas

constraint recording suggests storing the reasons for the dead-end in the form

of new constraints, so that the same con
ict will not arise again later in the

search (i.e., recording no-goods).

In this section, graph-based variants of both backjumping and constraint

recording are presented. Exploiting the structure of the problem often sim-

pli�es the implementation of these schemes and enables an assessment of the

complexity, using network parameters.

4.6 Backjumping

The idea of going back several levels (in a dead-end situation) rather than

retreating to the chronologically most recent decision was exploited inde-

pendently in [Gaschnig 79] where the term \backjumping" was introduced,

and in [Stallman & Sussman 77]. The idea has since been used in truth-

maintenance systems, [Doyle 79] and in intelligent backtracking in PROLOG

[Bruynooghe & Pereira 84]. Gaschnig's algorithm uses a marking technique

where each variable maintains a pointer to the highest ancestor found incom-

patible with any of its values. In case of a dead-end, the algorithm can safely

jump directly to the ancestor pointed to by the dead-end variable. Although

this scheme retains only one bit of information with each variable, it requires

an additional computation with each consistency check.

22

Graph-based backjumping [Dechter 90] extracts knowledge about dependen-

cies from the constraint graph alone. Whenever a dead-end occurs at a

particular variable X, the algorithm backs up to the most recent variable

connected to X in the graph. Consider, for instance, the ordered constraint

graph in Figure 5a. If the search is performed in the order X1; X2; X3; X4; X5

and a dead-end occurs at X5, the algorithm will jump back to variable X2

because X5 is not connected to either X3 or X4. If the variable to which the

algorithm retreats has no more values, it should back up to the most recent

parent of both the original variable and the new dead-end variable, and so

on.

Whereas the implementation of this backjumping scheme would, in general,

require a careful maintenance of each variable's parents set [Dechter 90],

some orderings facilitate an especially simple implementation. If a depth-

�rst search is used on the constraint graph (to generate a DFS tree) and

then backjumping is conducted in an in-order traversal of the DFS tree

[Even 79], �nding the jump-back destination amounts to following a very

simple rule: if a dead-end occurred at variable X, go back to the parent of X

in the DFS tree. Consider, once again, the example in Figure 2. ADFS tree

of this graph is given in �gure 10b, and an in-order traversal of this tree is

(X1; X2; X5; X4; X3). If a dead-end occurs at node X4, the algorithm retreats

to it parent X2. When backjumping is performed on a DFS ordering of the

variables, its complexity can be bounded by O(exp(m)) steps, m being the

depth of the DFS tree. However, like many other parameters encountered,

�nding a minimal-depth DFS tree is NP-hard.

4.6.1 Constraint-Recording or Dependency-Directed Backtrack-

ing

An opportunity to learn or deduce a new constraint is presented whenever

backtracking encounters a dead-end, i.e., when the current instantiation s =

(X1 = x1; : : : ; Xi�1 = xi�1) cannot be extended by any value of the next

variable Xi. In such a case s is in con
ict with Xi or that s is a con
ict set.

Had the problem included an explicit constraint prohibiting the instantiation

s, the current dead-end would have been avoided. However, there is no point

recording such a constraint at this stage, because under the backtracking

control strategy it will not recur. If, on the other hand, the set s contains

23

X4
X2 X5

X3

(a)

X1

X2

X5X4

X
3

1X

(b)

Figure 10: A DFS tree and its ordering.

one or more subsets that are also in con
ict with Xi, then recording this

information in the form of new explicit constraints might prove useful in

the future because future states may contain these subsets. The constraint

graph provides an easy way for identifying subsets of s that are in con
ict;

by removing from s all assignments of variables that are not connected to Xi,

a subset is obtained that is still in con
ict with Xi, because all the removed

assignments are irrelevant to this dead-end.

The procedure of graph-based dependency-directed backtracking (sometimes

called graph-based constraint recording in [Dechter 90]), implements this idea

by recording these con
ict sets as a new constraint on each dead-end. Specif-

ically, if the subsets s0 = (Xi1 = xi1; : : : ; Xit = xit) is the assignments in s

connected to Xi, the procedure records a constraint on variables Xi1; : : : ; Xit

which disallows the tuple s0. For instance, suppose that backtracking solves

the crossword puzzle using the ordering (X1; X2; X5; X4; X3) and is currently

at state (X1 = snail; X2 = aron;X5 = no;X4 = dock). This state cannot

be extended by any value of X4. Obviously, the tuple (X1 = snail; X2 =

aron;X5 = no;X4 = dock) is a con
ict set; however, both the instantiations

X2 = aron and X5 = no are irrelevant to this con
ict because there is

no explicit constraint between X3 and X2 or between X3 and X5. Therefore,

the tuple (X4 = down; X1 = snail) will be disallowed by recording a new

constraint on X1 and X4.

Dependency-directed backtracking can be performed on any variable ordering.

24

Its worse-case complexity is O(exp(w�)) steps, thus providing yet another

scheme whose performance is governed by the induced width.

5 Conclusion

Throughout this survey several techniques were presented that exploit the

structure of the given network. Four graph parameters stood out in the analy-

sis: the induced-width w�, (appearing in adaptive-consistency, tree-clustering

and constraint recording in dependency-directed backtracking), the cycle-

cutset size c (appearing in the cycle-cutset method), the depth of a DFS-

tree m (in backjumping), and the size of largest non-separable component r

(appearing in the tree-component scheme). It is clear that for any problem

structure, the relationships m � w�; r � w� holds, and it can also be

shown that w� � c + 1 [Bertele & Brioschi 72]. m and r are not compa-

rable, sometimes m > r (e.g., trees) and sometimes r > m (e.g., mesh).

Another parameter mentioned in the literature, bandwidth [Zabih 90] is also

dominated by w�. It can be concluded, therefore, that w� provides the most

informative graph parameter, and it can be regarded as an intrinsic measure

of the worse-case complexity of any constraint network.

References

[Arnborg 85] Arnborg, S., \EÆcient algorithms for combinatorial prob-

lems on graphs with bounded decomposability { a sur-

vey," BIT, Vol. 25, pp. 2{23, 1985.

[Beeri, et al 83] Beeri, C., Fagin, R., Maier, D., and Yannakakis, M., \On

the desirability of acyclic database schemes," Journal of

the ACM, Vol. 30, No. 3, pp. 479{513, July, 1983.

[Bertele & Brioschi 72] Bertele, U., and Brioschi, F., Nonserial dynamic pro-

gramming, Academic Press, New York, 1972.

[Bruynooghe & Pereira 84] Bruynooghe, M., and Pereira, L. M., \Deduction revision

by intelligent backtracking," in Implementation of PRO-

LOG, J. A. Campbell, Ed. Ellis Harwood, pp. 194{215,

1984.

25

[Dalkey 91] Dalkey, N. C., Modeling Probability Distributions with

WEB Structures, Technical Report R-164, University of

California, Los Angeles, 1991.

[Dechter & Pearl 87] Dechter, R., and Pearl, J., \Network-based heuristics

for constraint-satisfaction problems," Arti�cial Intelli-

gence," Vol. 34, No. 1, pp. 1{38, 1987.

[Dechter & Meiri 89] Dechter, R., and Meiri, I., \Experimental evaluation of

preprocessing techniques in constraint satisfaction," in

Proceedings of the 11th International Conference on AI

(IJCAI-89), Detroit, MI, August, 1989.

[Dechter & Pearl 89] Dechter, R., and Pearl, J., \Tree clustering for constraint

networks," in Arti�cial Intelligence, pp. 353{366, 1989.

[Dechter 90] Dechter, R., \Enhancement schemes for constraint pro-

cessing: backjumping, learning, and cutset decomposi-

tion," Arti�cial Intelligence, Vol. 41, No. 3, pp. 273{312,

January, 1990.

[Dechter & Pearl 91] Dechter, R., and Pearl, J., \Directed Constraint Net-

works: A Relational Framework for Causal Modeling,"

Proceedings of the Twelfth IJCAI, Sydney, Australia,

Morgan-Kaufmann, San Mateo, CA, 1991.

[Doyle 79] Doyle, J., \A truth maintenance system," Arti�cial In-

telligence," Vol. 12, pp. 231{272, 1979.

[Even 79] Even, S., Graph Algorithms, Computer Science Press, Po-

tomac, MD, 1979.

[Freuder 85] Freuder, E. C., \Synthesizing constraint expression,"

Communications of the ACM, Vol. 29, No. 1, pp., 24{

32, 1985.

[Freuder 82] Freuder, E. C., \A suÆcient condition for backtrack-free

search," Journal of the ACM, Vol. 29, No. 1, pp. 24{32,

1982.

[Freuder2 85] Freuder, E. C., \A suÆcient condition for backtrack-

bounded search," Journal of the ACM, Vol. 32, No. 4,

pp. 755{761, October, 1985.

[Freuder 90] Freuder, E. C., \Complexity of k-structured constraint

satisfaction problems," in Proceedings of AAAI-90, pp.

4{9, Boston, MA, July, 1990.

[Gaschnig 79] Gaschnig, J., \Performance measurement and analysis

of certain search algorithms," Computer Science Depart-

ment, Carnegie Mellon University, Pittsburgh, PA, Tech.

Report CMU-CS-79-124, 1979.

26

[Haralick & Elliott 80] Haralick, R. M., and Elliott, G. L., \Increasing tree-

search eÆciency for constraint satisfaction problems,"

Arti�cial Intelligence, Vol. 14, No. 3, pp. 263{313, 1980.

[Mackworth & Freuder 84a] Mackworth, A. K., \Consistency in networks of rela-

tions," Arti�cial Intelligence, Vol. 8, No. 1, pp. 99{118,

1977.

[Mackworth & Freuder 84b] Mackworth, A. K., and Freuder, E. C., \The complexity

of some polynomial network consistency algorithms for

constraint satisfaction problems," Arti�cial Intelligence,

Vol. 25, No. 1, 1984.

[Maier 83] Maier, D., The theory of relational databases, Computer

Science Press, Rockville, MD, 1983.

[Montanari 74] Montanari, Ugo., \Networks of constraints: Fundamental

properties and applications to picture processing," Infor-

mation Sciences, Vol. 7, No. 2, pp. 95{132, 1974.

[Purdom 83] Purdom, P., \Search rearrangement backtracking and

polynomial average time," Arti�cial Intelligence, Vol. 21,

No. 1{2, pp. 117{133, 1983.

[Rossi & Montanari 89] Rossi, F. and Montanari, U., \Exact solution in linear

time of networks of constraints using perfect relaxation,"

in Proceedings First International Conference on Prin-

ciples of Knowledge Representation and Reasoning, pp.

394{399, Toronto, Ontario, Canada, May, 1989.

[Siedel 81] Seidel, R., \A new method for solving constraint-

satisfaction problems," in Proceedings IJCAI, pp. 338{

342, 1981.

[Stallman & Sussman 77] Stallman, R. M. and Sussman, G. J., \Forward reason-

ing and dependency-directed backtracking in a system for

computer-aided circuit analysis," Arti�cial Intelligence,

Vol 9, No. 2, pp. 135{196, 1977.

[Stone & Stone 86] Stone, H. S. and Stone, J. M., \EÆcient search techniques

{ An empirical study of the N-Queens problem," IBM

T. J. Watson Research Center, Tech. Report RC 12057

(#54343), Yorktown Heights, NY, 1986.

[Tarjan & Yannakakis 84] Tarjan, R. E. and Yannakakis, M., \Simple linear-time

algorithms to test chordality of graphs, test acyclicity of

hypergraphs and selectivity reduce acyclic hypergraphs,"

SIAM Journal of Computing, Vol. 13, No. 3, pp. 566{579,

1984.

27

[Waltz 75] Waltz, D., \Understanding line drawings of scenes with

shadows," in The Psychology of Computer Vision, P. H.

Winston, Ed., McGraw-Hill, New York, 1975.

[Zabih 90] Zabih, R., \Some applications of graph bandwidth to

constraint satisfaction problems," in Proceedings of the

Eighth National Conference on Arti�cial Intelligence

(AAAI-90), pp. 46{50, Boston, MA, July, 1990.

28

