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Abstract

In this paper we show how propositional default theories can be
characterized by classical propositional theories: for each �nite default
theory, we show a classical propositional theory such that there is a
one-to-one correspondence between models for the latter and exten-
sions of the former. This means that computing extensions and an-
swering queries about coherence, set-membership and set-entailment
are reducible to propositional satis�ability. The general transforma-
tion is exponential but tractable for a subset which we call 2-DT | a
superset of network default theories and disjunction-free default theo-

ries. Consequently, coherence and set-membership for the class 2-DT
is NP-complete and set-entailment is co-NP-complete.

This work paves the way for the application of decades of research
on e�cient algorithms for the satis�ability problem to default reason-
ing. For example, since propositional satis�ability can be regarded as
a constraint satisfaction problem (CSP), this work enables us to use
CSP techniques for default reasoning. To illustrate this point we use
the taxonomy of tractable CSPs to identify new tractable subsets for
Reiter's default logic. Our procedures allow also for computing stable
models of extended logic programs.
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1 Introduction

Researchers in arti�cial intelligence have found Reiter's default logic [Rei80]1

attractive and have used it widely for declarative representations of problems
in a variety of areas, including diagnostic reasoning [Rei87], theory of speech
acts [Per87], natural language processing [Mer88], and inheritance hierar-
chies with exceptions [Eth87a]. Most importantly, it has been shown that
logic programs with classical negation and with \negation by default" can
be embedded very naturally in default logic, and thus default logic provides
semantics for logic programs [GL91, BF87].

However, while knowledge can be speci�ed in a natural way in default
logic, the concept of extension as presented by Reiter is quite tricky. More-
over, as Reiter has shown, there is no procedure that computes extensions of
an arbitrary default theory. Recent research indicates that the complexity of
answering basic queries on propositional default logic is very high (�p

2 or �
p
2

complete [Sti92, Got92]), and that even for very simple propositional default
theories, the problem is NP-hard [KS91, Sti90].

In this paper we show how we can confront these di�culties by translating
default theories into classical propositional theories. Our approach leads to
the identi�cation of a class of theories for which we have e�ective ways of
computing extensions and testing set-membership and set-entailment, and
to the identi�cation of new tractable subsets for default logic.

We introduce the concept of meta-interpretations | truth functions that
assign truth values to clauses rather than to logical symbols | and de�ne
when such a truth function is a model for a given default theory. Studying the
properties of these models enables us to show that any �nite propositional
default theory can be compiled into a classical propositional theory such
that there is a one-to-one correspondence between models of the classical
theory and extensions of the default theory. Queries about coherence and
entailment in default logic are thus reducible to queries about satis�ability
in propositional logic.

The main advantage of this mapping is that it reduces computation in
default logic to propositional satis�ability, a task that has already been ex-
plored extensively. Moreover, our method introduces a deterministic algo-
rithm for computing extensions of any �nite propositional default theory,

1In this paper, when we mention \default logic" we mean \Reiter's default logic".

3



while previous algorithms2 (e. g. [KS91, Sti90, JK90, Eth87a]) produce an
extension only for certain subsets of all default theories. Our translation is
exponential in general. However, there is a signi�cant sublanguage which
we call 2-default theories (2-DT), for which our translation is tractable. The
class 2-DT includes the so-called network default theories| the default-logic
version of inheritance networks [Eth87a] and the class of disjunction-free de-
fault theories, in which formulas with disjunction are forbidden. It has been
shown [GL91] that the class of disjunction-free default theories can embed
extended logic programs; answer sets of the latter coincide with extensions of
the former. Therefore, techniques developed for �nding extensions for 2-DT
are applicable for computing logic programs as well.

As a by-product of our translation, we learn that the coherence problem
and the set-membership problem for the class 2-DT is NP-complete and that
the set-entailment problem for the class 2-DT is co-NP-complete 3. The
translation also provides a general framework for identifying additional NP-
complete subclasses. Note that in general these problems are �P

2 or �P
2 hard.

Once a default theory is expressed as a propositional theory, we may
apply many existing heuristics and algorithms on propositional satis�ability.
In particular, we show how topological considerations can be used to identify
new tractable subsets, and how constraint satisfaction techniques can be
e�ectively applied to tasks of default reasoning.

The rest of the introduction is organized as follows: in the following
section we discuss the connections between default logic, logic programming,
and inheritance networks, to demonstrate that the work presented here has
a direct in
uence on computational issues in these �elds as well. In section
1.2 we will then give an introductory discussion about the basic ideas and
contributions of this paper and explain its organization.

2Of course there also exists the brute force algorithm, according to which you check for
every subset of clauses, whether or not it is an extension of the theory. Though it is clear
that it is su�cient to consider a �nite number of such subsets, this brute-force algorithm
is extremely expensive.

3See Section 5.1 for details.
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1.1 Default logic, inheritance networks, and logic pro-

grams

1.1.1 Reiter's default logic

We begin with a brief introduction to Reiter's default logic [Rei80]. Let L be
a �rst-order language over a countable alphabet. A default theory is a pair
� = (D;W ), where D is a set of defaults and W is a set of closed well-formed
formulas (w�) in L. A default is a rule of the form

� : �1; :::; �n



; (1)

where �; �1; :::; �n, and 
 are formulas in L.4

A default � can also be written using the syntax � : �1; :::; �n=
. � is called
the prerequisite (notation: pre(�)); �1; :::; �n are the justi�cations (notation:
just(�)); and 
 is the conclusion (notation: concl(�)). The intuition behind
a default can be stated as \If I believe � and I have no reason to believe that
one of the �i is false, then I can believe 
." A default � : �=
 is normal if

 = �. A default is semi-normal if it is in the form � : � ^ 
=
. A default
theory is closed if all the �rst-order formulas in D and W are closed.

The set of defaultsD induces an extension onW . Intuitively, an extension
is a maximal set of formulas that is deducible fromW using the defaults inD.
Let E� denote the logical closure of E in L. We use the following de�nition
of an extension:

De�nition 1.1 (extension) [Rei80, Theorem 2.1] Let E � L be a set of
closed w�s, and let (D;W ) be a closed default theory. De�ne

1. E0 =W , and

2. For i � 0 Ei+1 = E�
i

S
f
j� : �1; :::; �n=
 2 D where � 2 Ei and

:�1; :::;:�n =2 Eg.

E is an extension for � i� for some ordering E =
S1
i=0Ei. (Note the ap-

pearance of E in the formula for Ei+1.)

Many tasks on a default theory � may be formulated using one of the
following queries:

4Empty justi�cations are equivalent to the identically true proposition true [Rei].
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Coherence: Does � have an extension? If so, �nd one.

Set-membership: Given a set of clauses T , is T contained in some exten-
sion of �?

Set-entailment: Given a set of clauses T , is T contained in every extension
of �?

In Section 6 we will also consider a special case of set-membership which
we call clause-membership, where the set T is a single clause.

In this paper we focus on propositional default logic. It has been shown
that the coherence problem is �P

2 -complete for this class and remains so even
if restricted to semi-normal default theories [Sti92, Got92]. Membership and
entailment for the class of normal propositional default theories were shown
to be �P

2 -complete and �P
2 -complete, respectively, even if T is restricted to

contain a single literal [Sti92, Got92]. In this paper we will show subclasses
for which these tasks are easier5.

It has been shown that the subclass 2-DT of all default theories is pow-
erful enough to embed both inheritance networks and logic programs. The
following two subsections elaborate on this.

1.1.2 Inheritance networks and network default theories

An inheritance network is a knowledge representation scheme in which the
knowledge is organized in a taxonomic hierarchy, thus allowing representa-
tional compactness. If many individuals share a group of common properties,
an abstraction of those properties is created, and all those individuals can
then \inherit" from that abstraction. Inheritance from multiple classes is
also allowed. For more information on this subject, see [Eth87a] or [Tou84].

Etherington ([Eth87a]) proposed a subclass of default theories, called
network default theories, as suitable for providing formal semantics and a
notion of sound inference for inheritance networks.

De�nition 1.2 (network default theory) [Eth87a] A default theory � is
a network theory i� it satis�es the following conditions:

1. W contains only

5Assuming the polynomial hierarchy does not collapse at this level.
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(a) literals (i.e., atomic formulas or their negations) and

(b) disjuncts of the form (� _ �) where � and � are literals.

2. D contains only normal and seminormal defaults of the form: � : �=�
or � : � ^ 
1 ^ ::: ^ 
n=� where �, �, and 
i are literals.

Etherington suggests formalizing inheritance relations in network default
theories in such a way that an extension of a network default theory would
correspond to a set of coherent conclusions that one could draw from the
inheritance network it represents. Thus all the queries de�ned above (coher-
ence, set-membership, set-entailment) are still relevant when dealing with
network default theories.

1.1.3 Default theories and logic programs

Logic programming is a paradigmatic way of representing programs and data
in a declarative manner using symbolic logic. Originally, the language used
by logic programs was restricted to Horn clauses. Its expressive power was
greatly improved after the introduction of using negation in the body of the
rules. This negation was generally interpreted as \negation by default", not
classical negation, resulting in a grounded predicate being considered false
i� it can not be proved from the program. For an overview of this �eld, see
[KH92].

One of the most prominent semantics for logic programs is stable model
semantics [GL91, Fin89, BF87]. Gelfond and Lifschitz [GL91] have shown
how stable model semantics can be naturally generalized to the class of ex-
tended logic programs, in which two types of negation | classical negation
and negation by default | are used.

An extended logic program is a set of rules of the form

r0  � p1; :::; pm;not q1; :::;not qn; (2)

where each of the r's, p's, and q's are literals, and not is a negation-by-default
operator. Stable model semantics associates a set of models, or answer sets,
with such an extended logic program.

Gelfond and Lifschitz established a one-to-one correspondence between
extended logic programs and disjunction-free default theories by identifying
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a rule of the form (2) with the default

p1 ^ ::: ^ pm : �q1; :::;�qn
r0

;

where �q is the literal opposite to q (�P = :P , �:P = P ). They have
shown that each extension of such a default theory corresponds to an answer
set of its twin logic program. A similar idea was introduced by Bidoit and
Froidevaux [BF87].

The above discussion suggests concluding that any algorithm that com-
putes extensions of a default theory will also compute answer sets of logic
programs under stable model semantics. Moreover, any semantics attached
to a default theory provides meaning to a logic program as well.

1.2 The main contribution of this paper

The exposition in some sections of this paper involves many technical issues,
so we will �rst familiarize the reader with the basic ideas.

In this paper we provide a way to translate any �nite propositional default
theory into a classical propositional theory so that the queries on the default
theory are speci�able as queries about satis�ability or entailment in classical
propositional logic. In order to give the reader a feel for this translation, we
will present three default theories considered in Reiter's original paper on
default logic [Rei80], and for each theory we will provide the corresponding
propositional theory. We will explain, without delving into technical details,
the principle behind our mapping.

Example 1.3 Consider the following default theory [Rei80, Example 2.3]

D =
�
: C

:D
;
: D

:C

�
;W = ;

This theory has two extensions: f:Cg� and f:Dg�. We will now show how
this result is realized using our translation. For each literal X in f:C;:Dg,
let IX be an atom with the intuitive meaning \X is in the extension". So,
for example, I:D has the meaning \:D is in the extension". Applying this
vocabulary, we will set constraints on the extension of (D;W ). The default
rule :C

:D
imposes the constraint \If C is consistent with the extension, then
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:D is in the extension", in other words: \If :C is not in the extension, then
:D is in the extension. We can write it in propositional logic as follows6 :

:I:C � I:D: (3)

Accordingly, the default rule :D
:C

imposes the constraint \If :D is not in the
extension, then :C is in the extension. We can write it in propositional logic
as:

:I:D � I:C: (4)

If :D is in the extension, it must be the case that :C is not in the
extension, because the default C

:D
is the only rule that can be used to derive

:D, and it will be activated only if C is consistent. The same applies for
:C. Therefore, we add the constraints:

I:D � :I:C (5)

I:C � :I:D (6)

If we combine the formulas (3)-(6) together, we arrive at a theory which
has two models: M1 and M2. In M1, I:C is true and I:D is false. In M2,
I:D is true and I:C is false. M1 corresponds to the extension f:Cg� and M2

corresponds to the extension f:Dg�.

Example 1.4 Consider the following default theory [Rei80, Example 2.2]

D =
�
: C

:D
;
: D

:E
;
: E

:F

�
;W = ;

This theory has one extension: f:D;:Fg�. We will now show how this result
realized using our translation. This time we use the vocabulary fI:C; I:D; I:E; I:Fg.
The default rule :C

:D
imposes the constraint

:I:C � I:D; (7)

the default rule :D
:E

imposes the constraint

:I:D � I:E; (8)

6 � is the usual material implication in classical logic
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and the default rule :E
:F

imposes the constraint

:I:E � I:F : (9)

Since extensions are supposed to be minimal, we assert that if :D is in
the extension, it must be the case that :C is not in the extension, because
the default C

:D
is the only rule that can be used to derive :D, and it will be

activated only if C is consistent. Same for :E and :F . Therefore, we add
the constraints:

I:D � :I:C (10)

I:E � :I:D (11)

I:F � :I:E (12)

(13)

Since there is no default which derives :C, we also add the requirement

:I:C (14)

If we combine the formulas (7)-(14) together, we arrive at a theory which
has one model, where the only true atoms are I:D and I:F . This model
corresponds to the extension f:D;:Fg�.

Example 1.5 Consider the following default theory [Rei80, page 91,Example
2.6]:

D =
�
: A

:A

�
;W = ;

We will translate this theory as follows:

:I:A � I:A

I:A � :I:A

The �rst formula constrains that the default rule should be satis�ed. The
second conveys the claim that since the extension is minimal, if it contains
:A it must be the case that :A was derived using the only default in D, and
therefore that :A is not in the extension. The propositional theory above is
inconsistent, and indeed the default theory we consider has no extension.
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In the sequel to this section we will formally justify the translations illus-
trated above, present the general algorithms, and give more examples. The
rest of the paper is organized as follows: After introducing some preliminary
de�nitions in Section 2, we provide in Section 3 the concept of a model for a
default theory and explain the theory behind our translation. In Sections 4
and 5 we discuss how the models presented in Section 3 can be treated as clas-
sical models of propositional logic. We present algorithms that associate for
each �nite default theory a classical propositional theory that characterizes
its extensions. Then, in Section 6 we use constraint satisfaction techniques
to show how our approach leads to the discovery of new tractable subsets
for default logic. Section 7 contains concluding remarks, and missing proofs
appear in the appendix.

Before moving on, we would like to clarify a subtle but important point.
Some of the decision problems we discuss here have been proven to be NP-
complete or co-NP-complete for some subsets of all propositional default
theories[KS91, Sti90]. This means, almost by de�nition, that there actually
exists a polynomial translation from these subsets to propositional theories
such that queries on the translated default theories are answerable by solving
satis�ability of the corresponding classical theories. The consequences of the
work presented here goes beyond this initial observation. First, we can show a
direct and simple translation: our translation does not require the encoding
of Turing machines in propositional theory. In other words, even for sub-
classes of default logic for which the above problems were shown to be NP or
co-NP complete, the complexity of the translation we provide is much lower
than the complexity implied by these decision problems being NP or co-NP
complete. Second, our translation is perfect7- which means that each model
of the classical theory derived from the translation corresponds to an exten-
sion of the original default theory. Third, our translation applies to the class
of all �nite propositional default theories | not only to restricted subclasses
| and can therefore also be used as a tool for identifying additional sub-
classes of default theories for which the problem of coherence, set-entailment
and set-membership are in NP or in coNP. In general the complexity of our
translation is exponential, but if it is polynomial for some subclass, it means
that for this subclass the problem of coherence, entailment and membership
are in NP or in co-NP.

7We thank Mirek Truszczy�nski for suggesting this rather appropriate term.
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2 De�nitions and preliminaries

We denote propositional symbols by uppercase letters P;Q;R:::, proposi-
tional literals (e.g. P;:P ) by lowercase letters p; q; r; :::, formulas by �; �; :::,
conjunctions of literals by d; d1; :::, and disjunctions of literals (clauses) by
c; c1; c2; :::. The empty clause is denoted by �. The set of all resolvents of
two clauses c1; c2 will be denoted by res(c1; c2). The resolution closure of a
set of clauses T is the set obtained by repeatedly resolving pairs of clauses
of T and adding the resolvents to T until a �xed point is reached.

A formula is in a conjunctive normal form (CNF) i� it is a conjunction of
clauses. A formula is in disjunctive normal form (DNF) i� it is a disjunction
of conjunctions of literals. Each formula has equivalent formulas8 in CNF
and DNF. The function CNF(�) (resp. DNF�) returns a formula in CNF
(resp. DNF) that is equivalent to �. Although a formula may have several
equivalent CNF or DNF formulas, we assume that the functions CNF() and
DNF return a unique output formula for each input formula. When conve-
nient, we will refer to a clause as a set of literals, to a formula in CNF as a
set of clauses, and to a formula in DNF as a set of sets of literals.

A propositional theory (in brief, a theory) is a set of propositional for-
mulas. An interpretation for a theory T is a pair (S; f) where S is the set of
atoms used in T and f is a truth assignment for the symbols in S. A model
for T is an interpretation that satis�es all the formulas in T . T`� means
that � is propositionally provable from premises T , and T j=� means that T
entails �, that is, every model of T is a model for � as well. In propositional
logic, T`� i� T j=�. Hence we will use these notations interchangeably.

The relation � between interpretations is de�ned as follows: �1 � �2 i�
the set of symbols to which �1 assigns true is a subset of the set of symbols
to which �2 assigns true. An interpretation � is minimal among a set of
interpretations I i� there is no �0 6= � in I such that �0 � �.

The logical closure of a theory T , denoted T �, is the set f!jT`!g. How
do we compute the logical closure of a theory T ? Since the logical closure is
an in�nite set, it is obvious that we cannot compute it explicitly. However,
when the theory is �nite, we can compute a set that will represent the logical
closure by using the notion of prime implicates as presented by Reiter and
de Kleer [RdK87].

8Two formulas �; � are equivalent i� � j= � and � j= �.
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De�nition 2.1 A prime implicate of a set T of clauses is a clause c such
that

1. T j=c and

2. there is no proper subset c0 of c such that T j=c0.

The prime implicates of a theory T will be denoted by PI(T ). As Reiter
and de Kleer note, a brute force method of computing PI(T ) is to repeatedly
resolve pairs of clauses of T , add the resolvents to T , and delete subsumed
clauses9, until a �xed point is reached 10. There are some improvements to
that method (see for example [MR72]), but it is clear that the general problem
is NP-hard since it also solves satis�ability. Nevertheless, for special cases
such as size-2 clauses, the prime implicates can be computed in O(n3) time.

Throughout the paper, and unless stated otherwise, we will assume with-
out loss of generality that all formulas we use in default theories are in CNF,
W is a set of clauses, the conclusion of each default is a single clause, and
each formula in the justi�cation part of a default is consistent11.

3 Propositional semantics for default logic

An extension is a belief set, that is, it is a set of formulas that are believed to
be true. A single classical interpretation cannot capture the idea of a belief
set. In other words, we cannot in general represent a belief set by a single
model by identifying the set of all formulas that the model satis�es with the
belief set. The reason is that a classical interpretation assigns a truth value
to any formula, while it might be the case that neither a formula nor its
negation belongs to the agent's set of beliefs.

We propose to use meta-interpretations to represent belief sets. In meta-
interpretations we assign truth values to clauses rather then to propositional
atoms, with the intuition that a clause is assigned the truth value true i� it

9A clause c1 subsumes a clause c2 i� c1 � c2.
c2 is called a subsumed clause [CL87, Chapter 5].

10It is clear that this method will not generate all the tautologies, but these exceptions
are easy to detect and handle. Hence, when computing prime implicates in the examples
in this paper we omit tautologies.

11Note that if a default has an inconsistent justi�cation we can simply ignore it.
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belongs to the belief set. If both P and :P are not in my belief set, they will
both be assigned false by the meta-interpretation that represents my belief
set. This motivates the following de�nition:

De�nition 3.1 (meta-interpretation) Let L be a set of propositional sym-
bols. A meta-interpretation � over L is a pair (S; f ), where S is a set
of clauses over L and f is a classical propositional interpretation for the
set of symbols LS = fIcjc 2 Sg12. That is, f is a function from LS into
ftrue; falseg. A clause belonging to S will be called an atomic clause.

We are usually interested in a belief set of an agent that is capable of
making classical logical inferences. Hence, in order to keep the size of the
meta-interpretations as manageable as possible, we can assume that if a
clause is assigned the value true in the meta-interpretation, then it is as if
all its supersets were assigned true. In the same spirit, an arbitrary formula
� will be considered true i� all the clauses in CNF(�) are true. These
ideas are summarized in the following de�nition, in which we state when a
meta-interpretation satis�es a formula.

De�nition 3.2 (satis�ability) A meta-interpretation � = (S; f ) satis�es
a clause c (�j�c) i� either c is a tautology in classical propositional logic
or there is an atomic clause c0 � c such that f (Ic0) = true. A meta-
interpretation � = (S; f ) satis�es the formula c1^c2^:::^cn (�j�c1^c2^:::^cn)
i� for all 1 � i � n �j�ci. A meta-interpretation satis�es a formula � in
propositional logic i� it satis�es CNF(�).

Note that this de�nition of satis�ability has the desirable property that
it is not the case that, for a given formula �, �j�� i� �j�n:�.

Example 3.3 Consider the meta-interpretation M2 in Table 1.
M2j�nP , M2j�n:P .

In classical propositional logic, an interpretation for a theory is an assign-
ment of truth values to the set of symbols that are used by the theory. In
analog to the classical case, we now de�ne which meta-interpretation will be
considered an interpretation for a default theory. Meta-interpretations assign

12We chose this notation because intuitively, Ic = truemeans that c is In the belief set.
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IA I:A IP IB I:P I:P_B

M1 T F T T F T
M2 F T F F F T
M3 F T T T F T

Table 1: Three meta-interpretations

truth values to clauses, not to atomic symbols. So the question is which set
of clauses should be represented as atomic symbols in meta-interpretations
of a given default theory. We suggest that it will be a set of clauses that
contains all the prime implicates of every possible extension, because this
way we can make sure that each clause in an extension will be representable
by the meta-interpretation. Hence the following de�nitions:

De�nition 3.4 (closure) Let � = (D;W ) be a default theory. We will say
that a set of clauses S is a closure of � i� S is a superset of all prime
implicates of every possible extension of �.

De�nition 3.5 (interpretation)
Let � be a default theory. An interpretation for � is a meta-interpretation
(S; f ), where S is a closure of �.

It is easy to �nd a closure S of a given a default theory � = (D;W ). For
example, we can choose S to be the set of all clauses in the language of �, or
the resolution closure of W union the set of all conclusions of defaults from
D. However, in general, we would like the size of S to be small. We can show
that the set prime(�), de�ned below, is a closure of �.

De�nition 3.6 (prime(�)) Given a default theory � = (D;W ), we �rst
de�ne the following sets:

CD is the set of all conclusions13 of defaults in D, that is,

CD = fcj� : �1; :::; �n=c 2 Dg:

13Note that we have assumed that the conclusion of each default is a single clause.
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�(�) is the resolution closure of CD and PI(W ).

We can now de�ne prime(�): Let � = (D;W ) be a default theory. The set
prime(�) is the union of �(�)� f�g and PI(W )14.

Proposition 3.7 (prime(�) is a closure) Let� be a default theory. prime(�)
is a closure of �.

Example 3.8

Consider the following default theory �:

D = fA : P=P; : A=A; : :A=:Ag,
W = f:P _Bg.

PI(W ) = f:P _ Bg, CD = fP;A;:Ag, and �(�) = PI(W )
S
CD

S
fB;�g.

Therefore, prime(�) = f:P _B;P;A;:A;Bg.
As we will see later, this theory has two extensions:

Extension 1 (E1): fA;P;Bg�

Extension 2 (E2): f:A;:P _Bg�

and indeed prime(�) is a superset of all prime implicates of E1 and E2.
We now want to build an interpretation (S; f ) for �. For reasons to

be explained later, we will choose S to be prime(�)
S
f:Pg. So we get

LS = fI:P_B; IP ; I:P ; IA; I:A; IBg. Since jLSj = 6, we have 26 di�erent
interpretations over this �xed S. Table 1 lists three of them.

In classical propositional logic, a model for a theory is an interpretation
that satis�es the theory. The set of formulas satis�ed by the model is a set
that is consistent with the theory, and a formula is entailed by the theory
if it is true in all of its models. In the same spirit, we want to de�ne when
an interpretation for a default theory is a model. Ultimately, we want the
set of all the formulas that a model for the default theory satis�es to be an
extension of that default theory. If we practice skeptical reasoning, a formula
will be entailed by the default theory if it belongs to all of its models.

14Note that this de�nition means that � belongs to prime(�) i� it belongs to PI(W )
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Since each model is supposed to represent an extension that is a deduc-
tively closed theory, each model for a default theory is required to have the
property that if a clause c follows from a set of clauses C and for each c0 2 C
Ic0 is true, then Ic is true too. Formally,

De�nition 3.9 (deductive closure) A meta-interpretation � = (S; f) is
deductively closed i� it satis�es:

1. For each two atomic clauses c; c0 such that c � c0, if f (Ic) = true then
f (Ic0) = true.

2. For each two atomic clauses c; c0, if f (Ic) = true and f (Ic0) = true
then �j�res(c; c0).

A model of a default theory will also have to satisfy each clause from W
and each default from D, in the following sense:

De�nition 3.10 (satisfying a default theory) A meta-interpretation � sat-
is�es a default theory � i�

1. For each c 2 W , �j�c.

2. For each default from D, if � satis�es its preconditions and does not
satisfy the negation of each of its justi�cations, then it satis�es its con-
clusion.

We would also like every clause that a model for a default theory satis�es
to have a \reason" to be true:

De�nition 3.11 (being based on a default theory) A meta-interpretation
� is based on a default theory � i�, for each atomic clause c such that �j�c,
at least one of the following conditions holds:

1. c is a tautology.

2. There is a clause c1 such that c1 � c and �j�c1.

3. There are clauses c1; c2 such that �j�c1; c2 and c 2 res(c1; c2).

4. c 2 W .
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5. There is a default � : �1; :::; �n=c in D such that �j��, and for each
1 � i � n �j�n:�i.

Example 3.12 Consider the following default theory �:

W = fg

D =

(
P : R

Q

)
:

Clearly, fQg is a closure of �, and the meta-interpretation � that assigns
true only to IQ is an interpretation for �. Note that � satis�es � but it is
not based on �. Indeed, the set fQg� is NOT an extension of �.

We �rst de�ne when a meta-interpretation is a weak model for a default
theory �. As we will see later, for what we call acyclic default theories,
every weak model is a model.

De�nition 3.13 (weak model) Let � be a default theory. A weak model
for � is an interpretation � for � such that

1. � is deductively closed,

2. � satis�es �, and

3. � is based on �.

In general, however, weak models are not models of a default theory,
unless each clause that they satisfy has a proof, where a proof is a sequence
of defaults that derive the clause from W .

De�nition 3.14 (proof) Let � = (D;W ) be a default theory, and let � be
an interpretation of �. A proof of a clause c with respect to � and � is a
sequence of defaults �1; :::; �n, such that the following three conditions hold:

1. c 2 (W
S
fconcl(�1); :::; concl(�n)g)�.

2. For all 1 � i � n and for each �j 2 just(�i), the negation of �j is not
satis�ed by �.
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3. For all 1 � i � n pre(�i) � (W
S
fconcl(�1); :::; concl(�i�1)g)�.

Example 3.15 Consider the following default theory �:

W = fg

D =

(
P : Q

Q
;
Q : P

P
;
: :P

R

)
:

Clearly, fP;Q;Rg is a closure of �, and the meta-interpretation � that as-
signs true only to IQ and IP is an interpretation for �. Note that � is a
weak model for �, but both P and Q do not have proofs with respect to � and
�. Indeed, the set fQ;Pg� is NOT an extension of �.

De�nition 3.16 (model) Let � be a default theory. A model for � is a
weak model � for � such that each atomic clause that � satis�es has a proof
with respect to � and �.

Our central claim is that if a meta-interpretation is a model for a default
theory �, then the set of all formulas that it satis�es is an extension of �,
and vice versa. Formally,

Theorem 3.17 (model-extension)
Let � be a default theory. A theory E is an extension for � i� there is a
model � for � such that E = fsj�j�sg.

This theorem suggests that given a default theory � = (D;W ) we can
translate queries on this theory to queries on its models as follows: � has
an extension i� it has a model, a set T of formulas is a member in some
extension i� there is a model for � that satis�es T , and T is included in
every extension i� it is satis�ed by every model for �.

Example 3.18

Consider again the default theory � from example 3.8, where:

D = fA : P=P; : A=A; : :A=:Ag,
W = f:P _Bg.
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Recall that � has two extensions:

Extension 1 (E1): fA;P;Bg�

Extension 2 (E2): f:A;:P _Bg�.

M1 and M2 in Table 1 are models for �. The set of formulas that M1
satis�es is equal to E1. The set of formulas that M2 satis�es is equal to E2.
M3 is not a model for �, because M3 is not based on �: M3 satis�es the
atomic clause P but none of the conditions of De�nition 3.11 are satis�ed for
P .

The idea behind the de�nition of a proof is that each clause that the
model satis�es will be derivable from W using the defaults and propositional
inference. An alternative way to ensure this is to assign each atomic clause an
index that is a non-negative integer and require that if this clause is satis�ed
by the meta-interpretation, the clauses used in its proof have a lower index.
Clauses from PI(W ) will get index 0, and this way the well-foundedness
of the positive integers will induce well-foundedness on the clauses. The
following theorem conveys this idea. Elkan [Elk90] used a similar technique
in order to ensure that the justi�cations supporting a node in a TMS are
non-circular.

Theorem 3.19 (indexing and proofs) A weak model � = (S; f ) for � is
a model for � i� there is a function � : S�!N+ such that for each atomic
clause c the following conditions hold:

1. c 2 W i� �(c) = 0.

2. If c =2 W then at least one of the following conditions hold:

(a) There is a default � = � : �1; :::; �n=c 2 D such that � satis�es �
and does not satisfy any of :�i and, for all c1 2 CNF (�), there
is an atomic clause c2 � c1 such that �(c2) < �(c).

(b) There are two atomic clauses c1 and c2 such that c is a resolvent
of c1 and c2, � satis�es c1 and c2, and �(c1); �(c2) < �(c).

(c) There is an atomic clause c0 � c such that �j�c0 and �(c0) < �(c).
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Figure 1: Dependency graph

The above theorem is very useful in proving that for what we call acyclic
default theories every weak model is a model for �.

Acyclicity is de�ned as follows:

De�nition 3.20 (dependency graph) Let � be a default theory and S a
closure of �. The dependency graph of � with respect to S, G�;S, is a
directed graph de�ned as follows:

1. For each c 2 S there is a node in the graph.

2. There is an edge from node c to node c0 i� c0 =2 W and at least one of
the following conditions hold:

(a) c � c0

(b) There is a clause c00 2 S such that c0 2 res(c; c00).

(c) There is a default � : �1; :::; �n=c0 in D and c 2 �.

A default theory � is acyclic with respect to a closure S i� G�;S is acyclic.

Hence, if � is acyclic with respect to S, the order that G�;S induces on
S satis�es the conditions of Theorem 3.19. So we can conclude the following:

Theorem 3.21 (models for acyclic theories) If � = (S; f ) is a weak
model for an acyclic default theory �, then � is a model for �.

Example 3.22 (example 3.8 continued) The dependency graph of � is shown
in Figure 1. � is acyclic with respect to S.
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We can also show that every model for a default theory is a minimal
weak model. For meta-interpretations over a �xed set of atomic clauses,
minimality is de�ned w.r.t: the following partial order: � � �0 i� the set of
atomic clauses that � satis�es is a subset of the set of atomic clauses that �0

satis�es. We will say that � is minimal among a set of meta-interpretations
I i� there is no �0 6= � in I such that �0 � �.

Theorem 3.23 (minimality of models) Every model of a default theory
� is a minimal weak model for �.

4 Expressing an acyclic default theory as a

propositional theory

An interpretation (S; f ) for a default theory � may be viewed as a classical
logic interpretation over S: Treat each clause in S as a propositional symbol,
and the truth value of each such \symbol" will be the value assigned by f to
its corresponding clause. Our next task is to identify among those classical
interpretations the ones that are models of �. We will do this by constructing
a propositional theory that these models must satisfy (in the classical sense).
In this section we will concentrate on acyclic default theories. Given a �nite
default theory � which is acyclic with respect to some closure of �, S, we will
show a propositional theory P�;S that characterizes these models: If (LS; f )

is a classical model for that propositional theory, then (S; f ) is a model for
�; and, vice versa, if (S; f ) is model for �, then (LS; f ) is a classical model
for P�;S. In the next section we will generalize this approach for the class
of all �nite default theories.

We will �rst demonstrate our method with an example.

Example 4.1 (example 3.8 continued)

Consider again the default theory � from example 3.8, where:

D = fA : P=P; : A=A; : :A=:Ag,
W = f:P _Bg.

Recall that � has two extensions:
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Extension 1 (E1): fA;P;Bg�

Extension 2 (E2): f:A;:P _Bg�.

Let S =f:P _B;P;A;:A;Bg be a closure of �. � is acyclic with respect
to S. For this theory, P�;S is the following set of formulas:

(1) I:P � I:P_B; IB � I:P_B; IP ^ I:P_B � IB
(2) I:P_B; IA ^ :I:P � IP ; :I:A � IA; :IA � I:A
(3) IA � :I:A; I:A � :IA; IP � IA ^ :I:P ,

IB � IP ^ I:P_B; :I:P

The classical theory P�;S expresses the requirements from a model of �. The
�rst group of formulas expresses the requirement that a model for � must
be deductively closed. It says that if one of B or :P is true in the model
then :P _ B should be true too, since B and :P are subsets of :P _ B.
Similarly, since B is a resolvent of :P _ B and P , if both of them are true
then B must be true too. Note that we do not have, for example, the formula
I:B ^ I:P_B � I:P since :B does not belong to S at all.

The second group of formulas expresses the requirement that the model
should satisfy �. For example, since :P _B belongs to W , the �rst formula
in the second group says that :P _B must be true; since we have the default
A : P=P in �, we add the second formula in the group, which says that if A
is true in the model and :P is not, then P should be true in the model.

The third group of formulas says that a model for � should be based
on �. For example, since the only way to add A to an extension is to use
the default : A=A in �, the �rst formula in this group says that if A is true
in the model, then the model must not satisfy :A, otherwise the default
: A=A could not be activated; since no combination of formulas from W and
consequences of defaults in � can derive :P (except :P itself), :P will not
be in any extension, so P�;S includes the formula :I:P .

The reader can verify that M1 and M2 from Table 1 are the only models
of P�;S. If we look at M1 and M2 as meta-interpretations, we see that the
set of formulas that M1 satis�es is equal to the extension E1 and the set of
formulas that M2 satis�es is equal to the extension E2.

Before presenting the algorithm that translates a default theory into a
classical propositional theory, some assumptions and de�nitions are needed.
From now on we will assume that a closure S of a default theory � contains
all the clauses that appear in � and all the clauses that appear in one of the
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CNF of the negation of each justi�cation. We will also need the following no-
tational shortcuts: For a given � over L and a closure of �, S, we will de�ne
the macros in() and cons() which translate formulas over L into formulas
over LS. Intuitively, in(�) says that � is satis�ed by the interpretation, that
is, for each clause c in CNF(�), there is an atomic clause c0 such that c0 is a
subset of c and Ic0 is true. in(�) is de�ned as follows:

1. If � is a tautology, then in(�) = true.

2. If � is an atomic clause c that is not a tautology, then in(�) = Ic.

3. If � is a non atomic clause c and is not a tautology, then in(�) =
_c0 is atomic; c0�c Ic0.

4. If � = c1 ^ ::: ^ cn, then in(�) = ^1�i�nin(ci)

5. If � is not in CNF, then in(�) = in(CNF(�)).

The function cons(�) is de�ned using the function in(). Intuitively,
cons(�) means that the negation of � is not satis�ed by the interpretation.
cons() is de�ned as follows:

cons(�) = :[in(:�)].

The algorithm shown in Figure 2 compiles a given �nite propositional
default theory � and a closure of �, S, into a propositional theory, P�;S,
that characterizes the models of �. The appealing features of P�;S are
summarized in the following theorems.

Theorem 4.2 Let � be a �nite acyclic default theory, and S a closure of
�. � is a classical model for P�;S i� � is a model for �.

Proof: P�;S states the conditions of De�nition 3.13 in propositional logic,
and since a weak model of an acyclic default theory is a model of the default
theory (Theorem 3.21), the assertion holds.

Corollary 4.3 Let � be a �nite default theory which is acyclic with respect
to some closure of �, S. Suppose P�;S is satis�able and � = (S; f ) is a

classical model for P�;S, and let E = fcjc 2 S; � j= Icg.
Then
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Algorithm TRANSLATE-1

begin:

1. P�;S = ;

2. P�;S = P�;S + fIcjc 2 Wg

3. P�;S = P�;S+ f in(�)^ cons(�1) ^ :::^ cons(�n) � Ic j � : �1; :::; �n=c 2 D g

4. P�;S = P�;S + fIc1 � Ic2 j c1; c2 2 S, c1 � c2 g

5. P�;S = P�;S + f Ic1 ^ Ic2 � Ic3 j c1; c2; c3 2 S, and c3 2 res(c1; c2)g

6. For each atomic clause c, de�ne:

Sc = f c1 j c1 2 S and c1 � c g

Rc = f(c1; c2) j c1; c2 2 S; c 2 res(c1; c2)g

Dc = f(�; �1; :::; �n) j � : �1; :::; �n=c 2 D g

SUBSET-reasons(c)= [_c12Sc in(c1) ]

RESOLUTION-reasons(c)= [_(c1;c2)2Rc
[in(c1) ^ in(c2)]]

DEFAULT-reasons(c)= [_(�;�1;:::;�n)2Dc

[in(�)^ cons(�1)^ :::^ cons(�n)]]

7. For each atomic clause c =2 W , if Sc
S
Rc

S
Dc = ;,

then P�;S = P�;S+ fIc � falseg ;
else P�;S =P�;S+
fIc � [SUBSET-reasons(c)
_RESOLUTION-reasons(c)
_DEFAULT-reasons(c)]g

end.

Figure 2: An algorithm that translates an acyclic default theory into a propo-
sitional theory
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1. E� is an extension of �.

2. E contains all its prime implicates (that is, PI(E) � E).

Proof: The �rst claim follows from Theorems 4.2 and 3.17. To prove the
second claim, suppose c is a prime implicate of E and it is not a tautology.
By de�nition of S, and since � has a consistent extension, c 2 S. Then, by
the de�nition of P�;S and since � is a model for P�;S, it must be the case

that � j= Ic. So c 2 E.

5 Translating cyclic default theories

So far we have shown that for any �nite acyclic default theory � and a closure
of �, S, we can �nd a propositional theory, P�;S, such that if � = (S; f )
is a classical model for P�;S, then � is a model for �. In this section
we will generalize this result for default theories that might have cycles.
This will imply that for any �nite default theory, the questions of coherence,
membership and entailment reduce to solving propositional satis�ability. We
will use Theorem 3.19, which suggests the use of indices to verify that the
interpretations are grounded in the default theory.

When �nite default theories are under consideration, the fact that each
atomic clause is assigned an index and the requirement that an index of one
atomic clause will be lower than the other's can be expressed in propositional
logic. Let #c stand for \The index associated with c", and let [#c1 < #c2]
stand for \The number associated with c1 is less than the number associated
with c2". We use these notations as shortcuts for formulas in propositional
logic that express these assertions (see Appendix B). Using these new index
variables and formulas, we can express the conditions of Theorem 3.19 in
propositional logic

The size of the formulas #c and [#c1 < #c2] is polynomial in the range
of the indices we need. Note that we do not have to index all the clauses
in S. We examine G�;S (the dependency graph of � with respect to S):
If a clause appearing in a prerequisite of a default is not on a cycle with
the default consequent, we do not need to enforce the partial order among
these two clauses. Indices are needed only for clauses that reside on cycles
in the dependency graph. Furthermore, since we will never have to solve
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cyclicity between two clauses that do not share a cycle, the range of the
index variables is bounded by the maximum number of clauses that share a
common cycle. In fact, we can show that the index variable's range can be
bounded further by the maximal length of an acyclic path in any strongly
connected component in G�;S[BE93].

The strongly connected components of a directed graph are a partition
of its set of nodes such that for each subset C in the partition and for each
x; y 2 C, there are directed paths from x to y and from y to x in G. The
strongly connected components can be identi�ed in linear time [Tar72]. Note
that, as also implied by Theorem 3.21, if the default theory is acyclic, we do
not need any indexing.

We summarize all the above discussions with an algorithm for computing
P�;S for a �nite default theory � and a closure of �, S. In addition to the

one-place macro in(), the algorithm uses a two-place macro in(�; c) which
means \� is true independently of c", or, in other words, \� is true, and, for
each clause c0 2 �, if c and c0 are in the same component in the dependency
graph, then the index of c0 is strictly lower then the index of c".

The function in(�; c) is de�ned as follows15.

1. If � is a tautology, then in(�; c) = true.

2. If � = c0 where c0 is a clause not in the same component in the depen-
dency graph as c, then in(�; c) = Ic0.

3. If � = c0 where c0 is a clause in the same component in the dependency
graph as c, then in(�; c) = [Ic0 ^ [#c

0 < #c]].

4. If � = c1 ^ ::: ^ cn, then in(�; c) = ^1�i�nin(ci; c)

5. If � is not in CNF, then in(�; c) = in(CNF(�); c).

Except for Step 6, which is shown in Figure 3, algorithm TRANSLATE-2
is identical to algorithm TRANSLATE-1.

The following theorems summarize the properties of our transformation.
In all of these theorems, P�;S is the set of formulas resulting from translat-
ing a �nite propositional theory � and a closure of �, S, using algorithm
TRANSLATE-2.

15Note that in(�; c) may be unde�ned when c or � contains a non-atomic clause, but
that is not problematic since we will use it only when this situation does not occur.
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Algorithm TRANSLATE-2, step 6

6. For each atomic clause c, de�ne:

Sc = f c1 j c; c1 2 S and c1 � c g

Rc = f(c1; c2) j c1; c2 2 S; c 2 res(c1; c2)g

Dc = f(�; �1; :::; �n) j � : �1; :::; �n=c 2 D g

SUBSET-reasons(c)= [_c12Sc in(c1; c) ]

RESOLUTION-reasons(c)= [_(c1;c2)2Rc
[in(c1; c) ^ in(c2; c)]]

DEFAULT-reasons(c)=
[_(�;�1;:::;�n)2Dc

[in(�; c) ^ cons(�1) ^ ::: ^ cons(�n)]]

Figure 3: Step 6 of algorithm TRANSLATE-2

Theorem 5.1 Let � be a default theory. Suppose P�;S is satis�able and �

is a classical model for P�;S, and let E = fcjc is atomic; � j= Icg.
Then:

1. E� is an extension of �.

2. E contains all its prime implicates.

Proof: Part 1 follows from Theorem 3.17 and the observation that P�;S
expresses the conditions of De�nition 3.13 and Theorem 3.19 in propositional
logic. The proof of part 2 is very similar to the proof of part 2 of Corollary
4.3.

Theorem 5.2 For each extension E�for a default theory �, there is a model
� for P�;S such that a clause c is in E� i� �j�c.

Proof: Follows from Theorem 3.17 and arguments similar to those used in
proving Theorem 5.1 above.

These two theorems suggest a necessary and su�cient condition for the
coherence of a �nite propositional theory:
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Corollary 5.3 A default theory � has an extension i� P�;S is satis�able.

Corollary 5.4 A set of clauses T is contained in an extension of a default
theory � i� there is a model � for P�;S such that for each c 2 T , � j= in(c).

Corollary 5.5 A clause c is in every extension of a default theory � i� each
model � for P�;S satis�es in(c), in other words, i� P�;S j= in(c).

These theorems suggest that we can �rst translate a given �nite propo-
sitional theory � to P�;S and then answer queries as follows: To test
whether � has an extension, we test satis�ability of P�;S; to see whether
a set T of clauses is a member in some extension, we test satis�ability of
P�;S + fin(c)jc 2 Tg; and to determine whether T is included in every

extension, we test whether P�;S entails the formula [^c2T in(c)].

5.1 Complexity considerations

Clearly, the transformation presented above is exponential in general. How-
ever, there are tractable subsets. For example, if the default theory is what
we call a 2-default theory (2-DT), then the transformation can be done in
polynomial time and the size of the propositional theory produced is poly-
nomial in the size of the default theory. The class 2-DT is de�ned bellow.
Note that this class is a superset of network default theories and normal logic
programs, discussed in Sections 1.1.2 and 1.1.3.

De�nition 5.6 A 2-default theory (2-DT) is a propositional default the-
ory � where all the formulas in W are in 2-CNF and, for each default
� : �1; :::; �n=
 in D, � is in 2-CNF, each �i is in 2-DNF, and 
 is a clause
of size 2.

A step-by-step analysis of the complexity of algorithm TRANSLATE-2
for a default theory � = (D;W ) that belongs to the class 2-DT is shown
below.

Let n be the number of letters in L, the language upon which � is built,
and let d be the maximum size of a default (the total number of characters
used to write it). We assume that S, which is the closure of �, is the union
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of prime(�), the set of all clauses appearing in �, and the set of all clauses
that appear in the CNF of all negations of justi�cations16. Note that S can
be computed in O(n3 + jDjd) steps17. We denote by l the length of the
longest acyclic path in any component of G�;S, by dc the maximal number
of defaults having the conclusion c, and by r, the maximal number of pairs
of clauses in S that yield the same clause when resolved. Note that r � n.
Let p denote the maximumnumber of clauses that appear in any prerequisite
and reside on the same cycle in the dependency graph (note that p is smaller
than d and smaller or equal to the size of any component in the dependency
graph, so p � min(d; n)).

step 2 Takes O(n2) time. Produces no more than O(n2) formulas of size 1.

step 3 The reason we require the justi�cation to be in 2-DNF is that we can
transfer the negation of it into a 2-CNF representation in linear time.
So step 3 can be done in time O(jDjd) and jDj formulas of size O(d)
are generated.

steps 4-5 There are at most O(n2) clauses of size � 2. It takes O(n2) time
to �nd all pairs c1; c2 such that c1 � c2 (one way to do this, is to allocate
an array of size 2n and store all clause with a common literal in the
same bucket, and then produce all such pairs). Therefore, step 4 takes
O(n2) time and produces O(n2) formulas of size 2. Similarly, step 5
takes O(n3) time (use the same array as in step 4, but this time you
have to go over two di�erent buckets: the one for an atom, and the one
for its negation), and produces O(n3) formulas of size 3.

steps 6-7 For this step, we �rst have to build the dependency graph of �
with respect to S. This takes O(n2 + jDjd) time. We assume that
at the end of the graph-building phase, there is a pointer from each
clause to its component and to all the defaults for which the clause is
a conclusion.

For each clause c in S, the size of Sc is � 2 , the size of Rc is O(r),
and the size of Dc is O(dc). For any clause c0, computing in(c0; c) takes

16Note that the justi�cations are in 2-DNF, and hence their negation translates very
easily into a 2-CNF.

17The reader can verify that the set of prime implicates of a set of clauses of size 2 can
be computed in time O(n3) where n is the number of letters in the language.
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O(l2) time and produces a formula of size O(l2); For any prerequisite
�, computing in(�; c) takes O(l2p) time and produces a formula of
size O(l2p). Therefore, for each clause c, computing SUBSET-reasons
takes O(l2) time and produces a formula of size O(l2). Computing
DEFAULT-reasons takes O(dc(d + pl2)) time and produces a formula
of this size. Computing RESOLUTION-reasons takes O(n2) time and
produces a formula of size O(r). Since we have O(n2) clauses, the
whole step takes O(n2(l2+n2)+ jDj(d+pl2)) time and produces O(n2)
formulas of size O(max(dc(d+pl2); r)). Note that max(dc(d+pl2); r) �
dc(d+ nl2).

Proposition 5.7 For 2-DT, the above transformation takes O(n2(l2+n2)+
jDj(d + pl2)) time and produces O(max(n3; jDj)) formulas of size O(dc(d +
nl2).

The above theorem shows that there is a direct connection between the
complexity of the translation and the cyclicity of the default theory trans-
lated, since for acyclic theories p = l = 1.

The complexity results obtained by Kautz and Selman [KS91] and Still-
man [Sti90] for default logic show that the satis�ability problem is polyno-
mially reducible to deciding extension existence and membership in a subset
of the class 2-DT, and that entailment in propositional logic is polynomially
reducible to entailment for a subset of the class 2-DT. These results establish
the NP-hardness of the existence and membership problems and the co-NP-
hardness of the entailment problem for the class HEDLPs. The polynomial
transformation to satis�ability that we have presented in the last section im-
plies that existence, memebership, and entailment are in NP or in co-NP for
the class 2-DT. Hence we conclude the following:

Corollary 5.8 The coherence problem (i.e. extension existence) for the
class 2-DT is NP-complete.

Corollary 5.9 Set-membership for the class 2-DT is NP-complete.

Proof: By Corollary 5.4, in order to check if a theory T is contained in some
extension of a 2-DT �, we should check whether P�;S

S
in(T ), where in(T ) =
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fin(c) j c 2 Tg, is satis�able. Since � is 2-DT both P�;S and in(T ) can be
computed in time polynomial in the size of � and T .

Corollary 5.10 Set-entailment for the class 2-DT is co-NP-complete.

Proof: Follows from Corollary 5.5 above.

6 Tractable subsets for default logic

Once queries on a default theory are reduced to propositional satis�ability,
we can use any of a number of techniques and heuristics to answer them.
For instance, entailment in default logic can be solved using any complete
resolution technique, since we have shown that it is reducible to entailment
in propositional logic.

Our approach is useful especially for the class 2-DT, since our algorithm
compiles a 2-DT in polynomial time. So if a 2-DT translates into an easy sat-
is�ability problem, queries on the knowledge it represents can be answered
e�ciently. In other words, each subclass of 2-DT that translates into a
tractable subclass of propositional satis�ability is a tractable subset for de-
fault logic. Consequently, we can identify easy default theories by analyzing
the characteristics of 2-DT that would translate into tractable propositional
theories. We will give an example of such a process by showing how some
techniques developed by the constraints based reasoning community can be
used to identify new tractable subsets for default logic.

Constraint-based reasoning is a paradigm for formulating knowledge in
terms of a set of constraints on some entities, without specifying methods
for satisfying such constraints. Some techniques for testing the satis�ability
of such constraints, and for �nding a setting that will satisfy all the con-
straints speci�ed, exploit the structure of the problem through the notion of
a constraint graph.

The problem of the satis�ability of a propositional theory can be also for-
mulated as a constraint satisfaction problem (CSP). For a propositional CNF
theory, the constraint graph associates a node with each propositional let-
ter and connects any two nodes whose associated letters appear in the same
conjunct. Various parameters of constraints graph were shown as crucially
related to the complexity of solving CSP and hence to solving the satis�abil-
ity problem. These include the induced width, w� (also called tree width), the
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size of the cycle-cutset, the depth of a depth-�rst-search spanning tree of this
graph, and the size of the non-separable components [Fre85, DP88, Dec90].
It can be shown that the worst-case complexity of deciding consistency is
polynomially bounded by any one of these parameters. Since these param-
eters can be bounded easily by a simple processing of the graph, they can
be used for bounding the complexity ahead of time. For instance, when the
constraint graph is a tree, satis�ability can be answered in linear time.

In the sequel we will focus on two speci�c CSP techniques: tree-clustering
[DP89] and cycle-cutset decomposition [Dec90].

The tree-clustering schemehas a tree-building phase and a query-processing
phase. The complexity of the former is exponentially dependent on the
sparseness of the constraint graph, while the complexity of the latter is always
linear in the size of the database generated by the tree-building preprocess-
ing phase. Consequently, even when building the tree is computationally
expensive, it may pay o� when the size of the resulting tree is manageable
and many queries on the same theory are expected. More details about tree
clustering and its application to reasoning in default logic can be found in
Appendix C.

One of the advantages of applying tree-clustering to default reasoning is
that it is possible to asses the cost of the whole process by examining the de-
fault theory prior to the translation step. We will characterize the tractability
of default theories as a function of the topology of their interaction graph.

The interaction graph of a default theory � and a closure of �, S, is an
undirected graph where each clause in S is associated with a node. Arcs are
added such that for every default

c1 ^ ::: ^ cn : dn+1; :::; dn+m
c0

;

there are arcs connecting c0,c1; :::; cn, CNF (:dn+1); :::; CNF (:dn+m) in a
clique; every two clauses c; c0 are connected i� they can be resolved, or c � c0,
or there exist c00 such that c = res(c0; c00).

A chord of a cycle is an arc connecting two nonadjacent nodes in the
cycle. A graph is chordal i� every cycle of length at least 4 has a chord.
The induced width (w�) of a graph G is the minimum size of a maximal
clique in any chordal graph that embeds G18. The next theorem summarizes

18A graph G0 embeds graph G i� G � G0 when we view graphs as sets of nodes and
arcs.
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the complexity of our algorithm in terms of the induced width (w�) of the
interaction graph.

Theorem 6.1 For a 2-DT whose interaction graph has an induced width w�,
existence, clause-membership, and set-entailment19 can be decided in O(� �

2w
�
+1) steps, where � is polynomial in the size of the input20.

Note that w� is always at least as large as the size of the largest default
in the theory, and since there are at most 2n2 clauses of size � 2 in the
language, w� � 2n2. We believe that this algorithm is especially useful for
temporal reasoning in default logic, where the temporal persistence principle
causes the knowledge base to have a repetitive structure, as the following
example demonstrates:

Example 6.2

Suppose I leave my son at the child-care services at time t1. If he was not
picked up by my husband, between time t2 and tn�1, I expect my son to be
there during any time ti between t2 and tn. This can be formalized in the
following default theory (D;W ), where in D we have defaults of the form

at-school(ti) : at-school(ti+1)

at-school(ti+1)

for i = 1; :::; n� 1, and in W we have formulas of the form:

picked-at(ti) � : at-school(ti+1)

for i = 2; :::; n� 1.
For notational convenience, we abbreviate the above rules as follows:

si : si+1
si+1

pi � :si+1

The interaction graph of this theory for the closure f si, :si, :pi, :pi_:si+1,
g (For the Si's, i = 1; :::; n, for the Pi's, i = 2; :::; n� 1) is shown in Figure 4.

19Recall the de�nition of these decision problems from Section 1.1.1.
20The input is the default theory and the set of clauses for which we test membership

or entailment.
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Figure 4: Interaction graph for Example 6.2

The reader can verify that that w� � 2 for this particular set of problems.
Thus, as the number of time slots (n) grows, the time complexity for answer-
ing queries about coherence, set-membership, and set-entailment using the
tree-clustering method grows linearly. Note that according to Selman and
Kautz's classi�cation [KS91], this family of theories belongs to a class for
which the complexity of answering such queries is NP-hard.

The cycle-cutset algorithm is another method that exploits the structure
of the constraint graph. The cycle-cutset method is based on two facts:
that tree-structured CSPs can be solved in linear time, and that variable
instantiation changes the e�ective connectivity of the constraint graph. The
basic idea is to instantiate a set of variables that constitute a cycle-cutset
of the constraint graph, where a cycle-cutset is a set of nodes that, once
removed, render the graph cycle-free. After the cycle-cutset is instantiated,
the remaining graph is a tree, and we can apply the linear-time tree algorithm
for solving the rest of the problem. If no solution is found, we have to try
another instantiation of the cycle-cutset variables, and so on. Clearly, the
complexity of this approach is exponentially bounded by the size of the cycle-
cutset that is used. For more details on this method, see [Dec90].

We have the following complexity bound on reasoning tasks in 2-DT:

Theorem 6.3 For a 2-DT whose interaction graph has a cycle-cutset of car-
dinality k, existence, clause-membership, and set-entailment can be decided
in O(� � 2k) steps, where � is polynomial in the size of the input.
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7 Relation to Clark's predicate completion

In this section we discuss the relationship between the work presented here
and Clark's work on program completion. Clark [Cla78] made one of the
�rst attempts to give meaning to logic programs with negated atoms in a
rule's body (\normal programs"). He shows how each normal program �
can be associated with a �rst-order theory COMP (�), called its completion.
His idea is that when a programmer writes a program �, the programmer
actually has in mind COMP (�), and thus all queries about the program
should be evaluated with respect to COMP (�). So a formula Q is implied
by the program i� COMP (�) j= Q.

For the comparison between Clark's work and ours, we consider only
normal propositional programs, that is, a set of rules of the form

Q �P1; :::; Pn; notR1; :::; notRm (15)

where Q, P1; :::; Pn, and R1; :::; Rm are atoms.
As discussed in section 1.1.3, normal logic programs can be viewed as

disjunction-free default theories by taking W = ; and by identifying a rule
of the form (15) with the default

P1 ^ ::: ^ Pn : :R1; :::;:Rm

Q
:

Hence we can treat normal logic programs as a subclass of all default theories,
and talk about extensions of normal logic programs: those are the extensions
of their corresponding default theories.

Given a propositional logic program �, COMP (�) is obtained in two
steps:

Step 1: Replace each rule of the form (15) with the rule

Q �P1 ^ ::: ^ Pn ^ :R1 ^ ::: ^ :Rm:

Step 2: For each symbol Q, let Support(Q) denote the set of all clauses with
Q in the head. Suppose Support(Q) is the set

Q �Body1

:
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:

:

Q �Bodyk:

Replace it with a single sentence,

Q !Body1 _ ::: _Bodyk:

Note two special cases: If \Q �" in Support(Q), simply replace Support(Q)
by Q. If Support(Q) is empty, replace it with :Q.

Example 7.1 Consider the following program �:

P �Q;notR

P �V

R �S

V �

The completion of � is the following propositional theory:

P ![Q ^ :R] _ V (16)

R !S (17)

V (18)

:S (19)

:Q: (20)

There are interesting similarities between COMP (�) and the translation we
provide for the same logic program. If we take the program in the previous
example and translate it using algorithm translate-1, we get that P� is the
following theory (note that � is acyclic according to our de�nitions):

IV (21)

IQ ^ :IR � IP (22)

IS � IR (23)

IV � IP (24)

IP � IQ ^ :IR _ IV (25)

IR � IS (26)

:IS ;:IQ; f:I:LjL 2 fP;Q;R; S; V gg (27)

fIL ^ I:L � falsejL 2 fP;Q;R; S; V gg: (28)
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Combining sentences (22), (24), and (25) and sentences (23) and (26) and
replacing each symbol of the form IL, where L is positive, with L, we get the
following equivalent theory (compare to (16)-(20)):

P ![Q ^ :R] _ V

R !S

V

:S

:Q

f:I:LjL 2 fP;Q;R; S; V gg

fL ^ I:L � falsejL 2 fP;Q;R; S; V gg:

It is easy to see that each model for the above theory is a model of the
completion of the program and that each model of the completion of the
program can be extended to be a model for this theory. The above example
can easily be generalized to a proof of the following theorem, which was
proved independently by Fages [Fag92] and in our previous work [BED94]:

Theorem 7.2 Let � be a normal acyclic propositional logic program. Then
M is a model for COMP (�) i� fIP jP 2Mg is a model for P�.

Proof: (sketch) Let � be an acyclic normal logic program, L the language
of �, and P 0� the theory obtained from P� by replacing each occurrence of
the atom IP , where P is an atom in L with the symbol P . It is easy to
see that the set of models of P 0� projected on L is equivalent to the set of
models of COMP (�).

Corollary 7.3 Let � be an acyclic normal propositional logic program. �
has an extension i� COMP (�) is consistent. Furthermore, M is a model
for COMP (�) i� fP jM(P ) = trueg� is an extension of �.

Proof: Follows from the above theorem and Theorem 3.17.

Corollary 7.4 Let � be an acyclic normal propositional logic program. An
atom P is in the intersection of all the extensions of � i� COMP (�) j= P .
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Corollary 7.5 Let � be an acyclic normal propositional logic program. An
atom P does not belong to any of the extensions of � i� COMP (�) j= :P .

The above observations identify the class of acyclic normal propositional
logic programs as a class for which default logic semantics (under \skeptical
reasoning"21) is equivalent to Clark's predicate completion.

Note that if � is a cyclic program, our translation is di�erent from Clark's
completion:

Example 7.6 Consider the following program �1:

P �P

Q �not P

COMP (�1) is the theory fP !P;Q !:Pg. P�1
is the theory fIP � IP ,

IP � IP ^ [#IP < #IP ]; IQ !:IP g. substituting IP with P and IQ with Q,
we get that P�1

is the theory fP � P , P � P ^ [#P < #P ]; Q !:Pg.
COMP (�1) has two models, in one of them P is true and Q is false, in the
other, P is false and Q is true. P�1

has only one model, the model in which
P is false and Q is true. Hence P�1

entails Q, while COMP (�1) does not
entail Q. Indeed �1 has one extension which is the logical closure of fQg.

Another major di�erence between Clark's completion and our work is
that we handle all propositional default logic and not only the subset that
corresponds to normal logic programs.

8 Conclusions and related work

Reiter's default logic is a useful formalism for nonmonotonic reasoning. The
applicability of default logic, however, is limited by the lack of intuitive
semantics for the set of conclusions that the logic rati�es, and by the high
computational complexity required for drawing such conclusions.

In this paper we have addressed some of the these problems. We have
shown how default theories can be characterized by theories of the already

21\Skeptical reasoning" means that a program entails an atom i� the atom belongs to
all of the program's answer sets.
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well studied propositional logic, we have presented a procedure that computes
an extension for any �nite propositional default theory, and we have identi�ed
new tractable default theories.

The work presented here can also be viewed as an attempt to provide
default logic with semantics that are in the spirit of the semantics of Moore's
autoepistemic logic [Moo85]. The concepts of meta-interpretation and model
for a default theory are in some sense parallel to the notions of propositional
interpretation of an autoepistemic theory (AET) and autoepistemic model of
an AET [Moo85, Section 3]. Moore de�nes a propositional interpretation
of an AET as an assignment of truth values to the formulas in the the-
ory provided it is consistent with the usual interpretations for classical logic
(treating a formula of the form LP , where L is the \belief" operator, as a
propositional symbol). Similarly, we de�ne a meta-interpretation of a theory
to be an assignment of truth values to clauses in the language of the theory.
Moore de�nes an autoepistemic model of a AET T as an autoepistemic inter-
pretation in which: a) all the formulas of T are true and, b) for every formula
P , LP is true i� P is in T . Expansions in Autoepistemic logic correspond
to extensions in default logic, and are supposed to be stable. Moore shows
that an AET T is stable i� T contains every formula that is true in every
autoepistemic model of T . We de�ne a model for a default theory in such a
way that all the formulas satis�ed by a certain model of the default theory
are an extension of the theory.

Using the theory of meta-interpretations and models for propositional
default theories, we presented an algorithm that compiles any �nite default
theory into a classical propositional theory, such that models of the last coin-
cide with extensions of the �rst. This means that queries on default theories
are reducible to propositional satis�ability, a problem that has been compre-
hensively explored. For instance, in order to compute whether a formula is
in every extension of a default theory, we no longer need to compute or count
all the extensions, since the problem of entailment in default logic is reduced
to propositional provability.

In general, the translation algorithm is exponential, but it is polynomial
for the class 2-DT, which is expressive enough to embed inheritance networks
and logic programs. This leads to the observation that Membership and
Coherence are NP-complete and Entailment is co-NP-complete for the class
2-DT. Using constraint satisfaction techniques, we have identi�ed tractable
subclasses of 2-DT. We have shown how problems in temporal reasoning can
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be solved e�ciently using the tree clustering algorithm.
Related results for autoepistemic logic were reported in [MT91], where it

was shown that the question of an atom's membership in every expansion of
an autoepistemic theory is reducible to propositional provability. Also, Elkan
[Elk90] has shown that stable models of a logic program with no classical
negation can be represented as models of propositional logic. Thus our work
extends his results for the full power of default logic. In [BED94], we used
a technique similar to the one presented here for computing stable models
of disjunctive logic programs. We have also shown that there an interesting
relationship between the translation presented in this paper and what is
called Clark's predicate completion [Cla78]. A preliminary version of this
work appears in [BED91].

There have been attempts in the past to relate default logic to other forms
of nonmonotonic reasoning systems, such as autoepistemic logic, circumscrip-
tion, and TMS [Kon88, MT89, Eth87b, JK90]. We believe that embedding
default logic in classical logic is just as valuable since classical logic is a well
understood formalism supported by a large body of computational knowl-
edge.

A Proofs

A.1 Useful theorems and de�nitions

De�nition A.1 ([Lee67]) If S is any set of clauses, then the resolution of
S, denoted by R(S), is the set consisting of the members of S together with
all the resolvents of the pairs of members of S.

De�nition A.2 ([Lee67]) If S is any set of clauses, then the n-th resolution
of S, denoted by Rn(S), is de�ned for n � 0 as follows: R0 = S, and for
n � 0, Rn+1(S) = R(Rn(S)).

Theorem A.3 ([Lee67]) Given a set S of clauses, if a clause c is a logical
consequence of S which is not a tautology, then for some n � 0, there exists
a clause c0 2 Rn(S), such that c0 � c.

Proposition A.4 Suppose c; c1; c2; c
0
1; c

0
2 are clauses, c01 � c1, c

0
2 � c2, and

c 2 res(c1; c2). Then at least one of the following conditions must hold:
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1. c01 � c.

2. c02 � c.

3. There is c0 � c such that c0 2 res(c01; c
0
2).

Proof: Suppose

c1 = c3 _ P

c2 = c4 _ :P

c = c3 _ c4

and suppose that both conditions 1 and 2 do not hold. Then it must be that

c01 = c5 _ P

c02 = c6 _ :P

where c5 is a subset of c3 and c6 is a subset of c4. Clearly, c5 _ c6 is both a
resolvent of c01 and c02 and a subset of c.

Theorem A.5 ([Rei80], Corollary 2.2) A closed default theory (D;W ) has
an inconsistent extension i� W is inconsistent.

A.2 Proofs of propositions and theorems

Proof of Proposition 3.7 (prime(�) is a closure) Let � be a default
theory. prime(�) is a closure of �.

Proof: Suppose E is an extension of � = (D;W ). Since PI(E) �
E, it is su�cient to show that for each c 2 E there is a clause c0 in
prime(�) such that c0 � c. If E is inconsistent, then by Theorem A.5
W is inconsistent, so � 2 PI(W ), and so � 2 prime(�). Suppose E
is consistent. By De�nition 1.1, for some ordering, E =

S1
i=0Ei, where

Ei is as de�ned there. We will show that for each c 2 E, there is a
clause c0 in prime(�)

T
E such that c0 � c. The proof is by induction

on min(c), where min(c) is the minimum i such that c 2 Ei.
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Case min(c) = 0: In this case, it must be that c 2 W . Our claim is
true since PI(W ) � prime(�)

T
E.

Induction step Assume the claim is true for min(c) = n, where n �
0, show that it is true for n + 1. Note that c 6= �, since E is
consistent.

Suppose c was introduced �rst at En+1. So either c 2 CD or
En j= c. If c 2 CD, then clearly our assertion holds. Assume
En j= c. By Theorem A.3, for some j, there is c00 2 Rj(En) such
that c00 � c. We will show by induction on a minimum such j
that there is c0 2 prime(�)

T
E such that c0 � c. For j = 0, this

is clear due to the induction hypothesis on n. For j > 0, let c1; c2
be clauses in Rl(En), l < j, such that c00 2 res(c1; c2). By the
induction hypothesis, there are c01, c

0
2 in prime(�)

T
E such that

c01 � c1, c02 � c2. By Proposition A.4, either c01 � c00 or c02 � c00 or
there is c3 in res(c01; c

0
2) such that c3 � c00. prime(�)

T
E is closed

by resolution (unless the resolvent is �, but c3 2 E and hence
c3 6= �). So c3 2 prime(�)

T
E.

Proof of Theorem 3.17 (model-extension) Let � be a default theory.
A theory E is an extension for � i� there is a model � for � such that
E = fsj�j�sg.

Proof: Let � = (D;W ) be a default theory and � = (S; f ) a model
of �. Let A be the set of all clauses that � satis�es. We will show that
A is an extension22 of �.

We de�ne

1. E0 = W ,

2. For i � 0 Ei+1 = E�
i

S
fcj� : �1; :::; �n=c 2 D where � 2 Ei and

:�1; ::::�n =2 A and c 2 Ag, and

3. E =
S1
i=0Ei.

22Without loss of generality, we assume in this proof that an extension is a set of clauses,
and all formulas in � are in CNF.
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It is easy to verify that E � A. We will show that A � E, and thus by
De�nition 1.1 A is an extension of �.

Let c 2 A. By de�nition, c has a proof with respect to (S; f ) and �.
By induction on the number of defaults used in the shortest proof, we
can easily show that c 2 E.

To prove the other direction, suppose E is an extension of �. Let
S = prime(�). We will show that � = (S; f 0) is a model of �, where
f 0 is de�ned as

for all c 2 S; f 0(c) = true () c 2 E:

It is easy to verify that � is deductively closed and satis�es �. By
De�nition 1.1, there are sets E0; E1; ::: such that

1. E0 = W ,

2. For i � 0 Ei+1 = E�
i

S
fcj� : �1; :::; �n=c 2 D where � 2 Ei and

:�1; ::::�n =2 Eg, and

3. E =
S1
i=0Ei.

By induction on the minimal i such that an arbitrary clause c belongs
to Ei, we can show that c has a proof with respect to � and �. So
every atomic clause that � satis�es has a proof with respect to � and
�. It is left to show that � is based on �. Let c be an atomic clause.
By induction on i, the minimum number of defaults used in a proof for
c, we will show that one of the conditions of De�nition 3.11 holds for
c.

case i = 0 It must be the case that W j= c, and hence c is in every
extension of �. Let E be an extension of �. Since S includes all
prime implicates of E, and � satis�es c, there must be a clause
c0 2 S such that c0 � c and � satis�es c0. If c0 6= c we are done.
Else, c is a prime implicate of E, and so there must be two clauses
c1; c2 in E such that c 2 res(c1; c2). By de�nition, � satis�es c1
and c2. So item 3 of De�nition 3.11 holds for c.

case i > 0 So either c is a consequence of some default � and item 5
of De�nition 3.11 holds for c, or c is a logical consequence of some
set of clauses C � E, in which case one of items 1-3 must hold for
c.
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Proof of Theorem 3.19 (indexing and proofs) Aweak model � = (S; f )
for � is a model i� there is a function � : S�!N+ such that for each
atomic clause c the following conditions hold:

1. c 2 W i� �(c) = 0.

2. If c =2 W then at least one of the following conditions hold:

(a) There is a default � = � : �1; :::; �n=c 2 D such that � satis�es
� and does not satisfy any of :�i, and for all c1 2 CNF (�),
there is an atomic clause c2 � c1 such that �(c2) < �(c).

(b) There are two atomic clauses c1 and c2 such that c is a resol-
vent of c1 and c2, � satis�es c1 and c2, and �(c1); �(c2) < �(c).

(c) There is an atomic clause c0 � c such that �j�c0 and �(c0) <
�(c).

Proof: We can show that each atomic clause has a proof with
respect to � and � by induction on �(c).

case �(c) = 0 In this case c 2 W , so clearly c has a proof.

case �(c) > 0 In this case c follows from other clauses using classical
logic or the default rules. Those other clauses have proofs by the
induction hypothesis. Hence c has a proof as well.

Proof of Theorem 3.21 (models for acyclic theories) If � = (S; f ) is
a weak model for an acyclic default theory �, then � is a model for �.

Proof: If the theory is acyclic, the dependency graph induces on
S an ordering that complies with the requirements stated in Theorem
3.19.

Proof of Theorem 3.23 (minimality of models) Amodel for � is a min-
imal weak model for �.

Proof: Suppose that � = (S; f ) is a model for �. Obviously, it
is a weak model. We want to show it is minimal. By de�nition, for
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each atomic clause c in S there is a proof of c with respect to � and
�. Assume by contradiction that � is not minimal. So there must be
a weak model �0 = (S; f 0) such that A� � A, where

A� = fcjc is atomic; f 0(c) = trueg

A = fcjc is atomic; f (c) = trueg

We will show that if c has a proof with respect to � and �, it must be
satis�ed by �0, and so A � A� | a contradiction. The proof will pro-
ceed by induction on n, the number of defaults used in the proof of c. If
n = 0, the assertion is clear since c 2 W �. In the event that the proof of
c uses the defaults �1; :::; �n+1, we observe, using the induction hypoth-
esis, that (W

S
fconcl(�1); :::; concl(�n)g)� is satis�ed by �0. Therefore,

since �0 must satisfy �, it must also satisfy concl(�n+1), and since it is
deductively closed, it must satisfy W

S
fconcl(�1); :::; concl(�n+1)g�, so

it satis�es c.

Proof of Theorem 6.3 For a 2-DT whose interaction graph has a cycle-
cutset of cardinality k, existence, clause-membership, and set-entailment
can be decided in O(� � 2k) steps, where � is polynomial in the size of
the input.

Proof: Satis�ability of a theory whose constraint graph has a cycle-
cutset of cardinality k can be solved in time O(n2k), where n is the
number of letters in the theory [Dec90]. The interaction graph of a
default theory � with a closure S is isomorph to the constraint graph
of P�;S. Now, let � be a 2-DT with a closure S. Since � is 2-DT, any
clause in S is of size� 2, and P�;S can be computed in time polynomial
in the length of �. Since the constraint graph of P�;S has a cycle cutset

of size k, satis�ability of P�;S be checked in time O(�02k) where �0 is
polynomial in the size of P�;S. By Corollary 5.3 � is coherent i� P�;S
is satis�able. Hence coherence of � can be checked in time O(�12k),
where �1 is polynomial in the size of the input. By Corollary 5.4, to
check whether a clause c is a member of an extension of �, we have
to check whether there is a model of P�;S which satis�es some subset

of c which belongs to S. Since � is 2-DT, there are at most O(jcj2)
clauses c0 such that c0 � c; c0 2 S, and so clause-membership for the
class 2-DT can be computed in time O(�22k) where �2 is polynomial
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in the size of the input. By Corollary 5.5, to answer whether a set of
clauses T is included in all the extensions of �, it is enough to check
whether there is some clause c in T which some model of P�;S does
not satisfy. Hence we have to check whether there is a model of P�;S
that satis�es :c0 for some c0 2 S which is a subset of some c 2 T .
Since � is 2-DT, for any c in T there are at most O(jcj2) clauses c0

such that c0 � c; c0 2 S, and so set-entailment for the class 2-DT can
be computed in time O(�32

k) where �3 is polynomial in the size of the
input. Take � to be the maximum of f�iji = 0; 1; 2; 3g.

B Expressing Indexes in Propositional Logic

Suppose we are given a set of symbols L to each of which we want to assign
an index variable within the range 1�m.

We de�ne a new set of symbols: L0 = fP;P = 1; P = 2; :::; P = mjP 2 Lg,
where P = i for i = 1; :::;m denote propositional letters with the intuition \P
will get the number i" behind it. For each P in L0, let #P be the following
set of formulas :

P = 1 _ P = 2 _ ::: _ P = m

P = 1 � [:(P = 2) ^ :(P = 3) ^ ::: ^ :(P = m)]

P = 2 � [:(P = 3) ^ :(P = 4) ^ ::: ^ :(P = m)]

:

:

:

P = m� 1 � :(P = m):

The set #P simply states that p must be assigned one and only one
number.

For each P and Q in L0, let [#P < #Q], which intuitively means \The
number of P is less than the number of Q", denote the disjunction of the
following set of formulas:

P = 1 ^Q = 2; P = 1 ^Q = 3; :::; P = 1 ^ Q = m
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P = 2 ^Q = 3; :::; P = 2 ^ Q = m

:

:

:

P = m� 1 ^Q = m:

Thus, for each symbol P to which we want to assign an index, we add
#P to the theory, and then we can use the notation [#P < #Q] to express
the order between indexes.

C Tree-clustering for default reasoning

The tree-clustering scheme [DP89] has a tree-building phase and a query-
processing phase. The �rst phase of tree-clustering is restated for proposi-
tional theories in Figure 5. It uses the triangulation algorithm, which trans-
forms any graph into a chordal23 graph by adding edges to it [TY84]. The
triangulation algorithm consists of two steps:

1. Select an ordering for the nodes (various heuristics for good orderings
are available).

2. Fill in edges recursively between any two nonadjacent nodes that are
connected via nodes higher up in the ordering.

Since the most costly operation within the tree-building algorithm is gen-
erating all the submodels of each clique (Step 4). The time and space com-
plexity is O(jT jn2jCj), where jCj is the size of the largest clique in the chordal
constraint graph generated in Step 1, jT j the size of the theory and n is the
number of letters used in T . It can be shown that jCj = w�+1. As a result,
for classes having a bounded induced width, this method is tractable.

Once the tree is built it always allows an e�cient query-answering process,
that is, the cost of answering many types of queries is linear in the size of
the tree generated [DP89]. The query-processing phase is described below
(m bounds the number of submodels for each clique):

Propositional Tree-Clustering - Query Processing

23A graph is chordal if every cycle of length at least four has a chord.
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Tree building(T;G)

input: A propositional theory T and its constraint graph G.

output: A tree representation of all the models of T .

1. Use the triangulation algorithm to generate a chordal constraint graph.

2. Identify all the maximal cliques in the graph. Let C1; :::; Ct be all such
cliques indexed by the rank of their highest nodes.

3. Connect each Ci to an ancestor Cj (j < i) with whom it shares the
largest set of letters. The resulting graph is called a join tree.

4. ComputeMi, the set of models over Ci that satisfy the set of all formulas
from T composed only of letters in Ci.

5. For each Ci and for each Cj adjacent to Ci in the join tree, delete from
Mi every modelM that has no model inMj that agrees with it on the
set of their common letters (this amounts to performing arc consistency
on the join tree).

Figure 5: Propositional-tree-clustering: Tree-building phase
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1. T is satis�able i� none ofMi's is empty, a property that can be checked
in O(n).

2. To see whether there is a model in which some letter P is true (resp.
false), we arbitrarily select a clique containing P and test whether one of
its models satis�es (resp. does not satisfy) P . This amounts to scanning
a column in a table, and thus will be linear in m. To check whether
a set of letters A is satis�ed by some common model, we test whether
all the letters belong to one cluster Ci. If so, we check whether there is
a model inMi that satis�es A. Otherwise, if the letters are scattered
over several cliques, we temporarily eliminate from each such clique
all models that disagree with A, and then re-apply arc consistency. A
model satisfying A exists i� none of the resultingMi's becomes empty.
The complexity of this step is O(jAjnm logm).

We next summarize how tree-clustering can be applied to default reason-
ing within the class 2-DT24(now n stands for the number of symbols in the
default theory, m for the number of submodels in each clique; note that m
is bounded by the number of the extensions that the theory has):

1. Translate the default theory into a propositional theory T (See Section
5.1).

2. Build a default database from the propositional formulas using the tree-
building method (takes O(jT jn2 � exp(w� + 1)) time, where jT j is the
size of the theory generated at Step 1).

3. Answer queries on the default theory using the produced tree:

(a) To answer whether there is an extension, test whether there is an
empty clique. If so, no extension exists (bounded by O(n2) steps).

(b) To �nd an extension, solve the tree in a backtrack-free manner:

Pick an arbitrary node Ci in the join tree, select a model Mi

from Mi, select from each of its neighbors Cj a model Mj that
agrees with Mi on common letters, combine all these models, and
continue to the neighbors's neighbors, and so on. The set of all

24The process described here can be applied to any default theory. The complexity
analysis is the only issue appropriate only for 2-DTs.
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models can be generated by exhausting all combinations of sub-
models that agree on their common letters (�nding one model is
bounded by O(n2 �m) steps).

(c) To answer whether there is an extension that satis�es a clause c
of size k, check whether there is a model satisfying [_c0�c;I

c0
2T
Ic0]

(this takes O(k2n2m logm) steps). To answer whether c is in-
cluded in all the extensions, check whether there is a solution that
satis�es [^c0�c;I

c0
2T
:Ic0] (bounded by O(k2n2m logm) steps).
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