
GSAT and Local Consistency �

Kalev Kask
Computer Science Department

University of California at Irvine

Irvine, CA 92717

USA

Rina Dechter
Computer Science Department

University of California at Irvine

Irvine, CA 92717

USA

Abstract

It has been shown that hill-climbing constraint
satisfaction methods like min-con
icts [Minton
et al., 1990] and GSAT [Selman et al., 1992]
can outperform complete systematic search
methods like backtracking and backjumping on
many large classes of problems. In this pa-
per we investigate how preprocessing improves
GSAT. In particular, we will focus on the ef-
fect of enforcing local consistency on the per-
formance of GSAT. We will show that enforc-
ing local consistency on uniform random prob-
lems has very little e�ect on the performance
of GSAT. However, when the problem has hi-
erarchical structure, local consistency can sig-
ni�cantly improve GSAT. It has been shown
[Konolige, 1994] that there are certain struc-
tured problems that are very hard for GSAT
while being very easy for the Davis-Putnam
procedure. We will show that they become very
easy for GSAT once a certain level of local con-
sistency is enforced.

1 Introduction

Local search algorithms like min-con
icts [Minton et al.,
1990] and GSAT [Selman et al., 1992] have been success-
fully applied to di�erent classes of constraint satisfaction
problems like SAT, graph coloring, binary CSPs and
scheduling. The popularity of local search algorithms
can be attributed to their e�ciency - they can outper-
form complete systematic search methods like backtrack-
ing and backjumping on large classes of problems. The
question that arises is whether local search methods are
always better, or at least not worse, than complete sys-
tematic search methods. This question is somewhat am-
biguous since there is no one single version of GSAT
- most of them employ clever heuristics that signi�-
cantly improve their performance over the basic version
of GSAT reported in [Selman et al., 1992]. Moreover,
several problems that once seemed very hard have been

�This work was partially supported by NSF grant IRI-
9157636, by the Electrical Power Research Institute (EPRI),
and by grants from Toshiba of America, Xerox Northrop and
Rockwell.

successfully solved once certain heuristics, like clause
weighting and random walk, were added to GSAT.
In this paper we will investigate whether or not GSAT

can be improved by applying preprocessing. Preprocess-
ing algorithms are run on the problem in advance, before
the search algorithm is tried, and change the problem
representation into a di�erent, but equivalent one. Pre-
processing algorithms include a variety of consistency-
enforcement algorithms. These algorithms make the
problemmore explicit by adding new constraints that are
induced by the existing constraints. Enforcing local con-
sistency can improve the performance of complete sys-
tematic search methods like backtracking and backjump-
ing by eliminating dead ends, thus reducing the search
space. We will apply the idea of enforcing local consis-
tency to GSAT with the hope that its performance can
also be improved by making the problem more explicit.
In particular, we will focus on di�erent forms of partial
path consistency since full path consistency is not cost
e�ective for large problem instances.
We will focus on two di�erent classes of problems - ran-

dom uniform problems that do not have any structure
and random structured problems. As we will show, local
consistency has a very di�erent e�ect on the performance
of GSAT on these two classes of problems. On uniform
random problems, enforcing local consistency can help
GSAT solve more problems but the overhead associated
with enforcing local consistency and the added complex-
ity of induced constraints eliminates any net gain. How-
ever, on a class of structured cluster problems, local
consistency dramatically improved the performance of
GSAT.
In a recent paper [Konolige, 1994] it was shown that

there are certain classes of structured problems that are
very hard for GSAT, even if the best currently known
heuristics like clause weighting and random walk are
used, while being very easy for the Davis-Putnam pro-
cedure. In this paper we will examine a similar class of
structured 3SAT problems. These problems have a clus-
ter structure - they contain clusters of variables each of
which is a small group of variables tightly linked with
constraints (3-SAT clauses). Clusters themselves are
linked together by a di�erent set of constraints (3-SAT
clauses). It turns out that these kinds of hierarchical
problems can be extremely hard for GSAT using the
best currently known heuristics. But surprisingly, these

problems will become trivial for GSAT once a certain
amount of local consistency is enforced, in this case a
restricted form of Bound-3 resolution. The e�ect of en-
forcing this kind of local consistency is that it makes
constraints more explicit by adding new induced con-
straints. This will change the GSAT search space by
eliminating many near solutions 1 so that they will be-
come assignments whose cost is high.

2 GSAT

Local search algorithms like GSAT work by �rst choosing
an initial assignment and then incrementally improving
it by
ipping the value of a variable so that the new value
leads to the largest increase in the number of satis�ed
constraints. This is done until all constraints are satis-
�ed, or a predetermined number of
ips (MAX FLIPS)
is reached, or GSAT reaches a local minimum.
The following is a standard GSAT procedure:

Procedure GSAT (CSP problem P, MAX TRIES,
MAX FLIPS)

for i=1 to MAX TRIES
let A be a random initial assignment
for j=1 to MAX FLIPS

if A satis�es P, return true
else let F be the set of variable-value pairs that,

when
ipped to, give a maximum increase
in the number of satis�ed constraints;
pick one f 2 F and let new A be
current A with f
ipped

end
end

return false
end

This algorithm is almost never used in practice as it
is here because its performance can be improved signif-
icantly by adding a number of heuristics. Our version
of GSAT uses several heuristics that include, we believe,
the best known heuristics today.
The basic GSAT is non-deterministic because it does

not specify how to break ties between two or more vari-
ables having an equally good
ip, or between two or
more values that would give the same increase. [Gent
and Walsh, 1993] suggest using historic information in-
stead of breaking ties randomly. They propose that in
the event of a tie, a variable that was
ipped the longest
ago be chosen.
We also use clause weighting as proposed by the

Breakout method of P. Morris [Morris, 1993] and in
a di�erent form in [Selman and Kautz, 1993]. This
method proposes a method of escaping local minimums
by reweighting constraints. In addition, we use a version
of random walk called random noise strategy in [Sel-
man et al., 1992]. This method suggests picking, with
probability p, a variable that appears in an unsatis�ed
constraint and
ipping its value. Unlike [Selman et al.,
1992], we
ip not one, but three variables at a time and
the probability p is not 50-60%, but 10-15%. This gives

1Near solutions are assignments that have a cost of almost
zero.

a little improvement over the original method because if
only one variable is
ipped, most of the time GSAT will

ip it right back.
The third heuristic we use is similar to the one pro-

posed in [Yugami et al., 1994]. Their method proposes a
way of escaping local minimums by using value propaga-
tion over unsatis�ed constraints. We pick an unsatis�ed
constraint and check to see if it contains any variables
whose value has not yet been
ipped. If there is at least
one, we will
ip one of them so that the constraint be-
comes satis�ed. There are two di�erences in what we do
- [Yugami et al., 1994] computes a closure under value
propagation, whereas we do only a �xed number of steps.
Second, in [Yugami et al., 1994] this is done every time
a local minimum is reached. We do it only at the end of
every try as a way of generating a new initial assignment
for the next try.
Last, there is always the problem of choosing

MAX TRIES and MAX FLIPS. We solve this problem
by using a heuristic that determines the length of every
try (ie. MAX FLIPS) automatically during every try
[Hampson, 1993]. The idea is that we search as long as
we are making progress, and if we haven't made progress
for a while we give up and start a new try. Progress is
measured as �nding an assignment that satis�es more
constraints than satis�ed by any other assignment found
by GSAT during that particular try. Every time we �nd
such an assignment, we give GSAT time equal to the
amount of time it has spent up until that point from
the beginning of the try. If during this time no better
assignment was found, we give up and start a new try.
Using this strategy, we need to give only one parameter,
MaxFlips, that bounds the total maximum number of

ips that GSAT will spend on a problem.

3 Problem Format

The �rst class of 3SAT problems we experimented with
is a set of cluster structures. These problems are char-
acterized by the following parameters:

1. N - the number of variables per cluster.
2. C - the number of clauses per cluster.
3. cN - the number of clusters.
4. cC - the number of clauses between clusters.

Every cluster structure is generated by �rst generating
cN clusters (each N variables and C clauses) and then
generating cC clauses such that all 3 variables in a clause
come from di�erent clusters.
We also used binary constraint satisfaction problems

such that all variables had the same domain of size K of
natural numbers f1; . . . ;Kg. All binary CSP problems
are characterized by the following parameters:

1. N - the number of variables.
2. K - the number of values.
3. C - the number of constraints. For binary constraints

Cmax = N � (N � 1)=2.
4. T - the tightness of the constraint, as a fraction of the

maximumK2 pairs of values that are nogoods.

Every binary CSP problem is generated by �rst uni-
formly randomly choosing C pairs of variables and then

Figure 1: A Cluster Structure.

creating a constraint for every pair. To create a con-
straint, we randomly pick T �K2 tuples and mark them
as pairs of values that are allowed.

When evaluating the performance of an algorithm, it
is always important to know how many of the problems
that were tried were actually solvable. This introduces
an additional problem for GSAT since it is an incom-
plete algorithm. Normally in this situation, every prob-
lem is �rst solved using the Davis-Putnam procedure or
any other complete algorithm. Unfortunately, this al-
lows us to solve only small problems. Real life problems
are likely to be large and intractable for any complete al-
gorithm known today. We can get around this problem
if we can generate problems for which we know in ad-
vance that they are solvable. The straightforward way
of getting solvable 3SAT formulas is to �rst generate
a solution and then generate random clauses and keep
only those that are satis�ed by the solution (in other
words, at least one literal in the clause matches the so-
lution). Unfortunately, these kind of problems are very
easy. However, it turns out that if we throw away not
only those clauses that have 0 literals satis�ed by the so-
lution, but also those that have exactly 2 literals satis�ed
by the solution we get random 3SAT problems that are
on the average at least as hard, for GSAT, as the class of
all solvable problems. All 3SAT cluster structures tested
in this paper were generated this way.
Another property of solvable 3SAT formulas gener-

ated this way is that when the formulas are uniformly
randomly generated, the hardest problems for GSAT are
in the area where the ratio of the number of variables to
the number of clauses is between 4.5 and 5. When this
ratio is smaller or larger, problems are easy for GSAT.
For example, when the ratio is 8, problems have only 1
solution 2 and on the average, �nding this only solution

2We know there is only one solution because when we com-
pute the closure under Bound-3 resolution we almost always

is much easier for GSAT than solving a problem from
the 4.5 - 5 range.

4 Random Cluster Structures

On the class of cluster problems described in the previ-
ous section GSAT performs very poorly. In Table 1. we
have the results of experiments with cluster structures
of cN = 50 clusters, cC = 200 clauses between clusters,
N = 5 variables per cluster and C = 30 � 40 clauses
per cluster. Each cluster by itself is very easy for GSAT
because it is strongly over-constrained (the ratio of the
number of clauses over the number of variables varies
from 6 to 8) and as a result each cluster has only very
few solutions. But taken together they appear extremely
di�cult for GSAT. For example, when the number of
clauses per cluster grows from 30 to 37 the number of
problems GSAT is able to solve drops from 100 to 41,
and it takes on the average 252,000
ips to �nd a solu-
tion when it can �nd one (the upper bound MaxF lips
is 512K). When we increase the number of clauses per
cluster to 40, GSAT fails to solve any problems (remem-
ber that all problems are solvable). For comparison, we
have also included the running time of the Davis-Putnam
procedure on the same problems.
This is surprising since 250 variable uniform random

3SAT formulas are fairly easy for this GSAT program.
Our hypothesis is that this phenomena can be attributed
to the structure of the problem. When the number of
clauses per cluster increases from 30 to 40, the num-
ber of solutions each cluster has, when taken separately,
decreases from a few to one. But the number of near
solutions 3 remains large. When we start GSAT on an
initial assignment, it always quickly converges to an as-
signment that is a near solution. The hardest part for
any GSAT algorithm is to improve a near solution so
that it becomes a real solution. On the cluster prob-
lems, GSAT quickly �nds an assignment that for many
clusters is a near solution. But it seems to be unable to
improve this assignment. In order to improve it many
changes in di�erent clusters need to be made. But the
structure of the problem � tight clusters with loose con-
straints between them � does not provide good guidance
for GSAT.
However, we can enforce local consistency that will

change the structure of the problem by adding new, in-
duced constraints. We ran GSAT on the same problems
after a preprocessing algorithmRBR-3 was run on them.
RBR-3 computes a restricted form of Bound-3 resolution
[Dechter and Rish, 1994] by resolving only pairs of origi-
nal clauses and keeps only those resolvents that have no
more that 3 literals. The results of these experiments are

get a total of Cmax = 7 �

�
n
3

�
clauses, which is the max-

imum number of clauses a solvable 3SAT formula can have.
Also, when we have Cmax clauses, the formula has only one
solution. Finally, notice that new clauses added by Bound-3
resolution do not remove any solutions of the original formula.

3A near solution is an assignment that satis�es almost all
clauses, and therefore, for which the value of the cost function
is almost zero.

Solvable 3SAT cluster structures, 100 instances, MaxFlips = 512K
5 variables per cluster, 50 clusters, 200 clauses between clusters
Restricted Bound-3 Resolution : only original clauses resolved

Running times, number of
ips and clauses added are given as an average per problem solved
Before Resolution After Resolution

C/cluster Solved Time Flips Solved RBR-3 Time Total Time Flips New Clauses DP
30 100 0.52 sec 4.5K 100 3.6 sec 3.7 sec 189 1736 1.03 sec
31 100 0.71 5.1K 100 3.88 3.91 176 1731 1.04
32 100 1.03 8.4K 100 4.16 4.20 162 1722 1.09
33 100 1.54 12K 100 4.36 4.39 155 1708 1.11
34 100 3.44 26K 100 4.66 4.70 151 1690 1.15
35 100 6.38 49K 100 4.92 4.95 140 1668 1.18
36 90 21.7 161K 100 5.23 5.26 135 1640 1.19
37 41 35.5 252K 100 5.42 5.45 131 1609 1.23
38 3 28.4 202K 100 5.94 5.97 125 1574 1.27
39 0 - - 100 5.95 5.98 121 1540 1.29
40 0 - - 100 6.13 6.17 115 1503 1.29

Table 1: Bound-3 Resolution and GSAT

in Table 1. We see that after RBR-3 was run, problems
became almost trivial. GSAT can solve all problems and
on the average it needs only 115-190
ips. Almost all of
the time was used by RBR-3.
When we look at where the new clauses are added we

see that almost all of them are local clauses, namely all
three literals are from the same cluster. In fact, the total
number of clauses per cluster roughly doubles and is close
to the maximum possible number of clauses Cmax = 7 ��

n
3

�
that a solvable 3SAT problem can have. This

has the e�ect of eliminating many near solutions. Many
assignments that previously satis�ed all, except very few,
clauses violate many of the new induced clauses.

5 Random Uniform Problems

What Bound-3 resolution did to cluster structures was
that it added new induced constraints that in e�ect
changed the search space by eliminating many near so-
lutions. It would be natural to ask what would be the
e�ect of local consistency enforcement on problems that
do not have any special structure to begin with. Can
they bene�t the same way cluster structures did?
In this section we will focus on uniform random prob-

lems - the constraint graph of which does not have any
special structure. We ran a series of experiments with
both binary CSP problems and 3SAT formulas. Given a
random problem, �rst we ran a local consistency enforce-
ment algorithm and then ran GSAT. On 3SAT formulas,
the local consistency algorithm computes a closure under
Bound-3 resolution. On binary CSPs, the local consis-
tency algorithm computes partial path consistency. We
now take (in section 5.1) a small detour to discuss dif-
ferent versions of path-consistency algorithms.

5.1 Partial Path Consistency

A problem is path consistent (or 3-consistent) i� any in-
stantiation of any two variables that is locally consistent
can be extended to a consistent assignment of any third
variable [Montanari, 1974]. Enforcing path consistency

makes the problem more explicit: constraints that are
induced by other constraints are added to the problem
and thus become explicit.
It was shown that path consistency can potentially im-

prove the performance of any backtracking search algo-
rithm [Mackworth, 1977], since it frequently eliminates
all dead ends from the search space [Dechter and Meiri,
1994]. It would be interesting to know if path consis-
tency will also improve any local search algorithm like
GSAT.
Unfortunately the complexity of enforcing path con-

sistency is �(n3k3) which is too large for big problems.
It was shown in [Dechter and Meiri, 1994] that for many
problems the overhead of path consistency is not cost ef-
fective. Therefore instead of computing path consistency
exactly we will approximate it by using a restricted form
of path consistency called partial path consistency.
The idea is the following. We want partial path con-

sistency (PPC) to be as close to path consistency (PC)
as possible. This means that whenever PC removes a
tuple from a constraint, we would like PPC to do the
same. In the extreme case, all tuples will be removed
from the constraint and it becomes empty, which means
that the problem is inconsistent. In the following exper-
iments we use that as a criteria to measure the quality of
our PPC algorithm � whenever PC generates an empty
constraint, we want PPC to also generate an empty con-
straint.
The amount of changes made by path consistency de-

pends on the amount of local consistency present in the
problem in the beginning [van Beek, 1994], [van Beek and
Dechter, 1994]. Intuitively, the tighter the constraints
and the denser the constraint graph, the more changes
PC will make. It turns out that partial path consistency
based on the following heuristic is almost as good as full
path consistency � we choose a subset of the variables
that have the highest degree and are tightly grouped to-
gether, and perform path consistency on the subproblem
induced by these variables:

7.56.55.54.53.52.5
0

50

100

150

200

250

Full Path Consistency
Partial Path consistency

Density of the Constraint Graph

T
im

e
[s

ec
]

(a) 100 variables, 8 values, 32/64 tightness

90807060504030
0

50

100

150

200

250

Full Path Consistency
Partial Path consistency

Density of the Constraint Graph

T
im

e
[s

ec
]

(b) 100 variables, 8 values, 16/64 tightness

Figure 2: Full and Partial Path Consistency.

Procedure PPC (CSP problem P, number of variables
chosen m, locality parameter C)

for i=1 to n
ai = degree of variable Xi

end
let S be the set of variables and let S' = ;
for i=1 to m

let x be the variable in S with the largest ai
let S = S - x and let S' = S' [x
for all neighbors Xj of x in S

aj = aj + C
end

end
do path consistency on S'
end

where C is a \locality" parameter that determines the
order in which variables are chosen. If C = 0 then it
would result in a MaxDegree ordering; if C = n, then
it would result in a MaxCardinality ordering ([Tarjan
and Yannakakis, 1984]). Our experiments show that we
should set C equal to the average degree of the variable

7.56.55.54.53.52.5
0

20

40

60

80

100

120
Full Path Consistency
Partial Path consistency
Solvable Problems

Density of the Constraint Graph

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

fo
un

d
in

co
ns

is
te

nt

(a) 100 variables, 8 values, 32/64 tightness

9585756555453525155
0

20

40

60

80

100

120
Full Path Consistency
Partial Path consistency
Solvable Problems

Density of the Constraint Graph

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

fo
un

d
in

co
ns

is
te

nt

(b) 100 variables, 8 values, 16/64 tightness

Figure 3: Full and Partial Path Consistency.

in the constraint graph. Parameter m is the number of
variables chosen. Clearly, the larger m the closer par-
tial path consistency is to full path consistency, but the
longer it takes to compute it. We used m = 40 which
resulted in a partial path consistency algorithm that was
close enough to path consistency, but took signi�cantly
less time on large problems.
We ran a number of experiments comparing PPC to

PC. In Figures 2 and 3 we have the results of running
both full and partial path consistency on 300 randomly
generated problems with 100 variables and 8 values; and
the tightness of 32/64 and 16/64. On the left side we
have the running time per problem and on the right side
we have the percentage of problems that were solvable or
inconsistent, as a function of the density of the constraint
graph (c

cmax
100%).

For the 32/64 tightness problems the hardest area
(50% solvability) is when problems have about 250 (5%
of the maximum possible) constraints and for the 16/64
tightness problems, the hardest area is when problems
have 655 (14% of the maximumpossible) constraints. As

N=100, K=8, T=32/64, 200 instances, MaxFlips = 512K
C Solvable Algorithm Solved Tries Flips PPC Time Total Time BJ-DVO

265 88.5 % GSAT 139 336 147K 0 sec 36 sec 19 min
PPC + GSAT 152 292 140K 8 sec 66 sec

270 66 % GSAT 78 406 191K 0 sec 45 sec 33 min
PPC + GSAT 83 381 195K 14 sec 92 sec

N=30, K=64, T=2048/4096, 100 instances, MaxFlips = 128K, Ccrit=180?
163 PPC + GSAT 56 276 59K 56 sec 153 sec *

GSAT 58 247 53K 0 sec 89 sec *

Table 2: Partial Path Consistency and GSAT

Uniform random 3SAT, N=600, C=2550, 100 instances, MaxFlips = 512K
Algorithm Solved Tries Flips BR-3 Time Total Time
GSAT 36 63 176K 0 sec 15.3 sec

BR-3 + GSAT 31 45 125K 0.3 sec 15.0 sec

Table 3: Bound-3 Resolution and GSAT

we can see, the e�ectiveness of path consistency depends
on the tightness of the constraints. For 32/64 problems,
both full and partial path consistency discover almost
all inconsistent problems. For 16/64 problems, full path
consistency is not able to discover inconsistent problems
in the 50% area and will become e�ective only when the
density of the constraint graph grows. We also see that
partial path consistency is only slightly less e�ective than
full path consistency, especially for problems with tight
constraints.
We also tested arc consistency and found that while it

was very fast, it very seldom changed the problem, ex-
cept for problems that were very overconstrained. This
shows that although arc consistency is computationally
attractive, having the worst case complexity of O(n2k2),
it is not nearly as powerful as path consistency, and will
be useful only when constraints are very tight.

5.2 Local Consistency on Random
Uniform Problems

In Table 2. we have the results of running GSAT on two
sets of binary CSP problems, one with N = 100 vari-
ables, K = 8 values and tightness T = 32=64 (sparse
constraint graphs) and the other with N = 30 variables,
K = 64 values and T = 2048=4096 tightness4 (dense con-
straint graphs). We ran two experiments on the same set
of problems, �rst with just GSAT and then partial path
consistency (PPC) followed by GSAT. For comparison
we have included the average running time per problem
of a backjumping algorithm with dynamic variable or-
dering of [Frost and Dechter, 1994].
As we can see, enforcing partial path consistency does

help GSAT solve slightly more problems given the same
upper bound MaxF lips. But if we include time in our

4This tightness was chosen because problems with this
tightness are not path consistent [van Beek, 1994].

consideration we see that this strategy is not very useful
since the total time it takes to solve a problem gets much
worse. There are two reasons for this. First, enforc-
ing (partial) path consistency is computationally expen-
sive, although the complexity of partial path consistency
grows very slowly. Second, and more importantly, if the
constraint graph was not complete, it will be complete
after path consistency (or very close in case of partial
path consistency). This will add additional complexity
to the GSAT search algorithm since it has to consider
additional constraints at every step. Notice that for clus-
ter structures adding constraints was cost-e�ective while
here it is not.
In Table 3. we have the results of experiments of run-

ning GSAT with and without a preprocessing algorithm
BR-3 on uniform random 3SAT formulas with N = 600
variables and C = 2550 constraints (note that this class
of 3SAT formulas contains both consistent and incon-
sistent problems). Unlike RBR-3 which resolves only
original clauses, RB-3 computes a closure under Bound-
3 resolution. In this case GSAT with BR-3 was even
slightly worse than just GSAT in terms of the number of
problems solved, although GSAT with BR-3 used fewer

ips and was slightly faster. We also tried the Davis-
Putnam procedure, but it took far too long.

6 Conclusions
In this paper we focused on the problem of how prepro-
cessing improves the performance of GSAT. In partic-
ular, we have investigated the e�ect of enforcing a cer-
tain degree of local consistency, as a preprocessing step,
on two di�erent classes of problems � random uniform
problems that do not have any structure and random
structured problems. The e�ect of local consistency is
sharply di�erent on these two classes of problems.
Our experiments show that when problems do not

have any special structure, local consistency does not

have a signi�cant e�ect on the performance of GSAT.
Even disregarding the cost of preprocessing, GSAT was
frequently less e�ective on the preprocessed problem.
However, on certain classes of structured problems, local
consistency can signi�cantly improve the performance of
GSAT.
We have shown that there are structured problems

that are extremely hard for GSAT while easy for the
Davis-Putnam procedure. These problems are so hard
that even heuristics like clause weighting which was orig-
inally designed to help escape local minimums caused by
the special structure of the problem do not seem to help
much. The characteristic feature of these problems is the
presence of tightly connected clusters of variables which,
in turn, are loosely connected by another set of global
constraints.
This class of problems was �rst discovered by Kono-

lige [Konolige, 1994]. In this paper we have shown how
to deal with these kinds of problems. Our experiments
show that enforcing local consistency, like bounded reso-
lution, can make these problems almost trivial for GSAT.
The overhead associated with enforcing this kind of local
consistency is much less than the computation needed to
solve the problem without it.

Acknowledgments

We would like to thank Irina Rish for running experi-
ments with the Davis-Putnam procedure, and Dan Frost
for letting us use his backjumping algorithm with dy-
namic variable ordering. We would also like to thank
Steve Hampson for interesting and stimulating discus-
sions on GSAT.

References

[Dechter and Meiri, 1994] R. Dechter and I. Meiri. Ex-
perimental Evaluation of Constraint Processing. Ar-
ti�cial Intelligence, 68, 211{241, 1994.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Di-
rectional Resolution: The Davis-Putnam Procedure,
Revisited. In Proceedings of the Fourth International
Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 134{145, 1994.

[Frost and Dechter, 1994] D. Frost and R. Dechter. In
Search of the Best Constraint Satisfaction Search. In
Proceedings of AAAI, pages 301{306, 1994.

[Gent and Walsh, 1993] I. P. Gent and T. Walsh. To-
wards an Understanding of Hill-Climbing Procedures
for SAT. In Proceedings of AAAI, pages 28{33, 1993.

[Hampson, 1993] S. Hampson. Changing Max-Flips Au-
tomatically. Personal Communication, 1993.

[Konolige, 1994] K. Konolige. Easy to be Hard: Di�cult
Problems for Greedy Algorithms. In Proceedings of
the Fourth International Conference on Principles of
Knowledge Representation and Reasoning, pages 374{
378, 1994.

[Mackworth, 1977] A. K. Mackworth. Consistency in
Networks of Relations. Arti�cial Intelligence, 8(1),
99{118, 1977.

[Minton et al., 1990] S. Minton, M. D. Johnston, A. B.
Philips, and P. Laired. Solving Large Scale Constraint
Satisfaction and Scheduling Problems Using Heuristic
Repair Methods. In Proceedings of AAAI, pages 17{
24, 1990.

[Montanari, 1974] U. Montanari. Networks of Con-
straints: Fundamental Properties and Applications to
Picture Processing. Information Science, 7, 95{132,
1974.

[Morris, 1993] P. Morris. The Breakout Method for Es-
caping From Local Minima. In Proceedings of AAAI,
pages 40{45, 1993.

[Selman et al., 1992] B. Selman, H. Kautz, and B. Co-
hen. Noise Strategies for Improving Local Search. In
Proceedings of AAAI, pages 337{343, 1994.

[Selman et al., 1992] B. Selman, H. Levesque, and D.
Mitchell. A New Method for Solving Hard Satis�abil-
ity Problems. In Proceedings of AAAI, pages 440{446,
1992.

[Selman and Kautz, 1993] B. Selman and H. Kautz. An
Empirical Study of Greedy Local Search for Satis�a-
bility Testing. In Proceedings of AAAI, pages 46{51,
1993.

[Tarjan and Yannakakis, 1984] E. Tarjan and M. Yan-
nakakis. Simple Linear-Time Algorithms to Test
Chordality of Graphs, Test Acyclicity of Hypergraphs
and Selectively Reduce Acyclic Hypergraphs. SIAM
J. Comput., 13(3), pages 566{579, August 1984.

[van Beek, 1994] P. van Beek. On the Inherent Level of
Local Consistency in Constraint Networks. In Pro-
ceedings of AAAI, pages 368{373, 1994.

[van Beek and Dechter, 1994] P. can Beek and R.
Dechter. Constraint Tightness versus Global Con-
sistency. In Proceedings of the Fourth International
Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 572{582, 1994.

[Yugami et al., 1994] N. Yugami, Y. Ohta, and H.
Hara. Improving Repair-Based Constraint Satisfac-
tion Methods by Value Propagation. In Proceedings
of AAAI, pages 344{349, 1994.

