
In search of the best constraint satisfaction search
�

Daniel Frost and Rina Dechter
Dept. of Information and Computer Science
University of California, Irvine, CA 92717

fdfrost,dechterg@ics.uci.edu

Abstract

We present the results of an empirical study of several
constraint satisfaction search algorithms and heuris-
tics. Using a random problem generator that allows us
to create instances with given characteristics, we show
how the relative performance of various search meth-
ods varies with the number of variables, the tightness
of the constraints, and the sparseness of the constraint
graph. A version of backjumping using a dynamic
variable ordering heuristic is shown to be extremely
e�ective on a wide range of problems. We conducted
our experiments with problem instances drawn from
the 50% satis�able range.

1. Introduction

We are interested in studying the behavior of algo-
rithms and heuristics that can solve large and hard
constraint satisfaction problems via systematic search.
Our approach is to focus on the average-case behavior
of several search algorithms, all variations of backtrack-
ing search, by analyzing their performance over a large
number of randomly generated problem instances. Ex-
perimental evaluation of search methods may allow us
to identify properties that cannot yet be identi�ed for-
mally. Because CSPs are an NP-complete problem, the
worst-case performance of any algorithm that solves
them is exponential. Nevertheless, the average-case
performance between di�erent algorithms, determined
experimentally, can vary by several orders of magni-
tude.
An alternative to our approach is to do some form

of average-case analysis. An average-case analysis re-
quires, however, a precise characterization of the distri-
bution of the input instances. Such a characterization
is often not available.
There are limitations to the approach we pursue

here. The most important is that the model we use
to generate random problems may not correspond to

�This work was partially supported by NSF grant IRI-
9157636, by Air Force O�ce of Scienti�c Research grant
AFOSR 900136 and by grants from Toshiba of America
and Xerox.

the type of problems which a practitioner actually en-
counters, possibly rendering our results of little or no
relevance. Another problem is that subtle biases, if
not outright bugs, in our implementation may skew
the results. The only safeguard against such bias is
the repetition of our experiments, or similar ones, by
others; to facilitate such repetition we have made our
instance generating program available by FTP1.
In the following section we de�ne formally constraint

satisfaction problems and describe brie
y the algo-
rithms and heuristics to be studied. We then show
that the linear relationship between the number of con-
straints and the number of variables at the 50% solv-
able region, observed for 3-SAT problems by (Mitchell,
Selman, & Levesque 1992; Crawford & Auton 1983),
is observed only approximately for binary CSPs with
more than two values per variable. We conducted our
experiments with problems drawn from this region.
Section 3 describes those studies, which involved back-
tracking, backjumping, backmarking, forward check-
ing, two variable ordering heuristics, and a new value
ordering heuristic called sticking values. The results
of these experiments show that backjumping with a
dynamic variable ordering is a very e�ective combina-
tion, and also that backmarking and the sticking values
heuristic can signi�cantly improve backjumping with
a �xed variable ordering. The �nal section states our
conclusions.

2. De�nitions and Algorithms

A constraint satisfaction problem (CSP) is represented
by a constraint network, consisting of a set of n
variables, X1; . . . ; Xn; their respective value domains,
D1; . . . ; Dn; and a set of constraints. A constraint
Ci(Xi1 ; . . . ; Xij) is a subset of the Cartesian prod-
uct Di1� . . .�Dij , consisting of all tuples of values for
a subset (Xi1 ; . . . ; Xij) of the variables which are com-
patible with each other. A solution is an assignment
of values to all the variables such that no constraint is

1ftp to ics.uci.edu, login as \anonymous," give your e-
mail address as password, enter \cd /pub/CSP-repository,"
and read the README �le for further information.

violated; a problem with a solution is termed satis�-
able. Sometimes it is desired to �nd all solutions; in
this paper, however, we focus on the task of �nding one
solution, or proving that no solution exists. A binary
CSP is one in which each of the constraints involves at
most two variables. A constraint satisfaction problem
can be represented by a constraint graph consisting of
a node for each variable and an arc connecting each
pair of variables that are contained in a constraint.

Algorithms and Heuristics

Our experiments were conducted with backtracking
(Bitner & Reingold 1985), backmarking (Gaschnig
1979; Haralick & Elliott 1980), forward checking (Har-
alick & Elliott 1980), and a version of backjumping
(Gaschnig 1979; Dechter 1990) proposed in (Prosser
1993) and called there con
ict-directed backjumping.
Space does not permit more than a brief discussion of
these algorithms. All are based on the idea of con-
sidering the variables one at a time, during a forward
phase, and instantiating the current variable V with a
value from its domain that does not violate any con-
straint either between V and all previously instantiated
variables (backtracking, backmarking, and backjump-
ing) or between V and the last remaining value of any
future, uninstantiated variable (forward checking). If
V has no such non-con
icting value, then a dead-end
occurs, and in the backwards phase a previously in-
stantiated variable is selected and re-instantiated with
another value from its domain. With backtracking, the
variable chosen to be re-instantiated after a dead-end
is always the most recently instantiated variable; hence
backtracking is often called chronological backtracking.
Backjumping, in contrast, can in response to a dead-
end identify a variable U , not necessarily the most re-
cently instantiated, which is connected in some way
to the dead-end. The algorithm then \jumps back"
to U , uninstantiates all variables more recent than U ,
and tries to �nd a new value for U from its domain.
The version of backjumping we use is very e�ective in
choosing the best variable to jump back to.
Determining whether a potential value for a variable

violates a constraint with another variable is called a
consistency check. Because consistency checking is per-
formed so frequently, it constitutes a major part of the
work performed by all of these algorithms. Hence a
count of the number of consistency checks is a com-
mon measure of the overall work of an algorithm.
Backmarking is a version of backtracking that can re-
duce the number of consistency checks required by
backtracking without changing the search space that
is explored. By recording, for each value of a vari-
able, the shallowest variable-value pair with which it
was inconsistent, if any, backmarking can eliminate
the need to repeat unnecessarily checks which have
been performed before and will again succeed or fail.
Although backmarking per se is an algorithm based
on backtracking, its consistency check avoiding tech-

niques can be applied to backjumping (Nadel 1989;
Prosser 1983). In our experiments we evaluate the suc-
cess of integrating backjumping and backmarking.
The forward checking algorithm uses a look-ahead

approach: before a value is chosen for V , consistency
checking is done with all future (uninstantiated) vari-
ables. Any con
icting value in a future variable W
is removed temporarily from W 's domain, and if this
results in W having an empty domain then the value
under consideration for V is rejected.
We used two variable ordering heuristics, min-width

and dynamic variable ordering, in our experiments.
The minimum width (MW or min-width) heuristic
(Freuder 1982) orders the variables from last to �rst
by repeatedly selecting a variable in the constraint
graph that connects to the minimal number of vari-
ables that have not yet been selected. Min-width is
a static ordering that is computed once before the
algorithm begins. In a dynamic variable ordering
(DVO) scheme (Haralick & Elliott 1980; Purdom 1983;
Zabih & McAllester 1988) the variable order can be
di�erent in di�erent branches of the search tree. Our
implementation selects at each step the variable with
the smallest remaining domain size, when only values
that are consistent with all instantiated variables are
considered. Ties are broken randomly, and the variable
participating in the most constraints is selected to be
�rst.
We also experimented with a new value ordering

heuristic for backjumping called sticking value. The
notion is to remember the value a variable is assigned
during the forward phase, and then to select that value,
if it is consistent, the next time the same variable
needs to be instantiated during a forward phase. (If
the \sticking value" is not consistent, then another
value is chosen arbitrarily.) The intuition is that if
the value was successful once, it may be useful to try
it �rst later on in the search. This heuristic is in-
spired by local repair strategies (Minton et al. 1992;
Selman, Levesque, & Mitchell 1992) in which all vari-
ables are instantiated, and then until a solution is
found the values of individual variables are changed,
but never uninstantiated.
Before jumping to our empirical results, we want to

mention that the backjumping algorithm when used
with a �xed ordering has a nice graph-based complex-
ity bound. Given a graphG, a dfs ordering of the nodes
is an ordering generated by a depth �rst search traver-
sal on G, generating a DFS tree (Even 1979). We
have shown elsewhere the following theorem:
Theorem 1(Collin, Dechter, & Katz 1991): Let G be
a constraint network and let d be a dfs ordering of G
whose DFS tree has depth m. Backjumping on d is
O(exp(m)).

3. Methodology and Results

The experiments reported in this paper were run on
random instances generated using a model that takes

K N C C/N C C/N C C/N C C/N

T = 1/9 T = 2/9 T = 3/9 T = 4/9
3 25 199 7.96 89 3.56 51 2.04 31 1.24
3 30 236 7.87 104 3.47 59 1.97 36 1.20
3 35 272 7.77 120 3.43 68 1.94 41 1.17
3 40 310 7.75 137 3.43 76 1.90 45 1.13
3 50 380 7.60 166 3.32 91 1.82 53 1.06
3 60 454 7.57 196 3.27 106 1.77 62 1.03
3 75 565 7.53 244 3.25 132 1.76 74 0.99
3 100 747 7.47 317 3.17 169 1.69 92 0.92
3 125 927 7.42 394 3.15 207 1.66 109 0.87
3 150 1100 7.40 468 3.12 242 1.61 127 0.85
3 175 1290 7.37 546 3.12 281 1.61 146 0.83
3 200 1471 7.36 623 3.11 318 1.59 159 0.80
3 225 697 3.10 353 1.57 176 0.78
3 250 773 3.09 390 1.56 193 0.77
3 275 847 3.08 425 1.54 205 0.75

T = 4/36 T = 8/36 T = 12/36 T = 16/36
6 15 ** ** 102 6.80 62 4.13 41 2.73
6 25 ** ** 165 6.60 100 4.00 65 2.60
6 35 500 14.29 228 6.51 137 3.91 89 2.54
6 50 710 14.20 325 6.50 193 3.87 125 2.51
6 60 852 14.20 389 6.48 231 3.85 150 2.50

T = 9/81 T = 18/81 T = 27/81 T = 36/81
9 15 ** ** ** ** 79 5.27 53 3.53
9 25 ** ** 211 8.44 128 5.12 87 3.48
9 35 ** ** 294 8.40 178 5.09 119 3.40

Figure 1: The \C" columns show values of C which empirically produce 50% solvable problems, using the model
described in the text and the given values of N , K, and T . The \C/N" column shows the value from the \C"
column to its left, divided by the current value for N . **" indicates that at this setting of N , K and T , even the
maximum possible value of C produced only satis�able instances. A blank entry signi�es that problems generated
with these parameters were too large to run.

four parameters: N;K; T and C. The problem in-
stances are binary CSPs with N variables, each having
a domain of size K. The parameter T (tightness) spec-
i�es a fraction of the K2 value pairs in each constraint
that are disallowed by the constraint. The value pairs
to be disallowed by the constraint are selected ran-
domly from a uniform distribution, but each constraint
has the same fraction T of such incompatible pairs. T
ranges from 0 to 1, with a low value of T , such as
1=9, termed a loose or relaxed constraint. The param-
eter C speci�es the number of constraints out of the
N�(N�1)=2 possible. The speci�c constraints are cho-
sen randomly from a uniform distribution. This model
is the binary CSP analog of the Random KSAT model
described in (Mitchell, Selman, & Levesque 1992).

Although our random generator can create ex-
tremely hard instances, they may not be typical of
actual problems encountered in applications. There-
fore, in order to capture a wider variety of instances
we introduce another generator, the chain model, that
creates problems with a speci�c structure. A chain
problem instance is created by generating several dis-
joint subproblems, called nodes, with our general gen-

erator described above, ordering them arbitrarily, and
then joining them sequentially so that a single con-
straint connects one variable in one subproblem with
one variable in the next.

50% Solvable Points for CSPs

All experiments reported in this paper were run with
combinations of N;K; T and C that produces prob-
lem instances which are about 50% solvable (some-
times called the \cross-over" point). These combina-
tions were determined empirically, and are reported in
Fig. 1. To �nd cross-over points we selected values
of N;K and T , and then varied C, generating 250 or
more instances from each set of parameters until half
of the problems had solutions. Sometimes no value of
C resulted in exactly 50% satis�able; for instance with
N = 50;K = 6; T = 12=36 we found with C = 194
that 46% of the instances had solutions, while with
C = 193 54% did. In such cases we report the value of
C that came closest to 50%.
For some settings of N;K and T , all values of C pro-

duce only satis�able instances. Since generally there is
an inverse relationship between T , the tightness of each

constraint, and C, the number of constraints, this sit-
uation occurs when the constraints are so loose that
even with C at its maximum value, N � (N � 1)=2, no
unsatis�able instances result. Our data indicate that
this phenomenon only occurs at small values of N .

N BT+MW BJ+MW BT+DVO BJ+DVO

K=3 T=1/9
25 65,413 14,964 2,006 1,977
50 15,248,270 383,321 10,944 10,214
75 8,268,113 51,907 45,014
100 320,587,286 245,974 190,965
125 1,596,655 832,753
150 14,834,004 3,301,619

K=3 T=2/9
25 7,489 2,177 571 549
50 895,245 22,153 2,284 1,785
75 243,845 12,581 5,669
100 2,856,423 2,730,226 18,097
125 907,645 32,326
150 4,892,729 199,617

K=3 T=3/9
25 2,324 588 254 236
50 1,096,518 2,947 1,493 547
75 11,912 32,604 1,071
100 68,532 1,761,694 2,967
125 341,046 6,329
150 500,734 7,601

K=3 T=4/9
25 991 229 124 117
50 43,091,355 642 868 206
75 1,498 141,799 330
100 4,069 1,205,712 855
125 10,722 995
150 14,490 1,916

K=9 T=9/81
15 5,844 724 673 673
25 859,802 116,382 1,929 1,924
35 119,547,843 219,601 217,453

K=9 T=18/81
15 110,242 48,732 2,428 2,426
25 15,734,382 6,841,255 253,289 252,581
35 392,776,002 17,988,106 17,901,386

K=9 T=27/81
15 106,762 73,541 10,660 10,648
25 1,099,838 583,038 55,402 54,885
35 4,868,528 201,658 189,634

Figure 2: Comparison of backjumping and backtrack-
ing with min-width and dynamic variable ordering.
Each number represents mean consistency checks over
1000 instances. The chart is blank where no experi-
ments were conducted because the problems became
too large for the algorithm.

We often found that the peak of di�culty, as mea-
sured by mean consistency checks or mean CPU time,
is not exactly at the 50% point, but instead around the
10% to 30% solvable point, and the level of di�culty at
this peak is about 5% to 10% higher than at the 50%
point. We nevertheless decided to use the 50% satis�-
able point, since it is algorithm independent. The pre-
cise value of C that produces the peak of di�culty can
vary depending on algorithm, since some approaches
handle satis�able instances more e�ciently.
In contrast to the �ndings of (Mitchell, Selman, &

Nodes BT+MW BJ+MW BT+DVO BJ+DVO
5 17,395,021 13,249 21,564 2,824
10 27,315 83,828 4,707
20 98,260 282,101 8,260
30 294,771 1,201,582 19,882

Figure 3: Comparison of backjumping and backtrack-
ing with min-width and dynamic variable ordering, us-
ing \chain" problems with 15-variable nodes. K=3,
T=1/9, and N = 15 � \Nodes". Each number repre-
sents mean consistency checks over 1000 instances.

Levesque 1992; Crawford & Auton 1983) for 3-SAT, we
did not observe a precise linear relationship between
the number of variables and the number of constraints
(which are equivalent to clauses in CNF). The ratio of
C to N appears to be asymptotically linear, but it is
impossible to be certain of this from our data.

Static and Dynamic Variable Orderings

In our �rst set of experiments we wanted to assess the
merits of static and dynamic variable orderings when
used with backtracking and backjumping. As the data
from Fig. 2 indicate, DVO prunes the search space so
e�ectively that when using it the distinction between
backtracking and backjumping is not signi�cant until
the number of variables becomes quite large. An excep-
tion to this general trend occurs when using backtrack-
ing with dynamic variable ordering on sparse graphs.
For example, with N =100, K = 3, and T = 3=9, C is
set to 169, which creates a very sparse graph that oc-
casionally consists of two or more disjoint sub-graphs.
If one of the sub-graphs has no solution, backtracking
will still explore its search space repeatedly while �nd-
ing solutions to the other sub-graphs. Because back-
jumping jumps between connected variables, in e�ect
it solves the disconnected sub-graphs separately, and if
one of them has no solution the backjumping algorithm
will halt once that search space is explored. Thus the
data in Fig. 2 show that backtracking, even with dy-
namic variable ordering, can be extremely ine�cient
on large CSPs that may have disjoint sub-graphs.

T C C=2775 DVO single MW jmp size
1/9 565 .204 68% 1.92
2/9 244 .088 39% 3.55
3/9 132 .048 27% 5.68
4/9 74 .027 16% 7.25

Figure 4: Data with N = 75;K = 3, drawn from the
same experiments as in Fig. 2. The column \C/2775"
indicates the ratio of constraints to the maximumpos-
sible for N=75.

At large N , the combination of DVO and backjump-
ing is particularly felicitous. Backjumping is more ef-
fective on sparser constraint graphs, since the average

K N T Backtracking Forward Checking
3 100 1/9 245,974 252,229
3 100 2/9 2,730,226 5,052,422
3 100 3/9 1,761,694 665,109

6 35 4/36 639,699 646,529
6 35 8/36 78,217 79,527
6 35 12/36 18,404 18,981
6 35 16/36 6,863 7,125

9 25 9/81 1,929 1,935
9 25 18/81 253,289 255,589
9 25 27/81 55,402 56,006
9 25 36/81 17,976 18,274

Figure 5: Comparison of backtracking and forward
checking with DVO. Each number is the mean con-
sistency checks over 1000 instances.

size of each \jump" increases with increasing sparse-
ness. DVO, in contrast, tends to function better when
there are many constraints, since each constraint pro-
vides information it can utilize in deciding on the next
variable. We assessed this observation quantitatively
by recording the frequency with which backjumping
with DVO selected a variable that only had one re-
maining compatible value. This is the situation where
DVO can most e�ectively prune the search space, since
it is acting exactly like unit-propagation in boolean sat-
is�ability problems, and making the forced choice of
variable instantiation as early as possible. See Fig. 4,
where the column labelled \DVO single" shows how
likely DVO was to �nd a variable with one remain-
ing consistent value, for one setting of N and K. The
decreasing frequency of single-valued variables as the
constraint graph becomes sparse indicates that DVO
has to make a less-informed choice about the variable
to choose next.
For the backjumping algorithm with a MW ordering

we recorded the average size of the jump at a dead-end,
that is, how many variables were passed over between
the dead-end variable and the variable jumped back
to. With backtracking this statistic would always be
1. This statistic is reported in the \MW jmp size"
column in Fig. 4, and shows how backjumping jumps
further on sparser graphs.
Dynamic variable order was somewhat less successful

when applied to the chain type problems. With these
structured problems we were able to experiment with
much larger instances, up to 450 variables organized
as thirty 15-variable nodes. The data in Fig. 3 show
that backjumping was more e�ective on this type of
problem than was DVO, and the combination of the
two was over an order of magnitude better than either
approach alone.

Forward Checking

A bene�t of studying algorithms by observing their
average-case behavior is that it is sometimes possible to
determine which component of an algorithm is actually
responsible for its performance. For instance, forward

checking is often acclaimed as a particularly good al-
gorithm (Nadel 1989). We note that it is possible to
implement just part of forward checking as a variable
ordering heuristic: if instantiating a variable with a
certain value will cause a future variable to be a dead-
end, then rearrange the variable ordering to make that
future variable the next variable. The result is essen-
tially backtracking with DVO. This method does not
do all of forward checking, which would require reject-
ing the value that causes the future dead-end. In Fig. 5
we compare forward checking with backtracking, using
DVO for both algorithms. The result is approximately
equivalent performance. Thus we suggest that forward
checking should be recognized more as a valuable vari-
able ordering heuristic than as a powerful algorithm.

Backmarking and sticking values

The next set of experiments was designed to deter-
mine whether backmarking and sticking values, alone
or in combination, could improve the performance of
backjumping under a static min-width ordering. (We
plan to report on backmarking and sticking values
with dynamic variable ordering in future work.) Since
backmarking and sticking values remember informa-
tion about the history of the search in order to guide
future search, we report on CPU time as well as con-
sistency checks (see Fig. 6). Is the overhead of main-
taining additional information less than the cost of the
saved consistency checks? Only by examining CPU
time can we really tell. We implemented all the algo-
rithms and heuristics described in this paper in a single
C program, with commondata structures, subroutines,
and programmer skill, so we believe comparing CPU
times is meaningful, though not de�nitive.
Our experiments as summarized in Fig. 6 show that

both backmarking and sticking values o�er signi�cant
improvement when integrated with backjumping, usu-
ally reducing CPU time by a half or a third. As ex-
pected, the improvement in consistency checks is much
greater, but both enhancements seem to be cost e�ec-
tive. Backmarking o�ers more improvement than does
sticking values. Both techniques are more e�ective
on the problems with smaller domain sizes; at K = 9
the bene�t of sticking values in terms of reduced CPU
time has almost disappeared. Backmarking helps back-
jumping over all the problem types we studied. The
results from chain problems did not vary signi�cantly
from those of the unstructured problems.

4. Conclusions

We have several results from experimenting with larger
and harder CSPs than have been reported before.
Backjumping with dynamic variable ordering seems in
general to be a powerful complete search algorithm.
The two components complement each other, with
backjumping stronger on sparser, more structured, and
possibly disjoint graphs. We have shown that the

Consistency Checks CPU Seconds
K N T BJ BJ+BM BJ+ST BJ+BM+ST BJ BJ+BM BJ+ST BJ+BM+ST
3 100 1/9 8,268,113 2,600,518 3,800,616 1,423,911 48.954 30.737 23.773 15.198
3 100 2/9 243,835 101,389 129,220 61,326 3.045 2.043 1.664 1.255
3 100 3/9 11,912 6,777 7,599 4,733 0.359 0.302 0.275 0.249
3 100 4/9 1,498 1,096 1,132 873 0.171 0.165 0.163 0.159

6 35 4/36 113,514,082 22,126,240 104,507,721 20,071,376 274.410 140.622 236.639 120.630
6 35 8/36 2,274,267 466,249 1,672,745 438,477 9.410 4.308 6.429 4.003
6 35 12/36 235,842 74,645 215,581 70,725 1.429 0.872 1.212 0.823
6 35 16/36 39,868 15,674 37,963 15,344 0.342 0.224 0.303 0.219

9 25 9/81 116,382 15,157 97,672 13,792 0.250 0.112 0.220 0.100
9 25 18/81 6,786,710 1,260,078 6,514,347 1,239,246 19.117 10.548 18.565 10.393
9 25 27/81 583,038 144,578 566,322 142,904 2.249 1,430 2.247 1.427
9 25 36/81 96,245 30,761 93,870 30,410 0.483 0.339 0.485 0.339

Chain problems with 30 nodes of 15 variables each.
3 450 1/9 294,771 93,151 188,618 80,264 10.736 6.211 8.003 5.632

Figure 6: Results from experiments with backjumping, backmarking and sticking values. Each number is the mean
of 1000 instances, and a min-width ordering was used throughout.

power of forward checking is mostly subsumed by a dy-
namic variable ordering heuristic. We have introduced
a new value ordering heuristic called sticking values
and shown that it can signi�cantly improve backjump-
ing when the variables' domains are relatively small.
We have also shown that the backmarking technique
can be applied to backjumping with good results over
a wide range of problems.
One result visible in all our experiments is that

among problems with a given number of variables,
and drawn from the 50% satis�able region, those with
many loose constraints are much harder than those
with fewer and tighter constraints. This is consis-
tent with tightness properties shown in (van Beek &
Dechter 1994). The pattern is not always observed for
low values of N and T , since there may be no 50%
region at all. We have also shown that the linear rela-
tionship between variables and clauses observed with
boolean satis�ability problems at the cross-over point
is not found with CSPs generated by our model.

References

Bitner, J. R., and Reingold, E. 1985. Backtrack pro-
gramming techniques. Communications of the ACM
18:651{656.

Collin, Z.; Dechter, R.; and Katz, S. 1991. On the
Feasibility of Distributed Constraint Satisfaction. In
Proceedings of the International Joint Conference on
Arti�cial Intelligence, 318{324.

Crawford, J. M., and Auton, L. D. 1983. Experi-
mental results on the crossover point in satis�ability
problems. In Proceedings of the Eleventh National
Conference on Arti�cial Intelligence, 21{27.

Dechter, R. 1990. Enhancement Schemes for Con-
straint Processing: Backjumping, Learning, and Cut-
set Decomposition. Arti�cial Intelligence 41:273{312.

Even, S. 1979. Graph Algorithms. Maryland: Com-
puter Science Press.

Freuder, E. C. 1982. A su�cient condition for
backtrack-free search. JACM 21(11):958{965.

Gaschnig, J. 1979. Performance measurement and
analysis of certain search algorithms. Technical Re-
port CMU-CS-79-124, Carnegie Mellon University.

Haralick, R. M., and Elliott, G. L. 1980. Increas-
ing Tree Search E�ciency for Constraint Satisfaction
Problems. Arti�cial Intelligence 14:263{313.

Minton, S.; Johnson, M. D.; Phillips, A. B.; and
Laird, P. 1992. Minimizing con
icts: a heuristic re-
pair method for constraint satisfaction and scheduling
problems. Arti�cial Intelligence 58(1{3):161{205.

Mitchell, D.; Selman, B.; and Levesque, H. 1992.
Hard and Easy Distributions of SAT Problems. In
Proceedings of the Tenth National Conference on Ar-
ti�cial Intelligence, 459{465.

Nadel, B. A. 1989. Constraint satisfaction algorithms.
Computational Intelligence 5:188{224.

Prosser, P. 1983. BM + BJ = BMJ. In Proceedings
of the Ninth Conference on Arti�cial Intelligence for
Applications, 257{262.

Prosser, P. 1993. Hybrid Algorithms for the Con-
straint Satisfaction Problem. Computational Intelli-
gence 9(3):268{299.

Purdom, P. W. 1983. Search Rearrangement Back-
tracking and Polynomial Average Time. Arti�cial In-
telligence 21:117{133.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A
New Method for Solving Hard Satis�ability Problems.
In Proceedings of the Tenth National Conference on
Arti�cial Intelligence, 440{446.

van Beek, P., and Dechter, R. 1994. Constraint tight-
ness versus global consistency. In Proc. of KR-94.

Zabih, R., and McAllester, D. 1988. A Rearrange-
ment Search Strategy for Determining Propositional
Satis�ability. In Proceedings of the Seventh National
Conference on Arti�cial Intelligence, 155{160.

