
Constraint Restrictiveness versus

Local and Global Consistency

Peter van Beek

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2H1

vanbeek@cs.ualberta.ca

Rina Dechter

Department of Computer and Information Science

University of California, Irvine

Irvine, California, USA 92717

dechter@ics.uci.edu

Abstract

Constraint networks are a simple representation and reasoning frame-

work with diverse applications. In this paper, we identify two new comple-

mentary properties on the restrictiveness of the constraints in a network|

constraint tightness and constraint looseness|and we show their useful-

ness for estimating the level of local consistency needed to ensure global

consistency, and for estimating the level of local consistency present in a

network. In particular, we present a su�cient condition, based on con-

straint tightness and the level of local consistency, that guarantees that

a solution can be found in a backtrack-free manner. The condition can

be useful in applications where a knowledge base will be queried over and

over and the preprocessing costs can be amortized over many queries. We

also present a su�cient condition for local consistency, based on constraint

looseness, that is straightforward and inexpensive to determine. The con-

dition can be used to estimate the level of local consistency of a network.

This in turn can be used in deciding whether it would be useful to pre-

process the network before a backtracking search, and in deciding which

local consistency conditions, if any, still need to be enforced if we want

to ensure that a solution can be found in a backtrack-free manner. Two

de�nitions of local consistency are employed in characterizing the condi-

tions: the traditional variable-based notion and a new de�nition of local

consistency called relational consistency. New algorithms for enforcing

relational consistency are introduced and analyzed1 .

1Some of the results reported in this paper have previously appeared at KR-94 [32] and
AAAI-94 [31].

1

Contents

1 Introduction 3

2 De�nitions and Preliminaries 5

3 Local Consistency 7
3.1 Variable-based consistency : 7
3.2 Relation-based consistency : 8

4 Constraint Tightness vs Global Consistency 13
4.1 Related work : 13
4.2 Tightness: Binary constraint networks : : : : : : : : : : : : : : : 14
4.3 Tightness: General constraint networks : : : : : : : : : : : : : : 18

5 Constraint Looseness vs Local Consistency 21
5.1 Related work : 21
5.2 Looseness: Binary constraint networks : : : : : : : : : : : : : : : 22
5.3 Backtrack-free binary networks : : : : : : : : : : : : : : : : : : : 24
5.4 Looseness: General constraint networks : : : : : : : : : : : : : : 27

6 Conclusions and Future Work 28

Notation
R a constraint network
x1; : : : ; xn the variables in a constraint network
X the set of all variables in a constraint network
D1; : : : ; Dn the domains of the variables in a constraint network
S1; : : : ; St the subsets of variables over which the relations are de�ned
R a relation (possibly subscripted with the set of variables over

which the relation is de�ned or the indices of the variables)
Y a subset of the variables in a constraint network
YI an instantiation of the variables in the set of variables Y
(a1; : : : ; an) an instantiation of the variables fx1; : : : ; xng, i.e., an assign-

ment of ai 2 Di to xi
n the number of variables in a constraint network
d the size of the largest domain in a constraint network
o an ordering of the variables
YI [S] the tuple consisting of only the components of YI that corre-

spond to the variables in S
�(Y) the set of all consistent instantiations of the variables in Y
�YI (R) the selection of those tuples in R that agree with YI
�Y (R) the projection of the relation R on the subset Y
1 the join operator of the relational database model

2

1 Introduction

Constraint networks are a simple representation and reasoning framework. A
problem is represented as a set of variables, a domain of values for each variable,
and a set of constraints between the variables. A central reasoning task is then
to �nd an instantiation of the variables that satis�es the constraints. In spite of
the simplicity of the framework, many interesting problems can be formulated
as constraint networks, including graph coloring [25], scene labeling [34], natural
language parsing [23], and temporal reasoning [1].

In general, what makes constraint networks hard to solve is that they can
contain many local inconsistencies. A local inconsistency is a consistent instan-
tiation of k�1 of the variables that cannot be extended to a kth variable and so
cannot be part of any global solution. If we are using a backtracking search to
�nd a solution, such an inconsistency can lead to a dead end in the search. This
insight has led to the de�nition of conditions that characterize the level of local
consistency of a network [16, 21, 25] and to the development of algorithms for
enforcing local consistency conditions by removing local inconsistencies (e.g.,
[6, 11, 14, 21, 25, 34]).

Local consistency has proven to be an important concept in the theory and
practice of constraint networks for primarily two reasons. First, a common
method for �nding solutions to a constraint network is to �rst preprocess the
network by enforcing local consistency conditions, and then perform a back-
tracking search. The preprocessing step can reduce the number of dead ends
reached by the backtracking algorithm in the search for a solution. With a
similar aim, local consistency techniques can be interleaved with backtracking
search. The e�ectiveness of using local consistency techniques in these two ways
has been studied empirically (e.g., [10, 7, 17, 18, 19, 28]). Second, much previ-
ous work has identi�ed conditions for when a certain level of local consistency is
su�cient to guarantee a network is globally consistent or to guarantee a solution
can be found in a backtrack-free manner (e.g., [9, 11, 15, 16, 25, 33]).

In this paper, we identify two new complementary properties on the restric-
tiveness of the constraints in a network|constraint tightness and constraint
looseness|and we show their usefulness for estimating the level of local consis-
tency needed to ensure global consistency, and for estimating the level of local
consistency present in a network. In particular, we present the following results.

We present a relationship between the tightness of the constraints, the arity
of the constraints, and the level of local consistency su�cient to ensure global
consistency. Speci�cally, in any constraint network where the constraints have
arity r or less and the constraints have tightness of m or less, if the network
is strongly ((m + 1)(r � 1) + 1)-consistent, then the network is globally consis-
tent. Informally, a constraint network is strongly k-consistent if any consistent
instantiation of any k�1 or fewer variables can be extended consistently to any
additional variable. Also informally, given an r-ary constraint and an instanti-
ation of r � 1 of the variables that participate in the constraint, the parameter

3

m is an upper bound on the number of instantiations of the rth variable that
satisfy the constraint. In general, such su�cient conditions, bounding the level
of local consistency that guarantees global consistency, are important in ap-
plications where constraint networks are used for knowledge base maintenance
and there will be many queries against the knowledge base. Here, the cost of
preprocessing will be amortized over the many queries. They are also of interest
for their explanatory power, as they can be used for characterizing the di�culty
of problems formulated as constraint networks.

We present a su�cient condition, based on the looseness of the constraints
and on the size of the domains of the variables, that gives a lower bound on the
inherent level of local consistency of a binary constraint network. The bound
is straightforward and inexpensive to determine. In contrast, all but low-order
local consistency is expensive to verify or enforce as the optimal algorithms
are O(nkdk), where k is the level of local consistency and d is the size of the
domains [6, 29]. The bound is tight for some constraint networks but not for
others. Speci�cally, in any constraint network where the domains are of size d or
less, and the constraints have looseness of m or greater, the network is strongly
(dd=(d�m)e)-consistent2. The parameter m can be viewed as a lower bound
on the number of instantiations of a variable that satisfy the constraints. The
condition based on constraint looseness is useful in two ways. First, it can be
used in deciding which low-order local consistency techniques will not change
the network and thus are not useful for processing a given constraint network.
For example, we use our results to show that the n-queens problem, a widely
used test-bed for comparing backtracking algorithms, has a high level of inherent
local consistency. As a consequence, it is generally fruitless to preprocess such a
network. Second, it can be used in deciding which local consistency conditions,
if any, still need to be enforced if we want to ensure that a solution can be found
in a backtrack-free manner.

We also present a new de�nition of local consistency called relational consis-
tency. The virtue of this de�nition is that, �rstly, it allows expressing the rela-
tionships between the restrictiveness of the constraints and local consistency in
a way that avoids an explicit reference to the arity of the constraints. Secondly,
it is operational, thus generalizing the concept of the composition operation de-
�ned for binary constraints, and can be incorporated naturally in algorithms for
enforcing desired levels of relational consistency. Thirdly, it uni�es known op-
erators such as resolution in theorem proving, joins in relational databases, and
variable elimination for solving equations and inequalities. Finally, it allows
identifying those formalisms for which consistency can be decided by enforc-
ing pairwise consistency, like propositional databases and linear equalities and
inequalities, from general databases requiring higher levels of local consistency.

2dxe, the ceiling of x, is the smallest integer greater than or equal to x.

4

2 De�nitions and Preliminaries

We begin with some needed de�nitions.

De�nition 1 (constraint network) A constraint network R is a set X of n
variables fx1; : : : ; xng, a domain Di of possible values for each variable, and a
set of relations RS1 ; : : : ; RSt, each de�ned on a subset of the variables S1; : : : ; St,
respectively. A constraint or relation RS over a set of variables S = fx1; : : : ; xrg
is a subset of the product of their domains (i.e., RS � D1 � � � � �Dr). The set
of subsets fS1; : : : ; Stg on which constraints are speci�ed is called the scheme
of R. A binary constraint network is the special case where all constraints are
over pairs of variables. An instantiation of the variables in X, denoted XI ,
is an n-tuple (a1; : : : ; an), representing an assignment of ai 2 Di to xi. A
consistent instantiation of a network is an instantiation of the variables such
that the constraints between variables are satis�ed. A consistent instantiation is
also called a solution.

Given a tuple representing an instantiation of only some of the variables in
a constraint network, the notion of a consistent instantiation can be de�ned
in primarily two ways. The di�erence in the de�nitions lies in how we treat
the case where only some of the variables over which a relation is de�ned are
instantiated. We use the following de�nition: an instantiation is consistent if it
satis�es all of the constraints that have no uninstantiated variables.

De�nition 2 (consistent instantiation of subsets of variables) Let Y and
S be sets of variables, and let YI be an instantiation of the variables in Y . We
denote by YI [S] the tuple consisting of only the components of YI that correspond
to the variables in S. An instantiation YI is consistent relative to a network R
i� for all Si in the scheme of R such that Si � Y , YI [Si] 2 RSi . The set of all
consistent instantiations of the variables in Y is denoted �(Y). One can view
�(Y) as the set of all solutions of the subnetwork de�ned by Y .

De�nition 3 (operations on constraints) Let R be a relation on a set S of
variables, let Y � S be a subset of the variables, and let YI be an instantiation
of the variables in Y . We denote by �YI (R) the selection of those tuples in R
that agree with YI . We denote by �Y (R) the projection of the relation R on
the subset Y ; that is, a tuple over Y appears in �Y (R) if and only if it can be
extended to a full tuple in R. Let RS1 be a relation on a set S1 of variables
and let RS2 be a relation on a set S2 of variables. We denote by RS1 1 RS2

the join of the two relations; that is, the new relation that consists of the tuples
of RS1 and RS2 combined on all their common variables. A tuple t is in the
join of RS1 and RS2 if it can be constructed by the following steps: (i) take a
tuple r from RS1 , (ii) select a tuple s from RS2 such that the components of r
and s agree on the variables that RS1 and RS2 have in common (that is, on the
variables S1 \ S2), and (iii) form the tuple t by combining the components of

5

r and s, keeping only one copy of components that correspond to variables that
the original relations RS1 and RS2 have in common. The resulting relation is
on the set of variables given by S1 [S2.

Following Montanari [25], a binary relation Rij between variables xi and xj
can be represented as a (0,1)-matrix with jDij rows and jDj j columns by impos-
ing an ordering on the domains of the variables. A zero entry at row a, column
b means that the pair consisting of the ath element of Di and the bth element
of Dj is not permitted; a one entry means that the pair is permitted. Two
concepts central to this paper are the tightness and the looseness of constraints.

De�nition 4 (m-tight binary constraints) A binary constraint is m-tight
if every row and every column of the (0,1)-matrix representation of the con-
straint has at most m ones, where 0 � m � jDj � 1. Rows and columns with
exactly jDj ones are ignored in determining m. A binary constraint network is
m-tight if all its binary constraints are m-tight.

De�nition 5 (m-loose binary constraints) A binary constraint is m-loose
if every row and every column of the (0,1)-matrix representation of the con-
straint has at least m ones, where 0 � m � jDj � 1. A binary constraint
network is m-loose if all its binary constraints are m-loose.

Informally, an r-ary relation is m-tight (m-loose) if every tuple of r�1 values
can be extended in at most (at least) m ways.

De�nition 6 (m-tight and m-loose general constraints) An r-ary relation
R on a set S of variables fx1; : : : ; xrg is m-tight (m-loose) if for every subset
of r � 2 variables Y � S and for every instantiation YI of the variables in Y ,
the binary relation �(S�Y)(�YI (R)) is m-tight (m-loose).

Example 1. We illustrate the de�nitions using the following network R
over the set X of variables fx1; x2; x3; x4g. The domains of the variables are Di

= fa,b,cg and the relations are given by,

RS1 = f(a,a,a), (a,a,c), (a,b,c), (a,c,b), (b,a,c),
(b,b,b), (b,c,a), (c,a,b), (c,b,a), (c,c,c)g,

RS2 = f(a,b), (b,a), (b,c), (c,a), (c,c)g,
RS3 = f(a,b), (a,c), (b,b), (c,a), (c,b)g,

where S1 = fx1; x2; x3g, S2 = fx2; x4g, and S3 = fx3; x4g. The set of all
solutions of the network is given by,

�(X) = f(a,a,a,b), (a,a,c,b), (a,b,c,a), (b,a,c,b),
(b,c,a,c), (c,a,b,b), (c,b,a,c), (c,c,c,a)g.

6

Let Y = fx2; x3; x4g be a subset of the variables and let YI be an instantiation
of the variables in Y . The tuple YI = (a,c,b) is consistent relative to R since
YI [S2] = (a,b) and (a,b) 2 RS2 , and YI [S3] = (c,b) and (c,b) 2 RS3 . The tuple
YI = (c,a,b) is not consistent relative to R since YI [S2] = (c,b), and (c,b) 62
RS2 . The set of all consistent instantiations of the variables in Y is given by,

�(Y) = f(a,a,b), (a,b,b), (a,c,b), (b,a,c), (b,c,a), (c,a,c), (c,c,a)g.

If we order the domains of the variables according to the natural lexico-
graphic ordering, the (0,1)-matrix representation of the binary constraint RS2

between x2 and x4 is given by,

RS2 =

"
0 1 0

1 0 1

1 0 1

#
:

For example, the entry at row 3 column 1 of RS2 is 1, which states that the
tuple (c,a) corresponding to the third element of D2 and the �rst element of D4

is allowed by the constraint. It can be seen that the constraint is 2-tight and
1-loose. It can also be veri�ed that the other constraints are 2-tight and 1-loose,
and therefore the network is 2-tight and 1-loose. As a partial veri�cation of the
ternary constraint RS1 , let Y = fx1g and let YI = (a) in the de�nition. Then,
�YI (RS1) = f(a,a,a), (a,a,c), (a,b,c), (a,c,b)g, and �(S1�Y)(�YI (RS1)) = f(a,a),
(a,c), (b,c), (c,b)g, which is a 2-tight and 1-loose binary relation.

3 Local Consistency

Local consistency has proven to be an important concept in the theory and
practice of constraint networks. In this section we �rst review previous de�-
nitions of local consistency, which we characterize as variable-based. We then
present new de�nitions of local consistency that are relation-based and present
algorithms for enforcing these local consistency de�nitions.

3.1 Variable-based consistency

Mackworth [21, 22] de�nes three properties of networks that characterize local
consistency of networks: node, arc, and path consistency. Freuder [14] general-
izes this to k-consistency.

De�nition 7 (k-consistency; Freuder [14, 15]) A network is k-consistent
if and only if given any instantiation of any k � 1 distinct variables satisfying
all of the direct relations among those variables, there exists an instantiation of
any kth variable such that the k values taken together satisfy all of the relations
among the k variables. A network is strongly k-consistent if and only if it is
j-consistent for all j � k.

7

Node, arc, and path consistency correspond to one-, two-, and three-consis-
tency, respectively. A strongly n-consistent network is called globally consistent.
Globally consistent networks have the property that any consistent instantiation
of a subset of the variables can be extended to a consistent instantiation of all
of the variables without backtracking [9].

Q

Q

(a)

Q

Q

Q

(b)

Figure 1: (a) not 3-consistent; (b) not 4-consistent

Example 2. We illustrate the de�nition of k-consistency using the well-
known n-queens problem. The problem is to �nd all ways to place n-queens on
an n�n chess board, one queen per column, so that each pair of queens does not
attack each other. One possible constraint network formulation of the problem
is as follows: there is a variable for each column of the chess board, x1; : : : ; xn;
the domains of the variables are the possible row positions, Di = f1; : : : ; ng;
and the binary constraints are that two queens should not attack each other.
Consider the constraint network for the 4-queens problem. It can be seen that
the network is 2-consistent since, given that we have placed a single queen on the
board, we can always place a second queen such that the queens do not attack
each other. However, the network is not 3-consistent. For example, given the
consistent placement of two queens shown in Figure 1a, there is no way to place
a queen in the third column that is consistent with the previously placed queens.
Similarly the network is not 4-consistent (see Figure 1b).

3.2 Relation-based consistency

In [33], we extended the notions of arc and path consistency to non-binary re-
lations, and used it to specify an alternative condition under which row-convex
non-binary networks are globally consistent. The new local consistency condi-
tions were called relational arc- and path-consistency. We now generalize rela-
tional arc- and path-consistency to relational m-consistency. In the de�nition
of relational m-consistency, the relations rather than the variables are the prim-
itive entities. As we shall see in subsequent sections, this allows expressing the
relationships between the restrictiveness of the constraints and local consistency
in a way that avoids an explicit reference to the arity of the constraints.

8

De�nition 8 (relational arc and path-consistency) Let R be a constraint
network over a set of variables X, and let RS and RT be two distinct relations
in R, where S; T � X. We say that RS is relationally arc-consistent relative
to variable x i� any consistent instantiation of the variables in S � fxg, has an
extension to x that satis�es RS ; that is, i�

�(S � fxg) � �S�fxg(RS):

(Recall that �(A) is the set of all consistent instantiations of the variables in A.)
A relation RS is relationally arc-consistent i� it is relationally arc-consistent
relative to each variable in S. A network is relationally arc-consistent i� every
relation is relationally arc-consistent. We say that RS and RT are relation-
ally path-consistent relative to variable x i� any consistent instantiation of the
variables in (S [T) � fxg, has an extension to x that satis�es RS and RT

simultaneously; that is, i�

�(A) � �A(RS 1 RT);

where A = (S [T) � fxg. A pair of relations RS and RT is relationally path-
consistent i� it is relationally path-consistent relative to each variable in S \T .
A network is relationally path-consistent i� every pair of relations is relationally
path-consistent.

De�nition 9 (relational m-consistency) LetR be a constraint network over
a set of variables X, and let RS1 ; : : : ; RSm�1 be m � 1 distinct relations in R,
where Si � X. We say that RS1 ; : : : ; RSm�1 are relational m-consistent rela-
tive to variable x i� any consistent instantiation of the variables in A, where
A =

Sm�1
i=1 Si � fxg, has an extension to x that satis�es RS1 ; : : : ; RSm�1 simul-

taneously; that is, if and only if

�(A) � �A(1
m�1
i=1 RSi):

A set of relations fRS1 ; : : : ; RSm�1g is relationallym-consistent i� it is relation-

ally m-consistent relative to each variable in
Tm�1
i=1 Si. A network is relationally

m-consistent i� every set of m�1 relations is relationally m-consistent. A net-
work is strongly relational m-consistent if it is relational i-consistent for every
i � m.

Relational arc- and path-consistency correspond to relational two- and three-
consistency, respectively. Verifying relational m-consistency can be exponential
even for relational arc-consistency, if the arity of the constraints is not bounded.
In general, relational arc-consistency is O(endr), where e is the number of con-
straints, n is the number of variables, d is the size of the domains, and r is
the arity of the constraints. When r is a constant, verifying relational arc-
consistency is polynomial; otherwise it is not.

9

Example 3. Consider the following constraint network over the set of vari-
ables fx1; x2; x3; x4; x5g. The domains of the variables are allD = fa, b, cg and
the relations are given by,

R2;3;4;5 = f (a,a,a,a), (b,a,a,a), (a,b,a,a), (a,a,b,a), (a,a,a,b) g,
R1;2;5 = f (b,a,b), (c,b,c), (b,a,c) g.

The constraints are not relationally arc-consistent. For example, the instanti-
ation x2 = a, x3 = b, x4 = b is a consistent instantiation as it satis�es all the
applicable constraints (trivially so, as there are no constraints de�ned strictly
over fx2; x3; x4g or over any subset), but it does not have an extension to x5 that
satis�es R2;3;4;5. Similarly, the constraints are not relationally path-consistent.
For example, the instantiation x1 = c, x2 = b, x3 = a, x4 = a is a consistent
instantiation (again, trivially so), but it does not have an extension to x5 that
satis�es R2;3;4;5 and R1;2;5 simultaneously. If we add the constraints R2 = R3

= R4 = fag and R1 = R5 = fbg, the set of solutions of the network does not
change, and it can be veri�ed that the network is both relationally arc- and
path-consistent.

When all of the constraints are binary, relational m-consistency is identi-
cal (up to minor preprocessing) to variable-based m-consistency; otherwise the
conditions are di�erent. In general, the de�nition of relational m-consistency is
similar but not identical to that of variable-based m-consistency over the dual
representation of the problem in which the constraints are the variables, their
allowed tuples are their respective domains and two such constraint-variables
are constrained if they have variables in common. The virtue in this new explicit
de�nition (relative to the one based on the dual graph) is that it is simpler to
work with, it uses known notations from the relational database model, and it
can be incorporated naturally into algorithms for enforcing desired levels of rela-
tional m-consistency. Below we present algorithm Relational-Consistency,
a brute-force algorithm for enforcing strong relational m-consistency on a net-
work R.

Relational-Consistency(R;m)

1. repeat

2. Q R

3. for every m � 1 relations RS1 ; : : : ; RSm�1 2 Q (not necessarily distinct)

and every x 2
Tm�1
i=1 Si

4. do A
Sm�1
i=1 Si � fxg

5. RA RA \ �A(1
m�1
i=1 RSi)

6. if RA is the empty relation
7. then exit and return the empty network
8. until Q = R

10

Note that RA stands for the current unique constraint speci�ed over a subset
of variables A. If no constraint exists, then RA is the universal relation over A.
The algorithm takes any m � 1 relations that may or may not be relationally
m-consistent and enforces relational m-consistency by tightening the relation
among the appropriate subsets of variables. We call the operation in Step 5
of the algorithm extended m-composition, since it generalizes the composition
operation de�ned on binary relations. Algorithm Relational-Consistency

computes the closure of R with respect to extended m-composition.
The extended m-composition operator uni�es known operators such as reso-

lution in theorem proving, joins in relational databases, and variable elimination
for solving equations and inequalities.

While enforcing variable-based m-consistency can be done in polynomial
time, it is unlikely that relational m-consistency can be achieved tractably since
even for m = 3 it solves the NP-complete problem of propositional satis�abil-
ity (see Example 8). A more direct argument suggesting an increase in time
and space complexity is the fact that the algorithm may need to record rela-
tions of arbitrary arity. As with variable-based local-consistency, we can im-
prove the e�ciency of enforcing relational consistency by enforcing it only along
a certain direction. Below we present algorithm Directional-Relational-

Consistency which enforces strong relational m-consistency on a network R,
relative to a given ordering o, of the variables x1; x2; : : : ; xn. We call the network
generated by the algorithm the directional closure of R.

Directional-Relational-Consistency(R;m; o)

1. Initialize: generate an ordered partition of the constraints, bucket1, : : : ,
bucketn, where bucketi contains all constraints whose highest variable is xi.

2. for p n downto 1

3. do for every j relations RS1 , : : : , RSj in bucketp, j 1 to m� 1

4. do A
Sj

i=1 Si � fxpg

5. RA RA \ �A(1
j
i=1 RSi)

6. if RA is not the empty relation
7. then add RA to its appropriate bucket
8. else exit and return the empty network

Like similar algorithms for enforcing directional consistency, the worst-case
complexity of Directional-Relational-Consistency can be bounded as a
function of the topological structure of the problem via parameters like the
induced width of the graph [11] (also known as tree-width [2]). A constraint net-
work R can be associated with a constraint graph, where each node is a variable
and two variables that appear in one constraint are connected. A general graph
can be embedded in a clique-tree namely, in a graph whose cliques form a tree-
structure. The induced width w� of such an embedding is its maximal clique
size and the induced width w� of an arbitrary graph is the minimum induced

11

width over all its tree-embeddings. It is known that �nding the minimal width
embedding is NP-complete [3], nevertheless every ordering of the variables o,
yields a simple to compute upper bound denoted w�(o) (see [12]). The com-
plexity of Directional-Relational-Consistency along o can be bounded
as a function of w�(o) of its constraint graph. Speci�cally, it can be shown, us-
ing similar theorems on directional consistency algorithms reported earlier [12],
that the time complexity and size of the network generated by Directional-
Relational-Consistency along ordering o is O(exp(mw�(o))).

Example 4. Crossword puzzles have been used in experimentally evaluating
backtracking algorithms for solving constraint networks [18]. We use an exam-
ple puzzle (taken from [8]) to illustrate algorithm Directional-Relational-

Consistency (see Figure 2). One possible constraint network formulation of
the problem is as follows: there is a variable for each square that can hold a
character, x1; : : : ; x13; the domains of the variables are the alphabet letters;
and the constraints are the possible words. For this example, the constraints
are given by,

1 2 3 4 5

6 7

8 9 10 11

12 13

Figure 2: A crossword puzzle

R1;2;3;4;5 = f(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T), (S,N,A,I,L), (S,T,E,E,R)g

R3;6;9;12 = f(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N), (S,A,M,E)g

R5;7;11 = f(R,U,N), (S,U,N), (L,E,T), (Y,E,S), (E,A,T), (T,E,N)g

R8;9;10;11 = R3;6;9;12

R10;13 = f(N,O), (B,E), (U,S), (I,T)g

R12;13 = R10;13

Let us perform three iterations of Directional-Relational-Consistency,
with m equal to 3 and o as the ordering of the variables x13; x12; : : : ; x1. Thus,
x1 is the highest variable in the ordering and x13 is the lowest. The bucket for
x1 contains the single relation R1;2;3;4;5. Processing bucket1 adds the relation,

12

R2;3;4;5 = �2;3;4;5(R1;2;3;4;5)

= f(O,S,E,S), (A,S,E,R), (H,E,E,T), (N,A,I,L), (T,E,E,R)g,

to the bucket of variable x2 which is processed next. The bucket for x2 contains
the single relation R2;3;4;5. Processing bucket2 adds the relation,

R3;4;5 = �3;4;5(R2;3;4;5)

= f(S,E,S), (S,E,R), (E,E,T), (A,I,L), (E,E,R)g,

to the bucket of variable x3 which is processed next. The bucket for x3 contains
the relations R3;4;5 and R3;6;9;12. Processing bucket3 adds the relations,

R4;5 = �4;5(R3;4;5)

= f(E,S), (E,R), (E,T), (I,L), (E,R)g,

R6;9;12 = �6;9;12(R3;6;9;12)

= f(I,K,E), (R,O,N), (E,E,T), (A,R,N), (A,M,E)g,

R4;5;6;9;12= �4;5;6;9;12(R3;4;5 1 R3;6;9;12)

= f(E,S,A,M,E), (E,R,A,M,E), (E,T,A,R,N),

(I,L,R,O,N), (E,R,A,R,N)g,

to the buckets of variables x4 (relations R4;5 and R4;5;6;9;12) and x6 (relation
R6;9;12). Continuing in this manner, at iteration 10 the empty relation is derived
and thus the algorithm can stop and report that the network is inconsistent.

4 Constraint Tightness vs Global Consistency

In this section, we present relationships between the tightness of the constraints
and the level of local consistency su�cient to ensure that a network is globally
consistent. After reviewing previous work, we present our results for binary
constraint networks, and then generalize the results to networks with constraints
of arbitrary arity.

4.1 Related work

Much work has been done on identifying relationships between properties of
constraint networks and the level of local consistency su�cient to ensure global
consistency. This work falls into two classes: identifying topological properties
of the underlying graph of the network and identifying properties of the con-
straints. Here we review only the literature for constraint networks with �nite
domains.

For work that falls into the class of identifying topological properties, Freuder
[15, 16] identi�es a relationship between the width of a constraint graph and the
level of local consistency needed to ensure a solution can be found without

13

backtracking. As a special case, if the constraint graph is a tree, arc consistency
is su�cient to ensure a solution can be found without backtracking. Dechter
and Pearl [11] provide an adaptive scheme where the level of local consistency
is adjusted on a node-by-node basis. Dechter and Pearl [12] generalize the
results on trees to hyper-trees which are called acyclic databases in the database
community [4].

For work that falls into the class of identifying properties of the constraints
(the class into which the present work falls), Montanari [25] shows that path
consistency is su�cient to guarantee that a binary network is globally consistent
if the relations are monotone. Van Beek and Dechter [33] show that if the
relations of a path consistent binary network are row convex, the network is
globally consistent. Dechter [9] identi�es a relationship between the size of the
domains of the variables, the arity of the constraints, and the level of local
consistency su�cient to ensure the network is globally consistent. She proves
the following result.

Theorem 1 (Dechter [9]) Any d-valued r-ary constraint network that is strongly
(d(r�1)+1)-consistent is globally consistent. In particular, any d-valued binary
constraint network that is strongly (d+ 1)-consistent is globally consistent.

For some networks, Dechter's theorem is tight in that the level of local con-
sistency speci�ed by the theorem is really required (graph coloring problems for-
mulated as constraint networks are an example). For other networks, Dechter's
theorem overestimates. Our results should be viewed as an improvement on
Dechter's theorem. In particular, by taking into account the tightness of the
constraints, our results always specify a level of strong consistency that is less
than or equal to the level of strong consistency required by Dechter's theorem.

4.2 Tightness: Binary constraint networks

The following lemma is needed in the proof of the main result for constraint
networks with binary constraints and in a later proof of the result generalized
to constraint networks with constraints of arbitrary arity. The lemma is really
about the \tightness" of constraints and the su�ciency of a certain level of
consistency. We state the lemma in more colloquial terms to make the proof
more understandable.

Lemma 1 Suppose there are fan clubs that like to meet and talk about famous
people, and the following conditions.

1. There are n fan clubs and d famous people.

2. Each fan club meets and talks about at most m, m < d, famous people.

3. For every set of m+ 1 or fewer fan clubs, there exists at least one famous
person that every club in the set talks about.

14

Then, there must exist at least one famous person that every fan club talks about.

Proof. The proof is by contradiction and uses a proof technique discovered by
Dechter for Theorem 1. Assume to the contrary that no such famous person
exists. Then, for each famous person, fi, there must exist at least one fan club
that does not talk about fi. Let ci denote one of the fan clubs that does not
talk about fi. By construction, the set c = fc1; c2; : : : ; cdg is a set of fan clubs
for which there does not exist a famous person that every club in the set talks
about (every candidate fi is ruled out since ci does not talk about fi). For every
possible value of m, this leads to a contradiction.

Case 1 (m = d � 1): The contradiction is immediate as c = fc1; c2; : : : ; cdg is
a set of fan clubs of size m + 1 for which there does not exist a famous person
that every club in the set talks about. This contradicts condition (3).

Case 2 (m = d�2): The nominal size of the set c = fc1; c2; : : : ; cdg is m+2. We
claim, however, that there is a repetition in c and that the true size of the set
is m+ 1. Assume to the contrary that ci 6= cj for i 6= j. Recall ci is a club that
does not talk about fi, i = 1; : : : ; d and consider fc1; c2; : : : ; cd�1g. This is a set
of m+ 1 fan clubs so by condition (3) there must exist an fi that every club in
the set talks about. The only possibility is fd. Now consider fc1; : : : ; cd�2; cdg.
Again, this is a set of m + 1 fan clubs so there must exist an fi that every
club in the set talks about. This time the only possibility is fd�1. Continuing
in this manner, we can show that fan club c1 must talk about exactly m + 1
famous people. This contradicts condition (2). Therefore, it must be the case
that ci = cj for some i 6= j. Thus, the set c is of size m+1 and this contradicts
condition (3).

Case 3 (m = d� 3), : : : , Case d-1 (m = 1): The remaining cases are similar.
In each case we argue that (i) there are repetitions in the set c = fc1; c2; : : : ; cdg,
(ii) the true size of the set c is m + 1, and (iii) a contradiction is derived by
appealing to condition (3).

Thus, there exists at least one famous person that every fan club talks about.
2

We now state the theorem for binary constraint networks.

Theorem 2 If a binary constraint network R is m-tight, and if the network is
strongly (m + 2)-consistent, then the network is globally consistent.

Proof. We show that any network with � m ones in every row that is strongly
(m+2)-consistent is (m+2+ i)-consistent for any i � 1. Suppose that variables
x1; : : : ; xm+1+i can be consistently instantiated with values a1; : : : ; am+1+i. To
show that the network is (m+ 2+ i)-consistent, we must show that there exists
at least one instantiation, am+2+i, of variable xm+2+i such that

(aj ; am+2+i) 2 Rj;m+2+i j = 1; : : : ;m+ 1 + i

15

is satis�ed. Let vj be the (0,1)-vector given by row aj of the (0,1)-matrix
Rj;m+2+i, j = 1; : : : ;m+1+ i (see Figure 3 for an illustration; the vj are shown
boxed). The one entries in the vj are the allowed instantiations of xm+2+i, given
the instantiations a1; : : : ; am+1+i. That there exists a consistent instantiation of
xm+2+i follows from Lemma 1 where (i) a1; : : : ; am+1+i are the fan clubs, (ii) the
domain elements of xm+2+i, are the famous people, (iii) the one entries in the
vj's are the famous people that fan club aj talks about, and (iv) condition (3) of
Lemma 1 follows from the assumption of strong (m+2) consistency. Therefore,
from Lemma 1 it follows that there exists at least one instantiation of xm+2+i

that satis�es all the constraints simultaneously. Hence, the network is (m+2+i)-
consistent. 2

��
��

��
��

��
��

��
��

x1

x2

xm+1+i

xm+2+i

HHHHHHHHHHj

h
1 0 1

0 1 1

1 1 1

i

-

h
0 1 1

1 0 0

1 1 0

i

��
��

��
��

��*h
1 1 0

1 1 1

0 0 1

i
.

.

.

Figure 3: Instantiating xm+2+i

Theorem 2 always speci�es a level of strong consistency that is less than or
equal to the level of strong consistency required by Dechter's theorem (Theo-
rem 1). The level of required consistency is equal only when m = d � 1 and is
less when m < d� 1. As well, the theorem can sometimes be usefully applied if
d � n � 1, whereas Dechter's theorem cannot.

As the following example illustrates, both r, the arity of the constraints, and
m can change if the level of consistency required by the theorem is not present
and must be enforced. The parameter r can only increase; m can decrease,
as shown below, but also increase. The parameter m will increase if all of the
following hold: (i) there previously was no constraint between a set of variables,
(ii) enforcing a certain level of consistency results in a new constraint being
recorded between those variables and, (iii) the new constraint has a larger m
value than the previous constraints.

Example 5. Nadel [26] introduces a variant of the n-queens problem called
confused n-queens. The problem is to �nd all ways to place n-queens on an n�n
chess board, one queen per column, so that each pair of queens does attack each

16

other. One possible constraint network formulation of the problem is as follows:
there is a variable for each column of the chess board, x1; : : : ; xn; the domains
of the variables are the possible row positions, Di = f1; : : : ; ng; and the binary
constraints are that two queens should attack each other.

The problem is worth considering, as Nadel [26] uses confused n-queens
in an empirical comparison of backtracking algorithms for solving constraint
networks. Thus it is important to analyze the di�culty of the problems to set
the empirical results in context. As well, the problem is interesting in that it
provides an example where Theorem 2 can be applied but Dechter's theorem
can not (since d � n�1). Independently of n, each row and column of the (0,1)-
matrix representation of the constraints has at most 3 ones. Hence, the networks
are 3-tight and the theorem guarantees that if the network for the confused n-
queens problem is strongly 5-consistent, the network is globally consistent.

First, suppose that n is even and we attempt to either verify or achieve this
level of strong consistency by applying successively stronger local consistency
algorithms. Kondrak [20] has shown that the following analysis holds for all n,
n even.

1. Applying an arc consistency algorithm results in no changes as the network
is already arc consistent.

2. Applying a path consistency algorithm does tighten the constraints be-
tween the variables. Once the network is made path consistent, each row
has � 2 ones. Now the theorem guarantees that if the constraint network
is strongly 4-consistent, the network is globally consistent.

3. Applying a 4-consistency algorithm results in no changes as the network
is already 4-consistent. Thus, the network is strongly 4-consistent and
therefore also globally consistent.

Second, suppose that n is odd. This time, after applying path consistency,
the networks are still 3-tight and it can be veri�ed that the networks are not 4-
consistent. Enforcing 4-consistency would require non-binary constraints, hence
Theorem 2 no longer applies. We take this example up again in the next section
where the results are generalized to non-binary constraints. There we show that
recording 3-ary constraints is su�cient.

Recall that Nadel [26] uses confused n-queens problems to empirically com-
pare backtracking algorithms for �nding all solutions to constraint networks.
Nadel states that these problems provide a \non-trivial test-bed" [26, p.190].
We believe the above analysis indicates that these problems are quite easy and
that any empirical results on these problems should be interpreted in this light.
Easy problems potentially make even naive algorithms for solving constraint
networks look promising. To avoid this potential pitfall, backtracking algo-
rithms should be tested on problems that range from easy to hard. In general,
hard problems are those that require a high level of local consistency to ensure
global consistency. Note also that these problems are trivially satis�able.

17

Example 6. The graph k-colorability problem can be viewed as a problem
on constraint networks: there is a variable for each node in the graph; the
domains of the variables are the possible colors, D = f1; : : : ; kg; and the binary
constraints are that two adjacent nodes must be assigned di�erent colors. Graph
k-colorability provides examples of networks where both Theorems 1 and 2 give
the same bound on the su�cient level of local consistency (since d = k and
m = d � 1). Further, as Dechter [9] shows, the bound is tight. For example,
consider coloring a complete graph on �ve nodes with four colors. The network is
3-tight and strongly 4-consistent, but not strongly 5-consistent and not globally
consistent. Hence, when m = d � 1, the level of local consistency speci�ed by
Theorem 2 is as strong as possible and cannot be lowered.

We can also construct examples to show that Theorem 2 is as strong as
possible for all m < d � 1. This can be done by \embedding" graph coloring
constraints into the constraints for the new network. For example, consider the
network where the domains are D = f1; : : : ; 5g and the constraints between all
variables is given by,

Rij =

2
6664

1 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 0 0 1

3
7775:

The inner 3� 3 matrix is the 3-coloring constraint. The network is 2-tight and
strongly 3-consistent, but not strongly 4-consistent and not globally consistent.

4.3 Tightness: General constraint networks

The results for binary constraint networks can be generalized to networks with
constraints of arbitrary arity. We �rst generalize the results using variable-
based local consistency and then generalize the results using relation-based local
consistency.

We now state the general theorem for variable-based local consistency.

Theorem 3 If an r-ary network R is m-tight, and if the network is strongly
((m+ 1)(r � 1) + 1)-consistent, then the network is globally consistent.

Proof. Let k = (m+1)(r�1)+1. We show that any network with relations that
are m-tight that is strongly k-consistent is (k + i)-consistent for any i � 1. Let
YI = (a1; : : : ; ak+i�1) be a consistent instantiation of a set Y of k+i�1 variables
and let xk+i be an arbitrary new variable. We will show that there exists an
instantiation ak+i of xk+i such that the extended tuple (a1; : : : ; ak+i�1; ak+i)
is consistent. This means that any relation RS 2 R de�ned over variable xk+i
and a non-empty subset of variables from fx1; : : : ; xk+i�1g should be satis�ed.
Let YI [S] be the partial tuple of YI that is restricted to the set S over which
RS is de�ned. We call this tuple a constraint-tuple. Since all the constraints

18

are m-tight, constraint RS will allow YI [S] to be extended by at most m values
of xk+i. Each such constraint-tuple, YI [S] can be regarded as a fan club, with
its allowed values in xk+i relative to RS as the famous people discussed by the
fan club. Therefore, condition (2) of Lemma 1 is satis�ed. Also, condition (3)
of Lemma 1 is satis�ed, since the length of each constraint-tuple is r�1 or less,
the requirement of strong (m+1)(r�1)+1-consistency, ensures that any set of
up to (m+ 1) constraint-tuples (overlapping or not), has a consistent extension
in xk+i. Therefore, from Lemma 1 it follows that there is a common value of
xk+i that satis�es all the constraints simultaneously. 2

Example 7. Consider again the confused n-queens problem discussed in Ex-
ample 5. There we saw that, after enforcing path consistency, the networks are
3-tight, for n odd. Enforcing 4-consistency requires 3-ary constraints. Adding
the necessary 3-ary constraints does not change the value ofm; the networks are
still 3-tight. Hence, by Theorem 3, if the networks are strongly 9-consistent, the
networks are globally consistent. Kondrak [20] has shown that recording 3-ary
constraints is su�cient to guarantee the networks are strongly 9-consistent for
all n, n odd. Hence, independently of n, the networks are globally consistent
once strong 4-consistency is enforced.

We now show how the concept of relation-based local consistency can be
used to alternatively describe Theorem 3.

Theorem 4 If a constraint network R is m-tight, and if the network is strongly
relationally (m + 2)-consistent, then the network is globally consistent.

Proof. Assume that the network is relationally (m + 2)-consistent. Let YI =
(a1; : : : ; ai�1) be a consistent instantiation of a set Y of i�1 variables, i > m+2.
We show that for any xi, there exists an instantiation ai of xi such that the
extended tuple (a1; : : : ; ai�1; ai) is consistent. This means that any relation
RS 2 R de�ned over variable xi and a non-empty subset of variables from
fx1; : : : ; xi�1g, should be satis�ed. Since all of the constraints are m-tight, the
number of values of xi that, together with YI [S], are allowed by RS does not
exceed m. Also, strong relational (m + 2)-consistency implies that any subset
of m+1 or fewer constraints can be consistently extended by xi. Consequently,
due to Lemma 1 there is a value ai such that the tuple (a1; : : : ; ai�1; ai) satis�es
all the constraints simultaneously. 2

As an immediate corollary of Theorem 4, if we know that the result of
applying Relational-Consistency(R;m) will be that all of the relations will
be (m � 2)-tight, we can guarantee a priori that the algorithm will return an
equivalent, globally consistent network. Algorithm Relational-Consistency

computes the closure of R with respect to extended m-composition. We can
conclude that:

19

Corollary 1 For any network R whose closure under extended i-composition,
for i = 2; : : : ;m, is an (m�2)-tight network, Relational-Consistency(R;m)
computes an equivalent globally consistent network.

Proof. Follows immediately from Theorem 4 and from the fact that algorithm
Relational-Consistency generates a strongly relationally m-consistent net-
work. 2.

Example 8. Let the domains of the variables be of size two. Relations
formed over domains of size two are 1-tight and closed under extended 2- and
3-composition. Thus, by Corollary 1, bi-valued networks can be solved by
Relational-Consistency(R; 3). In particular, the satis�ability of proposi-
tional CNFs can be decided by Relational-Consistency(R; 3). Here the
extended composition operation (Step 5 of the algorithm) takes the form of
pair-wise resolution [13]. A di�erent derivation of the same result is already
given by [9, 33].

While Relational-Consistency is incomplete for deciding consistency in
general, it is complete for (m�2)-tight relations that are closed under extended
m-composition. In fact, it is su�cient to require directional (m � 2)-tightness
relative to the ordering used; that is, requiring that if xi appears before xj in
the ordering then any value of xi will be (m � 2)-tight relative to xj but not
vice-versa. For example, functional relations are always 1-tight for orderings
that put input variables before output variables.

De�nition 10 (directionally m-tight) A binary constraint Rij is direction-
ally m-tight with respect to an ordering of the variables o = (x1; : : : ; xn), if xi
appears before xj in the ordering and every row of the (0,1)-matrix representa-
tion of the constraint has at most m ones. An r-ary relation R on a set S of
variables is directionally m-tight if for the subset of r � 2 variables Y � S that
are lowest in the ordering, and for every instantiation YI of the variables in Y ,
the binary relation �(S�Y)(�YI (R)) is directionally m-tight.

Algorithm Directional-Relational-Consistency computes the direc-
tional closure of R with respect to extended m-composition. We can conclude
that:

Theorem 5 For any network R, whose directional closure under extended m-
composition is directionally (m�2)-tight, Directional-Relational-Consistency(R;m; o)
will either decide that the network is inconsistent or else compute an equivalent
network of R that is backtrack-free along the ordering o.

Proof. Clearly the directional closure of R is equivalent to R. What needs to
be shown is that the directional closure relative to o is backtrack-free along the
ordering o. We prove this by induction on o. Without loss of generality, assume
that the ordering is o = x1; : : : ; xn. For the �rst variable x1 (recall that x1 is

20

processed last by the algorithm) there must be a value in the domain of x1 that
is allowed since otherwise the domain will be empty and the directional closure
will be empty. Assume now that we have already consistently instantiated the
�rst i�1 variables as YI = (a1; : : : ; ai�1). Let xi be the next variable. We claim
that every m� 1 or fewer applicable constraints in the directional closure, each
de�ned on xi and a subset of fx1; : : : ; xi�1g, must have a common extension to
xi. Suppose to the contrary that there exists a set of j, 1 � j � m�1, applicable
constraints RS1[fxig, : : : , RSj[fxig that do not have a common extension to xi.
However, the extended composition over these j relations when the bucket of
xi was processed generated a relation over S1 [� � � [Sj that should have been
consulted when testing YI 's consistency and should have disallowed YI , yielding
a contradiction. Thus, using the fact that every set of m�1 or fewer applicable
relations has a common extension to xi, and that the relations are directionally
(m � 2)-tight, Lemma 1 guarantees that they all have a common extension to
xi. 2.

Example 9. Consider again the crossword puzzle discussed in Example 4.
All of the constraints are 1-tight with the exception of R5;7;11, which is 2-tight.
For the ordering o = x1; : : : ; x13, however, the constraint R5;7;11 is directionally
1-tight: x5 is the lowest variable in the ordering and we can verify that for
every instantiation a5 of x5, the binary relation �7;11(�x5=a5(R5;7;11)) is 1-
tight. Therefore, the network is directionally 1-tight. According to Theorem 5,
enforcing relational 3-consistency will generate a backtrack-free network along
the ordering o, provided the tightness of the network does not increase as a
result.

5 Constraint Looseness vs Local Consistency

In this section, we present a su�cient condition, based on the looseness of the
constraints and on the size of the domains of the variables, that gives a lower
bound on the inherent level of local consistency of a binary constraint network.
After reviewing previous work, we present our results for binary constraint net-
works, and then generalize the results to networks with constraints of arbitrary
arity.

5.1 Related work

It is known that some classes of constraint networks already possess a certain
level of local consistency and therefore algorithms that enforce this level of local
consistency will have no e�ect on these networks. For example, Nadel [26]
observes that an arc consistency algorithm never changes a constraint network
formulation of the n-queens problem, for n > 3. Dechter [9] observes that
constraint networks that arise from the graph k-coloring problem are inherently

21

strongly k-consistent. Our results characterize what it is about the structure of
the constraints in these networks that makes these statements true.

5.2 Looseness: Binary constraint networks

We now present a simple condition that estimates the inherent level of strong
k-consistency of a binary constraint network. The condition is su�cient but not
necessary for local consistency.

Theorem 6 If a binary constraint network R is m-loose and all domains are

of size d or less, then the network is strongly
�l

d
d�m

m�
-consistent.

Proof. We show that the network is k-consistent for all k � dd=(d�m)e.
Suppose that variables x1; : : : ; xk�1 can be consistently instantiated with values
a1; : : : ; ak�1. To show that the network is k-consistent, we must show that there
exists at least one instantiation ak of variable xk that satis�es all the constraints,

(ai; ak) 2 Rik i = 1; : : : ; k � 1

simultaneously. We do so as follows. The instantiations a1; : : : ; ak�1 restrict the
allowed instantiations of xk. Let vi be the (0,1)-vector given by row ai of the
(0,1)-matrixRik, i = 1; : : : ; k�1. Let zero(vi) be the set that lists the positions
of the zeros in vector vi. The zero entries in the vi's are the forbidden instanti-
ations of xk, given the instantiations a1; : : : ; ak�1. No consistent instantiation
of xk exists if and only if zero(v1) [� � �[zero(vk�1) = f1; : : : ; dg. Now, the key
to the proof is that all the vi contain at least m ones. In other words, each vi
contains at most d�m zeros. Thus, if

(k � 1)(d�m) < d;

it cannot be the case that zero(v1) [� � �[zero(vk�1) = f1; : : : ; dg. (To see that
this is true, consider the \worst case" where the positions of the zeros in any
vector do not overlap with those of any other vector. That is, zero(vi) \ zero(vj)
= ;, i 6= j.) Thus, if

k �

�
d

d�m

�
;

all the constraints must have a non-zero entry in common and there exists at
least one instantiation of xk that satis�es all the constraints simultaneously.
Hence, the network is k-consistent. 2

Theorem 6 always speci�es a level of local consistency that is less than or
equal to the actual level of inherent local consistency of a constraint network.
That is, the theorem provides a lower bound. Graph coloring problems pro-
vide examples where the theorem is exact, whereas n-queens problems provide
examples where the theorem underestimates the true level of local consistency.

22

Example 10. Consider again the well-known n-queens problem discussed in
Example 2. The problem is of historical interest but also of theoretical interest
due to its importance as a test problem in empirical evaluations of backtracking
algorithms and heuristic repair schemes for �nding solutions to constraint net-
works (e.g., [17, 19, 24, 26]). For n-queens networks, each row and column of
the (0,1)-matrix representation of the constraints has d � 3 � m � d� 1 ones,
where d = n. Hence, Theorem 6 predicts that n-queens networks are inherently
strongly (dn=3e)-consistent. Thus, an n-queens constraint network is inherently
arc-consistent for n � 4, inherently path consistent for n � 7, and so on, and
we can predict where it is fruitless to apply a low order consistency algorithm in
an attempt to simplify the network (see Table 1). The actual level of inherent
consistency is bn=2c for n � 7. Thus, for the n-queens problem, the theorem
underestimates the true level of local consistency.

Table 1: Predicted (dn=3e) and actual (bn=2c, for n � 7) level of strong local
consistency for n-queens networks

n 4 5 6 7 8 9 10 11 12 13 14 15
pred. 2 2 2 3 3 3 4 4 4 5 5 5
actual 2 2 2 3 4 4 5 5 6 6 7 7

The reason Theorem 6 is not exact in general and, in particular, for n-
queens networks, is that the proof of the theorem considers the \worst case"
where the positions of the zeros in any row of the constraints Rik; i = 1; : : : ; k�
1, do not overlap with those of any other row. For n-queens networks, the
positions of some of the zeros do overlap. However, given only the looseness
of the constraints and the size of the domains, Theorem 6 gives as strong an
estimation of the inherent level of local consistency as possible as examples can
be given where the theorem is exact.

Example 11. Graph k-colorability provides examples where Theorem 6 is
exact in its estimation of the inherent level of strong k-consistency (see Exam-
ple 6 for the constraint network formulation of graph coloring). As Dechter
[9] states, graph coloring networks are inherently strongly k-consistent but are
not guaranteed to be strongly (k + 1)-consistent. Each row and column of the
constraints has m = d� 1 ones, where d = k. Hence, Theorem 6 predicts that
graph k-colorability networks are inherently strongly k-consistent.

Example 12. We can also construct examples, for all m < d � 1, where
Theorem 6 is exact. For example, consider the network where, n = 5, the

23

domains are D = f1; : : : ; 5g, and the binary constraints are given by,

Rij =

2
6664

0 1 1 1 1

0 0 1 1 1

1 0 0 1 1

1 1 0 0 1

1 1 1 0 0

3
7775; 1 � i < j � n;

and Rji = RT
ij, for j < i. The network is 3-loose and therefore strongly 3-

consistent by Theorem 6. This is exact, as the network is not 4-consistent.

We conclude this section with some discussion on what Theorem 6 con-
tributes to our intuitions about hard classes of problems (in the spirit of, for
example, [5, 35]). Hard constraint networks are instances which give rise to
search spaces with many dead ends. The hardest networks are those where
many dead ends occur deep in the search tree. Dead ends, of course, correspond
to partial solutions that cannot be extended to full solutions. Thus, networks
where the constraints are loose are good candidates to be hard problems since
loose networks have a high level of inherent strong consistency and strong k-
consistency means that all partial solutions are of at least size k.

Computational experiments we performed on random problems provide evi-
dence that loose networks can be hard. Random problems were generated with
n = 50, d = 5; : : :10, and p; q = 1; : : : ; 100, where p=100 is the probability that
there is a binary constraint between two variables, and q=100 is the probabil-
ity that a pair in the Cartesian product of the domains is in the constraint.
The time to �nd one solution was measured. In the experiments we discovered
that, given that the number of variables and the domain size were �xed, the
hardest problems were found when the constraints were as loose as possible
without degenerating into the trivial constraint where all tuples are allowed.
That networks with loose constraints would turn out to be the hardest of these
random problems is somewhat counter-intuitive, as individually the constraints
are easy to satisfy. These experimental results run counter to Tsang's [30, p.50]
intuition that a single solution of a loosely constrained problem \can easily be
found by simple backtracking, hence such problems are easy," and that tightly
constrained problems are \harder compared with loose problems." As well,
these hard loosely-constrained problems are not amenable to preprocessing by
low-order local consistency algorithms, since, as Theorem 6 states, they possess
a high level of inherent local consistency. This runs counter to Williams and
Hogg's [35, p.476] speculation that preprocessing will have the most dramatic
e�ect in the region where the problems are the hardest.

5.3 Backtrack-free binary networks

Given an ordering of the variables in a constraint network, backtracking search
works by successively instantiating the next variable in the ordering, and back-
tracking to try di�erent instantiations for previous variables when no consistent

24

instantiation can be given to the current variable. Previous work has identi�ed
conditions for when a certain level of local consistency is su�cient to ensure
a solution can be found in a backtrack-free manner (see Section 4.1). Some-
times the level of inherent strong k-consistency guaranteed by Theorem 6 is
su�cient, in conjunction with these previously derived conditions, to guarantee
that the network is globally consistent and therefore a solution can be found in a
backtrack-free manner without preprocessing. Otherwise, the estimate provided
by the theorem gives a starting point for applying local consistency algorithms.

In this section, we use constraint looseness to identify two new classes of
backtrack-free binary networks. First, we give a condition for a network to be
inherently globally consistent. Second, we give a condition, based on a direc-
tional version of the looseness property, for an ordering to be backtrack-free.
We also give an e�cient algorithm for �nding an ordering that satis�es the
condition, should it exist.

We begin with a corollary of Theorem 6.

Corollary 2 If a binary constraint network R is m-loose, all domains are of
size d or less, and m > n�2

n�1d, the network is globally consistent.

Proof. By Theorem 6, the network is strongly n-consistent if dd=(d�m)e � n.
This is equivalent to, d=(d�m) > n� 1 and rearranging for m gives the result.
2

The condition in the corollary is not empty only whenever d is greater than
or equal to n � 1. As one example, consider a constraint network with n = 5
variables that has domains of at most size d = 10 and constraints that are 8-
loose. The network is globally consistent and, as a consequence, a solution can
be found in a backtrack-free manner. Another example is networks with n = 5,
domain sizes of d = 5, and constraints that are 4-loose.

Global consistency implies that all orderings of the variables are backtrack-
free orderings. Sometimes, however, there exists a backtrack-free ordering when
only much weaker local consistency conditions hold. Freuder [15] identi�es a
relationship between the width of an ordering of the variables and the level of
local consistency su�cient to ensure an ordering is backtrack-free.

De�nition 11 (width; Freuder [15]) Let o = (x1, : : : , xn) be an ordering
of the variables in a binary constraint network. The width of a variable, xi, is
the number of binary constraints between xi and variables previous to xi in the
ordering. The width of an ordering is the maximum width of all variables.

Theorem 7 (Freuder [15]) An ordering of the variables in a binary constraint
network is backtrack-free if the level of strong k-consistency of the network is
greater than the width of the ordering.

Dechter and Pearl [11] de�ne a weaker version of k-consistency, called di-
rectional k-consistency, and show that Theorem 7 still holds. Both versions of

25

k-consistency are, in general, expensive to verify, however. Dechter and Pearl
also give an algorithm, called adaptive consistency, that does not enforce a uni-
form level of local consistency throughout the network but, rather, enforces the
needed level of local consistency as determined on a variable by variable basis.
We adapt these two insights, directionality and not requiring uniform levels of
local consistency, to a condition for an ordering to be backtrack-free.

De�nition 12 (directionally m-loose) A binary constraint is directionally
m-loose if every row of the (0,1)-matrix representation of the constraint has at
least m ones, where 0 � m � d� 1.

Theorem 8 An ordering of the variables o = (x1, : : : , xn) in a binary con-

straint network R is backtrack-free if
l

d
d�mij

m
> wj, 1 � i < j � n, where wj

is the width of variable xj in the ordering, and mij is the directional looseness
of the (non-trivial) constraint Rij.

Proof. Similar to the proof of Theorem 6. 2

An algorithm for �nding such a backtrack-free ordering of the variables,
should it exist, is given below.

FindOrder(R; n)

1. I f1; 2; : : : ; ng
2. for p n downto 1 do
3. �nd a j 2 I such that, for each Rij, i 2 I and i 6= j, dd=(d�mij)e > wj,

where wj is the number of constraints Rij, i 2 I and i 6= j, and mij is
the directional looseness of Rij

(if no such j exists, report failure and halt)
4. put variable xj at position p in the ordering
5. I I � fjg

Example 13. Consider the network in Figure 4. The network is 2-consistent,
but not 3-consistent and not 4-consistent. Freuder [15], in connection with The-
orem 7, gives an algorithm for �nding an ordering which has the minimum
width of all orderings of the network. Assuming that the algorithms break ties
by choosing the variable with the lowest index, the minimal width ordering
found is (x5; x4; x3; x2; x1), which has width 3. Thus, the condition of Theo-
rem 7 does not hold. In fact, this ordering is not backtrack-free. For example,
the instantiation x5 = 1, x4 = 3, x3 = 5 is a dead end, as there is no con-
sistent instantiation for x2. The ordering found by procedure FindOrder is
(x4; x3; x2; x1; x5), which has width 4. It can be veri�ed that the condition of
Theorem 8 holds. For example, w1, the width at variable x1, is 2, and the

constraints R41 and R31 are both 3-loose, so
l

d
d�3

m
= 3 > w1 = 2. Therefore all

solutions of the network can be found with no backtracking along this ordering.

26

mx5

nx1

mx2

mx3mx4

Q
Q
Q
Q
Q
Q
QQA

A
A
AA

�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
CC

�
�

�
�
�

�
�
�
��
�

�
�

�
�

�
��

Rij =

2
6664

0 0 1 1 1

1 0 0 1 1

1 1 0 0 1

1 1 1 0 0

1 1 1 1 0

3
7775; i = 1; 2; j = 3; 4

Ri5 =

2
6664

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

3
7775; i = 1; : : : ; 4

R34 =

2
6664

0 0 1 1 0

0 1 1 0 1

1 1 0 1 1

1 0 1 1 0

0 1 1 0 0

3
7775

Rji = RT
ij; j < i

Figure 4: Constraint network for which a backtrack-free ordering exists

5.4 Looseness: General constraint networks

The results for binary constraint networks can be generalized to networks with
constraints of arbitrary arity. We �rst generalize the results using variable-
based local consistency and then generalize the results using relation-based local
consistency.

We now state the general theorem for variable-based local consistency. Let
binomial(k; r) be the binomial coe�cients, the number of possible choices of r
di�erent elements from a collection of k objects. If k < r, then binomial(k; r)
= 0.

Theorem 9 If a constraint network R is m-loose, all domains are of size d or
less, and all constraints are of arity r, then the network is strongly k-consistent,
where k is the minimum value such that the following inequality holds,

binomial(k � 1; r� 1) �

�
d

d�m

�
� 1:

Proof.
Part 1. Suppose that variables x1; : : : ; xk�1 can be consistently instantiated

with values a1; : : : ; ak�1. To show that the network is k-consistent, we must
show that there exists at least one instantiation ak of variable xk that satis�es
all the applicable constraints. This means that any relation RS 2 R de�ned
over variable xk and a non-empty subset of variables from fx1; : : : ; xk�1g should
be satis�ed. Since all the constraints are m-loose, each applicable constraint RS

will allow at least m di�erent values for xk. Thus, in a manner similar to that

27

of the proof of Theorem 6, we can show that any set of dd=(d�m)e � 1 or
fewer constraints will have at least one instantiation of xk that satis�es all the
constraints simultaneously.

Part 2. Now, given that any set of dd=(d�m)e � 1 or fewer constraints
have a common extension, the level of strong k-consistency is the minimum
number of distinct variables that can occur among this many constraints. Each
of the constraints will be over a di�erent subset of variables and in each of
the constraints one of the variables is �xed to be xk. The binomial coe�cients
binomial(k� 1; r� 1) tell us the minimumnumber of variables that are needed
in order to specify the remaining r � 1 variables in each constraint subject to
the condition that each constraint must be over a di�erent subset of variables.
2

The theorem is restricted in its applicability as it requires that all of the
constraints are of equal arity r. No equivalent result was found for general
r-ary networks, where the constraints have arity r or less. Nevertheless, the
theorem does apply to some interesting classes of networks.

Example 14. Consider a formula in 3-CNF which can be viewed as a
constraint network where each variable has the domain ftrue, falseg and each
clause corresponds to a constraint de�ned by its models. The domains are of
size two and all constraints are of arity 3 and are 1-loose. The minimum value
of k such that the inequality in Theorem 9 holds is when k = 3. Hence, the
networks are strongly 3-consistent.

We now show how the concept of relation-based local consistency can be
used to alternatively describe Theorem 9.

Theorem 10 If a constraint network R is m-loose and all domains are of size

d or less, then the network is strongly relational
�l

d
d�m

m�
-consistent.

Proof. Same as Part 1 of proof of Theorem 9. 2

6 Conclusions and Future Work

We identi�ed two new complementary properties on the restrictiveness of the
constraints in a network: constraint tightness and constraint looseness. Con-
straint tightness was used, in conjunction with the level of local consistency, in
a su�cient condition that guarantees that a solution to a network can be found
in a backtrack-free manner. The condition can be useful in applications where a
knowledge base will be queried over and over and the preprocessing costs can be
amortized over many queries. Constraint looseness was used in a su�cient con-
dition for local consistency. The condition is straightforward and inexpensive
to determine and can be used to estimate the level of strong local consistency

28

of a network. This in turn can be used in deciding whether it would be useful
to preprocess the network before a backtracking search, and in deciding which
local consistency conditions, if any, still need to be enforced if we want to ensure
that a solution can be found in a backtrack-free manner.

We also showed how constraint tightness and constraint looseness are of
interest for their explanatory power, as they can be used for characterizing the
di�culty of problems formulated as constraint networks and for explaining why
some problems that are \easy" locally, are di�cult globally. We showed that
when the constraints are tight, networks may require less preprocessing in order
to guarantee a backtrack-free solution and that when the constraint are loose,
networks may require much more search e�ort in order to �nd a solution. As
an example, the confused n-queens problem, which has tight constraints, was
shown to be easy to solve as it is backtrack-free after enforcing only low-order
local consistency conditions. As another example, many instances of crossword
puzzles are also relatively easy, as the constraints are tight. On the other hand,
scheduling problems involving resource constraints can be quite hard, as the
constraints are inequality constraints and thus are loose.

A property of constraints proposed by Nudel [27], which is related to con-
straint tightness and constraint looseness, counts the number of ones in the
entire constraint. Nudel uses this count, called a compatibility count, in an
e�ective variable ordering heuristic for backtracking search. We plan to ex-
amine whether m-tightness and m-looseness can be used to develop even more
e�ective domain and variable ordering heuristics. We also plan to examine how
the looseness property can be used to improve the average case e�ciency of
local consistency algorithms. The idea is to predict whether small subnetworks
already possess some speci�ed level of local consistency, thus potentially avoid-
ing the computations needed to enforce local consistency on those parts of the
network. We also plan to examine how to e�ciently implement the directional
relational consistency algorithm and we are currently exploring an adaptive ver-
sion of the algorithm that takes into account the width of a node in dynamically
deciding what level of relational m-consistency to enforce.

29

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM,
26:832{843, 1983.

[2] S. Arnborg. E�cient algorithms for combinatorial problems on graphs with
bounded decomposability | a survey. BIT, 25:2{23, 1985.

[3] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding
an embedding in k-trees. SIAM Journal of Algebraic Discrete Methods,
8:177{184, 1987.

[4] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. J. ACM, 30:479{513, 1983.

[5] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard
problems are. In Proceedings of the Twelfth International Joint Conference
on Arti�cial Intelligence, pages 331{337, Sydney, Australia, 1991.

[6] M. C. Cooper. An optimal k-consistency algorithm. Arti�cial Intelligence,
41:89{95, 1989.

[7] R. Dechter. Enhancement schemes for constraint processing: Backjump-
ing, learning, and cutset decomposition. Arti�cial Intelligence, 41:273{312,
1990.

[8] R. Dechter. Constraint networks. In S. C. Shapiro, editor, Encyclopedia
of Arti�cial Intelligence, 2nd Edition, pages 276{285. John Wiley & Sons,
1992.

[9] R. Dechter. From local to global consistency. Arti�cial Intelligence, 55:87{
107, 1992.

[10] R. Dechter and I. Meiri. Experimental evaluation of preprocessing tech-
niques in constraint satisfaction problems. In Proceedings of the Eleventh
International Joint Conference on Arti�cial Intelligence, pages 271{277,
Detroit, Mich., 1989.

[11] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfac-
tion problems. Arti�cial Intelligence, 34:1{38, 1988.

[12] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti�cial
Intelligence, 38:353{366, 1989.

[13] R. Dechter and I. Rish. Directional resolution: The Davis-Putnam proce-
dure, revisited. In Proceedings of the Fourth International Conference on
Principles of Knowledge Representation and Reasoning, Bonn, Germany,
1994.

30

[14] E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958{
966, 1978.

[15] E. C. Freuder. A su�cient condition for backtrack-free search. J. ACM,
29:24{32, 1982.

[16] E. C. Freuder. A su�cient condition for backtrack-bounded search. J.
ACM, 32:755{761, 1985.

[17] J. Gaschnig. Experimental case studies of backtrack vs. waltz-type vs. new
algorithms for satis�cing assignment problems. In Proceedings of the Second
Canadian Conference on Arti�cial Intelligence, pages 268{277, Toronto,
Ont., 1978.

[18] M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance. Search
lessons learned from crossword puzzles. In Proceedings of the Eighth Na-
tional Conference on Arti�cial Intelligence, pages 210{215, Boston, Mass.,
1990.

[19] R. M. Haralick and G. L. Elliott. Increasing tree search e�ciency for con-
straint satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.

[20] G. Kondrak, 1993. Personal Communication.

[21] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelli-
gence, 8:99{118, 1977.

[22] A. K. Mackworth. Constraint satisfaction. In S. C. Shapiro, editor, Ency-
clopedia of Arti�cial Intelligence. John Wiley & Sons, 1987. Use updated
reference Mackworth92.

[23] H. Maruyama. Structural disambiguation with constraint propagation. In
Proceedings of the 28th Conference of the Association for Computational
Linguistics, pages 31{38, Pittsburgh, Pennsylvania, 1990.

[24] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-scale
constraint satisfaction and scheduling problems using a heuristic repair
method. In Proceedings of the Eighth National Conference on Arti�cial
Intelligence, pages 17{24, Boston, Mass., 1990.

[25] U. Montanari. Networks of constraints: Fundamental properties and ap-
plications to picture processing. Inform. Sci., 7:95{132, 1974.

[26] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelli-
gence, 5:188{224, 1989.

[27] B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Arti�cial Intelligence, 21:135{
178, 1983.

31

[28] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9:268{299, 1993.

[29] R. Seidel. On the complexity of achieving k-consistency. Department of
Computer Science Technical Report 83-4, University of British Columbia,
1983. Cited in: A. K. Mackworth 1987.

[30] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[31] P. van Beek. On the inherent level of local consistency in constraint net-
works. In Proceedings of the Twelfth National Conference on Arti�cial
Intelligence, pages 368{373, Seattle, Wash., 1994.

[32] P. van Beek and R. Dechter. Constraint tightness versus global consis-
tency. In Proceedings of the Fourth International Conference on Principles
of Knowledge Representation and Reasoning, pages 572{582, Bonn, Ger-
many, 1994.

[33] P. van Beek and R. Dechter. On the minimality and global consistency of
row-convex constraint networks. Accepted for publication in J. ACM, 1994.

[34] D. Waltz. Understanding line drawings of scenes with shadows. In
P. H. Winston, editor, The Psychology of Computer Vision, pages 19{91.
McGraw-Hill, 1975.

[35] C. P. Williams and T. Hogg. Using deep structure to locate hard problems.
In Proceedings of the Tenth National Conference on Arti�cial Intelligence,
pages 472{477, San Jose, Calif., 1992.

32

