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Abstract. Temporal Constraint Satisfaction is an information technology useful for represent-
ing and answering queries about the times of events and the temporal relations between them.
Information is represented as a Constraint Satisfaction Problem (CSP) where variables denote
event times and constraints represent the possible temporal relations between them. The main
tasks are two: (i) deciding consistency, and (ii) answering queries about scenarios that satisfy
all constraints. This paper overviews results on several classes of Temporal CSPs: qualitative
interval, qualitative point, metric point, and some of their combinations. Research has progressed
along three lines: (i) identifying tractable subclasses, (ii) developing exact search algorithms, and
(iii) developing polynomial-time approximation algorithms. Most available techniques are based
on two principles: (i) enforcing local consistency (e.g. path-consistency), and (ii) enhancing naive
backtracking search.
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1. Introduction

A Constraint Satisfaction Problem (CSP) is a set of constraints over a set of vari-
ables, where each variable has a set of possible values called its domain. Each
constraint speci�es the allowed assignments for a subset of variables. A Temporal
CSP (TCSP) is a particular class of CSP where variables represent times and con-
straints represent sets of allowed temporal relations between them . Consider the
following example:

A patient requires three medical exams, each followed within 12 hours by a treat-

ment session. Exams and treatments cannot overlap. Both are completed within

4 hours and must be at least 8 hours apart. The exams require resources available

from the 8th to the 12ve and from the 20th to the 21st of this month.

We are interested in answering queries such as the following: �nd a feasible schedule
(if any), �nd all feasible schedules, what are the feasible times for an exam or a
treatment ?, what are the feasible relations between two exams or treatments ?,
what are the feasible relations between all exams and treatments ?.
Di�erent TCSPs are de�ned depending on the time entity that variables can

represent, namely time points, time intervals, durations (i.e. distances between
time points) and the class of constraints, namely qualitative, metric or both. For
example, the constraint \exams and treatments cannot overlap\ is a qualitative
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interval one. The constraint \from the 8th to the 12ve and from the 20th to the
21st" is a metric point one.
This paper overviews the results on deciding satis�ability of and answering queries

on TCSPs. The classes of TCSPs surveyed are qualitative point (Vilainetal89),
qualitative interval (Allen83), metric point (Dechteretal91) and some of their com-
binations (KautzLadkin91, Meiri96).
The paper is organised as follows. Section 2 presents general de�nitions and

techniques for TCSPs. Section 3, 4 and 5 survey qualitative point, qualitative
interval and metric TCSPs respectively. Section 6 surveys the most relevant of
their combinations. We shall assume the reader is familiar with CSP notions and
techniques (look at (Dechter92) for a survey).

2. Generalities

In this section we discuss the particularities of Temporal CSPs with respect to
standard CSP.
Variables represent either time points, time intervals or durations. Domains

are de�ned on a single set whose structure is usually isomorphic to either the set of
integers or rationals. We shall refer to is as time-structure. The domain of both time
point and duration variables is this set whereas time interval variables the domain
is the set of ordered pairs of this set. Di�erent classes of constraints, namely
qualitative, metric,. . . are characterised by the underlying set of basic temporal

relations (henceforth BTR). All BTR ssatisfy two conditions: (i) its elements are
mutually exclusive, and (ii) the union of the elements is the universal constraint.
All TCSP constraints are binary and have the form Cij = fr1; : : : ; rkg where

Xi; Xj are variables, k > 0, and r1; : : : ; rk 2 BTR. Their interpretation is

(Xi r1 Xj) _ � � � _ (Xi rk Xj)

It is possible to have unary metric point constraints but they can be regarded
as binary constraints. To this purpose a special variable X0 whose domain has a
single element D0 = f0g is introduced. Now the unary constraint Ci = fr1; : : : ; rkg
is then expressed as the binary constraint C0i = fr1; : : : ; rkg.
The form of temporal constraints is a fundamental particularity of TCSP.Whereas

constraints in standard CSP are described by their extensions, TCSP constraints
are intentionally described in terms of BTR elements. Now, solutions can be
computed by processing BTR subsets instead of processing speci�c extensions.

2.1. Solutions

A constraint with a single disjunct is called singleton. A singleton labelling of
a TCSP assigns to each pair of variables Xi; Xj a basic temporal relation r such
that r � Cij . The solutions of a TCSP are its consistent singleton labellings.
Consistency of a singleton labelling is de�ned according to the speci�c semantics
of each TCSP class.
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Because the solutions of a TCSPs are singleton labellings instead of variable
instantiations, the notion of feasible value is replaced by the notion of feasible
relation. A relation r 2 BTR is feasible for the pair (Xi; Xj) i� there exists one
solution where r is assigned to this pair. Notice that in qualitative TCSP, r feasible
for (Xi; Xj) implies that r 2 Cij whereas in the metric case it is relaxed to r � Cij .
The minimal constraint Cmin

ij is the set of feasible relations between Xi and Xj .
As in CSP, a TCSP where all constraints are minimal is said to be minimal and,
given a TCSP, it is always possible to �nd an equivalent, minimal TCSP.

2.2. Lines of Research

TCSP focussed on two problems: (i) deciding consistency, which is closely related to
the task of �nding one solution, and (ii) �nding the minimal representation which,
in some sense, represents all solutions. All other queries mentioned in section 1 are
at least as di�cult as deciding consistency. Computing the minimal representation
is harder that deciding consistency but allows answering many queries at a low cost
in general.

Research has progressed along three lines:

� Identifying tractable subclasses and developing specialised algorithms for them.
These classes are de�ned by two sorts of parameters: (i) properties of the con-
straint graph (e.g. degree, width, . . . ), and (ii) the class of constraints.

� Enhancing search algorithms. There are two well-known methods: (i) back-
tracking search, and (ii) iterative re�nement search such as GSAT The former
is guaranteed to terminate with the correct answer but does not scale up due
to its exponential complexity. The latter scales up well but is not guaranteed
to terminate with a solution.

� Developing polynomial-time approximation algorithms that are sound although
not complete.

2.3. Techniques

The building blocks for temporal constraint processing techniques are the comple-
ment, converse, intersection and composition constraint operators. They are
set-theoretically de�ned in terms of their de�nition over BTR which is speci�c to
each TCSP class.

Enforcing Local Consistency. The idea is to enforce some degree of local
consistency i.e. k-consistency for some k � n, to eliminate non-feasible labels
from the problem constraints. In most cases, enforcing local consistency can be
done in polynomial time. The most simple and popular local-consistency notions
are arc-consistency and path-consistency (see (Dechter92)). Arc-consistency,
or 2-consistency, is only applicable on constraints that involve the X0. Path-

consistency is less local since involves all paths between any two variables. Nev-
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Algorithm PC

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. if Cij 6= Cik � Ckj then

5. Cij  Cij \ (Cik � Ckj)
6. if Cij = fg then exit (inconsistency)
7. Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g
8. end-if

9. end-while

end-algorithm

Figure 1. Algorithm PC for enforcing path-consistency.

ertheless it is well-know that it is enough to enforce 3-consistency to guarantee
it.
Path-consistency can be highly e�ective and sometimes turns out be enough to

decide consistency, e.g. in the case of a singleton labelling. The classical algorithm
PC shown in �gure 2.3 enforces path-consistency in O(v3) steps.
Search Methods. Since TCSPs are in general intractable, complete algorithms
must perform some sort of search. The notion of partial singleton labelling is
de�ned as an assignment where some constraints are labelled by a singleton and
some are not. The search space of a TCSP is de�ned over all possible partial sin-
gleton labellings. Practical backtracking algorithms for TCSP proceed by forward
checking and variable assignment as we show in �gure . Forward checking is im-
plemented by enforcing local consistency. Variable assignment consists of a mere
selection of a BTR in the constraint at hand. Intuitively, a backtracking search
algorithm successively labels each (disjunctive) constraint with one of its BTRs as
long as the resulting partial labelling is consistent. Once inconsistency is detected,
the algorithm backtracks. The number of dead-ends encountered strongly depends
on strategy for deciding on the ordering. For most tractable subclasses, however,
enforcing path-consistency at step 2 is su�cient to guarantee that a solution can
be found in a backtrack free manner.

3. Qualitative Point Constraints

In qualitative point TCSP variables represent time points and BTR = f<;=; >g.
Three algebras have been studied:

name abbrv relations

basic point algebra BPA <;=; >; ?
convex point algebra PAc ;; <;=; >;�;�; ?
point algebra PA ;; <;=; >;�;�; ?; 6=
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Algorithm Backtracking

1. Depth 0;
2. Apply PC; this removes some redundant BTRs.
3. if inconsistency was detected then
4. if Depth = 0 then exit with failure.
5. Undo the last BTRlabelling.
6. Depth Depth� 1; Go to step 8.
7. if all constraints are BTRs then exit with the solution.
8. Replace (non-deterministically) a disjunctive constraint by a single BTR.
9. Depth Depth+ 1; Go back to step 2.
end-algorithm

Figure 2. An Scheme for Practical Backtracking Algorithms for solving TCSPs.

The most relevant contributions on PA constraints are IxTeT, vanBeek's and
TimeGraph-II.

3.1. Basic Point Algebra (BPA)

A BPA TCSP is either inconsistent or represents a strict partial order. If it is
consistent then the non-universal input constraints are minimal. Thus, �nding a
solution is equivalent to �nding a total order. This can be done applying topological
sort in O(v+e) steps. Enforcing path-consistency correctly decides consistency and
computes the minimal constraints but requires O(v3) steps.

3.2. Convex Point Algebra (PAc)

The set of constraints can be represented as a weighted, directed graph using the
following translation:

xi = xj translates to xi � xj ; xj � xi

xi � xj translates to xi
+1
�! xj ; xj

0
�! xi

xi < xj translates to xi
+1
�! xj ; xj

��
�! xi

Consequently, for the restricted case in which the relations <;> are not allowed,
�nding a solution accounts for �nding the shortest-path using Dijkstra's algorithm in
O(v2) steps. Otherwise, we need to use Floyd-Warshall all-pairs shortest-paths algo-
rithm which is equivalent to enforcing path-consistency in O(v3) steps (LadkinMaddux88,
Cormenetal90).
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3.3. Point Algebra (PA)

3.3.1. Deciding Consistency In IxTeT (GhallabMounir89), a PA TCSP is trans-
lated into a graph with � and 6= edges only. The translation is as follows:

; 7! \the problem is inconsistent" ? 7! no edge

< 7!
�
�!;

6=
�! � 7!

�
�!

> 7!
�
 �;

6=
 � � 7!

�
 �

= 7! the two vertices are \collapsed" 6= 7!
6=
�!

into a single vertex

The resulting �-6=-graph, has the following property (GhallabMounir89):

". . . A �-6=-graph is consistent i� no pair of vertices connected by a 6= edge
are involved in a loop through � edges."

It is checked by collapsing every�-loop into a single vertex. If two collapsed vertices
are connected by a 6= edge then the TCSP is inconsistent.

Identifying �-loops is equivalent to identifying strongly connected components
(SCC) as de�ned in graph theory (vanBeek89). E�cient algorithms for comput-
ing SCCs are based on two-way topological sort and take O(v+ e) steps (Tarjan72).
TimeGraph-II follows the same approach ((GereviniSchubert95a) theorems 2.8, sub-
section 3.1 and theorem 3.2).

3.3.2. Finding a Solution Once a PA-TCSP is free of �-loops, a solution can
be easily computed using topological sort in O(v + e) steps.

3.3.3. Answering Queries on Feasible Relations All feasible relations can be de-
termined by computing the minimal representation. Path-consistency is proven
to �nd the feasible relations for BPA and PAc but it is not complete for PA.
Figure 3.3.3 shows a counter-example, commonly known as the forbidden subgraph
(vanBeekCohen90).

The minimal representation can be obtained by enforcing 4-consistency, how-
ever van Beek proposed a more practical approach based on the following observa-
tion: the forbidden subgraph must be included in every PA TCSP which is path-
consistent but not minimal (vanBeek92)1. This property leads to the following two
step algorithm:

1. Enforce path-consistency. It requires O(v3) steps.

2. Search systematically for the forbidden subgraphs and update the labels. It
requires O(e6=v

2) steps, where e6= is the number of 6= constraints.
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Figure 3. The unique non-minimal path-consistent PA TCSP.

Although the worst case complexity of this algorithm is O(v4), it has been empiri-
cally observed that the path-consistency step dominates the computation (vanBeek90c).
This algorithm can be adapted to process dynamic problems, i.e. problems where

the variables and constraints added and/or removed while feasible relation queries
are posed. The idea is maintaining an internal representation that approximates a
complete graph, allows e�cient query answering and supports incremental update
of temporal constraints. Systems such as IxTeT or TimeGraph-II use internal rep-
resentations that take advantage of the inherent structure of temporal information.

Using an indexed spanning tree IxTeT's internal representation is built by (i) com-
puting the maximal weight spanning tree, (ii) adding some residual edges between
di�erent branches of the tree, and (iii) labelling the nodes with an index.
The indexed spanning tree is computed in O(v+e) steps and experimental results

show that both retrieval and update take linear time (GhallabMounir89). Although
IxTeT has a clear practical interest, it is not complete: it fails to compute the correct
answer when the input TCSP includes the forbidden subgraph.

Arranging Time Points into Chains TimeGraph-II (GereviniSchubert95a) is spe-
cially tailored to domains where chain-like aggregates are dominant such as natural
language systems. The internal data structure, called time-graph, is organised in
chains and the algorithms for building and maintaining the time-graph are designed
to maximise the length of these chains. Building a time-graph involves three steps:
(i) ranking the vertices, (ii) computing next-greater links, and (iii) propagating <
through forbidden graphs.
In TimeGraph-II the feasible relation between two events can be computed in

O(e + v) However, if the events involved in the query belong to either the same
chain or are related by a 6=, the query can be answered in constant time.

3.4. Summary

Worst-case bounds have been established for the tasks of deciding consistency,
�nding a solution and generating the minimal TCSP (vanBeek90c). These results
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Task
Time Cost
worst-case

Time Cost
average-case

van Beek
Deciding Consistency
by collapsing SCCs.

O(v + e)

All feasible relations
by PC+forbidden graphs.

O(max(v3; e 6=v
2)) O(v3)

IxTeT Building IxTree O(v + e)
Feasible relation O(v)
Adding new relation O(v)

TimeGraph-II Building a time-graph O(e+ v) O(e)
Feasible relation O(e+ v) O(v)

Figure 4. Summary of qualitative point TCSP results.

are di�cult to contrast with the empirical evaluation of algorithms optimised to
answer feasible relation queries for a restricted domain. IxTeT experiments show
that a structure based on an indexed maximal spanning tree e�ciently supports
both feasible relation queries and dynamic updating of constraints. TimeGraph's
major improvement upon IxTeT was in providing correct answers when the TCSP
includes <-paths and forbidden graphs. Table 3.4 summarises these results.

4. Qualitative Interval Constraints

In qualitative interval TCSP variables represent time intervals and

BTR =

8<
:

before; after; meets; met by;

overlaps; overlaps by; during; contains; equals;

starts; started by; �nishes; �nished by

9=
;

IA BTRs can be expressed by conjunctions of PA relations as described in �gure
4, where X�,X+ are the beginning and end points of the interval X respectively.

Inde�nite information is expressed as disjunctions of BTR elements. In the
initial example, to express the statement \Exams and treatments cannot overlap"
we need to specify that for each exam and treatment, the time interval of the exam
is either Before or Meets after the interval of the treatment. This is denoted by
Iexami

fBefore; AftergItreatmentj . The total number of possible inde�nite relations
is 213 = 8192.

Operators are de�ned as usual (see section 2). The composition of pairs of BTR
elements is given by a 13�13 table in (Allen83).
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Relation PA representation Inverse PA representation

X Before Y X+ < Y � X After Y Y + < X�

X Equal Y X� = Y � ^ X+ = Y + X Equal Y X� = Y � ^ X+ = Y +

X Meets Y X+ = Y � X Met by Y X� = Y +

X Overlaps Y X� < Y � ^ X+ < Y + X Overlapped by Y X� > Y � ^ X+ > Y +

^ Y � < X+ ^ X� < Y +

X During Y Y � < X� ^ X+ < Y + X Contains Y X� < Y � ^ Y + < X+

X Starts Y X� = Y � ^ X+ < Y + X Started by Y Y � = X� ^ Y + < X+

X Finishes Y X� > Y � ^ X+ = Y + X Finished by Y Y � > X� ^ Y + = X+

Figure 5. The PA representation of the 13 IA relations.

4.1. Complexity of Tasks and Tractable Classes

Deciding consistency (and computing a solution) of Interval TCSPs is in NP-
complete (Vilainetal89).

The �rst and most simple tractable class identi�ed was the subclass which can
be represented by PA TCSPs, called Pointisable TCSPs (Vilainetal89). Lin-
ear time algorithms for processing this class were developed (GereviniSchubert93,
DrakengrenJonsson96). For this subclass, enforcing path-consistency correctly de-
cides consistency and enforcing 4-consistency computes the minimal constraints
(vanBeek92).

Macro Relations can be used to describe tractable classes. By shifting one
of the four interval endpoints leaving the other three �xed, a partial order on
the 13 relations is obtained (Nokel89a). This partial order was used to represent
coarse temporal information through the notion of neighbourhood (Freksa92). Two
relations are conceptual neighbours if they can be derived from each other by shifting
to the right one of the four interval endpoints leaving the other three �xed. A set of
relations forms a conceptual neighbourhood if each relation is a conceptual neighbour
of at least one other relation in the set. It is convenient to consider the following
macro relations:

\ = f m; mi; o; oi; s; si; f; fi; d; di; =g
� = fm; og ; ��1 = fmi; oig
� = fs; f; dg ; ��1 = fsi; fi; dig
� = fbg � = fbig
�\ = fb;\g ; \� = f\; big
? = fb; \; big ; �� = fb; big

�-classes The �-notation is used to describe subclasses of the Interval Algebra
which are based on the macro relations described above. � = fm1; : : : ;mkg denotes
the set of allowed macro relations that can be used to label constraints. Note that
fm1; : : : ;mkg may not describe an algebra nor a sub-algebra, and they need not be
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Class Name Relations Used (�-class) Reference

Interval Orders f�; �; \g (Fishburn70)
Interval Graphs f��; \g (GilmoreHo�man64, FulkersonG
Circle (overlap) Graphs f f�; ��1;=g; f�;�;�;��1g g (Gaboretal89, Bouchet87)
Interval Containment Graphs f f�;��1g; f�;�; �; ��1;=g g (GolumbicScheinerman89)
Po-sets of dimension 2 f f�g; f��1g; f�;�; �; ��1;=g g (DushnikMiller41, Bakeretal72, G

Figure 6. Tractable classes.

closed under converse, composition and intersection. An interesting result regarding
the complexity of a very simple restricted subclass of the Interval TCSP is as follows:

Theorem 1 (GolumbicShamir91) Deciding consistency of an Interval TCSP in
which the relations are � = f�; �; \; ?g and � = f� \; \ �; ��; ?g is in
NP-complete.

Despite the fact that the restricted class described above is intractable, sev-
eral �-based tractable subclasses were identi�ed. Table 4.1, originally given in
(GolumbicShamir91), describes a number of well-known recognition problems in
graph theory and partially ordered sets which can be viewed as restricted subclass
of the Interval Algebra. A linear time algorithm for deciding consistency of � = f�
;�;\;�\;\�; ?g is given in (GolumbicShamir91). A cubic time algorithm for de-
ciding consistency of � = f�;�;\;��g is given in (GolumbicShamir91). E�cient
algorithms for � = f�;�;\g and � = f��;\g can be found in (BelferGolumbic90,
BelferGolumbic91).
The uniquemaximal tractable subclass that includes all 13 relations was iden-

ti�ed (NebelBuerckert95) . De�ne three atomic formulas: (Xi � Xj), (Xi = Xj)
and (Xi 6= Xj), where Xi; Xj are point variables and i < j. An ORD-Horn clause is
a disjunction of these atomic formulas, and an ORD-Horn formula is a conjunction
of ORD-Horn clauses. The class of relations which can be described by ORD-
Horn formulas, denoted H, is closed under converse, intersection and composition
(NebelBuerckert95).

Example: The ORD-Horn representation of the (pointisable) relation Xfd; o; sgY
is the formula

f(X� � X+); (X� 6= X+); (Y � � Y +); (Y � 6= Y +);
(X� � Y +); (X� 6= Y +); (Y � � X+); (Y � 6= X+); (X+ � Y +); (X+ 6= Y +)g

where X�; X+ and Y �; Y + denote the end points of the intervals X and Y respec-
tively. The relation (X� 6= Y � _ X+ 6= Y +), the complement of Xf=gY , is in H
but is not pointisable.

Theorem 2 (NebelBuerckert95, Ligozat96)
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� A sub-algebra S is tractable i� the closure of S under the converse, intersection
and composition operators is tractable.

� H is the unique maximal tractable subclass and

� enforcing path-consistency decides consistency for H.

A simpli�ed proof for this theorem is presented in (Ligozat96). In addition a
backtrack free algorithm for computing scenarios and a more general theory of
relations between linear orders were developed (Ligozat96).
Twelve maximal tractable subclasses that do not use all 13 basic relations were

characterised (DrakengrenJonsson96). Four of these can express sequentiability of
intervals, which cannot be described in the ORD-Horn subclass. The satis�ability
algorithm, which is common to all these algebras, was shown to be linear. The
de�nition of the classes and the algorithm rely on the notion of maximal acyclic
relations.

4.2. Techniques

The original constraint propagation algorithm Allen provides in (Allen83) enforces
path-consistency. This algorithm hasn't changed much over the years, and today
it is still used as the major constraint propagation algorithm (for Interval TC-
SPs). A more sophisticated algorithm, which enforces 4-consistency, can be found
in (vanBeek90c). These algorithms are sound but incomplete for deciding consis-
tency and approximate the minimal constraints.

4.2.1. Hierarchical IA TCSPs Reference intervals can be used to form clusters
to reduce the space requirements and time complexity of enforcing path-consistency
(Allen83). Clusters are formed by associating a set of intervals with one a reference
interval that subsumes them. E�ciency of constraint propagation is improved by
enhancing path-consistency as follows: Constraint propagation takes place within
each cluster separately. Inter-cluster constraints, between a pair of variables Xi; Xj

from di�erent clusters, are computed by processing triangles in which Xk speci�es
a reference interval only. If the reference intervals are disjoint, then enforcing path-
consistency within the clusters is su�cient to enforce path-consistency for the whole
TCSP.
To improve e�ciency of enforcing path-consistency on general TCSPs where there

are no reference intervals (or they are not disjoint), reference intervals can be gen-
erated on-the-
y (Koomen87). This reduces the number of triangles processed yet,
if done correctly, computes a path-consistent TCSP.

4.2.2. Empirical Evaluation Next, we survey results of three experiments re-
ported in (LadkinReinefeld92, SchwalbDechter97), aimed at evaluating the e�ec-
tiveness of path-consistency for: (i) removing disjunctions, (ii) detecting inconsis-
tencies, and (iii) pruning dead-ends in backtrack search.
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The ability of path-consistency in removing redundant disjunctions was eval-
uated on randomly generated problems by Ladkin and Reinefeld (LadkinReinefeld92).
Initially, the average number of disjunctions generated was 7.5 (i.e. 50% of 13). For
consistent TCSPs, after enforcing path-consistency the average number of disjunc-
tions did not drop under 5.5. For inconsistent TCSPs, the average number of
disjuncts after the �rst iteration of PC did not go above 4.5. Most inconsistencies
were found in the �rst 3 iterations.
As a measure of e�ectiveness of path-consistency in detecting inconsistencies,

it was suggested to use the fraction of problems for which path-consistency can
correctly decide consistency (SchwalbDechter97). Since enforcing path-consistency
is sound, the only type of incorrect answers are those cases where path-consistency
did not detect inconsistency of a consistent TCSP. For most of the problems path-
consistency was accurate. However, for problems where about 8 relations out of
13 were allowed, path-consistency was useless. This is one of the properties of the
transition region (CheesmanKanefsky91, Mitchelletal92, WilliamsHogg93).
The e�ectiveness for pruning dead-ends in backtrack search has been eval-

uated on the algorithm in �gure . For most problems, path-consistency was very
e�ective (LadkinReinefeld92). However, when about 8 relations out of 13 were
allowed, the problems encountered were the most di�cult and path-consistency
was not as e�ective. As a result, there is an exponential increase in the number
of dead-ends (SchwalbDechter97). This is one of the properties of the transition
region (CheesmanKanefsky91, Mitchelletal92, WilliamsHogg93).

4.3. Summary

For qualitative Interval TCSPs, also called the Interval Algebra (IA), answering
queries is intractable. Nevertheless, many relation-based tractable classes exist and
the unique maximal tractable class using all 13 relations was identi�ed. The most
common technique used for deciding consistency and computing feasible relations
of the IA is enforcing path-consistency. For all the tractable classes surveyed, it
correctly decides consistency. To compute a solution, backtrack search is used.
Incorporating path-consistency as a forward checking procedure within backtrack
search was shown to be very e�ective in pruning dead-ends.

5. Metric Point Constraints

In metric point TCSP variables specify time points and BTR is the set of intervals
of time-structure. Therefore, a metric constraint has the form Cij = f[a1; b1]; : : : ; [ak; bk]g
where the intervals are pairwise disjoint, which is interpreted as

(a1 � Xj �Xi � b1) ^ : : : ^ (ak � Xj �Xi � bk)

Accordingly, a unary constraint Ci = f[a1; b1]; : : : ; [ak; bk]g is interpreted as (a1 �
Xi � b1) ^ : : : ^ (ak � Xi � bk).
Qualitative Point TCSPs can be described using Metric Point TCSPs by map-

ping the qualitative point-point constraints into metric constraints (Ligozat91,
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KautzLadkin91, Meiri96). Similarly, metric TCSPs can be translated, with loss of
information, into Qualitative TCSPs (KautzLadkin91).
Given two metric constraints T and S, the basicOperators are de�ned as follows:

1. The inverse of T = f[a1; b1]; : : : ; [ak; bk]g is
^T = f[�bk;�ak]; : : : ; [�b1;�a1]g.

2. The intersection of T and S, denoted by T \ S, admits only values that are
allowed by both of them.

3. The composition of T and S, denoted by T � S, admits only values r for which
there exists t 2 T and s 2 S such that r = t+ s

A solution is a consistent singleton labelling. A singleton labelling of a Metric
TCSP is a selection of a single interval from each constraint. Consistency of a
labelling can be decided by enforcing path-consistency in O(v3) where v is the
number of variables. Note that when a constraint Cij is not speci�ed in the input,
it is assumed to specify the single interval [�1;1].

Theorem 3 (Dechteretal91) Deciding consistency (and computing a solution) of
a Metric Point TCSP is in NP-complete.

5.1. Tractable Classes

There are three known relation based tractable classes: Simple Temporal Problems
(STP), STP with inequation constraints (for continuous domains only) and Star
TCSPs. There is also a graph-based tractable class called series-parallel TCSPs.

5.1.1. Simple Temporal Problems (STP) Simple Temporal Problems (STP) spec-
ify a single interval per constraint. An STP can be associated with a directed edge-
weighted graph, Gd, called a distance graph (d-graph), having the same vertices as
the constraint graph G; each edge i ! j is labelled by a weight wij representing
the constraint Xj �Xi � wij . An STP is consistent i� the corresponding d-graph
Gd has no negative cycles and the minimal network of the STP corresponds to
the minimal distances in Gd. Therefore, Floyd-Warshall's all-pairs shortest-path
algorithm enforces path-consistency and is complete for STPs (Dechteretal91).

5.1.2. Single Intervals with Inequation constraints The class of Simple Temporal
Networks was further extended to include disjunctions of inequations (i.e. x 6=
y). This extension is tractable if the domains are dense (i.e. rationals or reals)
(Koubarakis92). This class of constraints may be encountered when resolution is
combined with variable elimination.

Example: (Koubarakis92) Consider the following set of constraints: X3 � X1,
X5 < X1, X1 � X2 and X4 6= X1. Eliminating X1 results in X3 � X2; X5 < X2

with the addition of disjunction X4 6= X3 _ X4 6= X2.

In this case deciding consistency can be done in O(v3e)(Koubarakis92) and
minimal constraints can be computed inO(v5) by enforcing 5-consistency (Koubarakis95).
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Figure 7. The fragmentation problem.

5.1.3. Star metric TCSPs A metric TCSPs is a Star if its binary constraints Cij

specify single intervals and their unary constraints C0i specify an arbitrary number
of intervals. Deciding their consistency requires O(v3ek+e2k2) steps where v is the
number of variables, e is the number of constraints and k is the maximum number
of intervals per unary constraint (SchwalbDechter97).

This class of problems is commonly encountered when tasks are to be scheduled
within a set of available time windows. For example, to represent the introductory
treatment plan scheduling problem, we could use a disjunctive unary constraint to
specify the times the equipment and the therapist are available.

5.1.4. Series Parallel A TCSP is said to be series-parallel with respect to a pair
of nodes, i and j, if it can be reduced to the edge (i,j) by repeated applications of the
following reduction operation: select a node of degree 2 or less, remove it from the
network, and connect its neighbours. Deciding whether a TCSP is series-parallel
requires O(v) steps where v is the number of variables. If the TCSP is series-
parallel, deciding consistency can be done using the directed path-consistency

algorithm (Dechteretal91) in O(nk) where k is the maximal number of intervals per
constraint.

5.2. Techniques

The path-consistency algorithm for metric constraints was introduced as a parallel
to the path-consistency algorithms used to process CSPs and Qualitative TCSPs.

5.2.1. Complexity of Path-Consistency When time is described by integer or
rational numbers, then algorithm PC terminates in O(v3R3) and O(v3R2) steps re-
spectively (Dechteretal91). However, when the range R is very large or the domains
are continuous enforcing path-consistency is problematic and becomes impractical
(exponential) (PoesioBrachman91, SchwalbDechter97). Consider the network pre-
sented in �gure 5.2.1, having 3 variables, 3 constraints and 3 intervals per constraint.
After enforcing path-consistency, two constraints remain unchanged in the path-
consistent network while the third is broken into 10 subintervals. As this behaviour
is repeated over numerous triangles in the network, the number of intervals may
become exponential.
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Figure 8. The power of removing disjunctions.

5.2.2. Coping with Fragmentation Since enforcing path-consistency is exponen-
tial, it was suggested to approximate path-consistency with two polynomial time al-
gorithms called Upper Lower Tightening (ULT) and Loose Path-Consistency (LPC)
(SchwalbDechter93). ULT Algorithm ULT terminates in O(v3ek + e2k2) steps

where k is the maximum number of intervals per constraint. After it terminates, if
Cij speci�es a single interval (i 6= 0; j 6= 0) then the assignment of Xi to the lower
bound of C0i is a solution.

LPC Algorithm LPC terminates in O(n3k3e) steps but is stronger than ULT,
namely it computes tighter constraints and is capable of detecting inconsistencies
that ULT cannot detect.

Example: To illustrate the e�ectiveness of LPC in removing disjunctions, consider
the sample TCSP in �gure 5.2.2. Applying ULT on this TCSP does not have any
e�ect. After processing with LPC, a total of 8 redundant disjunctions were removed.
Consequently, the search space was reduced from 96 possible labelling to 1.

5.2.3. Empirical Evaluation of Techniques The experiments are surveyed here
are aimed at (SchwalbDechter97): (i) evaluating the e�ciency and e�ectiveness
tradeo� between enforcing path-consistency and applying ULT, and (ii) the ability
of ULT and LPC to remove disjunctions and e�ectively prune dead-ends.

Comparing Path-Consistency vs. ULT It was reported that path-consistency
is exponential in the fragmentation and thus may be impractical even for small
problems of 10 variables. Despite the fact that ULT is orders of magnitude more
e�cient than PC, it is able to detect inconsistency in about 70% of the cases that
path-consistency does (SchwalbDechter97).

Backtracking The e�ciency of backtracking search was improved by a factor of
106 for tiny problems of 12 variables and 66 constraints. This was achieved by using
the polynomial time approximation algorithms in three ways (SchwalbDechter97):
(i) as a preprocessing phase before initiating search, to reduce the fragmentation,
(ii) to perform forward checking procedure (within backtracking) for early detection
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of dead-ends, and (iii) as an advice generator for dynamic ordering of the constraints
to be labelled. A phase transition (CheesmanKanefsky91, Mitchelletal92) was also
observed (SchwalbDechter97).

5.3. Summary

Metric TCSPs provide a framework for describing disjunctive linear di�erence con-
straints. In general, answering queries is intractable. Four tractable classes were
surveyed: Simple Temporal Problems (STP), STP with disjunctions of inequation
constraints, the Star and series-parallel TCSP.
Enforcing path-consistency is exponential (in contrast to other TCSPs) due to

the fragmentation problem. There are two algorithms for controlling fragmenta-
tion and removing redundant disjunctions: Upper lower Tightening (ULT) and
Loose Path-Consistency (LPC). When incorporated within backtracking search,
these algorithms can improve the search performance by orders of magnitude.

6. Combining Temporal Constraints

The qualitative and metric point and interval TCSPs were combined into a uni�ed
model proposed by Meiri (Meiri96) which follows the general de�nition given in
section 2. In this section we summarise some results on various speci�c combina-
tions.

6.1. Interval-Point Qualitative Constraints

In the interval-point algebra, abbreviated IPA variables represent either time
points or time intervals. A new class of constraints between a point and an
interval and vice-versa is de�ned based on a BTR composed of the relations
Before, Starts, During, Finishes, After, and their inverses (Vilain82, Ligozat91,
Meiri96). Thus IPA is has 25 relations. Since interval-interval constraints are not
included, it is strictly less expressive than IA, however the resulting problem is still
intractable.

Theorem 4 (Meiri96) Deciding consistency of IPA TCSP (which excludes IA
constraints) is NP-complete.

IPA relations are a subset of the more general class of relations called (p; q)-
relations de�ned between a pair of linear ordered sets having p and q elements
(Ligozat91).

6.2. Point Algebra + Metric Domain Constraints

TCSPs resulting from augmenting Point TCSPs with unary metric constraints are
also intractable. The subclasses investigated were either PAc or PA augmented
with one of the following unary metric constraints (Meiri96):
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Discrete Single interval Multiple interval

Deciding consistency

PAc AC O(ek) AC+PC O(n2) AC+PC O(n2k)
PA NP-Complete AC+PC O(en) NP-Complete

Computing minimal constraints

PAc AC+PC O(n2k) AC+PC O(n2) AC+PC O(n2k)
PA AC+PC O(en2)

Figure 9. Results on Combined TCSPs.

� Discrete: Speci�ed by a �nite set of values.

� Single interval: Speci�ed by a single metric interval.

� Multiple intervals: Speci�ed by a set of disjoint metric intervals.

Complexity results and techniques for these classes are summarised in �gure 6.2
where AC denotes Arc-Consistency, PC denotes Path-Consistency and k is the
maximum number of intervals de�ning the domain (Meiri96).

6.3. Interval Algebra + Metric Constraints

TCSPs resulting from augmenting qualitative interval TCSPs with metric point
constraints are intractable. Apart from backtracking search, there are two methods
for deciding consistency and approximating the minimal constraints:

1. Enforcing path-consistency on a combined TCSP in O(n3R3) steps where R is
the range of the metric constraints (see Section 5) (Meiri96).

2. Iteratively enforcing path-consistency on the point metric and qualitative in-
terval sub-TCSPs independently, and translating and propagating information
between them in O(n5R3) (MATS system (KautzLadkin91)).

The advantage of combining the three kinds of TCSPs into a uni�ed framework
is two fold: (i) it provides a simple uniform knowledge representation model, and
(ii) PC algorithm can be directly used to enforce path-consistency of the combined
TCSP (Meiri96).
To obtain the uni�ed framework, a new qualitative interval-point constraint was

introduced and the composition operator � was extended to accommodate the new
constraint (Meiri96). The IA transitivity tables were augmented with tables com-
posing interval-point constraints with point-point and interval-interval constraints.



18

6.4. Summary

The di�erent kinds of TCSPs surveyed in this paper were combined into a single
uni�ed framework. As a result, the signi�cant body of knowledge accumulated for
each of these classes separately is applicable to the uni�ed framework.

7. Concluding Remarks

There has been an increasing interest on temporal constraint processing in the AI
community since Allen's seminal work in 1983 (Allen83). The intensive research
on the subject, specially during the last decade, has produced a signi�cant body
of knowledge that in
uenced research on other sorts of constraint-based problems,
such as spatial reasoning, as well as on related reasoning tasks such as scheduling
and planning. TCSP results are relevant to a variety of applications in computer
science including temporal databases, medical informatics, computer-aided design,
computer-aided manufacturing. Our aim in this paper has been providing an or-
ganised inventory of these results that makes them more accessible.
Certainly, TCSP research bene�ted from the CSP background, however it is

worth realizing the singularities of temporal CSPs that motivated the formation
of this dynamic sub-area. Despite the intensive analysis devoted to this class
of problems during last years, it is somewhat surprising to see how new open
issues keep arising. The relatively recent, conclusive results on characterising
tractable classes for the interval algebra, started by Nebel and B�uckert's work
(NebelBuerckert95), has been a landmark that determined current research direc-
tions. On the one hand, it led to studies related to the Interval algebra such as
alternative proofs (Ligozat96), an exhaustive characterisation of those tractable
classes (DrakengrenJonsson96, DrakengrenJonsson97) and techniques for related
problems such as �nding a solution (GereviniCristani97) and �nding the minimal
network (Bessiereetal96). On the other hand attention is being paid to more so-
phisticated temporal constraint problems: combinations of interval constraints with
other sorts (Jonssonetal96), duration constraints (NavarreteMarin97), fuzzy con-
straints (VilaGodo94), periodic constraints (Morrisetal95), disjunctive constraints
(Koubarakis96). We will probably see more on these classes of temporal constraints
as well as on their application in task-oriented reasoners in the near future.

Notes

1. A slight mistake in the proof is corrected in (GereviniSchubert94).
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