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1 Introduction

This paper reports students' projects performed during the 275a class: \Network-based
reasoning: belief networks," in the department of Information and Computer Science at
UC-Irvine, taught by Rina Dechter. Students were required to select one problem from the
bayesian repository benchmarks in

http://www-nt.cs.berkeley.edu/home/nir/public_html/Repository/index.htm

and to run a comparative study of several known algorithms and report the results. This pa-
per include �ve of the students' reports. The problems used are: Pigs, Diabetes, Insurance,
HailFinder and ALARM.
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Bucket Elimination and Mini Bucket Approximation on \Pigs" Domain

Igor V. Cadez
Department of Information and Computer Science

University of California, Irvine
icadez@ics.uci.edu

2 Introduction

The purpose of this project is to compare two inference algorithms: \Bucket Elimination"
and \Mini Bucket Elimination." The �rst algorithm is an exact inference algorithm for
arbitrary belief network. It calculates maximum probable explanation (MPE) of observed
evidence in the network by maximizing joint probability over the set of unobserved variables.
To perform this task, the full joint probability is processed sequentially in such a way that
the summation and maximization are performed on functions of manageable size. The mini-
bucket approximation to the exact algorithm is very similar, but instead of performing full
summation and maximization, functions are broken down into smaller pieces and each piece
is maximized independently. In this way, the interaction between pieces is not taken into the
account and the resulting algorithm is only approximate. In return, since maximization is
performed only over smaller subsets, the resulting algorithm is asymptotically much faster.
The motivation for this project comes from practical interest in fast any-time algorithms
for inference in belief networks.

2.1 The domain

The domain we use to perform the tests is called \Pigs." Each node in the network represents
a single specimen, and each link represents a parental relationship. The domain represents a
particular breeding problem, where carriers of a speci�c genetic disease are to be excluded
from the further breeding. To perform this task, pigs that carry the disease have to be
identi�ed. The laboratory testing approach is not cost e�cient, so the inference is made
based on the observed population of pigs that express the disease. Given this information,
the task is to �nd the most probable explanation of the given network, given the observed
evidence. Each node (pig) can take a value from a ternary domain: \healthy," \carrier" and
\sick." With each node there is a probability associated with each label, given the labels
of the parents. In other words, the conditional probability table (CPT) represents di�erent
combinations of probabilities for a child to inherit and further express the disease, given
the health status of the parents and speci�c details of biological inheritance. The domain
summary is:

� Size is 441 nodes,

� Number of edges is 592,

� Each node has either 0 or 2 parents,

� Each node can have many child nodes,

� The induced width of the network is 12.
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2.2 The task

The task of the project is to perform MPE experiments with simulated evidence and observe
the properties of the approximate algorithm on this real-life domain, as compared to the
exact algorithm. In particular, the emphasis is on the two aspects:

� The quality of solution of approximate algorithm as a function of mini-bucket size
(the smaller the size, the worst the approximation).

� The time it takes the approximate algorithm to reach and detect the exact solution.

The �rst task is relevant because it summarizes the average performance of the approxima-
tion as a function of the quality of the approximation. It is expected to give some insight
into size of the mini-buckets required to obtain \good enough" solutions. However, the
results obtained in that part of the project are only rough guidelines for the particular do-
main, and cannot be used for any other domain (some systematic evaluation with analytical
background is required). The second part of the project is more interesting as it mimics
a real life situation. If one was exposed to a problem of such complexity that the exact
solution is intractable, the natural way to proceed would be to start iterating the approxi-
mate solution with increasing approximation quality (i.e. increasing mini-bucket size) and
hope to reach the exact solution without having to run the full (intractable) algorithm. In
this sense, it is not enough to actually �nd the true solution, but the algorithm also has to
detect that the true solution has been reached. This is achieved by calculating upper and
lower bounds on the possible probability of the MPE tuple. It is worth noticing that the
two boundaries are discrete, hence one can expect that at a certain point they will exactly
match. Once they do, it signals that the MPE tuple has been found. In practice, the true
solution is typically found with certain mini-bucket size, but it is not until mini-bucket size
increases by 1 or 2 before the algorithm can actually detect that the MPE tuple has been
found. This is a consequence of the bounds not being tight enough.

2.3 Methodology

The experiment we run consists of exact bucket elimination algorithm followed by the set of
approximations for mini-bucket sizes from 1 to 11 (note that with mini-bucket size of 12 (the
induced width), the approximation becomes exact). The evidence consists of instantiation
of 10 nodes with likely, but random evidence. After each set of models, the algorithm
recreates both the evidence nodes and the evidence \contents." We record the upper and
the lower bound for each of the experiments, together with time it took the algorithm to
evaluate it (probability of the returned tuple is the lower bound on the exact solution). We
then look at the performance of the approximation over di�erent runs (di�erent evidence
nodes and di�erent evidence, but the same domain) for each model separately. This yields
200 ratios of the type UpperBound/LowerBound per model. We use this measure as the
quality of the solution. Note that the algorithm might have returned the exact tuple, but if
the upper bound is not tight, the overall quality of the solution will be poor. This measure
of quality is selected on purpose to most closely resemble a real life application where one
cannot run the exact inference algorithm. There are additional measures available like:
UpperBound/ExactSolution, or ExactSolution/LowerBound, but these measures use the
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information about the exact solution; if the exact solution were known, there would be no
need to run the approximations. Hence, for a solution to qualify as the good solution, it is
not enough to be close to the MPE tuple, but the approximation must be able to actually
detect this.

2.4 Results

The main results of the �rst part of the project are summarized on 11 histograms that
represent the distribution of the quality of the solutions for each of the approximate mod-
els. The histograms reveal the expected behavior where with increase in approximation
quality (increased mini-bucket size), more and more iterations return better solutions. The
histograms also reveal possible bimodality of the quality distribution, a result that has been
already empirically observed on di�erent domains.

The second part of the project is concerned with time to obtain the exact solution using
mini-bucket approximation with increasing size of mini-buckets. This is much more relevant
result, as it shows how one can obtain the exact solution by iterating through approximation
quality. It also shows that there is typically much to be gained by using this approach. In a
sense, the approach of iterating through approximation complexities is similar to A� search,
where one keeps redoing what has already been done. The exponential complexity of the
problems in question guarantees that the last iteration is much more time consuming than
even the sum of all the previous iterations. With this in mind, it is not surprising that
the iterative approach is promising. We show that the iterative approach is between one
and two orders of magnitude faster than the full approach (on this particular domain), and
that even the worst case scenario is just slightly worse than the full bucket elimination
approach (i.e. the overhead of all the approximations is almost negligible compared to the
exact algorithm). Everything said so far relies on the fact that the exact solution can be
detected without explicitly evaluating it by full bucket elimination. Once again, this is a
consequence of discreteness of the probabilities of tuples and the fact that the upper bound
can be put on the MPE tuple probability.

2.5 Summary

In this project we compare the exact bucket elimination algorithm to the version of mini-
bucket approximation called iterative improvement mini-bucket elimination, and show that
signi�cant running time improvements can be achieved (and are achieved on this domain).
The achieved running time decrease is not paid for by any decrease in quality of solution; in
any case we are interested in exact solutions only. The iterative improvement mini-bucket
approximation is not an approximation, but rather a nice way of using exponential time
complexity of bucket algorithms to achieve exact solutions in less time.

Acknowledgments

Author would like to thank Irina Rish for the C++ code that performed the actual cal-
culations (well, after some modi�cations at least . . . ). Also, thanks go to professor Rina
Dechter for availability of Bucket elimination and Mini-bucket approximation algorithms.
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Figure 1: Histogram of �t quality for di�erent mini-bucket sizes (Upper Bound/Lower
Bound).
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Figure 2: Histogram of �t quality for di�erent mini-bucket sizes (Upper Bound/Lower
Bound).
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Figure 3: Histogram of �t quality for di�erent mini-bucket sizes (Upper Bound/Lower
Bound).
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Diabetes: A preliminary model for insulin dose adjustment

Hong Zhao
Department of Information and Computer Science

University of California, Irvine
hzhao@ics.uci.edu

My project is to analyze the Diabetes Network. My task is compare the performances of
three algorithms: Bucket-Elimination MPE, MiniBucket-Elimination approximation MPE,
simple greedy MPE.

3 Introduction

This model is a preliminary model for insulin dose adjustment and developed by Steen
Andreassen, Roman Hovorka, Jonathan Benn, Kristian G. Olesen, and Ewart R. Carson.
The following is the information of the article about this model:

� Author: \Steen Andreassen and Roman Hovorka and Jonathan Benn and Kristian G.
Olesen and Ewart R. Carson"

� Title: \A Model-based Approach to Insulin Adjustment"

� Booktitle: \Proceedings of the Third Conference on Arti�cial Intelligence in Medicine"

� Year: 1991

� Editor: \M. Stefanelli and A. Hasman and M. Fieschi and J. Talmon"

� Pages: \239{248"

� Publisher: \Springer-Verlag"

I downloaded the net work from the web site:
http://www-nt.cs.berkeley.edu/home/nir/public html/Repository/Diabetes.htm and the con-
tributer is U�e Kjaerul�.

3.1 Network structure

3.1.1 Nodes

The network consists of 24 structurally identical subnetworks interconnected via temporal
links. This �le is .bif �le. There are 413 variables in this model, which are listed as following:

� cho init(16), ins sens(5),

� meal i(21), cho i(21), bg i(11), activ ins i(10), ins abs i(11), gut abs i(6), renal cl i(3),
ins indep util i(3), ins dep util i(8), glu prod i(6), ins indep i(5), ins dep i(13), endo bal i(17),
cho bal i(16), basal bal i(19), met irr i(7), tot bal i(15)

for each subnetwork i, where \i" is the integer from 0 to 23, totally 17*24 = 408
variables.
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� meal 24(21), cho 24(21), bg 24(11)

So totally there are 2+408+3 = 413 variables.
Note: The integer in the parenthesis right after each variable is the total number of possi-

ble values of this variable. For example: \ins indep util 0(3)," the possible values of variable
\ins indep util 0" are the following 3 values: 0 8mmol kg h, 0 4mmol kg h, 0 0mmol kg h.

3.1.2 Edges

The relation between the variables are like this:

� For i = 1 to i = 23, there are probability matrices:

{ 1. P( cho i | meal i, cho bal i-1 ),

{ 2. P( bg i | bg i-1, tot bal i-1 ),

{ 3. P( activ ins i | ins abs i, ins sens ),

{ 4. P( gut abs i | cho i ),

{ 5. P( renal cl i | bg i ),

{ 6. P( ins indep util i | bg i ),

{ 7. P( ins dep util i | bg i, activ ins i ),

{ 8. P( glu prod i | activ ins i, bg i ),

{ 9. P( ins indep i | renal cl i, ins indep util i ),

{ 10. P( ins dep i | ins dep util i, glu prod i ),

{ 11. P( endo bal i | ins indep i, ins dep i ),

{ 12. P( cho bal i | cho i, gut abs i ),

{ 13. P( basal bal i | gut abs i, endo bal i ),

{ 14. P( tot bal i | basal bal i, met irr i ).

So there are 25 edges in each of the subnetwork 1 to 23

� For i = 0, relation 2 is canceled, and relation 1 is changed to be:

{ 1. P( cho 0 | meal 0, cho init ),

So there are 23 edges in subnetwork 0

� For i = 24, there are only relation 1 and 2, so there are 4 more edges. So totally there
are 25*23+23+4=602 edges in the whole network.

There are 76 root nodes which are: cho init, ins sens, meal i(i=0{24), bg 0, ins abs i(i=0{
23), met irr i(i=0{23) There are 2 evidence nodes which are: cho 24, bg 24
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3.2 Experiment

3.2.1 Task

My task is to compare the performances of these three di�erent algorithms: Bucket-
Elimination MPE, MiniBucket-Elimination approximation MPE, and simple greedy MPE.

3.2.2 Testing tool

Here I used the software developed by Irina Rish to test my network.
The �le describes the network in .bif �le, while the input �le required by the testing

software is .erg �le. These two formats are quite di�erent. So �rst of all, I have to convert
the .bif �le to .erg �le. Because the �le size is very large (3.1MB), so manually conversion
is impossible. I wrote some little .c programs and awk script �les to convert the �le to the
correct format such that I can get a reliable input �le.

3.2.3 Experiment design

The experiment con�guration �le required by the testing tool includes the following param-
eters:

� EXPERIMENTS=15

which is the number of trials

� RUN COMPLETE ELIMINATION? 1

which means I need to test both exact and approx algorithm

� PARAMETER I: 1 6 1

which are min, max and step values of variables number in one mini bucket

� PARAMETER M: 0 0 1

which are min, max and step values of functions number in one mini bucket

� EVIDENCE NODES=0

which is number of evidence nodes. I tested several di�erent cases with di�erent evi-
dence nodes number: 0, 50, 100, 200, 300, 413

So basically, I compared the performances of exact Elim-MPE, approximation Elim-
MPE, and simple greedy MPE with di�erent i and di�erent evidence nodes number.

3.2.4 Experiment results

Here are the results of my testing:
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� Experiment #1:

{ number of evidence nodes = 0

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = 3.673159e-037, time = 279.7sec

{ greedy-MPE = small(*), time = 2.7sec

approx Elim-MPE Time(second) w* Tuple Distance(**)

i = 1 1.22645e-034 2.5 2 243
i = 2 1.22645e-034 2.5 2 243
i = 3 1.22474e-034 3.0 2 247
i = 4 1.21018e-036 38.4 3 344
i = 5 3.67316e-037 246.5 4 347
i = 6 3.67316e-037 292.5 5 347

(*)small: means the number is so small that it is out of the limit of the machine.

(**) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.

13



� Experiment #2:

{ number of evidence nodes = 1 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = 3.360226e-040, time = 292.8sec

{ greedy-MPE = small(*), time = 2.3sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 4.89477e-037 2.2 2 238
i = 2 4.89477e-037 2.2 2 238
i = 3 2.45807e-037 2.5 2 246
i = 4 9.76234e-040 78.1 3 340
i = 5 3.36023e-040 211.4 4 345
i = 6 3.36023e-040 300.5 5 345

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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� Experiment #3:

{ number of evidence nodes = 2 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = 1.908847e-043 time = 176.1sec

{ greedy-MPE = small(*), time = 2.5sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 3.23031e-037 2.2 2 237
i = 2 3.23031e-037 2.2 2 237
i = 3 9.9691e-038 2.5 2 245
i = 4 1.15471e-040 37.1 3 331
i = 5 1.90885e-043 271.8 4 297
i = 6 1.90885e-043 199.4 5 297

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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� Experiment #4:

{ number of evidence nodes = 3 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = 3.410992e-046 time = 153.4sec

{ greedy-MPE = small(*), time = 2.3sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 6.12679e-039 2.4 2 239
i = 2 6.12679e-039 2.2 2 239
i = 3 2.16837e-039 2.4 2 247
i = 4 1.66845e-042 33.6 3 326
i = 5 3.41099e-046 197.9 4 256
i = 6 3.41099e-046 202.0 4 256

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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� Experiment #5:

{ number of evidence nodes = 4 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = small(*), time = 154.0sec

{ greedy-MPE = small(*), time = 2.4sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 small(*) 2.2 2 243
i = 2 small(*) 2.2 2 243
i = 3 small(*) 2.4 2 246
i = 4 small(*) 31.3 3 335
i = 5 small(*) 197.0 4 348
i = 6 small(*) 200.5 4 348

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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� Experiment #6:

{ number of evidence nodes = 5 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = small(*), time = 148.8sec

{ greedy-MPE = 0 (too small to be printed), time = 2.3sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 small(*) 2.2 2 235
i = 2 small(*) 2.2 2 235
i = 3 small(*) 2.4 2 242
i = 4 small(*) 31.6 3 330
i = 5 small(*) 192.0 4 310
i = 6 small(*) 197.7 4 310

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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� Experiment #7:

{ number of evidence nodes = 10 (generated randomly by the program)

{ width = 4

{ induced width = 5

{ m =0

{ exact Elim-MPE = small(*), time = 145.1sec

{ greedy-MPE = 0 (too small to be printed), time = 2.3sec

approx Elim-MPE Time(second) w* Tuple Distance(*)

i = 1 small(*) 2.2 2 240
i = 2 small(*) 2.1 2 240
i = 3 small(*) 2.4 2 242
i = 4 small(*) 26.2 3 332
i = 5 small(*) 187.2 4 343
i = 6 small(*) 193.6 4 343

(*)small: means the number is so small that it is out of the limit of the machine.

(*) Tuple Distance: I de�ne tuple distance as the total number of nodes in the approx
MPE solution tuple, which has di�erent value with that in the exact MPE solution
tuple.
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3.3 Result Analysis

� MPE accuracy: The approx elim-mpe has better results when i is bigger. When i is
equal to the induced width, approx MPE has the same result with that of exact MPE.
This is right, because in this case, minibucket becomes the original bucket. While the
mpe accuracy of greedy approx mpe is not available because the value of mpe is too
small to be printed out.

� Solution tuple accuracy: The solution tuples from the approx elim-mpe are not good,
the number of nodes which has di�erent value compared with the exact solution is
about 200 ~300. That's really bad. The solution tuples of greedy-mpe is not available
from this program.

� The time of simple greedy-mpe is the shortest one, the time of approx elim-mpe is also
short. Both of these two approximate algorithms have much shorter time than exact
elim-mpe, and they are the same order when approx MPE is close to exact MPE. The
simple greedy mpe is the fast one.

3.4 Acknowledgment

Thanks to U�e Kjaerul� for making this network model available on line. Professor Dechter
gave me good suggestions about the project. Special thanks to Irina Rish who kindly
provided me the testing software and helped me a lot when I modi�ed the program to make
it be able to test my benchmark.

3.5 Reference

� http://www-nt.cs.berkeley.edu/home/nir/public html/Repository/Diabetes.htm
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A Comparison of Logic Sampling with Exact
Inference on the Insurance Domain

Stephen D. Bay
Department of Information and Computer Science

University of California, Irvine
sbay@ics.uci.edu

In this project, I will compare and contrast logic sampling for belief evaluation of
Bayesian Networks with the results from exact inference on the Insurance domain.

4 The Insurance Domain

The purpose of the insurance domain bayesian network is to evaluate the expected cost of
insuring an automobile driver. The network is shown in Figure 5: there are 12 observable
nodes, 12 hidden nodes, and 3 query nodes.

The observable nodes correspond to questions that a typical insurance agent would ask
of any prospective client; for example, age, make of car, driving history, and so on. The
hidden nodes correspond to variables that we cannot actually observe, but can reasonably
infer. For example, we cannot directly observe a clients driving skill, but can infer this
from other observed variables such as age, or driving history (number of accidents, tra�c
violations, etc). The query nodes represent the expected cost of insuring a driver divided
into (1) property cost, (2) medical costs, and (3) legal costs.

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

Figure 5: The Insurance Domain

Variables that are continuous have been discretized for this network. For example,
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cost variables are represented by the values fThousand, TenThou, HundredThou, Milliong.
Similarly, mileage is discretized into fFiveThou, TwentyThou, FiftyThou, Dominog.

Note that the insurance network is not a real network actually in use by an insurance
company. Many of the variable have been greatly simpli�ed: for example, ModelYear has
only the values Current and Older.

4.1 Algorithms

For this project, I implemented belief inference using simple logic sampling as follows:

1. generate tuples randomly according to the distribution of the Bayesian Network

2. count tuples relevant to query and from the counts, estimate probabilities of interest

Nodes were not clamped in any fashion to match the evidence. Evidence was only used
to select the tuples relevant to the conditional probability query.

To get the true belief of a variable, I used the JavaBayes program by F. Cozman.
JavaBayes uses the Bucket Elimination algorithm.

4.2 Experiments

I ran two experiments to evaluate the logic sampling algorithm: (1) inference with no
observed variables, (2) inference with observations of a typical insurance client (myself).
For both experiments the query node was PropCost, the estimated property cost. For logic
sampling, I made 5 trials each with 1,000,000 tuples.

The sampling simulator can generate slightly more than 500 tuples/second on the in-
surance domain. Thus, each trial of 1,000,000 tuples took about 30 minutes to execute. I
did not spend any e�ort to optimize the code, so tuples could probably be generated much
faster with some e�ort. JavaBayes was very fast on this domain, generating responses to
queries in usually less than 1 second.

4.2.1 No Evidence

JavaBayes and logic sampling return the following belief vector for the node PropCost:
Thousand TenThou HundredThou Million

true 0.5629456744 0.3151876038 0.1050702190 0.0167965028
sampling 0.5628922000 0.3156036000 0.1047520000 0.0167522000
JavaBayes used the ordering in Table 1. The sampling results are from using all 5 million

tuples from the 5 trials.
Figure 6 shows the average error in the belief vector as measured by norm-2 as the

number of tuples varies. Figure 7 shows the individual trials.

4.2.2 Evidence

For this experiment, I entered evidence that would be typical of an insurance client (myself).
Table 2 shows the variables observed and their values.

JavaBayes and logic sampling return the following belief vector for the node PropCost:
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Table 1: Variable Ordering and Bucket Size for JavaBayes

Variable Bucket Size

SeniorTrain 2
DrivingSkill 2
Age 4
OtherCarCost 2
Antilock 2
Theft 2
Mileage 3
SocioEcon 5
RiskAversion 1
DrivQuality 2
VehicleYear 2
MakeModel 1
ThisCarDam 2
CarValue 2
HomeBase 1
AntiTheft 1
RuggedAuto 2
Accident 1
ThisCarCost 1
PropCost 1

Thousand TenThou HundredThou Million
true 0.6938398385 0.2984643605 0.0067535802 0.0009422208
sampling 0.7168260000 0.2754238000 0.0077501280 0
JavaBayes used the ordering in Table 3. The sampling results are from using all 5 million

tuples from the 5 trials.
Figure 8 shows the average error in the belief vector as measured by norm-2 as the

number of tuples varies. Figure 9 shows the individual trials.
Logic sampling with evidence was surprisingly slow because most tuples generated did

not meet the conditions for the conditional probability query. On average, only about 132
tuples out of 1,000,000matched the evidence. Thus on each trial, there were very few tuples
to estimate the belief of PropCost.

4.3 Conclusions

After implementing logic sampling, I feel the main advantages of this technique are: (1)
Logic sampling is easy to program (roughly about 200 lines of C++ code) and hence it
is easy to make bug free. In contrast, F. Cozman recently found bugs in the JavaBayes
inference algorithm. (2) Logic sampling is an anytime algorithm and can always give an
estimate of the current belief state. Finally, (3) logic sampling is very space e�cient only
requiring enough memory to store the network itself.
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Table 2: Evidence

Variable Value

Age Adult
GoodStudent False
Mileage FiveThou
OtherCar False
VehicleYear Current
SeniorTrain False
MakeModel FamilySedan
DrivHist Zero
Antilock True
Airbag True
HomeBase Suburb

The disadvantages are of logic sampling are: (1) it only provides an estimate and not
exact inference. (2) sampling provides poor estimation for rare events, and (3) having more
evidence slows down inference as more tuples must be discarded (i.e. the tuples do not
match the probability conditions for the query).

4.4 Source

The latex source for this �le is in:

/home/sbay/courses/ics275b/report

The code for logic sampling is in:

/home/sbay/courses/ics275b/bn/sbc

24



Table 3: Variable Ordering and Bucket Size for JavaBayes

Variable Bucket Size

GoodStudent 0
VehicleYear 0
MakeModel 0
SeniorTrain 0
HomeBase 0
OtherCar 0
DrivHist 0
SocioEcon 8
DrivingSkill 3
RiskAversion 3
DrivQuality 2
AntiTheft 2
RuggedAuto 3
Accident 2
ThisCarDam 2
Theft 1
CarValue 2
ThisCarCost 2
OtherCarCost 1
PropCost 1
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Figure 7: Error in Belief of Property Cost (No Evidence): (a) trial 1, (b) trial 2, (c) trial
3, (d) trial 4, (e) trial 5
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Figure 9: Error in Belief of Property Cost (Evidence): (a) trial 1, (b) trial 2, (c) trial 3, (d)
trial 4, (e) trial 5
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An Empirical Study of Simulation-based Inference Methods
Applied to HailFinder

Scott Ga�ney
Department of Information and Computer Science

University of California, Irvine
sga�ney@ics.uci.edu

5 Introduction

This report describes the project that was attempted for the ICS 275B course on belief
networks. The goal of the project was to empirically evaluate the convergence properties for
several di�erent simulation-based approximate inference procedures on a bayesian network.
The benchmarking network HailFinder was acquired from the Bayesian Network Repository
(1998) in order to carry out experiments with simulation-based inference techniques. In
the following, we will outline the four di�erent techniques that were included in these
investigations and present our empirical results obtained using HailFinder.

5.1 HailFinder

HailFinder is a multiply connected bayesian network used to predict severe summer hail
storms in Northeastern Colorado. It is of moderate size, consisting of 56 nodes and 64 edges.
During normal use, one instantiates a number of input nodes to values that correspond to
various meteorological observations, and then reads o� the e�ect of this evidence within the
network on 3 forecast nodes.

The network was built and designed with the help of domain experts to accurately
re
ect what was thought to be a correct casual model for this domain. In this regard, the
network may prove to be a valuable research tool in this domain. However, I suspect that
many domain experts will be cautious about incorporating HailFinder into their current
research, and as such, HailFinder may �nd that its most important roll will be to serve as
a benchmarking tool for bayesian network research.

5.2 Simulation and Approximate Inference

It is widely known that the problem of computing exact probabilistic inference in bayesian
networks is NP-hard (Cooper, 1987). As Pearl (1988) demonstrated, speci�c types of net-
work topology (e.g., singly connected networks) allow e�cient calculation of probabilistic
inference; however, in more general networks we are still restricted by the results of Cooper.

To deal with this problem, many have turned to simulation-based approximate inference
procedures. These methods compute probabilistic inference by estimating the probability
of an event as the frequency of its occurrence in a \random" sample from the considered
network. These methods are popular because their complexity scales linearly with the num-
ber of nodes in the network, thus avoiding the Cooper result mentioned above. However,
we must pay a penalty for this nicety, we are only getting approximate answers instead
of exact ones. Although approximate solutions aren't quite exact, some simulation meth-
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ods can guarantee our result will achieve any accuracy desired by setting our sample size
appropriately (however, now our sample size may explode exponentially in size).

If the network under consideration does not allow exact inferential computation, then
simulation-based methods can be a valuable tool.

5.3 Simulation Techniques Performed on HailFinder

Four di�erent simulation algorithms were selected to be used in our tests on HailFinder: logic
sampling, backward sampling, likelihood weighting, and self-importance sampling. These
methods will be outlined in the next four subsections.

5.3.1 Logic Sampling

Logic sampling is a very simple technique which propagates partial sampling information
forward through the network until each node has sampled a value. These sampled values
constitute a single event and this event is recorded. The process is repeated until we have
sampled N events, where N is our predetermined sample size.

In this case, the partial sampling information propagated forward through the network
is just the sampled values from the parents of a node. The current node then uses this
information to sample a value for itself from its conditional probability table. Nodes which
have no parents sample their value from their prior distribution.

The posterior probability distribution associated with any node in the network is then
estimated based on the frequency that the node's values appear in the sample, constrained
by the joint appearance of any evidence nodes that we wish to condition on. If we are
interested in calculating the P (xje), where x is some subset of the nodes in the network,
and e is the observed evidence, then we base our approximation on the frequency that x
appears in the subset of our sample where e also appears.

This means that for any sample, we must throw away sampled events which do not agree
with our evidence set. Clearly, as we add more nodes to our evidence set, the likelihood that
randomly sampled events will agree with this set decreases; and thus will need to sample
more and more events to get good approximations. This can be a major problem for logic
sampling as we will see from our experimentations.

5.3.2 Backward Sampling

Backward sampling is motivated by the failings of logic sampling, namely its problem with
handling evidence. Instead of ignoring our evidence set while we build up our sample from
the network, and then removing those events which do not agree with our evidence, we
just simply �x each evidence node before we sample, and propagate these instantiations
backward through the network. In order to facilitate this process we can simply apply the
Bayes' inversion formula to sample a parent when it has an observed child node. Otherwise,
we sample in the normal way just as in logic sampling. This technique is an interesting
extension to logic sampling and has been included here to judge its merit.
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5.3.3 Likelihood Weighting

Likelihood weighting has been proposed as another extension to logic sampling in order to
deal with its problems in handling evidence nodes (Fung and Chang 1990; Shachter and
Peot 1990). This technique is similar to backward sampling in that it �xes evidence nodes
to their observed values before it begins sampling, but it di�ers in the way that it counts
frequencies when estimating posteriors.

The sampled events are generated in the same manner as logic sampling|sampling
from the prior nodes and on down through the network|except that evidence nodes are
never sampled but are just �xed to their values as stated above. If we denote the set of
unobserved nodes as Y , and the set of evidence nodes as E, then we will refer to a particular
instantiation of these nodes as y, and e, respectively. Furthermore, we will denote a single
node in the above sets as Yi (or yi) and Ei (or ei). Finally, we will refer to the jth sampled
event as (y(j); e), where the nodes in E are always �xed to the observed evidence e.

Then for each sampled event (y(j); e), we calculate the probability of the particular
evidence set e, given the sampled values of the state nodes y(j). This can be calculated as

P (ejy(j)) =
Y

ei2e

P (eijpar(ei)) ; (1)

where par(ei) represents the current values for the parents of node ei. Each event in the
sample has associated with it a number de�ned by Eq. (1), and it is called its likelihood
weight.

One then calculates the posterior of an event x based on the sum of the likelihoods
de�ned in Eq. (1), where x � y appears, divided by the total number of samples. In other
words, instead of simply counting up the number of times x appears in the sampled events,
as in logic, and backward sampling, we take into account the likelihood that the event which
x appears in, actually occurs, given the evidence set. The justi�cation for this procedure is
simple and can be found in (Fung and Chang 1990; Shachter and Peot 1990).

5.3.4 Self-Importance Sampling

This method described in (Shacther and Peot 1990) exactly mimics likelihood weighting
except that it addresses the problem of disproportionate sampling of more probable events.
It makes use of an \importance" distribution to address this problem, which essentially
re-estimates the posterior for each node in between each sampled event so as to guide
the sampling of events. This means that the distribution which determines the likelihood
weights changes during the sampling procedure. This technique may only prove useful in
speci�c circumstances, but was included in the tests here to see how it might perform in
general.

5.4 Experimental Methodology

The goal of this project was to empirically investigate the convergence properties of the
selected simulation methods on the HailFinder bayesian network, under di�erent evidence
sets, as the sample size increases. The sample size determines the number of sampled events
that a simulation method is allowed to base its approximations on. The larger the sample
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Figure 10: Absolute error given evidence set 1 (on the left), and absolute error given evidence set
2 (on the right).

size, the better chance that a method has of reporting better approximations to the exact
posterior probabilities.

To facilitate the goal of this project a number of experiments were carried out using
the HailFinder network. These experiments were conducted using the GeNIe bayesian
network research and development software program (Decision Systems Laboratory 1998).
This program has functions which run all of the above mentioned simulation methods, and
more. A number of the simulation methods were also separately coded in MATLAB for
this project, but the data from the test results was produced using GeNIe.

Since we want to look at the convergence properties of each of the simulation methods,
we report the error that a simulation method achieves by calculating the sum of the absolute
di�erence between its estimates for the posteriors of each of the three forecast nodes (See
Section 5.1) and the exact probabilities from the join-tree algorithm. Since each run of a
simulation method will return di�erent results for exactly the same input, we then further
report the mean absolute error over 15 di�erent runs on the same input for each simulation
method. We will refer to this value as the mean absolute error in one trial (i.e., a trial
consists of 15 runs).

Furthermore, we carry out 4 di�erent trials for each simulation method, each time with
increasing sample size per the following schedule: 100, 500, 1000, 2000. We will refer to
this as a single experiment (i.e., an experiment consists of 4 trials for each of 4 simulation
methods).

Finally, we report the results on 3 di�erent experiments. Each experiment consists of
selecting a di�erent prespeci�ed set of evidence nodes, and performing the above trials using
this evidence set. The signi�cance of the selected evidence sets will be described below.

5.5 Results

In the �rst experiment we instantiated a small set of evidence nodes (6 nodes) that have
no ancestors. This is the simplest case among the experiments, and should allow us to see
how each technique performs under only the simplest of circumstances. In the left chart of
Figure 10, we see the mean absolute error reported for each of the four simulation methods,
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Figure 11: Absolute error given evidence set 3.

as the sample size increases. We see that logic, and backward sampling perform almost
identical to likelihood weighting, but that self-importance sampling behaves very strangely.
In fact, for this evidence set, self-importance sampling behaved very erratically over many
di�erent attempts of this experiment. It appears that it misjudges its \importance" dis-
tribution on this evidence set, and may not recover until its swamped with a much larger
sample size.

The right side of Figure 10 reports the mean absolute error obtained for experiment two.
In this experiment, a small set of evidence nodes were instantiated (5 nodes), but they lived
in the middle of the bayesian network, where they might cause some simulation methods
to break down, and others to excel. In the �gure we see that likelihood weighting pulls
away from the crowd as soon as the sample size reaches 500 or so; logic sampling begins
to feel its problems with evidence handling, while backward sampling starts o� really bad
and looks as if it might meet likelihood weighting in the not too distant future. As for
self-importance sampling, it looks like its strategy doesn't perform too good in this case
either. It is interesting to note that plain old logic sampling performs better than backward
sampling early on, even though backward sampling handles the evidence nodes specially.

Figure 11 shows the mean absolute error reported for the �nal experiment. The evidence
set for this experiment consists of 28 nodes, of which 15 are simple prior nodes (i.e., they
don't have any parents). The �rst thing that one notices from the �gure is that logic
sampling is missing. This is because, for the most part, it did not return any estimate at
all. That is to say, the speci�ed evidence set was rarely ever generated by logic sampling,
and thus it could not make an approximation. This �rmly underscores its failings with
evidence handling.

The other three simulation methods all performed admirably in this experiment. Self-
importance sampling seemed to excel under this extensive evidence set; it de�nitely achieved
its best performance under this experiment. Again, we see that the interesting approach of
backward sampling pays o� when there are many evidence nodes in the network, whereas
logic sampling doesn't even return any answer at all. Lastly, likelihood weighting doesn't
seem to miss a beat, although it does appear that self-importance sampling improved upon
it.
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5.6 Final Remarks

We have attempted to look at the convergence properties of four di�erent simulation tech-
niques on the HailFinder bayesian network. By employing three di�erent sets of evidence
nodes, we were able to glimpse the relative e�ectiveness of each technique when presented
with di�erent size sets of evidence nodes, located in di�erent areas of the network (e.g.,
prior nodes, output nodes, etc.).

The results suggest that likelihood weighting gives the most consistent results over all
of the evidence sets, never veering to far away from the \top" spot. Backward sampling,
an interesting extension to logic sampling, seemed to perform as advertised when presented
with large amounts of evidence nodes, which was its initial motivation. However, it might
not perform as well as logic sampling if the network contains very few instantiated evidence
nodes. Logic sampling was revealed to be unable to return estimates if the evidence set
is large, which is its biggest failing. And the �nal simulation technique, self-importance
sampling, gave erratic results most of the time, but seemed to perform really well when the
evidence set was expanded to large amounts of nodes. In fact, it out-performed likelihood
weighting in this case.
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the Maximum Probable Explanation (MPE) Computing
Algorithms for Belief Networks on the ALARM domain"

Dmitry Pavlov �
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6 Task Description and Network Parameters

I ran experiments on the ALARM (A Logical Alarm Reduction Mechanism) belief network
which is described in detail in [1]. ALARM implements an alarm message system for
patient monitoring; the medical knowledge is encoded in a graphical structure connecting
8 diagnoses, 16 �ndings and 13 intermediate variables. The belief network at hand is an
acyclic directed graph (Figure 1), parameters of the network are the following:

1. The number of nodes - 37

2. The number of edges - 46

3. The number of values per node - from 2 to 4

4. The width of the graph - 4

5. Induced width of the graph - 4

As it was mentioned above all nodes in the ALARM belief network can be divided into
3 mutually exclusive and exhaustive categories: diagnostic, intermidiate and measurement
nodes. Measurement nodes are for entering evidence, they can be directly measured. In-
termediate nodes cannot be directly measured and in general are of little interest, while
updating the belief in certain values of diagnostic variables (nodes) is the task at hand. So,
the task is to infer diagnostic nodes that will re
ect the way our belief in causes of certain
manifestations changes given the evidence. One of the possible ways to address this problem
is to �nd the Maximum Probable Explantion (MPE) of the evidence, i.e. the instantiation
of all the rest variables that gives the maximum value of the density function encoded by
a belief network. (MAP - most probable aposteriori hypothesis or simple belief updating
task might be more relavant though).

�Information and Computer Science, University of California at Irvine.
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7 Algorithms

In experiments the following algorithms were used:

1. elim-mpe (bucket elimination for MPE computing, a complete strategy)

2. mini-buckets approximation [3] that is dependent on the parameter i that limits the
number of variables allowed in the bucket (the number of functions allowed in the
bucket was chosen to be arbitrary non-negative). Since induced width of the graph
equals 4 this means that in any ordering each variable is connected to no more than 4
parents which in turn means that it only makes sense to vary i between 1 and 4 and
assignment i equals 4 corresponds to a complete strategy.

3. greedy strategy in which there is no bucket elimination, but only bucket creation and
greedy assignment computing. This strategy is incomplete but as expected might give
a good initial approximation to a solution to be then used by stochastic GSAT-type
techniques.

4. naive stochastic method that uses greedy solution as an initial point. Method has
one parameter that controls the maximum allowed size of a set of variables to be

ipped at a time. The algorithm starts o� from the greedy solution (as simulations
show timewise it is very cheap) and then in a cycle 
ips values of m variables. If the
assignment after a 
ip gives higher value of a density it is accepted else the previous
assignment is retained. Thus, the worst guranteed accuracy for the method is the
accuracy of the greedy solution.

The code used in experiments was written by Irina Rish and slightly modi�ed by me to
include naive stochastic simulation.

8 Experiments

The purpose of experiments was to compare algorithms described above time- and accura-
cywise. In order to properly assess behaviour of the algorithms I chose to vary the number
of evidence nodes from 0 to 15 (16 is the maximum number of �ndings for the domain,
values used were 0; 2; 5; 10; 15). For each �xed number q of evidence nodes 100 experiments
were run: in each experiment q nodes were randomly selected and random values from the
domains were assigned to them. One complete strategy was used elim-mpe so that actual
mpe value was always known. Then 3 approximate strategies could be used; in mini-buckets
I also looked at di�erent values of the parameter that controls the number of variables in
the bucket (from 1 to 4) and in the naive stochastic method a �xed number of iterations
(100) was used in attempt to improve greedy solution. Parameter m - the size of the 
ip
set - was varied for the naive stochastic method from 1 to 15 (values were 1; 2; 5; 10; 15).

Accuracy was assessed based on the ratio of the mpe returned by the algorithm to the
mpe value returned by elim-mpe (which is 1 for elim-mpe), so that the lesser the ratio is
the worse algorithm is. It made no sense to compare variable assignments since in principal
solution in terms of assignment could be non-unique.
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All timing information was computed in the similar fashion as the ratio of time in
seconds taken by a speci�c algorithm to the time taken by elim-mpe. Thus, if this ratio is
less than 1 then algorithm is faster than elim-mpe.

9 Results

First of all, it is worth mentioning that the problem at hand is really simple, with graph
having 37 nodes and low connectivity (induced width of only 4) it takes almost no time to
get an exact solution by elim-mpe.

Below is 3 tables that give a complete information on times taken by di�erent algorthms.
Table 1 gives the average running times in seconds taken by the complete algorithm elim-
mpe to compute the mpe for di�erent sizes of the evidence set. Tables 2 and 3 give the
ratios of the time taken by the greedy algorithm and 100 iterations of the naive stochastic
method correspondingly to time taken by elim-mpe. Finally, Table 4 gives ratio result for
elim-mpe and mini-buckets algorithms for di�erent values of parameter i.

Table 4: Average elim-mpe times for di�erent sizes of the evidence set.

Size of the evidence set 0 2 5 10 15

Aver. elim-mpe Time, s 0.0838 0.101 0.054 0.0516 0.0478

Table 5: Average greedy algorithm times for di�erent sizes of the evidence set.

Size of the evidence set 0 2 5 10 15

Aver. elim-mpe Time, s 0.0076 0.008 0.0074 0.002 0.0078
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Table 6: Average naive stochastic algorithm times (for 100 cycles) for di�erent sizes of the
evidence and 
ip sets.

Size of the evidence set 0 2 5 10 15

(1) 0.804 1.542 0.52 0.911 0.558
(2) 4.114 5.409 2.931 2.564 2.5
(3) 17.823 13.8 6.579 7.365 6.442

(1); (2); (3) - Average Time of 100 Iterations of Naive Stochastic Algorithm, Flip Set
Size is repectively 2, 5, 10.

Table 7: Average mini-buckets algorithm times ratios to the time of elim-mpe for di�erent
sizes of the evidence set and parameter i.

Size of the evidence set 0 2 5 10 15

(1) 0.93 1.36 1.78 2.06 1.3
(2) 1.1 1.26 2.12 1.55 1.37
(3) 1.29 1.45 2.06 1.63 1.69
(4) 1.17 1.29 1.93 2.2 1.54

(1); (2); (3); (4) - Average Time Mini-Buckets, s, for respectively i = 1, i = 2, i = 3,
i = 4.

Tables 1 � 4 prove that the best timing results for ALARM network are given by the
greedy strategy, then complete technique, with mini-buckets strategy being the third, al-
though the di�erence in time between the three is negligible (my guess would be that, for
instance, roughly 1:5 times worse performance of mini-buckets compared to the complete
strategy is the result of the overhead which for larger problems should cease to play any
role). Naive stochastic algorithm is the worst, with decaying performance when the 
ip
set size increases. In view of results above, an interesting comparison would be how the
algorithms perform accuracy-wise, this could help pick up the best for the domain among
the ones considered. (Note that although the time is crucial for medical diagnosis problems
like ALARM, it is also the case that solution should be as accurate as possible, revealing
the true reason for the �nding observed. Thus, the combination of high accuracy and low
diagnostic time are imperative).

Empirical results on accuracy of di�erent algorithms prove that among all approxi-
mating techniques considered mini-buckets scheme is the undoubtful leader, moreover its
performance on accuracy for the fastest i = 2 is only 1� 2 orders of magnitude worse than
true mpe value (with all other algorithms being roughly ten orders worse! Naive stochastic
algorithm is only able to slightly improve accuracy of the greedy algorithm, but it spend a
lot of time and the resulting solution is still far from the desired one!). As expected i = 4
gives an exact solution. Unfortunately, ratios of upper and lower bounds to mpe are not
monotone (see column evidence set size 15), which again [3] proves that it is di�cult to
automate the process of selecting i a priori and give the guaranteed bounds for mpe. It is
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Table 8: Average accuracy ratios (Upper/MPE and Lower/MPE) formini-buckets algorithm
for di�erent sizes of the evidence set.

Size 0 2 5 10 15

Parameter U/M M/L U/M M/L U/M M/L U/M M/L U/M M/L
i = 1 2.48 9 2.41 9 31 49.8 5.69 28.7 582 32.3
i = 2 2.48 9 2.41 9 31 49.8 5.69 28.7 582 32.3
i = 3 1 9 1 9 4.1 13.6 2.64 28.7 1208 36.8
i = 4 1 1 1 1 1 1 1 1 1 1

Table 9: Average accuracy ratios of the greedy and naive stochastic algorithms to accuracy
of the complete elim-mpe algorithm.

Size of the evidence set 0,2,5,10,15- di�erence negligible

Greedy 1:0E � 11
Stochastic 1:0E � 08

interesting that for small sizes of the evidence set upper bound is closer to the true mpe,
and for the problems in which a lot of evidence is available lower bound is closer to the true
mpe (which is good since we also know solution that gives this bound).

10 Discussion

Unfortunately, paper [1] doesn't describe any results on time or accuracy that were obtained,
so it is impossible to do systematic comparison. Two algorithms were applied to the network:
clustering (join tree) and conditioning along with Pearl's propagation [2]. There is no a word
about the way network was coded, what language, processor, amount of memory were used.
The only known fact is that \it took 8 minutes to update all 8 diagnostic nodes for each set
of measurements" on Macintosh II using Pearls' algorithm and conditioning, which, in view
of results I get, I believe is too much, although again it is di�cult to judge since no details
were provided. An interesting results obtained in [1] is that clustering technique allowed to
obtain solution orders of magnitude faster then Pearl's propagation algorithm, with even
more superior performance when there were a lot of �ndings (evidence) available.

While in [1] authors did only belief updating on diagnostic nodes while I considered
the task of maximum probable explanation computing. In view of the simplicity of the
problem, results on accuracy and time of elim-mpe (complete strategy) and mini-buckets
approximation were almost the same, I would expect that for larger problems mini-buckets
will retain its good performance on the quality of the solution and give superior timing
results, moreover it is in principal possible to make up an anytime algorithm by cycling
over its parameter i. Algorithms of the GSAT type could give satisfactory approximating
results only after a lot of trials or when special heuristics are used (that were not considered
here), naive techniques would fail to compete adequately with mini-buckets algorithm.
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