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Chapter 1Introduction and OverviewAutomated reasoning is a �eld of arti�cial intelligence concerned with answeringqueries and drawing new conclusions from previously stored knowledge. It includesmany areas such as theorem-proving, game playing, propositional satis�ability, con-straint satisfaction, planning, scheduling, probabilistic inference and decision-making.This dissertation is focused on reasoning in graphical frameworks such as con-straint and belief networks, where domain knowledge is represented by a graph de-picting variables as nodes and dependencies (e.g., propositional clauses, constraints,probabilities, and utilities) as edges. Some reasoning tasks can be formulated ascombinatorial optimization or constraint satisfaction problems, while others can beviewed as knowledge compilation, or inference. We approach those tasks using ageneral graph-based algorithmic framework that combines a dynamic-programmingtechnique called variable elimination with backtracking search, and investigate thee�ect of problem structure on the performance of such algorithms.A popular method for solving combinatorial optimization and constraint satis-faction problems is to search the space of variable assignments. This method canalso be viewed as conditioning, or reasoning by assumptions: a problem is dividedinto subproblems conditioned on an instantiation of a subset of variables (also calledcutset). Each subproblem can be solved by any means; if the current subproblem is1



insoluble, or if more solutions are needed, the algorithm tries a di�erent assignmentto the cutset variables, and so on.An alternative to search algorithms are dynamic-programming techniques alsoknown as variable-elimination algorithms which process (eliminate) variables in acertain order and infer new dependencies among the remaining variables. In this thesiswe use an algorithmic framework called bucket elimination [26, 27] that generalizesand uni�es non-serial dynamic programming techniques [7] for various reasoning tasks.Both search and elimination schemes are used in many areas of reasoning. Forinstance, a common approach to solving constraint satisfaction problems combinesbacktracking search with local consistency enforcing which is a limited form of vari-able elimination. Branch-and-bound is an example of a search algorithm for solvingcombinatorial optimization problems. The tree-clustering method for belief networksis closely related to variable elimination, while backward induction, value iterationand policy iteration algorithms for decision-theoretic planning employ both elimina-tion and conditioning.Most reasoning problems are known to be computationally hard (NP-hard). It isbelieved that the inherent complexity of those problems is associated with the levelof interactions among the problems' variables, that is captured, for instance, by thenotion of i-consistency [44, 22]. A constraint-satisfaction problem is called i-consistentif any consistent assignment to i � 1 variables can be extended to any i-th variablewithout violating any constraint. Consider, for example, a constraint network de�nedon n variables that is (n�1)-consistent, but not n-consistent. Such networks are hardto solve both by search and elimination. Search may encounter all partial solutionsof length n� 1, therefore traversing the complete search tree, while elimination maydeduce dependencies of size O(exp(n � 1)) involving n � 1 variables. However, thelevel of i-consistency of a given problem is not known in advance and therefore cannotserve as a complexity bound. Instead, we use a parameter of the problem's interactiongraph, called induced width, which does capture the problem's level of interactionsand which can be assessed prior to the algorithm's execution. The induced width2



D

E

F
B

A

C
GFigure 1.1: An example of a constraint satisfaction problem: map coloring.describes the size of largest constraint, function, or another dependence created bya variable-elimination algorithm, which corresponds to a largest clique \induced" inthe problem's graph.The central theme of this thesis is to improve the performance of reasoning al-gorithms by reducing their induced width. We investigate several approaches thatinclude combining elimination with conditioning, exploiting hidden structure such ascausal independence, and using approximate algorithms.The following three subsections present an overview of the reasoning tasks andalgorithms addressed in this thesis, and summarize the thesis' contributions.1.1 Automated reasoning: frameworks and tasksConstraint satisfactionAn example of a constraint satisfaction problem (CSP) is the map coloring problem,illustrated in Figure 1.1. Given a �xed set of colors, the task is to color each countryon the map so that countries having a common border are assigned di�erent colors.Generally, a constraint satisfaction problem is de�ned on a constraint network <X;D;C >, where X = fX1; :::;Xng is the set of variables, associated with a set of�nite domains, D = fDi; :::;Dng, and a set of constraints, C = fC1; :::; Cmg. Each3



A

B C

D

E

resolution
over A

A

B C

D

EFigure 1.2: The e�ect of resolution on the interaction graph.constraint Ci is a relation Ri � Di1 � ::: � Dik de�ned on a subset of variablesSi = fXi1 ; :::;Xikg. A constraint network can be associated with an undirectedgraph, called a constraint graph, where the nodes correspond to the variables, andtwo nodes are connected if and only if they participate in the same constraint. Theconstraint satisfaction problem (CSP) is to �nd a solution, namely a value assignmentto all the variables that satis�es all the constraints. If no such assignment exists,the constraint network is inconsistent. For example, in the map-coloring problempresented in Figure 1.1, countries correspond to the variables (i.e., X = fA; B; C;D; E; F; Gg) and colors correspond to the domain values (e.g., Di = fred; green;blueg). The problem is de�ned by a set of pairwise inequality constraints betweenneighboring countries, such as A 6= B, B 6= C. Constraint networks are widely used inmany practical applications such as scheduling, planning, electronic circuit diagnosis,query answering in databases, and line drawings understanding.Propositional satis�ability (SAT)A special case of a CSP is propositional satis�ability problem (abbreviated SAT).Consider the following example. Assume that you would like to invite your friendsAlex, Beki, and Chris to a party. Let A, B, and C denote the propositions \Alexcomes", \Beki comes", and \Chris comes", respectively. You know that if Alex comesto the party, Beki will come as well, and that if Chris comes, then Alex will, too. Thiscan be expressed in propositional calculus as (A ! B) ^(C ! A), or, equivalently,4



as (:A _ B) ^(:C _ A), where disjunctive formulas (:A _ B) and (:C _ A) arecalled clauses. Assume now that Chris came to the party; should you expect to seeBeki? Or, in propositional logic, does the propositional theory ' = C ^(A ! B)^(C ! A) entail B? A common way to answer this query is to assume that Beki willnot come and check whether this is a plausible situation (i.e., decide whether '0 ='^:B is satis�able). If '0 is unsatis�able, we conclude that ' entails B. Propositionalsatis�ability can be de�ned as a CSP, where propositions correspond to the variables,domains are f0; 1g, and constraints are represented by clauses (for example, clause(:A _B) allows all tuples (A;B) except (A = 1; B = 0)).Formally, the propositional satis�ability problem (SAT) is to decide whether agiven cnf theory has a model, i.e. an assignment to its propositions that does notviolate any clause. A formula ' in conjunctive normal form (cnf) is a conjunctionof clauses �1; :::; �t (denoted as a set f�1; :::; �tg) where a clause is a disjunctionof literals (propositions and their negations). For instance, � = (P _ :Q _ :R) isa clause, where P;Q; and R are propositions, and P , :Q, and :R are literals. Aresolution over two clauses (� _ Q) and (� _ :Q) results in a clause (� _ �) (calledresolvent) thus eliminating proposition Q.The structure of a propositional theory can be captured by its interaction graph(equivalent to the constraint graph in a CSP). The interaction graph of a theory ',denoted G('), is an undirected graph that contains a node for each propositionalvariable and an edge connecting any two nodes representing variables appearing inthe same clause. The resolution operation creates new clauses which correspond tonew edges in the interaction graph. For example, given the theory ' = f(A_B_C);(:A_B _E); (B _:C _D)g, resolution over A results into new clause (B _C _E),thus adding a new edge between nodes E and C. Figure 1.2 shows the interactiongraph of ' and its induced graph, which corresponds to ' [ (B _C _E) obtained byresolving over A. 5
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edge (X;Y ), the node X is called a parent of Y , while the node Y is called a childof X. A node and all its parents are called a family. Each node X in the network isassociated with the probability function P (xjpa(x)), where x and pa(x) denote thevalues of X and of X's parents, respectively. The network de�nes a joint distributionover the n variables: P (x1; :::; xn) = nYi=1P (xijpa(xi)):Frequently, belief networks represent causal dependencies between parents and chil-dren and therefore are also called causal networks. An example of a simple beliefnetwork for medical diagnosis is shown in Figure 1.3. A sample query may be to as-sess the probability that a patient has tuberculosis given that he has recently visitedAsia (which may increase the risk of getting the disease), or to determine the proba-bility of lung cancer given that patient su�ers from dyspnea (shortness of breath), buthas normal X-ray results. The task of computing the posterior probability of querynode(s), given observations of some other nodes (evidence), is called belief updating.Another task is to �nd a most probable explanation (MPE), namely, a maximum-likelihood assignment to all unobserved nodes. For tasks that involve actions, such asplanning and decision-making, there is a utility function associated with the outcomeof actions. Given a utility function de�ned on the network's nodes, and a distin-guished set of decision nodes, we want to �nd an assignment to the decision nodesthat maximizes the expected utility. A generalization of a belief network that includesdecision nodes and utility function is known as an inuence diagram [103, 104].The moral graph of a belief network is obtained by connecting (\marrying") theparents of each node and dropping the directionality of edges. The moral graphparallels the notions of the constraint graph and the interaction graph: they all havethe property that a pair of nodes is connected in the graph if the correspondingvariables belong to the same dependence, which can be a constraint, a clause, or aconditional probability function. 7



1.2 Reasoning algorithmsThe two general approaches to reasoning include divide-and-conquer conditioningstrategies such as search and dynamic-programming techniques such as variable-elimination. Conditioning, or reasoning by assumptions, splits a problem into sub-problems by instantiating a subset of variables, while variable elimination transformsa problem into an equivalent one, replacing the eliminated variable by new depen-dencies deduced on the remaining variables. The next subsections elaborate on thosetwo approaches.1.2.1 Conditioning and searchAn example of conditioning (search) is backtracking, or depth-�rst search algorithm,a common technique for solving constraint satisfaction problems. It processes thevariables in some order, instantiating each variable if it has a value consistent withprevious assignments. If there is no such value (a situation called a dead-end), thealgorithm backtracks to the previous variable (hence the name) and tries an alternativeassignment. If no consistent assignment is found, the algorithm backtracks again, andso on. The algorithm explores the search space in a systematic way until it either �ndsa solution, or concludes that no solution exists. The search space can be representedby a search tree, which is traversed in a depth-�rst manner. For example, the searchtree in Figure 1.4 is traversed when searching for a model of ' = (:A_B)^ (:C_A)^:B ^ C: The tree nodes correspond to variables, while its branches represent valueassignments. Dead-end nodes are crossed out. Clearly, ' is inconsistent, since everyleaf, i.e., every partial assignment, is a dead-end.There are many advanced backtracking algorithms for solving CSPs that improvethe basic scheme by using \smart" variable- and value-ordering heuristics ([14], [51]).More e�cient backtracking mechanisms, such as backjumping [53, 21, 92], constraintpreprocessing (e.g., arc-consistency, forward checking [59]), or learning (recordingconstraints) [21, 48, 3], are available. 8
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dependence recorded, and m is the number of such dependencies.The new dependencies are associated with new edges in the corresponding con-straint graph, interaction graph, or moral graph. An important property of bucket-elimination algorithms is that their performance can be predicted using a graph pa-rameter called induced width [33] (also known as tree-width [2]). This parameterdescribes the largest clique created in the problem's graph during the algorithm'sexecution. The induced width is de�ned as follows. Given a graph G, the width of Xialong ordering o is the number of Xi's neighbors preceding Xi in o. The width of thegraph along o, denoted wo, is the maximum width along o. The induced graph of Galong o is obtained by connecting the preceding neighbors of each Xi, for i from n to1. The induced width along o, denoted w�o, is the width of the induced graph along o,while the induced width w� is the minimum induced width along any ordering. Forexample, Figures 1.6b and 1.6c depict the induced graphs (induced edges are shownas dashed lines) of the moral graph in Figure 1.6a along the orderings o = (A;E;D;C;B) and o0 = (A;B; C;D;E), respectively. Clearly, w�o = 4 and w�o0 = 2.Figure 1.7 demonstrates how processing theory ' in Figure 1.5a by bucket elimi-nation generates directional extension of ' containing new clauses that correspond tonew edges in the interaction graph. Resolving over A creates the clause (B _C _E),which corresponds to an induced edge between the nodes B and E. Similarly, resolv-ing over B creates the clause (C _D _E), which induces an edge between C and E.In this example both the width and the induced width equal 3.It can be shown that the induced width w�o(Xi) of node Xi bounds the numberof arguments of any function computed in bucketi. Consequently, the number ofclauses (e.g., resolvents) de�ned on the variables in bucketi (or the size of a tablerepresenting a new probabilistic function) is O(exp(w�o)), where o is the eliminationordering. Therefore, the complexity of bucket-elimination algorithms is time andspace exponential in w�o. Clearly, the induced width will vary with the variableordering. Although �nding a minimum-w� ordering is NP-hard [2], good heuristicalgorithms are available [7, 22, 97]. 13



1.3 Thesis overview and resultsThe central theme of this thesis is that e�ciency can be gained by reducing theinduced width of variable-elimination algorithms. We investigated three approaches:1. Combining elimination with backtracking search into hybrid schemes that useconditioning to reduce the induced width (Chapter 2).2. Exploiting speci�c problem structures, such as causal independence in beliefnetworks, that allows decomposition of large dependencies into smaller ones(Chapter 3).3. Using approximation schemes, such as mini-buckets, that bound the size ofrecorded dependencies (Chapter 4).The following three subsections summarize the contributions along each of those lines.1.3.1 Hybrid algorithms for SAT (Chapter 2)Chapter 2 compares backtracking search with the variable-elimination algorithm di-rectional resolution (DR) for propositional satis�ability. Backtracking search andvariable-elimination algorithms have distinct properties, summarized in Figure 1.8.As noted, the time complexity of backtracking is worst-case exponential in the num-ber of variables, n, while algorithm bucket-elimination is time and space exponentialin w�, w� � n, where w� is the induced width along the given variable ordering.However, while the average performance of backtracking is often much better thanits worst-case bound, the average complexity of elimination is close to its worst-case.In terms of space complexity, backtracking is linear in n, while the elimination algo-rithms require O(n � exp(w�)) space as well.Because of their average-case performance and e�cient memory use, backtrackingalgorithms are more popular than variable elimination for �nding one solution (e.g.,constraint satisfaction and optimization), while variable elimination is more suitable14
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and DCDR(b), that combine both approaches and that coincide with DR or DPat the extreme values of their parameters. Empirical evaluation demonstratesthat the hybrid algorithms can be more e�cient than both DR and DP.1.3.2 Exploiting causal independence (Chapter 3)In probabilistic networks, the speci�cation of conditional probability tables (CPTs)is exponential in the family size, which may be large. For example, dozens of dif-ferent diseases may cause the same symptom, such as fever. In such cases, evenknowledge representation is di�cult, and therefore, simplifying assumptions aboutthe nature of probabilistic dependencies are required. The focus of Chapter 3 is oncausal independence assumption [63, 111, 114] which reduces the CPT representationfrom exponential to linear in the family size, and which can be exploited to speed-upinference.Causal independence assumes that several causes contribute independently to acommon e�ect. For example, a burglary alarm can be turned on by a burglaryor by an earthquake. Assessing the conditional probability of alarm given everypossible combination of its causes is not straightforward either from statistical data,or from our beliefs, since the causal mechanisms are unrelated to each other (belongto di�erent \frames of knowledge" [89]). Namely, the probability of an alarm notturning on in case of a burglary depends on burglar's skills, which are unrelated toearthquakes. Thus, we may assume independence of causal mechanisms, and specifythem separately. Generally, a causally-independent probabilistic relation between aset of causes c1; :::; cn and an e�ect e can be decomposed into a noisy transformationof each cause ci into a hidden variable ui, and a deterministic function e = u1� :::�un,where � is a commutative and associative binary operator, such as logical OR, logicalAND, addition, multiplication, etc. Figure 1.10 demonstrates such decomposition.Chapter 3 investigates how causal independence can be further exploited to im-prove inference algorithms, building upon the approaches of [63, 84] and [114]. We17
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(a) (b)Figure 1.10: (a) a belief network and (b) its decomposition using causal independence.show that the \e�ective" induced width of algorithms exploiting causal independencecan be signi�cantly reduced. For example, exploiting causal independence in poly-trees with an arbitrary large family of size m reduces the e�ective induced width fromm to 2. Given a network, the anticipated computational bene�ts can be evaluated inadvance and contrasted with those of general-purpose \causally-blind" algorithms.ContributionsWe investigated the impact of causal independence on several probabilistic tasks, suchas belief updating, �nding a most probable explanation (MPE), �nding a maximuma posteriori hypothesis (MAP), and �nding the maximum expected utility (MEU)decision. Speci�cally,1. We explicated the relationship between the previously proposed approaches,such as network transformations and variable-elimination algorithm VE1 [114],using the bucket-elimination framework. We showed that the ordering restric-tions implied by algorithm VE1 may sometimes lead to an unnecessary (expo-nential) complexity increase, and proposed a more general variable-eliminationscheme, called ci-elim-bel, that avoids VE1's drawback by allowing any variableordering.2. We presented bucket-elimination algorithms that exploit causal independence18



for the tasks of belief updating, MPE, and MEU.We also showed that, generally,causal independence cannot be exploited for �nding the MPE.3. We analyzed the complexity of the above \causally-informed" algorithms, andshowed a signi�cant potential reduction of their \e�ective" induced width, upto the induced width of the (unmoral) input network (note that the inducedwidth of standard \causally-blind" elimination algorithms is computed on themoral network).4. Finally, we showed how constraint-propagation techniques can be used for evi-dence propagation in causally-independent networks.1.3.3 Approximate inference (Chapter 4)Another way of coping with computational complexity is to look for approximaterather than exact solutions. Although approximation within a given error boundis known to be NP-hard [86, 98], there are approximation strategies that work wellin practice. One approach advocates anytime algorithms. These algorithms can beinterrupted at any time, producing the best solution found thus far [20, 8]. Anotherapproach is to identify problem classes that can be solved approximately within givenerror bounds, thus applying the idea of tractability to approximation.Chapter 4 presents the general framework of mini-bucket approximations thattrade accuracy for e�ciency in those cases when computational resources are bounded.This class of mini-bucket algorithms imports the idea of local inference from con-straint networks to probabilistic reasoning and combinatorial optimization. Localinference algorithms like i-consistency [44, 22] bound the computational complexityby restricting the arity of recorded dependencies to i. Known special cases are arc-consistency (i = 2) and path-consistency (i = 3) [78, 43, 22]. Indeed, the recentsuccess of constraint-processing algorithms can be attributed primarily to this classof algorithms, especially when combined with backtracking search [28, 29]. The idea,demonstrated in Figure 1.11, shows that while exact algorithmsmay record arbitrarily19
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Figure 1.11: From global to local consistency: algorithm i-consistency and its partic-ular cases path-consistency (i=3) and arc-consistency (i=2).large constraints, i-consistency algorithms decide consistency of smaller subproblems,recording constraints of size i or less.ContributionsThe mini-bucket algorithms for probabilistic tasks of belief updating, �nding themost probable explanation, �nding the maximum a posteriori hypothesis, and foroptimization tasks are presented and analyzed. We identify regions of completenessand demonstrate promising empirical results obtained both on randomly generatednetworks and on realistic domains such as medical diagnosis and probabilistic decod-ing. For example, for noisy-OR random networks and for CPCS networks, we oftencomputed an accurate solution in cases when the exact algorithm was much slower,20



or infeasible. For probabilistic decoding, we obtained preliminary results that demon-strated the advantages of the mini-bucket scheme over the state-of-the-art iterativebelief propagation decoding algorithm on problems having low induced width.Theoretical bounds on the complexity of mini-bucket algorithms allow us to pre-dict in advance, using both memory considerations and the problem's graph, thesuitability of the algorithm's parameters for given networks.1.3.4 Organization of this thesisThis chapter provided an overview of automated reasoning tasks addressed in thisthesis and summarized the main ideas and contributions of our work. Chapters 2,3and 4 will present the main results. Those chapters are minor modi�cations of thearticles currently submitted to journals. Therefore, we apologize for possible minorrepetitions (e.g., some �gures and de�nitions in the introduction were borrowed fromthe corresponding chapters). Chapter 5 concludes this thesis by summarizing theresults and outlining the directions for future work.
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Chapter 2Hybrid Algorithms for SAT2.1 IntroductionPropositional satis�ability (SAT) is a prototypical example of an NP-complete prob-lem; any NP-complete problem is reducible to SAT in polynomial time [12]. Sincemany practical applications such as planning, scheduling, and diagnosis can be formu-lated as propositional satis�ability, �nding algorithms with good average performancehas been a focus of extensive research for many years [102, 15, 49, 70, 71, 4]. In thischapter, we consider complete SAT algorithms that can always determine satis�abilityas opposed to incomplete local search techniques [102, 101]. The two most widely usedcomplete techniques are backtracking search (e.g., the Davis-Putnam Procedure [18])and resolution (e.g., Directional Resolution [19, 35]). We compare both approachestheoretically and empirically, suggesting several ways of combining them into moree�ective hybrid algorithms.In 1960, Davis and Putnam presented a resolution algorithm for deciding proposi-tional satis�ability (the Davis-Putnam algorithm [19]). They proved that a restrictedamount of resolution performed along some ordering of the propositions in a propo-sitional theory is su�cient for deciding satis�ability. However, this algorithm has22



received limited attention and analyses of its performance have emphasized its worst-case exponential behavior [52, 57], while overlooking its virtues. It was quickly over-shadowed by the Davis-Putnam Procedure, introduced in 1962 by Davis, Logemann,and Loveland [18]. They proposed a minor syntactic modi�cation of the originalalgorithm: the resolution rule was replaced by a splitting rule in order to avoid anexponential memory explosion. However, this modi�cation changed the nature ofthe algorithm and transformed it into a backtracking scheme. Most of the work onpropositional satis�ability quotes the backtracking version [58, 82]. We will referto the original Davis-Putnam algorithm as DP-resolution, or directional resolution(DR)1, and to its later modi�cation as DP-backtracking, or DP (also called DPLL inthe SAT community).Our evaluation has a substantial empirical component. A common approach usedin the empirical SAT community is to test algorithms on randomly generated prob-lems, such as uniform random k-SAT [82]. However, these benchmarks often failto simulate realistic problems. On the other hand, \real-life" benchmarks are oftenavailable only on an instance-by-instance basis without any knowledge of underlyingdistributions which makes the empirical results hard to generalize. An alternativeapproach is to use structured random problem generators inspired by the propertiesof some realistic domains. For example, Figure 2.1 illustrates the unit commitmentproblem of scheduling a set of n power generating units over T hours (here n = 3and T = 4). The state of unit i at time t (\up" or \down") is speci�ed by the valueof boolean variable xit (0 or 1), while the minimum up- and down-time constraintsspecify how long a unit must stay in a particular state before it can be switched.The corresponding constraint graph can be embedded in a chain of cliques whereeach clique includes the variables within the given number of time slices determinedby the up- and down-time constraints. These clique-chain structures are common inmany temporal domains that possess the Markov property (the future is independent1A similar approach known as \ordered resolution" can be viewed as a more sophisticated �rstorder version of directional resolution [38]. 23
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clique-1 clique-2Figure 2.1: An example of a \temporal chain": the unit commitment problem for 3units over 4 hours.of the past given the present). Another example of structured domain is circuit di-agnosis. In [40] it was shown that circuit-diagnosis benchmarks can be embeddedin a tree of cliques, where the clique sizes are substantially smaller than the overallnumber of variables. In general, one can imagine a variety of real-life domains havingsuch structure that is captured by k-tree-embeddings [1] used in our random problemgenerators.Our empirical studies of SAT algorithms con�rm previous results: DR is veryine�cient when dealing with unstructured uniform random problems. However, onstructured problems such as k-tree embeddings having bounded induced width, direc-tional resolution outperforms DP-backtracking by several orders of magnitude. Theinduced width (denoted w�) is a graph parameter that describes the size of the largestclique created in the problem's interaction graph during inference. We show that theworst-case time and space complexity of DR is O(n � exp(w�)), where n is the num-ber of variables. We also identify tractable problem classes based on a more re�nedsyntactic parameter, called diversity.Since the induced width is often smaller than the number of propositional vari-ables, n, DR's worst-case bound is generally better than O(exp(n)), the worst-casetime bound for DP. In practice, however, DP-backtracking { one of the best complete24
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trade-o�s that can be adjusted to the given problem structure and to the compu-tational resources. Empirical studies demonstrate the advantages of these exiblehybrid schemes over both extremes, backtracking and resolution.The rest of this chapter is organized as follows. Section 2.2 provides necessary def-initions. Section 2.3 describes directional resolution (DR), our version of the originalDavis-Putnam algorithm expressed within the bucket-elimination framework. Section2.4 discusses the complexity of DR and identi�es tractable classes, while Section 2.5focuses on DP-backtracking. Empirical comparison of DR and DP is presented in Sec-tion 2.6. Section 2.7 introduces the two hybrid schemes, BDR-DP and DCDR, andempirically evaluates their e�ectiveness. Related work and conclusions are discussedin Sections 2.8 and 2.9. Proofs of theorems are given in the Appendix A.2.2 De�nitions and preliminariesWe denote propositional variables, or propositions, by uppercase letters, e.g. P;Q;R,propositional literals (propositions or their negations, such as P and :P ) by lowercaseletters, e.g., p; q; r, and disjunctions of literals, or clauses, by the letters of the Greekalphabet, e.g., �; �; . For instance, � = (P _Q _R) is a clause. We will sometimesdenote the clause (P _ Q _ R) by fP;Q;Rg. A unit clause is a clause with onlyone literal. A clause is positive if it contains only positive literals and is negativeif it contains only negative literals. The notation (� _ T ) is used as shorthand for(P _ Q _ R _ T ), while � _ � refers to the clause whose literals appear in either� or �. A clause � is subsumed by a clause � if �'s literals include all �'s literals.A clause is a tautology, if for some proposition Q the clause includes both Q and:Q. A propositional theory ' in conjunctive normal form (cnf) is represented as aset f�1; :::; �tg denoting the conjunction of clauses �1; :::; �t. A k-cnf theory containsonly clauses of length k or less. A propositional cnf theory ' de�ned on a set of nvariables Q1,...,Qn is often called simply \a theory '".The set of models of a theory ' is the set of all truth assignments to its variables26
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Directional Resolution: DRInput: A cnf theory ', o = Q1; :::; Qn.Output: The decision of whether ' is satis�able.If it is, the directional extension Eo(') equivalent to '.1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,where bucketi contains all the clauses whose highest literal is Qi.2. For i = n to 1 do:If there is a unit clause in bucketi,do unit resolution in bucketielse resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.If  = � _ � is empty, return \' is unsatis�able"else add  to the bucket of its highest variable.3. Return \' is satis�able" and Eo(') = Si bucketi.Figure 2.4: Algorithm Directional Resolution (DR).Propositional satis�ability is a special case of constraint satisfaction problem (CSP).CSP is de�ned on a constraint network < X;D;C >, where X = fX1; :::;Xng is theset of variables, associated with a set of �nite domains, D = fDi; :::;Dng, and a setof constraints, C = fC1; :::; Cmg. Each constraint Ci is a relation Ri � Di1 � :::�Dikde�ned on a subset of variables Si = fXi1 ; :::;Xikg. A constraint network can beassociated with an undirected constraint graph where nodes correspond to variablesand two nodes are connected if and only if they participate in the same constraint.The constraint satisfaction problem (CSP) is to �nd a value assignment to all thevariables (called a solution) that is consistent with all the constraints. If no suchassignment exists, the network is inconsistent. A constraint network is binary if eachconstraint is de�ned on at most two variables.
28



2.3 Directional Resolution (DR)DP-resolution [19] is an ordering-based resolution algorithm that can be describedas follows. Given an arbitrary ordering of the propositional variables, we assign toeach clause the index of its highest literal in the ordering. Then resolution is appliedonly to clauses having the same index and only on their highest literal. The result ofthis restriction is a systematic elimination of literals from the set of clauses that arecandidates for future resolution. The original DP-resolution also includes two addi-tional steps, one forcing unit resolution whenever possible, and one assigning valuesto all-positive and all-negative variables. An all-positive (all-negative) variable is avariable that appears only positively (negatively) in a given theory, so that assigningsuch a variable the value \true" (\false") is equivalent to deleting all relevant clausesfrom the theory. There are other intermediate steps that can be introduced betweenthe basic steps of eliminating the highest indexed variable, such as deleting subsumedclauses. Albeit, we will focus on the ordered elimination step and refer to auxiliarysteps only when necessary. We are interested not only in deciding satis�ability butin the set of clauses accumulated by this process constituting an equivalent theorywith useful computational features. Algorithm directional resolution (DR), the coreof DP-resolution, is presented in Figure 2.4. This algorithm can be described usingthe notion of buckets, which de�ne an ordered partitioning of clauses in ', as follows.Given an ordering o = (Q1 ; :::; Qn) of the variables in ', all the clauses containingQi that do not contain any symbol higher in the ordering are placed in bucketi. Thealgorithm processes the buckets in a reverse order of o, from Qn to Q1. Processingbucketi involves resolving over Qi all possible pairs of clauses in that bucket. Eachresolvent is added to the bucket of its highest variable Qj (clearly, j < i). Note thatif the bucket contains a unit clause (Qi or :Qi), only unit resolutions are performed.Clearly, a useful dynamic-order heuristic (not included in our current implementa-tion) is to processes next a bucket with a unit clause. The output theory, Eo('), iscalled the directional extension of ' along o. As shown by Davis and Putnam [19],29



�nd-model (Eo('); o )Input: A directional extension Eo('), o = Q1; :::; Qn.Output: A model of '.1. For i = 1 to NQi  a value qi consistent with the assignment toQ1; :::; Qi�1 and with all the clauses in bucketi.2. Return Q1 = q1; :::; Qn = qn.Figure 2.5: Algorithm �nd-model.the algorithm �nds a satisfying assignment to a given theory if and only if there existsone. Namely,Theorem 1: [19] Algorithm DR is sound and complete. 2A model of a theory ' can be easily found by consulting Eo(') using a simplemodel-generating procedure �nd-model in Figure 2.5. Formally,Theorem 2: (model generation)Given Eo(') of a satis�able theory ', the procedure �nd-model generates a model of' backtrack-free, in time O(jEo(')j). 2Example 1: Given the input theory '1 = f(:C); (A _ B _ C); (:A _ B _ E);(:B _ C _D)g; and an ordering o = (E;D;C;B;A), the theory is partitioned intobuckets and processed by directional resolution in reverse order2. Resolving overvariable A produces a new clause (B _C _E), which is placed in bucketB. Resolvingover B then produces clause (C_D_E) which is placed in bucketC. Finally, resolvingover C produces clause (D _ E) which is placed in bucketD. Directional resolutionnow terminates, since no resolution can be performed in bucketD and bucketE. The2For illustration, we selected an arbitrary ordering which is not the most e�cient one. Variableordering heuristics will be discussed in Section 2.4.3.30
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2.4 Complexity and tractabilityClearly, the e�ectiveness of algorithm DR depends on the the size of its output theoryEo(').Theorem 3: (complexity)Given a theory ' and an ordering o, the complexity of algorithm DR is O(njEo(')j2)where n is the number of variables. 2The size of the directional extension and therefore the complexity of directionalresolution is worst-case exponential in the number of variables. However, there areidenti�able cases when the size of Eo(') is bounded, yielding tractable problemclasses. The order of variable processing has a particularly signi�cant e�ect on thesize of the directional extension. Consider the following two examples:Example 2: Let '2 = f(B _A), (C _:A); (D_A); (E _:A)g: Given the orderingo1 = (E;B;C;D;A), all clauses are initially placed in bucket(A). Applying DRalong the (reverse) ordering, we get: bucket(D) = f(C _D); (D _ E)g, bucket(C) =f(B _ C)g, bucket(B) = f(B _ E)g. In contrast, the directional extension alongordering o2 = (A;B;C;D;E) is identical to the input theory '2 since each bucketcontains at most one clause.Example 3: Consider the theory '3 = f(:A _ B); (A _ :C); (:B _ D); (C _D _ E)g. The directional extensions of '3 along ordering o1 = (A;B;C;D;E) ando2 = (D;E;C;B;A) are Eo1('3) = '3 and Eo2('3) = '3 [ f(B _ :C) ; (:C _ D);(E _D)g, respectively.In example 2, variable A appears in all clauses. Therefore, it can potentiallygenerate new clauses when resolved upon, unless it is processed last (i.e., it appears�rst in the ordering), as in o2. This shows that the interactions among variablescan a�ect the performance of the algorithm and should be consulted for producingpreferred orderings. In example 3, on the other hand, all the symbols have the same32
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3 (the width of A), and the maximum induced width is also 3 (the induced widthof A and B). Therefore, in this case, the width and the induced width of the graphcoincide. In general, however, the induced width of a graph can be signi�cantly largerthan its width. Note that in this example the graph of the directional extension,G(Eo(')), coincides with the induced ordered graph of the input theory's graph,Io(G(')). Generally,Lemma 1: Given a theory ' and an ordering o, G(Eo(')) is a subgraph of Io(G(')).2 The parents of nodeXi in the induced graph correspond to the variables mentionedin bucketi. Therefore, the induced width of a node can be used to estimate the sizeof its bucket, as follows:Lemma 2: Given a theory ' and an ordering o = (Q1; :::; Qn), if Qi has at mostk parents in the induced graph along o, then the bucket of a variable Qi in Eo(')contains no more than 3k+1 clauses. 2We can now derive a bound on the complexity of directional resolution usingproperties of the problem's interaction graph.Theorem 4: (complexity of DR)Given a theory ' and an ordering of its variables o, the time complexity of algorithmDR along o is O(n � 9w�o ), and Eo(') contains at most n � 3w�o+1 clauses, where w�o isthe induced width of ''s interaction graph along o. 2Corollary 1: Theories having bounded w�o for some ordering o are tractable. 2.Figure 2.8 demonstrates the e�ect of variable ordering on the induced width,and consequently, on the complexity of DR when applied to theory '1. While DRgenerates 3 new clauses of length 3 along ordering (a), only one binary clause isgenerated along ordering (c). Although �nding an ordering that yields the smallest35
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2 4 6Figure 2.9: The interaction graph of '4 in example 4: '4 = f(A1 _ A2 _ :A3),(:A2 _ A4), (:A2 _ A3 _ :A4), (A3 _ A4 _ :A5), (:A4 _ A6), (:A4 _ A5 _ :A6),(A5 _ A6 _ :A7), (:A6 _A8), (:A6 _A7 _ :A8)g.induced width is NP-hard [1], good heuristic orderings are currently available [7, 22,97] and continue to be explored [5]. Furthermore, there is a class of graphs, knownas k-trees, that have w� < k and can be recognized in O(n � exp(k)) time [1].De�nition 2: (k-trees)1. A clique of size k (complete graph with k nodes) is a k-tree.2. Given a k-tree de�ned on X1; :::;Xi�1, a k-tree on X1; :::;Xi can be generated byselecting a clique of size k and connecting Xi to every node in that clique.Corollary 2: If the interaction graph of a theory ' having n variables is a subgraphof a k-tree, then there is an ordering o such that the space complexity of algorithmDR along o (the size of Eo(')) is O(n � 3k), and its time complexity is O(n � 9k). 2Important tractable classes are trees (w� = 1) and series-parallel networks (w� =2). These classes can be recognized in polynomial (linear or quadratic) time.Example 4: Consider a theory 'n de�ned on the variables fA1; A2; :::; Ang. Aclause (Ai_Ai+1_:Ai+2) is de�ned for each odd i, and two clauses (:Ai_Ai+2) and(:Ai_ Ai+1_ :Ai+2) are de�ned for each even i, where 1 � i � n. The interactiongraph of 'n for n = 5 is shown in Figure 2.9. The reader can verify that the graph is a3-tree (w� = 2) and that its induced width along the original ordering is 2. Therefore,by theorem 4, the size of the directional extension will not exceed 27n.36



2-SATNote that algorithm DR is tractable for 2-cnf theories, because 2-cnfs are closedunder resolution (the resolvents are of size 2 or less) and because the overall numberof clauses of size 2 is bounded by O(n2) (in this case, unordered resolution is alsotractable), yielding O(n � n2) = O(n3) complexity. Therefore,Theorem 5: Given a 2-cnf theory ', its directional extension Eo(') along anyordering o is of size O(n2), and can be generated in O(n3) time.Obviously, DR is not the best algorithm for solving 2-SAT, since 2-SAT can besolved in linear time [39]. Note, however, that DR also compiles the theory into onethat can produces each model in linear time. As shown in [30], in this case all modelscan be generated in output linear time.The graphical e�ect of unit resolutionResolution with a unit clause Q or :Q deletes the opposite literal over Q from allrelevant clauses. It is equivalent to assigning a value to variable Q. Therefore, unitresolution generates clauses on variables that are already connected in the graph, andtherefore will not add new edges.2.4.2 DiversityThe concept of induced width sometimes leads to a loose upper bound on the numberof clauses recorded by DR. In Example 4, only six clauses were generated by DR, evenwithout eliminating subsumption and tautologies in each bucket, while the computedbound is 27n = 27 � 8 = 216. Consider the two clauses (:A _ B) and (:C _ B) andthe order o = A;C;B. When bucket B is processed, no clause is added because B ispositive in both clauses, yet nodes A and C are connected in the induced graph. Inthis subsection, we introduce a new parameter called diversity, that provides a tighterbound on the number of resolution operations in the bucket. Diversity is based on37



the fact that a proposition can be resolved upon only when it appears both positivelyand negatively in di�erent clauses.De�nition 3: (diversity)Given a theory ' and an ordering o, let Q+i (Q�i ) denote the number of times Qiappears positively (negatively) in bucketi. The diversity of Qi relative to o, div(Qi),is de�ned as Q+i �Q�i . The diversity of an ordering o, div(o), is the largest diversityof its variables relative to o, and the diversity of a theory, div, is the minimal diversityamong all orderings.The concept of diversity yields new tractable classes. For example, if o is anordering having a zero diversity, algorithm DR adds no clauses to ', regardless of itsinduced width.Example 5: Let '= f(G_E_:F ); (G_:E_D); (:A_F ); (A_:E); (:B_C_:E);(B_C_D)g. It is easy to see that the ordering o = (A;B;C;D;E;F;G) has diversity0 and induced width 4.Theorem 6: Zero-diversity theories are tractable for DR: given a zero-diversitytheory ' having n variables and c clauses, 1. its zero-diversity ordering o can befound in O(n2 � c) time and 2. DR along o takes linear time. 2The proof follows immediately from Theorem 8 (see subsection 2.4.3).Zero-diversity theories generalize the notion of causal theories de�ned for gen-eral constraint networks of multi-valued relations [34]. According to this de�nition,theories are causal if there is an ordering of the propositional variables such thateach bucket contains a single clause. Consequently, the ordering has zero diversity.Clearly, when a theory has a non-zero diversity, it is still better to place zero-diversityvariables last in the ordering, so that they will be processed �rst. Indeed, the pureliteral rule of the original Davis-Putnam resolution algorithm requires processing �rstall-positive and all-negative (namely, zero-diversity) clauses.38



min-diversity (')1. For i = n to 1 do:Choose symbol Q having the smallest diversityin '�Snj=i+1 bucketj and put it in the ith position.Figure 2.10: Algorithm min-diversity.However, the parameter of real interest is the diversity of the directional extensionEo('), rather than the diversity of '.De�nition 4: (induced diversity)The induced diversity of an ordering o, div�(o), is the diversity of Eo(') along o, andthe induced diversity of a theory, div�, is the minimal induced diversity over all itsorderings.Since div�(o) bounds the number of clauses generated in each bucket, the size ofEo(') for every o can be bounded by j'j+n �div�(o). The problem is that computingdiv�(o) is generally not polynomial (for a given o), except for some restricted cases.One such case is the class of zero-diversity theories mentioned above, where div�(o) =div(o) = 0. Another case, presented below, is a class of theories having div� = 1.Note that we can easily create examples with high w� having div� � 1.Theorem 7: Given a theory ' de�ned on variables Q1,..., Qn, such that each symbolQi either (a) appears only negatively (only positively), or (b) it appears in exactly twoclauses, then div�(') � 1 and ' is tractable. 2
39



min-width (')1. Initialize: G G(')2. For i = n to 1 do1.1. Choose symbol Q having the smallestdegree in G and put it in the ith position.1.2. G G� fQg.Figure 2.11: Algorithm min-width.min-degree (')1. Initialize: G G(')2. For i = n to 1 do1.1. Choose symbol Q having the smallestdegree in G and put it in the ith position.1.2. Connect the neighbors of Q in G.1.3. G G� fQg.Figure 2.12: Algorithm min-degree.2.4.3 Ordering heuristicsAs previously noted, �nding a minimum-induced-width ordering is known to be NP-hard [1]. A similar result can be demonstrated for minimum-induced-diversity or-derings. However, the corresponding suboptimal (non-induced) min-width and min-diversity heuristic orderings often provide relatively low induced width and induceddiversity. Min-width and min-diversity orderings can be computed in polynomial timeby a simple greedy algorithm, as shown in Figures 2.10 and 2.11.Theorem 8: Algorithm min-diversity generates a minimal diversity ordering of atheory in time O(n2 � c), where n is the number of variables and c is the number ofclauses in the input theory. 2 40



max-cardinality (')1. For i = 1 to n doChoose symbol Q connected to maximum number ofpreviously ordered nodes in G and put it in the ith position.Figure 2.13: Algorithm max-cardinality.The min-width algorithm [22] (Figure 2.11) is similar to the min-diversity, exceptthat at each step we select a variable with the smallest degree in the current interactiongraph. The selected variable is then placed i-th in the ordering and deleted from thegraph.A modi�cation of min-width ordering, called min-degree [41] (Figure 2.12), con-nects all the neighbors of the selected variable in the current interaction graph beforethe variable is deleted. Empirical studies demonstrate that the min-degree heuris-tic usually yields lower-w� orderings than the induced-width heuristic. In all theseheuristics ties are broken randomly.There are several other commonly used ordering heuristics, such asmax-cardinalityheuristic presented in Figure 2.13. For more details, see [7, 22, 97].2.5 Backtracking search (DP)Backtracking search processes the variables in some order, instantiating the nextvariable if it has a value consistent with previous assignments. If there is no suchvalue (a situation called a dead-end), the algorithm backtracks to the previous variableand selects an alternative assignment. Should no consistent assignment be found, thealgorithm backtracks again. The algorithm explores the search tree, in a depth-�rst manner, until it either �nds a solution or concludes that no solution exists. An41
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DP('):Input: A cnf theory '.Output: A decision of whether ' is satis�able.1. Unit propagate(');2. If the empty clause generated return(false);3. else if all variables are assigned return(true);4. else5. Q = some unassigned variable;6. return(DP(' ^ :Q) _7. DP(' ^Q) )(a) (b)Figure 2.14: (a) A backtracking search tree along the ordering A;B;C for a cnf theory'5 = f(:A _ B); (:C _A); :B;Cg and (b) the Davis-Putnam Procedure.example of a search tree is shown in Figure 2.14a. This tree is traversed when decidingsatis�ability of a propositional theory '5 = f(:A _B); (:C _A); :B;Cg. The treenodes correspond to the variables, while the tree branches correspond to di�erentassignments (0 and 1). Dead-end nodes are crossed out. Theory '5 is obviouslyinconsistent.There are various advanced backtracking algorithms for solving CSPs that improvethe basic scheme using \smart" variable- and value-ordering heuristics ([14], [51]).More e�cient backtracking mechanisms, such as backjumping [53, 21, 92], constraintpropagation (e.g., arc-consistency, forward checking [59]), or learning (recording con-straints) [21, 48, 3] are available. The Davis-Putnam Procedure (DP) [18] shown inFigure 2.14b is a backtracking search algorithm for deciding propositional satis�abil-ity combined with unit propagation. Various branching heuristics augmenting thisbasic version of DP have been proposed since 1962 [69, 14, 64, 55].The worst-case time complexity of all backtracking algorithms is exponential inthe number of variables while their space complexity is linear. Yet, the average timecomplexity of DP depends on the distribution of instances [42] and is often much42



lower then its worst-case bound. Usually, its average performance is a�ected by rare,but exceptionally hard instances. Exponential-family empirical distributions (e.g.,lognormal, Weibull) proposed in recent studies [50, 96] summarize such observationsin a concise way. A typical distribution of the number of explored search-tree nodesis shown in Figure 2.15. The distribution is shown for inconsistent problems. As itturns out, consistent and inconsistent CSPs produce di�erent types of distributions(for more details see [50, 51]).
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Nodes in Search Space0 1,000 3,000 6,000.005.010.015.020

Figure 2.15: An empirical distribution of the number of nodes explored by algorithmBJ-DVO (backjumping+dynamic variable ordering) on 106 instances of inconsistentrandom binary CSPs having N=50 variables, domain size D=6, constraint densityC=.1576 (probability of a constraint between two variables), and tightness T=0.333(the fraction of prohibited value pairs in a constraint).43



2.5.1 The proportionate-e�ect model of backtrackingIn this section, we discuss the proportionate-e�ect model of backtracking [51, 96] thatprovides additional insights on the characteristics of the runtime distributions andsupports the empirical observations. This model is derived under general assumptionswhich hold for any variable- and value-ordering. The point we are trying to makeis that no matter how \smart" ordering heuristics are, it is always possible thatbacktracking will encounter exceptionally hard problems, although the heuristics can(and should) reduce this possibility.The performance model is derived for uniform random binary CSP generator thattakes four parameters: N;D; T and C. It generates instances with N variables, reachhaving a domain of size D. The parameter T (tightness) speci�es the probability thata value pair in a constraint is disallowed. The parameter C speci�es the probabilityof a binary constraint existing between two variables.We restrict our attention to the simple backtracking algorithmwith a �xed variableordering (Y1; :::; YN) and to the inconsistent random binary CSPs with the parametershN;D; T;Ci. We show that the number of nodes on level i of the search tree exploredby backtracking is distributed lognormally when i is su�ciently large.A common method for deriving the lognormal distribution uses the law of pro-portionate e�ect [16]: if the growth rate of a variable at each step in a process israndomly proportion to its size at that step, then the size of the variable at time nwill be approximately lognormally distributed. Formally, if the value of a randomvariable at time i is Xi, and Xi = Xi�1 � bi; (2.1)where (b1; b2; : : : ; bn) are positive independent random variables, then the distributionof Xi is, for large enough i, lognormally distributed. The law of proportionate e�ectfollows from the central limit theorem, since 2.1 implieslog(Xn) = nXi log(bi); (2.2)44



and the sum of independent random variables log(bi) converges to the normal distri-bution.Let Xi be the number of nodes explored at i-th level of the search tree. Thebranching factor bi at i-th level of the tree is de�ned as Xi=Xi�1, where for 2 � i �n, and b1 = D (D is the domain size). For i > 1, bi is randomly distributed in[0;D] and speci�es how many values of variable Yi�1 are consistent with the previousassignment. The probability of a value k for Yi�1 being consistent with the assignmentto Y1; :::; Yi�2 is pi = (1 �CT )i�2;where C is the probability of a constraint between Yi�1 and a previous variable, andT is the probability of a value pair to be prohibited by that constraint. Therefore,the branching factor bi is distributed binomially with parameter pi. On each level i,bi is independent of previous bj, j < i. Note that bi are non-negative (positive forall levels except the deepest level in the tree reached by backtracking) and can begreater than or less than 1 (since bi can be zero, the low of proportionate e�ect is notentirely applicable for some deep levels of the search tree). ThenXi = b1 � b2 � : : :� bi;is lognormally distributed by the law of proportionate e�ect.This derivation applies to the distribution of nodes on each particular level i,where i is large enough. It still remains to be shown how this analysis relates to thedistribution of the total number of nodes explored in a tree. In a complete search tree,the total number of nodes PNi=0Di = (DN+1 � 1)=(D � 1) � DN DD�1 is proportionalto the number of nodes at the deepest level, DN . A similar relation may be possibleto derive for a backtracking search tree.Satis�able CSPs do not �t this scheme since the tree traversal is interrupted whena solution is found. Indeed, empirical results reported in [50] point to substantialdi�erence in behavior of satis�able and unsatis�able problems. In addition, the modelis derived for binary CSPs rather than for SAT, although empirical results suggest45



(a) (b)Figure 2.16: An example of a theory with (a) a chain structure (3 subtheories, 5variables in each) and (b) a (k,m)-tree structure (k=2, m=2).the same distribution families in both cases [50, 96]. This model provides a generalinsight on what type of behavior is expected from backtracking algorithms.2.6 DP versus DR: empirical evaluationIn this section we present an empirical comparison of DP and DR on di�erent typesof cnf theories, including uniform random problems, random chains and (k,m)-trees,and benchmark problems from the Second DIMACS Challenge 3. The algorithmswere implemented in C and tested on SUN Sparc stations. Since we used severalmachines having di�erent performance (from Sun 4/20 to Sparc Ultra-2), we specifywhich machine was used for each set of experiments. Reported runtime is measuredin seconds.Algorithm DR is implemented as discussed in Section 2.3. If it is followed byDP using the same �xed variable ordering, no dead-ends will occur (see Theorem2). Algorithm DP was implemented using the dynamic variable ordering heuristicof Tableau [14], a state-of-the-art backtracking algorithm for SAT. This heuristic,called the 2-literal-clause heuristic, suggests instantiating next a variable that wouldcause the largest number of unit propagations approximated by the number of 2-literal clauses in which the variable appears. The augmented algorithm signi�cantly3Available at ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks/volume/cnf.46



outperforms DP without this heuristic [14].2.6.1 Random problem generatorsTo test the algorithms on problems with di�erent structures, several random problemgenerators were used. The uniform k-cnfs generator [82] uses as input the number ofvariables N, the number of clauses C, and the number of literals per clause k. Eachclause is generated by randomly choosing k out of N variables and by determiningthe sign of each literal (positive or negative) with probability p. In the majority ofour experiments p = 0:5. Although we did not check for clause uniqueness, for largeN it is unlikely that identical clauses will be generated.Our second generator, chains, creates a sequence of independent uniform k-cnftheories (called subtheories) and connects each pair of successive cliques by a 2-cnfclause containing variables from two consecutive subtheories in the chain (see Figure2.16a). The parameters of the generator are the number of cliques,Ncliq, the numberof variables per clique,N , and the number of clauses per clique, C. A chain of cliques,each having N variables, is a subgraph of a k-tree [1] where k = 2N�1 and therefore,has w� � 2N � 1.We also used a (k,m)-tree generator which generates a tree of cliques each having(k+m) nodes where k is the size of the intersection between two neighboring cliques(see Figure 2.16b, where k = 2 and m = 2). Given k, m, the number of cliquesNcliq, and the number of clauses per clique Ncls, the (k,m)-tree generator producesa clique of size k+m with Ncls clauses and then generates each of the other Ncliq�1cliques by selecting randomly an existing clique and its k variables, adding m newvariables, and generating Ncls clauses on that new clique. Since a k-m-tree can beembedded into a (k +m� 1)-tree, its induced width is bounded by k +m� 1 (notethat (k; 1)-trees are conventional k-trees).47
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(a) uniform random 3-cnfs, w� = 10 to 18 (b) chain 3-cnfs, w� = 4 to 7Figure 2.17: (a) DP versus DR on uniform random 3-cnfs; (b) DP, DR, BDR-DP(3)and backjumping on 3-cnf chains (Sun 4/20).2.6.2 ResultsAs expected, on uniform random 3-cnfs having large w�, the complexity of DR grewexponentially with the problem density while the performance of DP was much better.Even small problems having 20 variables already demonstrate the exponential behav-ior of DR (see Figure 2.17a). On larger problems DR often ran out of memory. Wedid not proceed with more extensive experiments in this case, since the exponentialbehavior of DR on uniform 3-cnfs is already well-known [52, 57].However, the behavior of the algorithms on chain problems was completely dif-ferent. DR was by far more e�cient than DP, as can be seen from Table 2.1 andfrom Figure 2.17b, summarizing the results on 3-cnf chain problems that contain 25subtheories, each having 5 variables and 9 to 23 clauses (24 additional 2-cnf clauses48
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(a) input ordering (b) min-width orderingFigure 2.18: DR and DP on 3-cnf chains with di�erent orderings (Sun 4/20).Table 2.1: DR versus DP on 3-cnf chains having 25 subtheories, 5 variables in each,and from 11 to 21 clauses per subtheory (total 125 variables and 299 to 549 clauses).20 instances per row. The columns show the percentage of satis�able instances, timeand deadends for DP, time and the number of new clauses for DR, the size of largestclause, and the induced width w�md along the min-diversity ordering. The experimentswere performed on Sun 4/20 workstation.Num % DP DRof sat Time Dead Time Number Size of w�cls ends of new maxclauses clause299 100 0.4 1 1.4 105 4.1 5.3349 70 9945.7 908861 2.2 131 4.0 5.3399 25 2551.1 207896 2.8 131 4.0 5.3449 15 185.2 13248 3.7 135 4.0 5.5499 0 2.4 160 3.8 116 3.9 5.4549 0 0.9 9 4.0 99 3.9 5.249



Table 2.2: DR and DP on hard chains when the number of dead-ends is larger than5,000. Each chain has 25 subtheories, with 5 variables in each (total of 125 variables).The experiments were performed on Sun 4/20 workstation.Num Sat: DP DRof 0 or 1 Time Dead Timecls ends349 0 41163.8 3779913 1.5349 0 102615.3 9285160 2.4349 0 55058.5 5105541 1.9399 0 74.8 6053 3.6399 0 87.7 7433 3.1399 0 149.3 12301 3.1399 0 37903.3 3079997 3.0399 0 11877.6 975170 2.2399 0 841.8 70057 2.9449 1 655.5 47113 5.2449 0 2549.2 181504 3.0449 0 289.7 21246 3.5Table 2.3: Histograms of the number of deadends (log-scale) for DP on chains having20, 25 and 30 subtheories, each de�ned on 5 variables and 12 to 16 clauses. Eachcolumn presents results for 200 instances; each row de�nes a range of deadends; eachentry is the frequency of instances (out of total 200) that yield the range of deadends.The experiments were performed on Sun Ultra-2.C=12 C=14 C=16Deadends Ncliq Ncliq Ncliq20 25 30 20 25 30 20 25 30[0; 1) 103 90 75 75 23 8 7 2 2[1; 10) 81 85 102 102 107 93 73 68 59[10; 102) 3 4 7 7 21 24 40 37 43[102; 103) 2 1 4 4 8 12 20 26 22[103; 104) 1 3 2 2 10 8 21 10 21[104;1) 10 17 10 10 31 55 39 57 5350



sat=1 sat=1 sat=1 sat=1 sat= 0Figure 2.19: An inconsistent chain problem: a naive backtracking is very ine�cientwhen encountering an inconsistent subproblem at the end of the variable ordering.connect the subtheories in the chain) 4. A min-diversity ordering was used for each in-stance. Since the induced width of these problems was small (less than 6, on average),directional resolution solved these problems quite easily. However, DP-backtrackingencountered rare but extremely hard problems that contributed to its average com-plexity. Table 2.2 lists the results on selected hard instances from Table 2.1 (wherethe number of dead-ends exceeds 5,000).Similar results were obtained for other chain problems and with di�erent variableorderings. For example, Figure 2.18 graphs the experiments with min-width andinput orderings. We observe that min-width ordering may signi�cantly improve theperformance of DP relative to the input ordering (compare Figure 2.18a and Figure2.18b). Still, it did not prevent backtracking from encountering rare, but extremelyhard instances.Table 2.3 presents the histograms demonstrating the performance of DP on chainsin more details. The histograms show that in most cases the frequency of easy prob-lems (e.g., less than 10 deadends) decreased and the frequency of hard problems(e.g., more than 104 deadends) increased with increasing number of cliques and withincreasing number of clauses per clique. Further empirical studies are necessary toinvestigate phase transition in chains5.4Figure 2.17b also shows the results for algorithms BDR-DP and backjumping discussed later.5The phase transition phenomenon observed in uniform random 3cnf and in CSPs correspondsto a sharp transition from mostly satis�able to mostly unsatis�able problems around a particularvalue of a critical parameter, such as clauses/variables ratio, and is usually associated with a sharppeak in the algorithm's complexity [10, 82, 56, 110, 65].51



Table 2.4: DP versus Tableau on 150- and 200-variable uniform random 3-cnfs usingthe min-degree ordering. 100 instances per row. Experiments ran on Sun SparcUltra-2. Cls % Tableau DP DPsat time time de150 variables550 1.00 0.3 0.4 81600 0.93 2.0 3.9 992650 0.28 4.1 10.1 2439700 0.04 2.7 7.1 1631200 variables780 0.99 11.6 10.0 1836820 0.95 48.5 43.7 7742860 0.40 81.7 125.8 22729900 0.07 26.6 92.4 17111In our experiments nearly all of the 3-cnf chain problems that were di�cult forDP were unsatis�able. One plausible explanation is that inconsistent chain theoriesmay have an unsatis�able subtheory only at the end of the ordering. If all other sub-theories are satis�able then DP will try to re-instantiate variables from the satis�ablesubtheories whenever it encounters a dead-end. Figure 2.19 shows an example of achain of satis�able theories with an unsatis�able theory close to the end of the order-ing. Min-diversity and min-width orderings do not preclude such a situation. Thereare enhanced backtracking schemes, such as backjumping [53, 54, 21, 91], that arecapable of exploiting the structure and preventing useless re-instantiations. Experi-ments with backjumping con�rm that it substantially outperforms DP on the samechain instances (see Figure 2.17b).The behavior of DP and DR on (k-m)-trees is similar to that on chains and willbe discussed later in the context of hybrid algorithms.52



Table 2.5: Histograms of DP and Tableau runtimes (log-scale) on chains havingNcliq = 15, N = 8, and C from 21 to 27, 200 instances per column. Each row de�nesa runtime range, and each entry is the frequency of instances within the range. Theexperiments were performed on Sun Ultra-2.Time C=21 C=23 C=25Tableau runtime histogram[0; 1) 195 189 166[1; 10) 0 2 12[10; 102) 0 3 14[102;1) 5 6 8DP runtime histogram[0; 1) 193 180 150[1; 10) 2 3 8[10; 102) 2 2 11[102;1) 3 15 31Comparing di�erent DP implementationsOne may raise the question whether our (not highly optimized) DP implementationis e�cient enough to be representative of backtracking-based SAT algorithms. Weanswer this question by comparing our DP with the executable code of Tableau [14].The results for 150- and 200-variable uniform random 3-cnf problems are pre-sented in Table 2.4. We used min-degree as an initial ordering consulted by both(dynamic-ordering) algorithms Tableau and DP in tie-breaking situations. In mostcases, Tableau was 2-4 times faster than DP, while in some DP was faster or compa-rable to Tableau.On chains, the behavior pattern of Tableau was similar to that of DP. Table2.5 compares the runtime histograms for DP and Tableau on chain problems showingthat both algorithms were encountering rare hard problems, although Tableau usuallyencountered hard problems less frequently than DP. Some problem instances that werehard for DP were easy for Tableau, and vice versa.Therefore, although Tableau is often more e�cient than our implementation, this53



di�erence does not change the key distinctions made between backtracking- andresolution-based approaches. Most of experiments in this chapter use our imple-mentation of DP 6.2.7 Combining search and resolutionThe complementary properties of DP and DR suggest combining both into a hybridscheme (note that algorithm DP already includes a limited amount of resolution inthe form of unit propagation). We will present two general parameterized schemesintegrating bounded resolution with search. The hybrid scheme BDR-DP(i) performsbounded resolution prior to search, while the other scheme called DCDR(b) uses itdynamically during search.2.7.1 Algorithm BDR-DP(i)The resolution operation helps detecting inconsistent subproblems and thus can pre-vent DP from unnecessary backtracking. Yet, resolution can be costly. One way oflimiting the complexity of resolution is to bound the size of the recorded resolvents.This yields the incomplete algorithm bounded directional resolution, or BDR(i), pre-sented in Figure 2.20, where i bounds the number of variables in a resolvent. Thealgorithm coincides with DR except that resolvents with more than i variables arenot recorded. This bounds the size of the directional extension Eio(') and, there-fore, the complexity of the algorithm. The time and space complexity of BDR(i) isO(n �exp(i)). The algorithm is sound but incomplete. AlgorithmBDR(i) followed byDP is named BDR-DP(i) 7. Clearly, BDR-DP(0) coincides with DP while for i > w�oBDR-DP(i) coincides with DR (each resolvent is recorded).6Having the source code for DP allowed us more control over the experiments (e.g., boundingthe number of deadends) than having only the executable code for Tableau.7Note that DP always uses the 2-literal-clauses dynamic variable ordering heuristic.54



Bounded Directional Resolution: BDR(i)Input: A cnf theory ', o = Q1; :::; Qn, and bound i.Output: The decision of whether ' is satis�able.If it is, a bounded directional extension Eio(').1. Initialize: generate a partition of clauses, bucket1; :::; bucketn,where bucketi contains all the clauses whose highest literal is Qi.2. For i = n to 1 do:resolve each pair f(� _Qi); (� _ :Qi)g � bucketi.If  = � _ � is empty, return \' is unsatis�able"else if  contains no more than i propositions,add  to the bucket of its highest variable.3.Return Eio(') = Si bucketi.Figure 2.20: Algorithm Bounded Directional Resolution (BDR).2.7.2 Empirical evaluation of BDR-DP(i)We tested BDR-DP(i) for di�erent values of i on uniform 3-cnfs, chains, (k,m)-trees,and on DIMACS benchmarks. In most cases, BDR-DP(i) achieved its optimal per-formance for intermediate values of i.Table 2.6: DP versus BDR-DP(i) for 2 � i � 4 on uniform random 3-cnfs with 150variables, 600 to 725 clauses, and positive literal probability p = 0:5. The inducedwidth w�o along the min-width ordering varies from 107 to 122. Each row presentsaverage values on 100 instances (Sun Sparc 4).Num DP BDR-DP(2) BDR-DP(3) BDR-DP(4) w�oof Time Dead BDR DP Dead New BDR DP Dead New BDR DP Dead Newcls ends time time ends cls time time ends cls time time ends cls600 4.6 784 0 4.6 786 0 0.1 4.1 692 16 1.7 8.5 638 731 113625 8.9 1487 0 8.9 1503 0 0.1 8.2 1346 18 1.9 16.8 1188 805 114650 11.2 1822 0.1 11.2 1821 0 0.1 10.3 1646 19 2.3 21.4 1421 889 115675 10.2 1609 0.1 9.9 1570 0 0.1 9.1 1405 21 2.6 19.7 1232 975 116700 7.9 1214 0.1 7.9 1210 0 0.1 7.5 1116 23 3 16.6 969 1071 117725 6.1 910 0.1 6.1 904 0 0.1 5.7 820 25 3.5 13.3 728 1169 11855
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Table 2.7: DP versus BDR-DP(i) for i = 3 and i = 4 on uniform 3-cnfs with 200variables, 900 to 1400 clauses, and with positive literal probability p = 0:7. Each rowpresents mean values on 20 experiments.Num DP BDR-DP(3) BDR-DP(4)of Time Dead BDR DP Dead New BDR DP Dead Newcls ends time time ends cls time time ends cls900 1.1 0 0.3 1.1 0 11 8.4 1.7 1 6571000 2.7 48 0.4 1.6 14 12 13.1 2.7 21 8881100 8.8 199 0.6 27.7 685 18 20.0 50.4 729 11841200 160.2 3688 0.8 141.5 3271 23 28.6 225.7 2711 15121300 235.3 5027 1.0 219.1 4682 28 39.7 374.4 4000 18951400 155.0 3040 1.2 142.9 2783 34 54.4 259.0 2330 2332
Table 2.8: DP versus BDR-DP(3) on uniform random 3-cnfs with p = 0:5 at thephase-transition point (C/N=4.3): 150 variables and 645 clauses, 200 variables and860 clauses, 250 variables and 1075 clauses. The induced width w�o was computed forthe min-width ordering. The results in the �rst two rows summarize 100 experiments,while the last row represents 40 experiments.< vars; cls > DP BDR-DP(3) w�oTime Dead BDR DP Dead Newends time time ends cls< 150; 650> 11.2 1822 0.1 10.3 1646 19 115< 200; 860> 81.3 15784 0.1 72.9 14225 18 190< 250; 1075> 750 115181 0.1 668.8 102445 19 109457



classes (see Figure 2.21a). It is slightly faster than DP and BDR-DP(2) (BDR-DP(2)coincides with DP on this problem set) and signi�cantly faster than BDR-DP(4).Table 2.6 shows that BDR(3) takes only 0.1 second on average, while BDR(4) takesup to 3.5 seconds and indeed generates many more clauses. Observe also that DPis slightly faster when applied after BDR(3). Interestingly, for i = 4 the time ofDP almost doubles although fewer deadends are encountered. For example, in Table2.6, for the problem set with 650 clauses, DP takes on average 11.2 seconds butafter preprocessing by BDR(4) it takes 21.4 seconds. This can be explained by thesigni�cant increase in the number of clauses that need to be consulted by DP. Thus, asi increases beyond 3, DP's performance is likely to worsen while at the same time thecomplexity of preprocessing grows exponentially in i. Table 2.7 presents additionalresults for problems having 200 variables where p = 0:7 8.Finally, we observe that the e�ect of BDR(3) is proportional to the theory size.In Table 2.8 we compare the results for three classes of uniform 3-cnf problems inthe phase transition region. While this improvement was marginal for 150-variableproblems (from 11.2 seconds for DP to 10.3 seconds for BDR-DP(3)), it was morepronounced on 200-variable problems (from 81.3 to 72.9 seconds), and on 250-variableproblems (from 929.9 to 830.5 seconds). In all those cases the average speed-up isabout 10%.Our tentative empirical conclusion is that i = 3 is the optimal parameter forBDR-DP(i) on uniform random 3-cnfs.Performance on chains and (k,m)-treesThe experiments with chains showed that BDR-DP(3) easily solved almost all in-stances that were hard for DP. In fact, the performance of BDR-DP(3) on chains wascomparable to that of DR and backjumping (see Figure 2.17b).8Note that the average decrease in the number of deadends is not always monotonic: for problemshaving 1000 clauses, DP has an average of 48 deadends, BDR-DP(3) yields 14 deadends, but BDR-DP(4) yields 21 deadends. This may occur because DP uses dynamic variable ordering.58
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Table 2.10: Tableau, DP, DR, and BDR-DP(i) for i=3 and 4 on the Second DIMACSChallenge benchmarks. The experiments were performed on Sun Sparc 5 workstation.Problem Tableau DP Dead DR BDR-DP(3) BDR-DP(4)time time ends time time Dead New time Dead New w�ends cls ends clsaim-100-2 0-no-1 2148 >8988 > 108 * 0.9 5 26 0.60 0 721 54dubois20 270 3589 3145727 0.2 349 262143 30 0.2 0 360 4dubois21 559 7531 6291455 0.2 1379 1048575 20 0.2 0 390 4ssa0432-003 12 45 4787 4 132 8749 950 40 1902 1551 19bf0432-007 489 8688 454365 * 46370 677083 10084 * * * 131i = 3; 4; and 5 provide the best performance.BDR-DP(i), DP, DR, and Tableau on DIMACS benchmarksWe tested DP, Tableau, DR and BDR-DP(i) for i=3 and i=4 on the benchmarkproblems from the Second DIMACS Challenge. The results presented in Table 2.10are quite interesting: while all benchmark problems were relatively hard for both DPand Tableau, some of them had very low w� and were solved by DR in less thana second (e.g., dubois20 and dubois21). On the other hand, problems having highinduced width, such as aim-100-2 0-no-1 (w� = 54) and bf0432-007 (w� = 131) wereintractable for DR, as expected. Algorithm BDR-DP(i) was often better than both\pure" DP and DR. For example, solving the benchmark aim-100-2 0-no-1 took morethan 2000 seconds for Tableau, more than 8000 seconds for DP, and DR ran out ofmemory, while BDR-DP(3) took only 0.9 seconds and reduced the number of DPdeadends from more than 108 to 5. Moreover, preprocessing by BDR(4), which tookonly 0.6 seconds, made the problem backtrack-free. Note that the induced width ofthis problem is relatively high (w� = 54). Interestingly, for some DIMACS problems(e.g., ssa0432-003 and bf0432-007) preprocessing by BDR(3) actually worsened theperformance of DP. Similar phenomenon was observed in some rare cases for (k,m)-trees (Figure 2.22).In summary,BDR-DP(i) with intermediate values of i is overall more cost-e�ective62



than both DP and DR. On unstructured random uniform 3-cnfs BDR-DP(3) is com-parable to DP, on low-w� chains it is comparable to DR, and on intermediate-w�(k,m)-trees, BDR-DP(i) for i = 3; 4; 5 outperforms both DR and DP. We believe thatthe transition from i=3 to i=4 on uniform problems is too sharp, and that interme-diate levels of preprocessing may provide a more re�ned trade-o�.2.7.3 Algorithm DCDR(b)
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The description of the hybrid algorithms uses a new notation introduced below.An instantiation of a set of variables C � X is denoted I(C). The theory ' condi-tioned on the assignment I(C) is called a conditional theory of ' relative to I(C), andis denoted as 'I(C). The e�ect of conditioning on C is deletion of variables in C fromthe interaction graph. Therefore the conditional interaction graph of ' with respectto I(C), denoted G('I(C)), is obtained from the interaction graph of ' by deletingthe nodes in C (and all their incident edges). The conditional width and conditionalinduced width of a theory ' relative to I(C), denoted wI(C) and w�I(C), respectively,are the width and induced width of the interaction graph G('I(C)).For example, Figure 2.25 shows the interaction graph of theory ' = f(:C _ E);(A _ B _ C); (:A _ B _ E); (:B _ C _D)g along the ordering o = (E;D; C;B;A)having width and induced width 4. Conditioning on A yields two conditional theories:'A=0 = f(:C _ E); (B _ C); (:B _ C _ D)g, and 'A=1 = f(:C _ E); (B _ E);(:B _ C _D)g. The ordered interaction graphs of 'A=0 and 'A=1 are also shown inFigure 2.25. Clearly, wo(B) = w�o(B) = 2 for theory 'A=0, and wo(B) = w�o(B) =3 for theory 'A=1. Note that, besides deleting A and its incident edges from theinteraction graph, an assignment may also delete some other edges (e.g., A = 0removes the edge between B and E because the clause (:A_B_E) becomes satis�ed).The conditioning variables can be selected in advance (\statically"), or duringthe algorithm's execution (\dynamically"). In our experiments, we focused on thedynamic versionDynamic Conditioning + DR (DCDR) that was superior to the staticone.Algorithm DCDR(b) guarantees that the induced width of variables that are re-solved upon is bounded by b. Given a consistent partial assignment I(C) to a set ofvariables C, the algorithm performs resolution over the remaining variables havingw�I(C) < b. If there are no such variables, the algorithm selects a variable and attemptsto assign it a value consistent with I(C). The idea of DCDR(b) is demonstrated inFigure 2.26 for the theory ' = f(:C _ E); (A _ B _ C _ D); (:A _ B _ E _ D);64
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(conditional) interaction graph are now 2 or less, we can proceed with resolution.We select B, perform resolution in its bucket, and record the resolvent (C _ D)in bucketC. The resolution in bucketC creates clause (D _ E). At this point, thealgorithm terminates, returning the assignmentA = 0, and the conditional directionalextension '^ (B _ C _D)^ (C _D)^ (D _ E).The alternative branch of A = 1 results in the conditional theory f(B _ E _D);(:B _ C _D); (:C _E)g. Since each variable is connected to three other variables,no resolution is possible. Conditioning on B yields the conditional theory f(E _D);(:C_E)g when B = 0, and the conditional theory f(C_D); (:C_E)g when B = 1.In both cases, the algorithm terminates, returning A = 1, the assignment to B, andthe corresponding conditional directional extension.Algorithm DCDR(b) (Figure 2.27) takes as an input a propositional theory 'and a parameter b bounding the size of resolvents. Unit propagation is performed�rst (lines 1-2). If no inconsistency is discovered, DCDR proceeds to its primaryactivity: choosing between resolution and conditioning. While there is a variable Qconnected to at most b other variables in the current interaction graph conditioned onthe current assignment, DCDR resolves upon Q (steps 4-9). Otherwise, it selects anunassigned variable (step 10), adds it to the cutset (step 11), and continues recursivelywith the conditional theory ' ^ :Q. An unassigned variable is selected using thesame dynamic variable ordering heuristic that is used by DP. Should the theoryprove inconsistent the algorithm switches to the conditional theory ' ^ Q. If bothpositive and negative assignments to Q are inconsistent the algorithm backtracks tothe previously assigned variable. It returns to the previous level of recursion andthe corresponding state of ', discarding all resolvents added to ' after the previousassignment was made. If the algorithm does not �nd any consistent partial assignmentit decides that the theory is inconsistent and returns an empty cutset and an emptydirectional extension. Otherwise, it returns an assignment I(C) to the cutset C,and the conditional directional extension Eo('I(C)) where o is the variable orderingdynamically constructed by the algorithm. Clearly, the conditional induced width66



DCDR(', X, b)Input: A cnf theory ' over variables X ; a bound b.Output: A decision of whether ' is satis�able. If it is, an assignment I(C) to itsconditioning variables, and the conditional directional extension Eo('I(C)).1. if unit propagate(') = false, return(false);2. else X  X � f variables in unit clauses g3. if no more variables to process, return true;4. else while 9Q 2 X s.t. degree(Q) � b in the current graph5. resolve over Q6. if no empty clause is generated,7. add all resolvents to the theory8. else return false9. X  X � fQg10. Select a variable Q 2 X ; X  X � fQg11. C  C [ fQg;12. return( DCDR(' ^ :Q, X , b) _DCDR(' ^ Q, X , b) ).Figure 2.27: Algorithm DCDR(b).w�I(C) of ''s interaction graph with respect to o and to the assignment I(C) is boundedby b.Theorem 9: (DCDR(b) soundness and completeness) Algorithm DCDR(b) is soundand complete for satis�ability. If a theory ' is satis�able, any model of ' consistentwith the output assignment I(C) can be generated backtrack-free in O(jEo('I(C))j)time where o is the ordering computed dynamically by DCDR(b). 2Theorem 10: (DCDR(b) complexity) The time complexity of algorithm DCDR(b)is O(n2��b+jCj), where C is the largest cutset ever conditioned upon by the algorithm,and � � log29. The space complexity is O(n � 2��b). 2The parameter b can be used to control the trade-o� between search and resolution.If b � w�o('), where o is the ordering used by DCDR(b), the algorithm coincides with67



DR having time and space complexity exponential in w�('). It is easy to show thatthe ordering generated by DCDR(b) in case of no conditioning yields a min-degreeordering. Thus, given b and a min-degree ordering o, we are guaranteed that DCDR(b)coincides with DR if w�o � b. If b < 0, the algorithm coincides with DP. Intermediatevalues of b allow trading space for time. As b increases, the algorithm requires morespace and less time (see also [25]). However, there is no guaranteed worst-case timeimprovement over DR. It was shown [7] that the size of the smallest cycle-cutset C (aset of nodes that breaks all cycles in the interaction graph, leaving a tree, or a forest),and the smallest induced width, w�, obey the relation jCj � w� � 1. Therefore, forb = 1, and for a corresponding cutset Cb, � � b+ jCbj � w� + � � 1 � w�, where theleft side of this inequality is the exponent that determines complexity of DCDR(b)(Theorem 10). In practice, however, backtracking search rarely demonstrates itsworst-case performance and thus the average complexity of DCDR(b) is superior toits worst-case bound as will be con�rmed by our experiments.Algorithm DCDR(b) uses the 2-literal-clause ordering heuristic for selecting con-ditioning variables as used by DP. Random tie-breaking is used for selecting theresolution variables.2.7.4 Empirical evaluation of DCDR(b)We evaluated the performance of DCDR(b) as a function of b. We tested probleminstances in the 50%-satis�able region (the phase transition region). The results fordi�erent b and three di�erent problem structures are summarized in Figures 2.28-2.30. Figure 2.28(a) presents the results for uniform 3-cnfs having 100 variables and400 clauses. Figures 2.28(b) and 2.28(c) focus on (4; 5)-trees and on (4; 8)-trees,respectively. We plotted the average time, the number of dead-ends, and the numberof new clauses generated as functions of the bound b (we plot both the total numberof generated clauses and the number of clauses actually added to the output theoryexcluding tautologies and subsumed clauses).68
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As expected, the performance of DCDR(b) depends on the induced width of thetheories. We observed three di�erent patterns:� On problems having large w�, such as uniform 3-cnfs in the phase-transitionregion (see Figure 2.28), the time complexity of DCDR(b) is similar to DPwhen b is small. However, when b increases, the CPU time grows exponentially.Apparently, the decline in the number of dead ends is too slow relative to theexponential (in b) growth in the total number of generated clauses. However, thenumber of new clauses actually added to the theory grows slowly. Consequently,the �nal conditional directional extensions have manageable sizes. We obtainedsimilar results when experimenting with uniform theories having 150 variablesand 640 clauses.� Since DR is equivalent to DCDR(b) whenever b is equal or greater then w�, fortheories having small induced width, DCDR(b) indeed coincides with DR evenfor small values of b. Figure 2.28(b) demonstrates this behavior on (4,5)-treeswith 40 cliques, 15 clauses per clique, and induced width 6. For b � 8, the time,the total number of clauses generated, as well as the number of new clausesadded to the theory, do not change. With small values of b (b = 0; 1; 2; 3), thee�ciency of DCDR(b) was sometimes worse than that of DCDR(-1), which isequivalent to DP, due to the overhead incurred by extra clause generation (amore accurate explanation is still required).� On (k;m)-trees having larger size of cliques (Figure 2.28(c)), intermediate val-ues of b yielded a better performance than both extremes. DCDR(-1) is stilline�cient on structured problems while large induced width made pure DRtoo costly time- and space-wise. For (4,8)-trees, the optimal values of b appearbetween 5 and 8.Figure 2.29 summarizes the results for DCDR(-1), DCDR(5), and DCDR(13) onthe three classes of problems. The intermediate bound b=5 seems to be overall morecost-e�ective than both extremes, b= -1 and b=13.70
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proposed in [55] computes k-closure (namely, it applies k-limited resolution iterativelyand eliminates subsumed clauses) between branching steps in DP-backtracking. Thisalgorithm, augmented with several branching heuristics, was tested for k=2 (thecombination called 2cl algorithm), and demonstrated its superiority to DP, especiallyon larger problems. Algorithm DCDR(b) computes a subset of b-closure between itsbranching steps 10. In this chapter, we study the impact of b on the e�ectiveness ofhybrid algorithms over di�erent problem structures, rather than focus on a �xed b.2.9 Summary and conclusionsThe chapter compares two popular approaches to solving propositional satis�ability,backtracking search and resolution, and proposes two parameterized hybrid algo-rithms. We analyze the complexity of the original resolution-based Davis-Putnamalgorithm, called here directional resolution (DR)), as a function of the inducedwidth of the theory's interaction graph. Another parameter called diversity pro-vides an additional re�nement for tractable classes. Our empirical studies con�rmprevious results showing that on uniform random problems DR is indeed very ine�-cient. However, on structured problems such as k-tree embeddings, having boundedinduced width, directional resolution outperforms the popular backtracking-basedDavis-Putnam-Logemann-Loveland Procedure (DP).The two parameterized hybrid schemes, BDR-DP(i) and DCDR(b), allow a exiblecombination of backtracking search with directional resolution. Both schemes use aparameter that bounds the size of the resolvents recorded. The �rst scheme, BDR-DP(i), uses bounded directional resolution BDR(i) as a preprocessing step, recordingonly new clauses of size i or less. The e�ect of the bound was studied empirically over10DCDR(b) performs resolution on variables that are connected to at most b other variables;therefore, the size of resolvents is bounded b. It does not, however, resolve over the variables havingdegree higher than b in the conditional interaction graph, although such resolutions can sometimesproduce clauses of size not larger than b. 73



both uniform and structured problems, observing that BDR-DP(i) frequently achievesits optimal performance for intermediate levels of i, outperforming both DR and DP.We also believe that the transition from i=3 to i=4 is too sharp and that intermediatelevels of preprocessing are likely to provide even better trade-o�. Encouraging resultsare obtained for BDR-DP(i) on DIMACS benchmark, where the hybrid algorithmeasily solves some of the problems that were hard both for DR and DP.The second hybrid scheme uses bounded resolution during search. Given a boundb, algorithm DCDR(b) instantiates a dynamically selected subset of conditioning vari-ables such that the induced width of the resulting (conditional) theory and thereforethe size of the resolvents recorded does not exceed b. When b � 0, DCDR(b)coincides with DP, while for b � w�o (on the resulting ordering o) it coincides withdirectional resolution. For intermediate b, DCDR(b) was shown to outperform bothextremes on intermediate-w� problem classes.For both schemes selecting the bound on the resolvent size allows a exible schemethat can be adapted to the problem structure and to computational resources. Ourcurrent \rule of thumb" for DCDR(b) is to use small b when w� is large, relying onsearch, large b when w� is small, exploiting resolution, and some intermediate boundfor intermediate w�. Additional experiments are necessary to further demonstratethe spectrum of optimal hybrids relative to problem structures.
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Chapter 3Exploiting Causal Independence3.1 IntroductionBelief networks 1 are a powerful and convenient tool for probabilistic reasoning, suc-cessfully used in many practical applications, including medical diagnosis, hardwaretroubleshooting, and noisy-channel communication. However, (exact) reasoning inbelief networks is known to be NP-hard [13]. Commonly used structure-exploiting al-gorithms such as join-tree propagation [75, 68, 105] and variable elimination [114, 23]are time and space exponential in the network parameter known as induced width(the size of largest clique induced by the above inference algorithms). The inducedwidth is often large, especially in networks with large families (a family is a groupof nodes that participate in the same conditional probability table, or CPT). EvenCPT speci�cation, which is exponential in the family size, may be intractable in suchnetworks. One way to cope with this problem is to make structural assumptions thatsimplify the CPT speci�cation. In this chapter, we focus on an assumption known ascausal independence [63, 111, 114], where multiple causes contribute independentlyto a common e�ect. The causal-independence assumption is commonly used in largepractical networks, such as CPCS and QMR-DT networks for medical diagnosis [90].1Also known as Bayesian networks, causal networks, or graphical models.75



The causal-independence assumption simpli�es CPT speci�cation from exponen-tial to linear in family size. However, the question is to what extent it is possibleto maintain such concise representation during inference. Some computational bene-�ts of causal independence have already been demonstrated by previously proposedapproaches that include network transformations [63, 84], the variable-eliminationalgorithm VE1 [114], and the algorithm Quickscore for a special class of two-layernoisy-OR (BN2O) networks. Our work extends the existing approaches in severalways.� We provide the connection between the network transformations and algorithmVE1, which can be viewed as variable-elimination inference applied to a trans-formed network subject to some variable ordering restrictions. We show thatthe ordering restrictions imposed by VE1 may sometimes lead to a unnecessarycomplexity increase, and describe a general variable-elimination scheme, calledci-elim-bel, that improves VE1 by accommodating any variable ordering.� We investigate the impact of causal independence on �nding a most probableexplanation (MPE), �nding a maximum a posteriori hypothesis (MAP), and�nding a maximum expected utility (MEU) decision. We show that, whilecausal independence can signi�cantly reduce the complexity of belief updatingand �nding MAP and MEU, it is generally not e�ective for MPE. Finally,we outline the algorithms for �nding MAP and MEU in causally-independentnetworks.� The complexity of the above algorithms is analyzed using the notion of theinduced width of the transformed network (called the e�ective induced width).We demonstrate that, when a proper variable ordering is used, the e�ectiveinduced width is never larger than the induced width of the moral graph of theoriginal network (the graph where the parents in each family are connected),and can be as small as the induced width of the original (unmoralized) directedacyclic graph. For example, exploiting causal independence in polytrees with76



families of size m reduces the induced width from m to 2. An advantage of thegraph-based complexity analysis is that the anticipated computational bene�tsof exploiting causal independence can be evaluated in advance and comparedwith those of general-purpose algorithms.� Finally, we show that causal independence allows a more e�cient propaga-tion of evidence. A causally-independent network can be transformed into onethat combines probabilistic and deterministic relations. Constraint-propagationtechniques, such as relational arc-consistency, can propagate evidence and sim-plify subsequent probabilistic inference. We present an evidence-propagationscheme for causally-independent networks generalizing the property of noisy-OR: observing a particular value of one variable, such as z = 0 in z = x _ y,allows to deduce value assignments to some other variables. Subsequently, wepresent an algorithm for arbitrary noisy-OR networks that uses evidence prop-agation and generalizes the Quickscore algorithm [60].This chapter is organized as follows. Sections 3.2 and 3.3 provide background onprobabilistic inference and on causal independence. Section 3.4 introduces the notionof transformed networks, while Section 3.5 focuses on belief updating using trans-formed networks. Subsection 3.5.1 analyzes the computational bene�ts of exploitingcausal independence, while subsection 3.5.2 shows the relation between network trans-formations and algorithm VE1. Section 3.6 extends the analysis to the tasks of �ndingMPE, MAP and MEU. Evidence propagation in causally-independent networks is dis-cussed in Section 3.7. Section 3.8 concludes this chapter. Proofs of some theoremscan be found in Appendix B.3.2 Inference in belief networks: an overviewThis section provides a background on belief networks, probabilistic tasks and infer-ence algorithms, focusing on the bucket-elimination approach [23].77



A belief network is a directed acyclic graph, where the nodes represent randomvariables and the edges denote probabilistic dependencies among those variables,quanti�ed by conditional probabilities. A formal de�nition is given after introducingsome basic notation and terminology.A directed graph is a pair G = fV;Eg, where V = fX1; :::;Xng is a set of nodesand E = f(Xi;Xj)jXi;Xj 2 V; i 6= jg is a set of edges. Two nodes Xi and Xj arecalled neighbors if there is an edge between them (either (Xi;Xj) or (Xj;Xi)). Wesay that Xi points to Xj if (Xi;Xj) 2 E; Xi is called a parent of Xj, while Xj is calleda child of Xi. The set of parent nodes of Xi is denoted pa(Xi), or pai, while the set ofchild nodes of Xi is denoted ch(Xi), or chi. We call a node and its parents a family.A directed graph is acyclic if it has no directed cycles. In an undirected graph, thedirections of the edges are ignored: (Xi;Xj) and (Xj ;Xi) are identical. A directedgraph is singly-connected (also known as a polytree), if its underlying undirected graph(called skeleton graph) has no (undirected) cycles. Otherwise, it is called multiply-connected. A directed ordered graph is a pair (G; o), where G is a directed graph ando is an ordering of its variables, o = (X1; :::;Xn). Given a subgraph G0 = fV 0; E0g ofG, where V 0 � V , the ordering o0 of G0 obtained by deleting Xi 62 V 0 from o is calledthe restriction of o to G0 (we also say that o0 agrees with o on the set of nodes V 0).Let X = fX1; :::;Xng be a set of random variables having domains D1; :::;Dn,respectively. A belief network is a pair (G;P ), where G = (X;E) is a directed acyclicgraph representing the variables as nodes and P = fP (xijpai)ji = 1; :::; ng is the setof conditional probabilities de�ned for each variable Xi and its parents pai in G. Abelief network represents a joint probability distribution over X having the productform P (x1; ::::; xn) = �ni=1P (xijpai): (3.1)where x stnads for value of X (when there is no confusion, the lower-case letters willsometimes denote variables as well).The moral graph GM of a belief network (G;P ) is obtained by connecting allthe parents of each node and dropping the directionality of edges. The original78
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(a) (b)Figure 3.1: (a) a belief network representing the joint probability distribution P (g;f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a), and (b) its moral graph.directed acyclic graph G will be also called unmoral graph. We will use the terms\moral" (\unmoral") graph and \moral" (\unmoral") network interchangeably. Anevidence e = Sj(Xj = dj), where dj 2 Dj , is an instantiated subset of variables. Wedenote variables by upper-case letters, and use lower-case letters for the correspondingdomain values.Example 6: Consider the belief network that representsP (g; f; d; c; b; a) = P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a):Its acyclic directed graph is shown in Figure 3.1a, and the corresponding moral graphis shown in Figure 3.1b. In this case, for example, pa(F ) = fB;Cg, pa(B) = fAg,pa(A) = ;, ch(A) = fB;D;Cg.The following reasoning tasks are de�ned over belief networks:1. belief updating, i.e. �nding the posterior probability P (Y je) of query nodesY � X given evidence e (this task is often referred to as probabilistic inference);2. �nding a most probable explanation (MPE), i.e. �nding a maximum probabilityassignment to unobserved variables given evidence;79



3. �nding maximum a posteriori hypothesis (MAP), i.e. �nding a maximum prob-ability assignment to a subset of hypothesis variables given evidence;4. given a utility function, �nding the maximum expected utility (MEU) decision,namely, �nding an assignment to a set of decision nodes that maximizes theexpected utility.All these tasks are known to be NP-hard [13]. However, there exists a polyno-mial propagation algorithm for singly-connected networks [88]. The two commonapproaches to extending this algorithm to exact inference in multiply-connected net-works are the cycle-cutset approach, also called conditioning, and join-tree clustering[88, 76, 103]. Join-tree clustering is closely related to the variable-elimination ap-proach [17, 114, 23]. We focus here on a general variable-elimination scheme calledbucket-elimination [23] that allows a unifying approach to various reasoning tasks.3.2.1 The bucket-elimination schemeA bucket-elimination algorithm accepts as an input an ordered set of variables and aset of functions, such as propositional clauses, constraints, or conditional probabilityfunctions. Each variable is associated with a bucket. All functions de�ned on variableXi and on lower-index variables are placed in the bucket of Xi. Bucket-eliminationprocesses each bucket, from last to �rst, applying an elimination operator whicheliminates the bucket's variable and computes a new function that summarizes thee�ect of this variable on the rest of the problem. The new function is placed in anappropriate lower bucket. Some elimination operators are de�ned below:De�nition 5: Given a function h de�ned over subset of variables S, where X 2S, the functions (minX h), (maxX h), (meanXh), and (PX h) are de�ned over U =S � fXg as follows. For every U = u, (minX h)(u) = minx h(u; x), (maxX h)(u) =maxx h(u; x), (PX h)(u) = Px h(u; x), and (meanXh)(u) = Px h(u;x)jX j , where jXj isthe cardinality of X's domain. Given a set of functions h1; :::; hj de�ned over the80



subsets S1; :::; Sj, the product function (�jhj) and PJ hj are de�ned over U = [jSj.For every u 2 U , (�jhj)(u) = �jhj(uSj), and (Pj hj)(u) = Pj hj(uSj ).Next, we review the bucket-elimination algorithms for belief updating and for�nding the MPE [23]. Without loss of generality, consider the task of updating thebelief in X1. Given a belief network (G;P ), and a variable ordering o = (X1; :::;Xn),the belief P (x1je) is de�ned as:P (x1je) = P (x1; e)P (e) = �P (x1; e) = � XX=fX1gYi P (xijpai) = �Xx2 : : :Xxn Yi P (xijpai);(3.2)where � is a normalizing constant. By the distributivity law,Xx2 : : :Xxn Yi P (xijpai) = F1Xx2 F2 : : :Xxn Fn; (3.3)where each Fi = Qx P (xjpa(x)) is the product of all probabilistic components de�nedon Xi and not de�ned on any variable Xj for j > i. The set of all such components isinitially placed in the bucket of Xi (denoted bucketi). Algorithm elim-bel [23] shownin Figure 3.2 computes the sums in the equation (3.3) sequentially from right toleft, eliminating variables from Xn to X1. For each Xi, the algorithm multiplies thecomponents of bucketi, then sums over Xi, and puts the resulting function in thebucket of its highest-index variable. If Xi is observed (Xi = a), then Xi is replacedby a independently in each of the bucket's components, and each result is placed in itshighest-variable buckets. The following example illustrates elim-bel on the networkin Figure 3.3a.Example 7: Given the belief network in Figure 3.3, the ordering o = (A;E;D;C;B),and evidence E = 0, Bel(a) = P (ajE = 0) = �P (a;E = 0) is computed as follows:P (a;E = 0) = XE=0;d;c;bP (a; b; d; c; e) = XE=0;d;c;bP (a)P (cja)P (ejb; c)P (dja; b)P (bja) =P (a)XE=0Xd Xc P (cja)Xb P (ejb; c)P (dja; b)P (bja):81



Algorithm elim-bel(BN,o,e)Input: A belief network BN = (G;P ), ordering o, evidence e.Output: P (x1je), the belief in X1 given evidence e.1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, wherebucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hiand put the result in its highest-variable bucket.� Else compute hp =PXp �ti=1hiand place hp in its highest-variable bucket.3. Return Bel(x1) = �P (x1) ��ihi(x1),where each hi is in bucket1 and � is a normalizing constant.(a) Algorithm elim-bel.
E

h 

E = 0 h D

h C

h B

B

A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

P(e|b,c) P(b|a)P(d|a,b)

P(c|a)

P(a)

(a,e)

(a)

(a,d,c,e)

(a,d,e)

P(A|E=0)(b) A trace of elim-bel.Figure 3.2: (a) Algorithm elim-bel and (b) an example of the algorithm's execution.82



E
D

B

A

C

P(d|b,a)

P(e|b,c)

P(b|a) P(c|a)

P(a)
B

C

D

E

A A

B

C

D

E

(a) (b) (c)Figure 3.3: (a) A belief network, (b) its induced graph along o = (A;E;D;C;B), and(c) its induced graph along o = (A;B;C;D;E).Using bucket elimination, we get:1. bucket B: hB(a; d; c; e) = Pb P (ejb; c)P (dja; b)P (bja)2. bucket C: hC(a; d; e) = Pc P (cja)hB(a; d; c; e)3. bucket D: hD(a; e) = Pd hC(a; d; e)4. bucket E: hE(a) = hd(a;E = 0)5. bucket A: Bel(a) = P (ajE = 0) = �P (a)hE(a);where � is a normalizing constant. Figure 3.2(b) shows a schematic trace of thealgorithm.Note that the elimination procedure can be simpli�ed by processing evidencenodes �rst, thus placing them last in the ordering. In example 7, placing E last inthe ordering yields:1. bucket E: hE(b; c) = P (e = 0jb; c)2. bucket B: hB(a; d; c) =Pb hE(b; c)P (dja; b)P (bja)3. bucket C: hC(a; d) =Pc P (cja)hB(a; d; c)4. bucket D: hD(a) = Pd hC(a; d)5. bucket A: Bel(a) = P (ajE = 0) = �P (a)hE(a);83



Algorithm elim-mpe(BN,o,e)Input: A belief network BN = (G;P ), ordering o, evidence e.Output: An MPE assignment.1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, wherebucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hiand put the result in its highest-variable bucket.� Else compute hp = maxxp �ti=1hi,xoptp = argmaxxp �ti=1hi,and place hp in its highest-variable bucket.3. Forward: for p = 1 to n,given X1 = xopt1 ; :::; Xp�1 = xoptp�1, assign xoptp to Xp.4. Return the assignment xopt = (xopt1 ; :::; xoptn ).Figure 3.4: Algorithm elim-mpe.Eliminating an evidence variable is equivalent to replacing this variable by itsobserved value in all relevant probabilistic components. This simpli�es computation,and corresponds to removing the evidence node from the moral network. From nowon, we always assume that evidence nodes are eliminated �rst, and refer to the variableordering of the remaining network.Similar bucket-elimination algorithms were derived for the tasks of �nding MPE,MAP, and MEU [23]. Given a belief network (G;P ), and given a variable orderingo = (X1; :::;Xn), the MPE task is to �ndMPE = maxx1 : : :maxxn Yi P (xijpai): (3.4)Using the product form of the joint probability distribution, we move maximizationover each variable as far to the right as possible:MPE = maxx1 F1 : : :maxxn�1 Fn�1maxxn Fn: (3.5)84



This leads to the bucket-elimination algorithm elim-mpe [23] (see Figure 3.4), which isquite similar to elim-bel, except that maximization is replaced by summation. Bucket-elimination algorithms elim-map and elim-meu for �nding MAP and MEU, respec-tively, are presented in [23].An important property of bucket-elimination algorithms is that their performancecan be predicted using a graph parameter called induced width [33] (also known astree-width [2]), which describes the largest clique created in the problem's graph andcorresponds to the largest function recorded by the algorithm. Formally, the inducedwidth is de�ned as follows. Given a (directed or undirected) graph G, the width ofXi along ordering o is the number of Xi's neighbors preceding Xi in o. The widthof the graph along o, denoted wo, is the maximum width along o. The induced graphof G along o is obtained by connecting the preceding neighbors of each Xi, goingfrom i = n to i = 1. The induced width along o, denoted w�o, is the width of theinduced graph along o, while the induced width w� is the minimum induced widthalong any ordering. For example, Figures 3.3b and 3.3c depict the induced graphs(induced edges are shown as dashed lines) of the moral graph in Figure 3.3a alongthe orderings o = (A;E;D; C;B) and o0 = (A;B; C;D;E), respectively. We getw�o = 4 and w�o0 = 2. It can be shown that the induced width of node Xi bounds thenumber of arguments of any function computed in bucketi. Therefore, the complexityof bucket-elimination algorithms is time and space exponential in w�. Note, that weassume that evidence nodes are eliminated from the moral graph before computingits induced width. Assuming �nite domains of size not greater than d,Theorem 11: [23] The complexity of bucket-elimination algorithms is O(ndw�o+1),where n is the number of variables in a belief network, and w�o is the induced width ofthe moral graph along ordering o after all evidence nodes are removed.The induced width will vary depending on the variable ordering. Although �ndinga minimum-w� ordering is NP-hard [2], good heuristic algorithms are available [7, 22,97]. For more details on bucket-elimination and induced width see [23, 27].85



Note that the induced width cannot be lower than jF j� 1 where jF j is the size oflargest family in the network. The next section introduces a simplifying assumptionabout CPTs called causal independence that allows decomposing large families intosmaller ones.3.3 The causal independence assumptionThe speci�cation of the conditional probability tables (CPTs) is exponential in thefamily size which may be sometimes prohibitively large. For example, dozens ofdi�erent diseases may cause the same symptom, such as fever. In such cases, sim-plifying assumptions about the nature of the probabilistic dependencies should bemade. This chapter will focus on the causal independence assumption often used inreal-life applications, such as medical-diagnosis CPCS and QMR-DT networks [90].Causal independence assumes that several causes contribute independently to acommon e�ect. Consider the following example inspired by [89]. A burglary alarmcan be turned on by one of possible causes, such as a burglary, an earthquake, orsomething else. A belief network describing this situation is shown in Figure 3.5a,where the \e�ect" node e stands for the state of the alarm (on or o�), while the nodesc1, c2,...,cn represent possible causes, such as burglary or earthquake. Speci�cation ofthe full CPT, namely, the probability of alarm given every combination of its parents'values, would be intractable for large n. Moreover, it is generally di�cult to assesssuch joint probabilities from the causal mechanisms that are unrelated to each other(belong to di�erent \frames of knowledge" [89]). For example, the probability of thealarm not turning on in the case of a burglary depends on the burglar's skills, whichare unrelated to earthquakes. It is more natural to specify separately the probabilityof alarm given burglary, and the probability of alarm given earthquake. How shouldwe combine those two? Assume there were no uncertainty, and the alarm wouldalways turn on if either a burglary, or an earthquake, or any of the other speci�ed86
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(a) (b) (c)Figure 3.5: (a) a causally-independent family, (b) its dependence graph, and (c) itsbinary-tree transformation.causes occurred. Then we could use a simple disjunctive modelc1 _ c2 _ ::: _ cn ! e:However, in real-life, the alarm may not always turn on in the presence of one ormore causes, since it may be broken, or a burglar may be smart, or some other hiddeninhibiting mechanism [89] may be present. Those hidden mechanisms can be modeledby adding hidden variables to the network, as described below, thus transforming thelogical-OR into the noisy-OR [72].Several generalizations of noisy-OR model were proposed in [111, 61, 62] and sum-marized in [63] under the collective name causal independence (CI). Most generally,causal independence assumes that a probabilistic relation between a set of causesc1; :::; cn and an e�ect e can be decomposed into a \noisy transformation" of eachcause ci into a hidden variable ui, and a deterministic function e = g(u1; :::; un).Such structure can be captured by a dependence graph depicting the hidden variablesexplicitly (see Figure 3.5b).A special kind of causal independence, called decomposable causal independence[63], implies that the function g(u1; :::; un) can be decomposed into a series of binaryfunctions. Following [114], we assume that g(u1; :::; un) = u1 � ::: � un, where �is a commutative and associative binary operator (e.g., logical OR, logical AND,87



addition). This class of causally-independent relations includes several commonlyused models, such as noisy-OR, noisy-MAX, noisy-AND, and noisy-adder (e.g., linear-Gaussian model). From now on, we assume decomposable causal independence callingit simply \causal independence". Formally,De�nition 6: [114] Let c1; :::; cm be the parents of e in a belief network. Thevariables c1; :::; cm are said to be causally-independent w.r.t. e (called convergentvariable) if there exists a set of random variables ue1; :::; uem (called hidden variables), aset of conditional probability functions f(uei ; ci) = P (uei jci), and a binary commutativeand associative operator � such that1. for each i, uei is independent of any of cj and uej, i 6= j, given ci, i.e.P (uei jc1; :::; cn; ue1; :::; uem) = P (uei jci); and2. e = ue1 � : : : � uem:The family e; c1; :::; cm will be called a causally-independent family. If all thefamilies in a belief network are causally-independent, then the network will be calleda causally-independent belief network (CI-network). A causally-independent networkBN = (G;P ) over the set of random variablesX is de�ned by a directed acyclic graphG (where the nodes correspond to variables in X) a set of functions P = PCI [Ppriorsover X [ U , where U is the set of hidden variables, PCI = fP (uei jci)je 2 X; pa(e) 6=;, ci 2 pa(e)g is the set of conditional probabilities introduced for each causally-independent family, and Ppriors is the set of prior probabilities on the root nodes(nodes without parents).The next section shows how causal independence can be used to decompose largefamilies into smaller ones which allows computing CPT entries in linear time and canbe further exploited by probabilistic inference algorithms.88



3.4 Binary-tree network transformationsGiven the input speci�cation of a causally-independent family (i.e., the set of functionsfP (uei jci)ji = 1; :::;mg), the CPT of a causally-independent family can be computedas P (ejc1; :::cm) = Xfue1:::uemje=ue1�:::�uemg mYi=1P (uei jci): (3.6)Since the operation � is commutative and associative, e = ue1 � ::: � uem can be decom-posed into a sequence of pairwise computations, such ase = ue1 � y1; y1 = ue2 � y2; :::; ym�2 = uem�1 � uem;Then each CPT entry can be computed in O(m) time as follows [114]:P (ejc1; :::cm) = Xfue1:::uemje=ue1�:::�uemg mYi=1P (uei jci) =Xfue1;y1je=ue1�y1gP (ue1jc1) : : : Xfuem�1;uemjym�2=uem�1�uemgP (uem�1jcm�1)P (uemjcm) = (3.7)Xue1;y1 P 0(ejue1; y1)P (ue1jc1) : : : Xuem�1;uem P 0(ym�2juem�1; uem)P (uem�1jcm�1)P (uemjcm); (3.8)where yj denote hidden variables introduced for keeping the intermediate results, andP 0(xjy; z) are new (deterministic) CPTs de�ned as follows: P 0(xjy; z) = 1 if x = y �z,and 0 otherwise.Clearly, there are many di�erent ways of decomposing e = ue1 � ::: � uem intoa sequence of binary operations, each corresponding to a traversal of some binarycomputation tree.De�nition 7: [binary computation tree]Given an expression e = ue1�:::�uem where � is commutative and associative, its binarycomputation tree is a directed rooted binary tree having the root e and leaves uei , whereeach non-leaf node y is pointed to by its two children2 yl and yk and associated withthe operation y = yl � yk.2Note that the children of y in such directed binary tree will be called parents of y in thecorresponding belief network. 89



This leads to the notion of a binary-tree transformation that decomposes a causally-independent family of size m + 1 (Figure 3.5a) into an equivalent network havingfamilies of size at most 3, as we will show.De�nition 8: [binary-tree transformation]Given a causally-independent family F having the parents c1,...,cm and the child esuch that e = ue1 � ::: � uem, its dependence graph includes the variables uei explicitlyas shown in Figure 3.5b. Given a causally-independent network BN = (G;P ), atransformed graph GT of the BN is obtained by �rst replacing each family in Gby its dependence graph, and then replacing the resulting family e = ue1 � ::: � uemwith a binary computation tree (Figure 3.5c). The nodes of the BN are called inputnodes, while both the nodes uei introduced by causal independence and the nodesyj introduced by binary computation trees will be called hidden nodes. A binary-tree transformation (a transformed network) of the BN = (G;P ) is a belief networkTBN = (GT ; P; P 0) where GT is a transformed graph, each uei is associated with thefunction P (uei jci) 2 P , and each node x in a binary computation tree of some family,having parents y and z, is associated with P 0(xjy; z) 2 P 0 de�ned as P 0(xjy; z) = 1 ifx = y � z, and 0 otherwise.Equations 3.6-3.8 show that the causally-independent CPTs can be derived bybelief updating in a transformed network (see equation 3.8). Moreover,Theorem 12: [equivalence of belief updating in BN and TBN ]Given a causally-independent belief network BN, a transformed network TBN, and anevidence e, computing P (x1je) over the BN is equivalent to computing P (x1je) overthe TBN.Proof: Given a belief network BN = (G;P ) over the set of variables X =fX1; :::;Xng, the task of updating the belief in X1 given evidence e is to �ndP (x1je) = � Xx2;:::;xnYi P (xijpai): (3.9)90
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at subsequent time points (thus the name \temporal"). Variables uei are not spec-i�ed explicitly but rather \hidden" within the new CPTs. For example, given acausally-independent network in Figure 3.6a, a possible temporal-transformation or-der is y = ((uy1 � uy2) � uy3) � uy4 which yieldsP (yjx1; x2; x3; x4) = Xfuy1 ;uy2 ;uy3 ;uy4 jy=uy1�uy2�uy3�uy4gP (uy1jx1)P (uy2jx2)P (uy3jx3)P (uy4jx4) == Xfy3;uy4 jy=y3�uy4g Xfy2;uy3 jy3=y2�uy3g Xfy1;uy2 jy2=y1�uy2gP (y1jx1)P (uy2jx2)P (uy3jx3)P (uy4jx4) ==Xy3 Xfuy4 jy=y3�uy4gP (uy4jx4)Xy2 Xfuy3 jy=y2�uy3gP (uy3jx3)Xy1 Xfuy2 jy2=y1�uy2gP (uy2jx2)P (y1jx1):If we de�ne the new conditional probabilities for y1, y2, y3:P (y1jx1) = P (uy1jx1);P (y2jy1; x2) = Pfuy2 jy2=y1�uy2g P (uy2jx2);P (y3jy2; x3) = Pfuy3 jy3=y2�uy3g P (uy3jx3);P (yjy3; x4) = Pfuy4 jy=y3�uy4g P (uy4jx4);then we getP (yjx1; x2; x3; x4) =Xy3 P (yjy3; x4)Xy2 P (y3jy2; x3)Xy1 P (y2jy1; x2)P (y1jx1);yielding the temporal transformation network in Figure 3.6b. The parent-divorcingmethod [84], on the other hand, would use the order y = (uy1 � uy2) � (uy3 � uy4) whichyields the transformed network in Figure 3.6c.Clearly, network transformations are not deterministic: there are many feasiblebinary-tree transformation of each causally-independent family. As noted in [63],some transformations yield better performance than others. Finding a transforma-tion that allows the best performance is generally hard. However, generating anyparticular transformation network is easy:Theorem 13: [transformation complexity]The complexity of transforming a causally-independent belief network BN into atransformed network TBN and its size are O(nmd3), where n is the number of vari-ables, m is the largest family size, and d is the domain size.92
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explicitly depicted by the dependence graph in Figure 3.7b. The query P (x3jx1 = 0)can be computed as follows:P (x3jx1 = 0) = � Xz;y;x2;x1=0P (z)P (x1jz)P (x2jz)P (x3jz)P (yjx1; x2; x3) =� Xz;y;x2;x1=0P (z)P (x1jz)P (x2jz)P (x3jz) Xfuy1 ;uy2 ;uy3 jy=uy1_uy2_uy3gP (uy1jx1)P (uy2jx2)P (uy3jx3):Assuming now the transformed network in Figure 3.7c, we getP (x3jx1 = 0) = �Xz Xy Xx2 Xx1=0P (z)P (x1jz)P (x2jz)P (x3jz)�� Xfy1;uy3 jy=y1_uy3g Xfuy1 ;uy2 jy1=uy1_uy2gP (uy1jx1)P (uy2jx2)P (uy3jx3):Pushing the summation over x1 and x2 as far to the right as possible yieldsP (x3jx1 = 0) = �Xz P (z)P (x3jz)Xy Xfy1;uy3 jy=y1_uy3gP (uy3jx3)�� Xfuy1 ;uy2 jy1=uy1_uy2gXx2 P (x2jz)P (uy2jx2) Xx1=0P (x1jz)P (uy1jx1) == �Xz P (z)P (x3jz)Xy Xy1 Xuy3 P 0(yjy1; uy3)P (uy3jx3)��Xuy1 Xuy2 P 0(y1juy1; uy2)Xx2 P (x2jz)P (uy2jx2) Xx1=0P (x1jz)P (uy1jx1):The last expression can be computed by summation from right to left along theordering o = (x3, z, y, y1, uy3, uy1, uy2, x2, x1) which indeed corresponds to applyingalgorithm elim-bel to the transformed network in Figure 3.7c along ordering o asfollows:1. Bucket x1 : fx1 = 0; P (x1jz); P (uy1jx1)g !hx1(uy1; z) = Px1=0 P (x1jz)P (uy1jx1)! put into bucket of uy1.2. Bucket x2: fP (x2jz); P (uy2jx2)g !hx2(uy2; z) = Px2 P (x2jz)P (uy2jx2)! put into bucket of uy2.94



3. Bucket uy2: fhx2(uy2; z); P 0(y1juy1; uy2)g !huy2 (uy1; y1; z) =Puy2 P 0(y1juy1; uy2)hx2(uy2; z)! put into bucket of uy1.4. Bucket uy1: fhx1(uy1; z); huy2 (uy1; y1; z)g !huy1 (y1; z) = Puy1 hx1(uy1; z)huy2 (uy1; y1; z)! put into bucket of y1.5. Bucket uy3: fP (uy3jx3); P 0(yjy1; uy3)g !huy3 (y; y1; x3) = Puy3 P (uy3jx3)P 0(yjy1; uy3)! put into bucket of y1.6. Bucket y1: fhuy1 (y1; z); huy3 (y; y1; x3)g !hy1(y; z; x3) = Py1 huy1 (y1; z)huy3 (y; y1; x3)! put into bucket of y.7. Bucket y: fhy1(y; z; x3)g !hy(x3; z) =Py hy1(y; z; x3)! put into bucket of z.8. Bucket z: fP (z); P (x3jz); hy(x3; z)g !hz(x3) = Pz P (z)P (x3jz)hy(x3; z)! put into bucket of x3.9. Bucket x3: fhz(x3)g !P (x3jx1 = 0) = �hz(x3); where � is a normalizing constant.The complexity of the computation in each bucket is O(d3) since the arity of eachfunction in a bucket is not larger than 3. In contrast, the complexity of elim-belapplied to the input belief network (Figure 3.7a) is O(nd4), where n is the number ofvariables.Algorithm ci-elim-bel(BN,e)Input: A belief network BN = (G;P ), and evidence e.Output: P (x1je).1. Generate a transformed network TBN .2. Return elim-bel(TBN,o,e), where o is some ordering of the TBN .Figure 3.8: Algorithm ci-elim-bel95



The causally-informed algorithm ci-elim-bel that �rst generates a transformednetwork and then applies algorithm elim-bel is presented in Figure 3.8.3.5.1 Complexity analysisThis section makes a few observations regarding the performance gain when exploitingcausal independence for belief updating. Recall that GM denotes the moral graphof a belief network BN = (G;P ), GT denotes the graph of a transformed network,and GMT denotes its moral graph. We will use \the induced width of the network"as a shorthand for \the induced width of the network's graph". As an immediateimplication of theorems 11 and 13,Corollary 3: [complexity of ci-elim-bel on a TBN]Given a causally-independent belief network BN and a transformed network TBN,the complexity of elim-bel on TBN and therefore the complexity of ci-elim-bel isO(nmdw�o+1), where w�o is the induced width of GMT along o. 2The question is how w�(GMT ) which characterizes the performance of elim-belon a transformed network compares to w�(GM ) that determines the complexity ofelim-bel on the original network. We de�ne the e�ective induced width w�e as w�e =minGTw�(GMT ). We next present several classes of causally-independent networksthat allow signi�cant reduction in the e�ective induced width.Performance gains due to causal indpendenceTheorem 14: [polytrees]Given a causally-independent poly-tree BN having n nodes, domains of size d, andno more than m parents in each family, the complexity of ci-elim-bel on the BN isO(nmd3).Proof: Any transformed network of a polytree is a polytree having families ofsize 3 or smaller. It therefore allows an ordering having w� = 2 (starting with query96
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Thus, the best we can expect is that the e�ective induced width would equal theinduced width of the (unmoral) directed acyclic graph. Another example of net-work structures that can greatly bene�t from exploiting causal independence arek-n-networks.Example 10: [k-n-networks]Figure 3.10 depicts a k-n-network, which is a two-layer network with k nodes in thetop layer, each connected to n nodes in the bottom layer (here n = 2). An example isa binary-node 2-layer noisy-OR (BN2O) network used in medical-diagnosis QMR-DTsystem [90], where the top layer nodes, di, represent diseases that cause �ndings fjin the bottom layer. Clearly, the induced width of the moral k-2-network in Figure3.10a is at least k (the number of parents). Consider now the moral graph of thetransformed network in Figure 3.10b, along orderings where parents appear aftertheir children, such as o = (f1; f2; y1k�1; y2k�1; ... , y11, y21, dk, ..., d1, u11; :::; u1k; u21;:::; u2k). Each u1j for j > 1 has three preceding neighbors in o, dj , y1j�1, and y1j , thusw�o(u1j) = 3; eliminating u1j connects dj , y1j�1, and y1j . Similarly, for k > 1, w�o(u2k) = 3and eliminating each u2k connects dk, y2k�1, and y2k. Since d1 is now connected to y11and y21, its induced width is 2, and eliminating d1 connects y11 and y12. Every di fori � 2 is now connected to yi�11 , yi�12 , yi1, and yi2 in the induced graph of GMT in Figure3.10b, so that w�o(di) = 4. Eliminating all di creates a chain of cliques of size 4 (eachde�ned on yi�11 , yi�12 , yi1, and yi2). Subsequently, w�o(y2j ) = 3 and w�o(y1j ) = 2 forj = 1; :::; k � 1. It is easy to see that the induced width of the transformed networkalong o is constant (w� = 4) rather than linear in k, yielding an exponential speed-up.This example generalizes to an arbitrary k-n-network yielding w�o(GMT ) = 2n alongany ordering o where parents appear after their children. It can be therefore shownthatTheorem 17: [k-n-networks]The complexity of algorithm ci-elim-bel applied to a causally-independent k-n-networkis O(dminfk;2ng). 99
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independence (namely, selecting a bad ordering of the transformed network) mayactually increase the complexity of inference.It can be shown that, although a transformed network includes new (hidden)nodes, no new edges are induced between the input nodes:Theorem 18: [w� on the input variables]Given a causally-independent belief network BN = (G;P ) having induced widthw�o(G) along o, and given a transformed network TBN, there exists an extension ofo to o0 such that the induced width of the input variables in TBN along o0, computedonly with respect to the edges induced between the input variables, is not larger thanw�o(G).Proof: See the Appendix B. 2Therefore, the e�ective induced width may increase only because of new inducededges connected to at least one hidden node; thus we focus on a proper ordering ofhidden nodes. Figure 3.12 presents an \order-correction" procedure for constructingan appropriate ordering of the hidden variables which guarantees that ci-elim-bel isnever worse than the causally-blind algorithm. The procedure starts with some initialordering of the transformed network and then, if necessary, restores some CPTs, sothat the w�e is never larger than the w�(GM ). In summary,Corollary 4: Given a belief network BN = (G;P ), then for every transformednetwork TBN = (GT ; P; P 0) the induced width w�(GMT ) satis�esw�(G) � w�(GMT ) � w�(GM ):3.5.2 The connection between previous approachesWe next identify ordering restrictions that reduce ci-elim-bel to the previously pro-posed network transformation approaches of [63, 84] and to the variable-eliminationalgorithm VE1 [114]. 101



Procedure: Order(BN, TBN)Input: a network BN, and a transformed network TBN .Output: an ordering oT of TBN s.t. w�oT � w�oI ,where w�oI is the restriction of oT to the variables of BN.1. �nd a good heuristic ordering oT of the transformed network.Let oI be the restriction of oT to BN.2. For each variable x in oT , going from last to �rst,If w�oT (x) > w�oI :If x is an input variable, move all hidden variables yxirelated to x to the top of oT .Else if x = yzi is a hidden variable of some convergent variable z,put all z's hidden variables at the top of oT .3. Return oT . Figure 3.12: Procedure order.Temporal transformations and parent-divorcingAs noted in section 3.3, the only di�erence between our notion of binary-tree networktransformations and the previously proposed transformations (temporal [63] and par-ent divorcing [84]) is that we explicitly specify the variables uei contributed by causalindependence. Let us denote by TTBN and PDBN an arbitrary temporal transforma-tion and a parent-divorcing transformation of a belief network BN, respectively, whileGMTT and GMPD denote their moral graphs. Clearly, there is a one-to-one correspon-dence between TTBN or PDBN and the binary-tree transformation TBN obtained byinserting the additional layer of hidden nodes uei into each family of TTBN or PDBN .Proposition 1: [ordering restrictions of network transformations]Given a belief network BN, applying elim-bel to TTBN or to PDBN along o is equiva-lent to applying elim-bel to the corresponding transformed network TBN along orderingo0 = (o; u), where u is some ordering of the hidden variable uxi . 2Theorem 19: [w� of TTBN and PDBN ]Given a TTBN (respectively, a PDBN), and its corresponding TBN, then for any102



ordering o w�o(GMTT ) = w�o0(GMT ) (respectively, w�o(GMPD) = w�o0(GMT )) where o0 = (o; u)extends o to TBN and u is some ordering of the hidden variable uxi .Proof: Since variables uei in TBN are not connected to each other, and are con-nected to exactly two other variables, and since they appear last in the ordering(eliminated �rst), the width and the induced width of each uei is 2 (see Figure 3.5c),which does not exceed w�o(TTBN). Same holds for PDBN . 2Algorithm VE1A variable-elimination belief-updating algorithm VE1 for causally-independent net-works [114] was derived directly from the factorization of the joint probability distri-bution (expression 3.6). The algorithm takes as an input a causally-independent beliefnetwork and an ordering of the input variables. The hidden variables are eliminatedimplicitly using an operator 
 [114].Remember that the child in a causally-independent family is called a convergentvariable. The operator 
 is de�ned on two functions f and g as follows [114]:f 
 g(e1 = �1; :::; ek = �k ; Y ) =Xf�11;�21j�11��21=�1g ::: Xf�1k;�2kj�1k��2k=�kg f(e1 = �11; :::; ek = �1k ; Y1) � g(e1 = �21; :::; ek = �2k ; Y2);where e1; :::; ek are convergent variables that appear both in f and g, and Y = Y1[Y2is the set of all the other variables appearing as arguments of f and g.We now rederive VE1 for a network in Figure 3.11a. Assume that the task is to�nd the belief in c in the absence of evidence (i.e., to �nd the marginal P (c)). Usingnotation f i(e; ci) = P (uei ; ci) and the operator 
, the expression for P (c) isXb Xa Xfua1 ;ua2 ja=ua1_ua2g Xfub1;ub2jb=ub1_ub2g Xfuc1;uc2jc=uc1_uc2gXx2 P (ua2jx2)P (ubx2jx2)P (ucx2 jx2)��Xx1 P (ua1jx1)P (ub2jx2)P (uc1jx1) = (3.12)Xb Xa Xfua1 ;ua2 ja=ua1_ua2g Xfub1;ub2jb=ub1_ub2g Xfuc1;uc2jc=uc1_uc2g f(ua2; ubx2; ucx2)g(ua1; ub2; uc1) (3.13)103



can be written as follows:P (c) =Xb Xa (Xx2 f2a (a; x2)f2b (b; x2)f2c (c; x2))
 (Xx1 f1a (a; x1)f1b (b; x1)f1c (c; x1)):(3.14)VE1 computes this expression from right to left along a given ordering of theinput variables, and can be written as a bucket-elimination algorithm, where hiddenvariables are eliminated implicitly inside the buckets of input variables. In eachbucket, VE1 applies the operator 
 to the appropriate functions �rst, and then sumsover the bucket's variable:1. Bucket x1 : ff1a (a; x1); f1b (b; x1); f1c (c; x1)g !hx1(a; b; c) = Px1=0 f1a (a; x1)f1b (b; x2)f1c (c; x1)! put in bucket of a.2. Bucket x2 : ff1a (a; x2); f2b (b; x2); f2c (c; x2)g !hx2(a; b; c) = Px1=0 f2a (a; x2)f2b (b; x2)f2c (c; x2)! put in bucket of a.3. Bucket a : fhx1(a; b; c); hx2(a; b; c)g !3.1. h(a; b; c) = hx1(a; b; c)
 hx2(a; b; c)3.2. ha(b; c) = Pa h(a; b; c)! put in bucket of b.4. Bucket b : fh(a; b; c)g ! hb(c) = Pb ha(b; c)! put in bucket of c.5. Bucket c : fhb(c)g ! P (c) = �hb(c); where � is a normalizing constant.The computations above can be viewed as applying elim-bel to the transformednetwork in Figure 3.11b along o0 that agrees with o = ( c; b; a; x2; x1) on the inputnodes and satis�es in addition certain constraints imposed by operator 
 (to bediscussed shortly). In our example the appropriate ordering o0 = (c; b; a; ucx1; ucx2;ubx1; ubx2; uax1; uax2; x1, x2) is used (note that the operation hx1(a; b; c)
 hx2(a; b; c) instep 3.1 is equivalent to summing over fuc1; uc2g; fub1; ub2g; and fua1; ua2g).The implicit ordering restrictions of VE1 may sometimes worsen the algorithm'sperformance. In the example above, the complexity of VE1 along o = (c; b; a; x1; x2)104



is O(d6) since in expression 3.13 the operator 
 computes a product of two functionsf and g de�ned on 6 variables (the resulting function corresponds to a clique on 6hidden variables in the induced graph of the transformed network). On the otherhand, elim-bel applied along another ordering (c; b; a; x1; x2, ucx1; ucx2; ubx1; ubx2; uax1;uax2) �rst restores the original CPTs P (ajx1; x2), P (bjx1; x2), and P (cjx1; x2) yieldingO(d5) complexity. Since VE1 is unable to eliminate hidden variables independently ofinput variables (e.g., ua1 and ua2 cannot be eliminated before x1 and x2), it is inferiorto elim-bel. Formally,Theorem 20: [ordering restrictions of VE1]Given a belief network BN = (G;P ) and its ordering o, there exists a TBN =(GT ; P; P 0) such that VE1 along o is equivalent to elim-bel applied to TBN along o0satisfying the following conditions: 1. o0 agrees with o on input nodes; 2. a hiddennode u in the TBN appear in o0 before (is eliminated after) some input node x connectedto u in the induced graph of GT along o0; 3. o0 must agree with a depth-�rst traversalorder of the binary-tree of each family F .Proof: The sequence of VE1's computations corresponds to variable-eliminationin some transformed network TBN. VE1 operates over the input variables; hiddenvariables are eliminated implicitly using operator 
 within the buckets of the inputvariables (in each bucket, 
 is applied �rst, then the bucket's variable is summedout). Therefore, the ordering of the input variables is preserved, i.e. condition 1 issatis�ed. Condition 2 is also obvious: to be eliminated by 
, a hidden variable umustappear in the bucket of some input node x; this can happen only if u and x appearas arguments of same function, either originally de�ned in the transformed networkTBN, or recorded by VE1. In both cases, u and x must be connected in the inducedgraph of TBN. Finally, condition 3 follows from the de�nition of the operator 
. Itis easy to see that using 
 dynamically constructs a binary computation tree and itstraversal ordering, since each summation Pfyl;yk jy=yl�ykg eliminates a pair (yl; yk) ofhidden variables and \creates" a new hidden variable y. This implies a depth-�rst105



traversal order of the emerging binary computation tree. 23.5.3 SummaryThe impact of causal independence on belief updating can be summarized as follows:1. The two belief-updating schemes exploiting causal independence, such as net-work transformations [63, 84], and algorithm VE1 [114], can be viewed as ap-plying algorithm ci-elim-bel along a speci�c variable ordering of a transformednetwork.2. On polytrees, causally-informed algorithms can decrease the complexity of in-ference from O(Ndm) to O(Nmd3), where N is the number of nodes in thepolytree, d is the domain size, and m bounds the parent set size.3. Exploiting causal independence is most e�ective when w�(GMT ) = w�(G).4. Exploiting causal independence in k-n-networks yields O(dminfk;2ng) complexityresulting in exponential savings when k > 2n.5. Algorithm ci-elim-bel may be sometimes worse than elim-bel unless the order-ing is carefully chosen. An ordering-correction procedure that avoids \bad"orderings was presented.6. Due to its ordering restrictions, VE1 cannot use the ordering-correction proce-dure and may sometimes be exponentially worse than ci-elim-bel.3.6 Optimization tasks: MPE, MAP, and MEUIn optimization problems, it is not always possible to take advantage of causal inde-pendence since maximization and summation cannot be permuted, namely:maxx Xy f(x; y) 6=Xy maxx f(x; y):106



This restriction may not allow orderings that exploits CPT decomposition.Consider the task of �nding a most probable explanation (MPE):MPE = maxx1;:::;xNYi P (xijpai) = maxx1 F1 : : :maxxN FN ;where Fi = Qx P (xjpa(x)) is the product of all probabilistic components such thateither x = xi, or xi 2 pa(x). The bucket elimination algorithm elim-mpe sequentiallyeliminates xi from right to left. For example, given the causally-independent familyin Figure 3.5a, having 3 parents c1, c2 and c3,MPE = maxc1 ;c2;c3 ;eP (c1)P (c2)P (c3)P (ejc1; c2; c3) == maxc1 P (c1)maxc2 P (c2)maxc3 P (c3)maxe Xfy1;ue1je=y1�ue1gP (ue1jc1)�� Xfue2;ue3jy1=ue2�ue3gP (ue2jc2)P (ue3jc3):While belief updating task uses only the commutative and associative summationoperation, the MPE task involves both maximization and summation that cannot bepermuted. Therefore, the hidden variables must be summed out before maximizingover c1, c2, and c3. This reconstructs the CPT on the whole family, so that causalindependence has no e�ect.Nevertheless, the two other optimization tasks, MAP and MEU, can still bene�tfrom causal independence, because they involve summation over a subset of the inputvariables which can be permuted with summations over the hidden variables. Byde�nition, MAP = maxx1;:::;xm Xxm+1 ;:::;xNYi P (xijpai);where X1; :::;Xk are the hypothesis variables. For example, given the network inFigure 3.5a and hypothesis e,MAP = maxe Xc1;c2;c3 P (c1)P (c2)P (c3)P (ejc1; c2; c3):107



Decomposing the causally-independent P (ejc1; c2; c3) and rearranging the summa-tion order yields:maxe Xc1 P (c1)Xc2 P (c2)Xc3 P (c3) Xfy1;ue1je=y1�ue1gP (ue1jc1) Xfue2;ue3jy1=ue2�ue3gP (ue2jc2)P (ue3jc3) == maxe Xfy1;ue1 je=y1�ue1g Xfue2 ;ue3jy1=ue2�ue3gXc1 P (c1)P (ue1jc1)Xc2 P (c2)P (ue2jc2)Xc3 P (c3)P (ue3jc3):Clearly, the summations over the parents ci and the corresponding hidden variablescan be permuted. In general, a decomposition of the CPTs due to causal independencecan be exploited when (at least some) parents in the causally-independent familyare not included in the hypothesis. Clearly, the MAP task de�ned on a causally-independent network can be formulated as the same task on a transformed network,where the set of hypothesis variables remains the same.Algorithm ci-elim-map is shown in Figure 3.13. Given a belief network BN, thealgorithm �rst computes a transformed network TBN where the families having a hy-pothesis variable as a child are not transformed. Then variable-elimination algorithmelim-map[23] for �nding MAP is applied to the TBN along an ordering o that startswith the hypothesis variables.Algorithm ci-elim-map(BN,e,H)Input: A belief network BN = (G;P ), and evidence e,and a subset of hypothesis variables H � X .Output: An assignment h = argmaxa P (H = aje):1. Compute a TBN s.t. the families where the child isa hypothesis variable are not transformed.2. Return elim-map(TBN,o,e,H), where o is an orderingof TBN starting with the variables in H .Figure 3.13: Algorithm ci-elim-mapSimilarly to MAP, computing MEU requires summation over a subset of the vari-ables and maximization over the rest of them. By de�nition,MEU = maxx1;:::;xm Xxm+1;:::;xNYi P (xijpai)U(x1; :::; xN);108
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the pairs of hidden variables using new CPTs P 0(xjy; z) yieldsmaxd Xe Xy1 Xue1 P 0(ejy1; ue1)P (ue1jd)Xue2 Xue3 P 0(y1jue2; ue3)Xc2 P (c2)P (ue2jc2)��Xc3 P (c3)P (ue3jc3)U(d; e; c2; c3);where P 0(ejy1; ue1) = 1 if e = y1�ue1 and 0 otherwise, and P 0(y1jue2; ue3) = 1 if y1 = ue2�ue3and 0 otherwise. Using decomposability of the utility function, the summation overc3 can be written asXc3 P (c3)P (ue3jc3)[r(d) + r(e) + r(c2) + r(c3)] == [Xc3 P (c3)P (ue3jc3)](r(d) + r(e) + r(c2)) +Xc3 P (c3)P (ue3jc3)r(c3) == [Xc3 P (c3)P (ue3jc3)][r(d) + r(e) + r(c2) + Pc3 P (c3)P (ue3jc3)r(c3)Pc3 P (c3)P (ue3jc3) ] == �c3(ue3)[r(d) + r(e) + r(c2) + �c3(ue3)];where�c3(ue3) =Xc3 P (c3)P (ue3jc3); �c3(ue3) = �c3(ue3)�c3(ue3) ; and �c3(ue3) =Xc3 P (c3)P (ue3jc3)r(c3):The next summation (over c2) can be computed similarly, and so is the next one overc1. Algorithm ci-elim-meu for computing MEU in causally-independent networks isshown in Figure 3.15. Since causal independence is not de�ned for decision nodes,the transformed network transforms only the families of chance nodes. As with ci-elim-bel and ci-elim-map, ci-elim-meu �rst selects a transformed network TBN. Thenelim-meu [23] is applied along some ordering o that starts with the decision nodes.This algorithm partitions into buckets all the network components (including theutility components). Then it processes chance nodes, from last to �rst, computingthe new �- and �-functions. Finally, the buckets of the decision nodes are processedby maximization and an optimal assignment to those nodes is generated.110



Algorithm ci-elim-meu(BN,U, e)Input: A belief network BN = (G;P ), a decomposed utilityfunction U = fr1(x1); :::; rn(xn)g, and evidence e.Output: An assignment d to the set of decision variables Dthat maximizes the expected utility.1. Compute a TBN (transform only families of chance nodes).2. Return elim-meu(TBN,U,o,e), where o is an orderingof TBN starting with the decision nodes.Figure 3.15: Algorithm ci-elim-meuA trace of elim-meu [23] applied to the transformed network in Figure 3.14b alongo = (d, e, y1, ue1, ue2, ue3, c2, c3) is shown below. In each bucket we will have probabilitycomponents �i and utility components �j . We compute a new pair of � and � in eachbucket, as demonstrated below, and place them in the appropriate lower buckets:1. Bucket c3 : fP (c3); P (ue3jc3); r(c3)g !�c3(ue3) = Pc3 P (c3)P (ue3jc3);�c3(ue3) = �c3 (ue3)�c3(ue3) ;where �c3(ue3) = Pc3 P (c3)P (ue3jc3)r(c3). Put �c3(ue3) and �c3(ue3) into bucket ofue3.2. Bucket c2 : fP (c2); P (ue2jc2); r(c2)g !�c2(ue2) = Pc2 P (c2)P (ue2jc2);�c2(ue2) = �c2 (ue2)�c2(ue2) ;where �c2(ue2) = Pc2 P (c2)P (ue2jc2)r(c2). Put �c2(ue2) and �c2(ue2) into bucket ofue2.3. Bucket ue3 : fP 0(y1jue2; ue3); �c3(ue3); �c3(ue3)g !�ue3(y1; ue2) = Pue3 P 0(y1jue2; ue3)�c3 (ue3),�ue3(y1; ue2) = �ue3 (y1;ue2)�ue3 (y1;ue2);where �ue3(y1; ue2) = Pue3 P 0(y1jue2; ue3)�c3(ue3)�c3(ue3): Put �ue3(y1; ue2) and �ue3(y1; ue2)into bucket of ue2. 111



4. Bucket ue2 : f�ue3(y1; ue2); �ue3(y1; ue2)g !�ue2(y1) = Pue2 �ue3(ue2),�ue2(y1) = �ue2 (y1)�ue2(y1), where �ue2(y1) = Pue2 �ue3(y1; ue2)�ue3(y1; ue2): Put �ue2 (y1) and�ue2(y1) into bucket of y1.5. Bucket ue1 : fP (ue1jd); P 0(ejy1; ue1)g !�ue1(y1; d; e) = Pue1 P (ue1jd)P 0(ejy1; ue1): Put �ue1(y1; d; e) into bucket of y1.6. Bucket y1 : f�ue1(y1; d; e); �ue2(y1); �ue2(y1)g !�y1(d; e) = Py1 �ue1 (y1; d; e)�ue2(y1),�y1(d; e) = �y1 (d;e)�y1(d;e) , where �y1(d; e) = Py1 �ue1(y1; d; e)�ue2(y1)�ue2(y1): Put �y1(d; e)and �y1(d; e) in the bucket of e.7. Bucket e : f�y1(d; e); �y1(d; e)g !�e(d) = Pe �y1 (d; e),�e(d) = �e(d)�e(d) , where �e(d) = Pe �y1 (d; e)�y1(d; e): Put �e(d) and �e(d) in thebucket of d.8. Bucket d : fr(d); �e(d); �e(d)g !MEU = maxd �e(d)[r(d) + �e(d)];dmax = arg maxd �e(d)[r(d) + �e(d)]:Return MEU and dmax.Theorem 21: The complexity of ci-elim-map and ci-elim-meu is O(Nmdw�o+1),where w�o is the e�ective induced width along ordering o. 2For each algorithm, the transformed graph GT can be inspected a priori to deter-mine the bene�ts of causal independence.112



3.7 Exploiting evidence in CI-networksCausal independence o�ers additional bene�ts in the presence of evidence. In somecases (e.g., for noisy-OR and noisy-AND CPTs) this may lead to exponential perfor-mance improvement.Recall that the speci�cation of a causally-independent CPT includes deterministicconditional probabilities, or functional constraints, of the form y = y1 � ::: � yn. Anobservation of y imposes additional constraints on the hidden variables yi. For exam-ple, if the operation � is logical AND, then y = y1^ : : : ^yn and evidence y = 1 implyyi = 1, for i = 1; :::; n. Similarly, in the case of logical OR, observation y = 0 impliesyi = 0, for i = 1; :::; n. Another example: given that all variables are integers from0 to 10, and given that y = y1 + :::+ yn, an observation y = 2 imposes a constrainty1+ :::+ yn = 2 which restricts the domain of each yi to f0; 1; 2g, and rules out someof the remaining combinations of yi. The examples above demonstrate the feasibilityof constraint propagation known as enforcing relational arc-consistency [37] (see Ap-pendix B for more details). We will focus on a special case when an observation of yimplies a single value of each yi (as is the case for noisy-OR and noisy-AND), namelyon evidence propagation.The procedure Propagate evidence is presented in Figure 3.16. Given a beliefnetwork that includes deterministic (constraints), and a set of observations e, theprocedure processes constraints that includes an observed variable, deducing as manynew observations as possible, until no new observations can be deduced. This pro-cedure parallels arc-consistency [78, 43, 22] in binary constraint networks, or unitpropagation in propositional theories [19].3.7.1 Noisy-OR networksIn this section we focus on evidence propagation in noisy-OR networks, a particularclass of causally-independent networks. The algorithms discussed below exploit thefact that, given z = x _ y, an observation z = 0 implies x = 0 and y = 0. In113



Propagate evidence(D; e)Input: A belief network (G;P ), where P includesdeterministic CPTs (constraints), and evidence e = f(xi = ai)ji = 1; :::; kg.Output: Extended set of observations e0.1. Initialization: e0  e2. While e0 is not empty, let (x = a) 2 e0,e0  e0 � f(x = a)gfor each constraint C that includes xif C and x = a imply y = b /* y is a variable in C */e0  e0 [ (y = b)3. Return e0. Figure 3.16: Procedure Propagate evidencesome cases, this leads to an exponential speed-up in inference. The algorithms can begeneralized for any operator � having the property that given z = x�y, an observationz = a implies singleton assignments x = b and y = c. As mentioned before, logicalAND has this property. Another examples are the operations MAX and +, when ais the minimal value in the domain of the variables.Consider as an example the class of Binary-Node 2-layer Noisy-OR (BN2O) net-works used in the QMR-DT medical database [90]. A fully-connected BN2O net-work with k diseases and n �ndings is a k-n-network, where the top-layer nodes di,i = 1; :::; k, represent diseases, and the bottom-layer nodes fj, j = 1; :::; n represent�ndings (see Figure 3.17a). The assignment fi = 0 is a negative �nding, while theassignment fi = 1 is a positive �nding.The complexity of inference in a fully-connected BN2O network using algorithmci-elim-bel is O(exp(minfk; 2ng)) (theorem 17). This complexity may be reduced byevidence propagation, especially in the presence of negative observations.Example 12: Consider a BN2O network in Figure 3.17a and its transformed net-work in Figure 3.17b. Assume the query P (d1jf1 = 0; f2 = 0). Evidence propagationin the transformed network assigns the value 0 to the nodes y1, u13, y2, and u23, and,consequently, to the nodes u11, u12, u21, and u22. Since all instantiated variables are114
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O(2minfk;2pg) time and space.Proof: Evidence propagation assigns 0 to all hidden variables associated withnegative �ndings in a transformed network. Assume that those hidden variables arelast in the ordering. Namely, for each fi = 0, the algorithm replaces uij by 0 in eachcomponent P (dj juij). As mentioned before, instantiating a variable in a (moral) beliefnetwork is equivalent to removing it from the network. Therefore, all negative �ndingsand their corresponding hidden variables can be now removed from the transformednetwork, leaving only positive �ndings in the lower layer. The result is a k-p-network,which yields the complexity of O(2minfk;2pg). 23.7.2 Quickscore algorithm: an overviewIn this section, we review algorithm Quickscore [60] for BN2O networks, which hasbetter complexity bound for BN2O than ci-elim-bel achieves even when augmentedby evidence propagation. Subsequently, we extend Quickscore to general noisy-ORnetworks.As shown in [60], Quickscore takes O(2p) time, where p is the number of positive�ndings in a BN2O network. Note that for k < p ci-elim-bel is superior and takesO(2k) time assuming that fi nodes are processed �rst. Therefore, an algorithm forinference in BN2O networks should incorporate both approaches:1. if k < p, run ci-elim-bel;2. otherwise, run Quickscore.The complexity of this modi�ed scheme is O(2minfk;pg), which is better than thecomplexity O(2minfk;2pg) of ci-elim-bel augmented by Propagate evidence.Generally, a variable elimination algorithm decomposes the sum in the equation(3.2) into a product of linear number of functions, where computing each functionis exponential in the number of its arguments. Alternatively, Quickscore algorithmdecomposes the sum into exponential number of summands, each computed in lineartime. Following [60], we next rederive algorithm Quickscore.116



Consider a BN2O network for k diseases and n �ndings, where p �ndings arepositive and the rest of them are negative. Let F+ denote the set of positive �ndings,and let F� denote the set of negative �ndings. ThenP (d1jF+; F�) = � Xd2;:::;dk kYi=1P (di) Yfj2F� P (fj = 0jd1; :::; dk) Yfl2F+ P (fl = 1jd1; :::; dk) == � Xd2;:::;dk kYi=1P (di)P�P+; (3.15)where � is a normalization constant, and whereP� = Yfj2F� P (fj = 0jd1; :::; dk) = Yfj2F� kYi=1P (uji = 0jdi); (3.16)and P+ = Yfl2F+ P (fl = 1jd1; :::; dk) = Yfl2F+(1� kYi=1P (uli = 0jdi)) == XF 022F+(�1)jF 0j Yfl2F 0 kYi=1P (uli = 0jdi): (3.17)The notation 2S is a shorthand for the power set of S, i.e. the set of all possiblesubsets of S. ThenP� � P+ = XF 022F+(�1)jF 0j kYi=1 Yfj2F 0[F� P (uji = 0jdi); (3.18)and, consequently, P (d1jF+; F�) = � Xd2;:::;dk kYi=1P (di)P�P+ =� XF 022F+(�1)jF 0j Xd2;:::;dk kYi=1[P (di) Yfj2F 0[F� P (uji = 0jdi)] == � XF 022F+(�1)jF 0 j kYi=1Xdi [P (di) Yfj2F 0[F� P (uji = 0jdi)]: (3.19)117



Computing each component P (di) Yfj2F 0[F� P (uji = 0jdi)is linear in jF 0 [ F�j � n, so that computing eachkYi=1Xdi [P (di) Yfj2F 0[F� P (uji = 0jdi)] (3.20)is O(kn) and the total complexity of computing P (d1jF+; F�) is O(kn2p), since Pdiintroduces only a constant factor equal to the maximum domain size of di, and sincethe outer sum PF 022F+ has 2jF+j = 2p summands.Now recall that O(22p) complexity of ci-elim-bel (theorem 22 for k > 2p) is theresult of performing O(p) quadratic operations over the pairs of hidden variables thatcorrespond to p positive evidence nodes (the details are given in the proof of thetheorem 17). On the other hand, Quickscore requires only O(2p) time since it doesnot have hidden variables, but performs 2p summations. In the next section, wegeneralize the formula used by Quickscore to the case of arbitrary noisy-OR networksand incorporate it into algorithm NOR-elim-bel.3.7.3 Algorithm NOR-elim-belAssume a noisy-OR network de�ned on n nodes x1,...,xn, where the �rst k nodesare not observed. The next p nodes are positive �ndings F+ = fxk+1; :::; xk+pg, andthe rest of the nodes are negative �ndings F� = fxk+p+1; :::; xng. As usual, � is anormalization constant, uij denotes a hidden variable associated with node xi and itsj-th parent, and 2S denotes the power set of S. Then P (x1je), where e = F� [ F+,can be computed as P (x1je) = � Xx2:::xk PP�P+;where P = kYi=1P (xijpa(xi));118



P� = Yxj2F� P (xj = 0jpa(xj)) = Yxj2F� Yxm2pa(xj)P (ujm = 0jxm);and P+ = Yxl2F+ P (xl = 1jpa(xl)) = Yxl2F+(1� Yxq2pa(xl)P (ulq = 0jxq)) == XF 022F+(�1)jF 0j Yxl2F 0 Yxq2pa(xl)P (ulq = 0jxq) = XF 022F+(�1)jF 0jP 0;and where P 0 = Yxl2F 0 Yxq2pa(xl)P (ulq = 0jxq):The �rst two terms, P and P�, can be moved inside the summation PF 022F+ inthe last term, P+. Also, the summation Px2:::xk can be performed after PF 022F+ ,namely:P (x1je) = � Xx2:::xk PP� XF 022F+(�1)jF 0jP 0 = � XF 022F+(�1)jF 0j Xx2:::xk PP�P 0 == � XF 022F+(�1)jF 0jPF 0 ;where PF 0 = Xx2:::xk PP�P 0 == Xx2:::xk kYi=1P (xijpa(xi))[ Yxj2F� Yxm2pa(xj)P (ujm = 0jxm)][ Yxl2F 0 Yxq2pa(xl)P (ulq = 0jxq)] == Xx2 :::xk kYi=1P (xijpa(xi)) Yxj2F�[F 0 Yxm2pa(xj)P (ujm = 0jxm): (3.21)Note that the last expression is equivalent to joint probability distribution of x1together with the negative observations for the nodes in F� [F 0, and positive obser-vations for the nodes in F+ � F 0, namely the jointP (x1; fxi = 0jxi 2 F� [ F 0g; fxj = 1jxj 2 F+ � F 0g); (3.22)which can be computed using a bucket-elimination algorithm. In particular, we canuse elim-bel, preprocessed by evidence propagation. The algorithm elim-bel will be119



Algorithm NOR-elim-belInput: A noisy-OR network BN , and evidence e = F� [ F+,where F� is the set of 0-valued nodes and F+ is the set of 1-valued nodes.Output: Bel(x1) = P (x1je).Initialization:1. Bel(x1) 02. TBN  a transformed network of BN3. For each F 0 2 2F+4. e0  F� [ fxi = 0jxi 2 F 0g [ fxi = 1jxi 2 F+ � F 0g5. e00  e0 [ fuij = 0jxi 2 F 0 [ F�g /* evidence propagation */6. o0  an ordering of nodes in TBN s.t. observed nodes e00 are last7. PF 0  elim-bel(TBN ; o0; e00)8. Bel(x1) Bel(x1) + (�1)jF 0jPF 0Return Bel(x1). Figure 3.18: Algorithm NOR-elim-belinvoked 2p times, once for each F 0 2 2F+ yielding algorithm NOR-elim-bel in Figure3.18. Note, that step 5 of the algorithm is equivalent to the evidence propagation.It is easy to see that for BN2O networks, NOR-elim-bel coincides with Quickscore:the product of P (xijpa(xi)) is simply P (di) where di are the upper-layer nodes ex-cluding the query node d1.Theorem 23: Given a transformed network TBN of a noisy-OR belief network BN,an evidence e = F+ [ F�, where F+ and F� are positive and negative observations,respectively, and an ordering o of TBN, the complexity of the algorithm NOR-elim-belis O(nm � 2jF+j+w�o ), where n is the number of nodes in BN, m is the largest familysize in BN, and w�o is the induced width of TBN along o.Proof: Network transformation in step 2 takes O(nm) time (see theorem 13). Thefor-loop (steps 3-8) is executed once for each F 0 2 2F+ , i.e. 2jF+j times. Within theloop, steps 4-6 can be performed in linear time. Since evidence propagation of F�results in a smaller set of observations then the evidence propagation of F� [F 0, the120



set of nodes in o is a superset of the nodes in o0 (step 6). Assume that o and o0 agree ontheir common nodes, then w�o � w�o0 . Therefore, step 7 that runs elim-bel(TBN ,o',e")takes no more than O(nm �2w�o ) time, thus yielding the total complexity of O(nm 2w�o2jF+ j) = O(nm 2jF+j+w�o ): 2Given a particular evidence, we can decide upfront whether to use NOR-elim-belor the regular ci-elim-bel by comparing the exponents in the corresponding complexitybounds, namely, comparing jF+j+ w�o to w�e .3.8 ConclusionsThis chapter investigated the impact of causal independence on probabilistic infer-ence. Our contributions are:� We showed the connection between the previously existing approaches to beliefupdating in causally-independent networks, such as network transformations[63, 84] and variable-elimination algorithm VE1 [114]. Each of those methodsis a special cases of inference over binary-tree transformed networks. The or-dering restrictions of VE1 may sometimes lead to a unnecessary complexityincrease. We describe a general variable-elimination scheme, called ci-elim-bel,that improves VE1 by accommodating any variable ordering over the trans-formed networks.� We extended the causally-informed algorithms to other probabilistic tasks, suchas �nding a most probable explanation (MPE), �nding a maximum a posteriorihypothesis (MAP), and �nding the maximum expected utility (MEU). Surpris-ingly, while causal independence can signi�cantly reduce the complexity of beliefupdating and �nding MAP and MEU, it has, generally, no e�ect on MPE.� We showed that the complexity of causally-informed algorithms for tasks suchas belief updating, �nding MAP and MEU is exponential in the induced widthof a transformed network, called the e�ective induced width. The e�ective121



induced width does not exceed the induced width of the original network'smoral graph and may be as small as the induced width of the unmoral graph.Consequently, exploiting causal independence reduces complexity, often by anexponential factor.� We augmented algorithm ci-elim-bel with evidence propagation using relationalarc-consistency, and also incorporated this approach into a new algorithm NOR-elim-bel for noisy-OR networks, which generalizes algorithm Quickscore forBN2O networks [60].We identi�ed several network topologies, such as poly-trees, \source-sink" multiply-connected networks, and k-n-networks, where exploiting causal independence leads toan exponential complexity reduction relative to standard causally-blind algorithms.Empirical evaluation is necessary to assess the ultimate virtues of the methods dis-cussed.
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Chapter 4Approximate inference4.1 IntroductionAutomated reasoning tasks such as constraint satisfaction and optimization, proba-bilistic inference, decision-making, and planning are generally hard (NP-hard). Oneway to cope with this computational complexity is to identify tractable problemclasses. Another way is to design algorithms that compute approximate rather thanexact solutions.Although approximation within given error bounds is also known to be NP-hard[86, 98], there are approximation strategies that work well in practice. One approachadvocates anytime algorithms. These algorithms can be interrupted at any timeproducing the best solution found thus far [20, 8]. Another approach is to identifyproblem classes that can be solved approximately within given error bounds, thusapplying the idea of tractability to approximation.In this chapter we present a family of parameterized algorithms that allow aexible trade-o� between accuracy and e�ciency and that can be combined in ananytime algorithm. We provide conditions under which the approximation algorithms�nd an exact solution and identify regions of good performance.The class of mini-bucket approximation algorithms we propose imports the idea of123



local inference from constraint networks to probabilistic reasoning and combinatorialoptimization using the bucket-elimination framework. Bucket-elimination is a unify-ing algorithmic scheme that generalizes non-serial dynamic programming to enablecomplex problem-solving and reasoning activities. Among the algorithms that can beexpressed as bucket-elimination are directional-resolution for propositional satis�abil-ity [36], adaptive-consistency for constraint satisfaction [33], Fourier and Gaussianelimination for linear inequalities [74], dynamic-programming for combinatorial opti-mization [7], as well as many algorithms for probabilistic inference [26].In all these areas problems are represented by a set of variables and by a set ofdependencies (e.g., constraints, cost functions, and probabilities) that can be cap-tured by a graph. The algorithms infer and record new dependencies which amountsto adding new edges to the graph. Generally, representing a dependence among kvariables (k is called arity of a dependence ) requires enumerating O(exp(k)) tuples.As a result, the complexity of inference is time and space exponential in the arityof the largest dependence recorded which corresponds to the size of largest cliquecreated in the graph and is known as induced-width.Local inference approximation algorithms like i-consistency [44, 22] bound thecomputational complexity by restricting to i the arity of recorded dependencies.Known special cases are arc-consistency (i = 2) and path-consistency (i = 3) [78,43, 22]. Indeed, the recent success of constraint-processing algorithms can be at-tributed primarily to this class of algorithms, either used as stand-alone, incompletealgorithms, or incorporated within backtracking search [28, 29]. The idea and bene�tof local consistency algorithms are demonstrated in Figure 4.1. The �gure shows thatwhile exact algorithms may record arbitrarily large constraints, i-consistency algo-rithms decide consistency of smaller subproblems, recording constraints of size i orless.In this chapter we present and analyze a local inference approximation schemefor probabilistic tasks of belief updating, �nding the most probable explanation, �nd-ing the maximum a posteriori hypothesis, and for optimization tasks in general. We124
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Figure 4.1: From global to local consistency: algorithm i-consistency and its partic-ular cases path-consistency (i=3) and arc-consistency (i=2).identify regions of completeness and demonstrate promising empirical results obtainedboth on randomly generated networks and on realistic domains such as medical diag-nosis and probabilistic decoding.For the necessary de�nitions and preliminaries, the reader is referred to the section3.2 of the previous chapter. This chapter is organized as follows. In the next threesections we present and analyze the mini-bucket approximation for the probabilisticinference tasks of �nding a most probable explanation (MPE), belief-updating (BEL)and �nding a most probable a posteriori hypothesis (MAP). Section 4.5 presents themini-bucket algorithm for optimization problems. Section 4.6 identi�es cases of com-pleteness, Section 4.7 discusses extensions to anytime algorithms and heuristic searchand Section 4.8 discusses related work. In Section 4.9 empirical evaluation is car-ried out for the MPE task. Encouraging results are obtained on randomly generatednoisy-OR networks, on the CPCS networks for medical diagnosis [90], and on classes125



of probabilistic decoding problems. Section 4.10 provides concluding remarks anddiscusses the future work.4.2 Approximating the MPEAs we saw in Section 2, the complexity of bucket-elimination is determined by thecomplexity of processing each bucket and is time and space exponential in the numberof variables in the bucket, w� + 1, where w� is the induced-width of the network'smoral graph along the elimination ordering. Consequently, the algorithm is infeasiblewhen w� is large, primarily due to memory requirements.Since the complexity of processing a bucket is tied to the arity of the functionsbeing recorded, we propose to approximate these functions by a collection of smaller-arity functions. Let h1; :::; ht be the functions in the bucket of Xp, and let S1; :::; Stbe the sets of variables on which those functions are de�ned. When elim-mpe pro-cesses the bucket of Xp, the function hp = maxXp�ti=1hi is computed. Since, for twonon-negative functions Z(x) and Y (x), maxx Z(x) � Y (x) � maxx Z(x) � maxx Y (x),a simple approximation idea is to compute an upper bound on hp by \migrating"the maximization inside the multiplication. Namely, gp = �ti=1maxXp hi is an upperbound on hp, since it replaces each hi in �ti=1hi by maxXp hi. Maximization is nowapplied separately to smaller-arity functions hi, yielding a lower complexity. This ideacan be generalized to any partitioning of a set of functions h1; :::; ht into subsets thatwe will call mini-buckets. Namely, let Q = fQ1; :::; Qrg be a partitioning into mini-buckets of the functions h1; :::; ht in Xp's bucket. The mini-bucket Ql contains thefunctions hl1; :::; hlr. The complete algorithm elim-mpe computes hp = maxXp �ti=1hi,which can be rewritten as hp = maxXp �rl=1�lihli. By migrating the maximizationoperator into each mini-bucket we compute: gpQ = �rl=1maxXp �lihli. The functionsmaxXp �lihli are placed separately into their highest-variable buckets and the algo-rithm proceeds with the next variable. Note that functions without arguments (i.e.,constants) are placed in the lowest bucket. The product of constants collected in the126
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The approximating function, gp, for this partitioning is:gpQ = (maxXp �i2Q1hi) � (maxXp �j2Q2hj): (4.2)Thus, gpQ is derived from hp by replacing the second product in hp, �j2Q2hj , bymaxXp �j2Q2hj. Consequently, hp � gpQ. In general, given Q0 = fQ01; :::; Q0mg, byinduction on the number of mini-buckets m,gpQ0 = mYj=1(maxXp �l2Q0jhl); (4.3)and, consequently, hP � gpQ0.By de�nition, given a re�nementQ00 = fQ001; :::; Q00kg of a partitioning Q0 = fQ01; :::;Q0mg, each mini-bucket i 2 f1; :::; kg of Q00 belongs to some mini-bucket j 2 f1; :::;mgof Q0. In other words, each mini-bucket j of Q0 is further partitioned into the corre-sponding mini-buckets of Q00 as follows: Q0j = fQ00j1; :::; Q00jlg. ThengpQ00 = kYi=1(maxXp �l2Q00i hl) = mYj=1 YQ00i �Q0j(maxXp �l2Q00i hl) � mYj=1(maxXp �l2Q0jhl) = gpQ0; (4.4)which concludes the proof. 2The mini-bucket approximation algorithm approx-mpe(i,m) is described in Figure4.3a. It has two parameters that control the partitioning.De�nition 10: Let H be a collection of functions h1; :::; ht de�ned on subsets ofvariables S1; :::; St, respectively. We will say that a function f is subsumed by afunction h if any argument of f is also an argument of h. A partitioning of h1; :::; htis canonical if any function f subsumed by other functions is placed into the bucketof one of those subsuming functions. A partitioning Q into mini-buckets is an (i;m)-partitioning if, and only if, (1) it is canonical, (2) at most m non-subsumed functionsparticipate in each mini-bucket, (3) the total number of variables in a mini-bucketdoes not exceed i, and (4) the partitioning is re�nement-maximal, namely, there isno other (i;m)-partitioning that it re�nes.128



Not every combination of i and m yields a feasible partitioning. However, it iseasy to see that:Proposition 3: If the bound i on the number of variables in a mini-bucket is notsmaller than the maximum family size, then, for any value of m > 0, there exists an(i;m)-partitioning of each bucket.Proof: For m = 1, each mini-bucket contains one family. The arity of the recordedfunctions will only decrease and thus in each bucket an (i; 1)-partitioning always ex-ists. Any (i;m)-partitioning that satis�es conditions 1-3 (but not necessarily condition4), always includes all (i; 1)-partitionings satisfying conditions 1-3. Therefore, the setof (i;m)-partitionings satisfying conditions 1-3 is never empty, and there exists an(i;m)-partitioning satisfying conditions 1-4. 2Although the two parameters i and m are not independent they do allow a exiblecontrol of the mini-bucket scheme. The properties of the mini-bucket algorithms aresummarized in the following theorem.Theorem 24: Algorithm approx-mpe(i;m) computes an upper bound to the MPE.Its time complexity is O(m � exp(2i)) and its space complexity is O(m � exp(i)), wherei � n and m � 2i. For m = 1, the algorithm is time and space O(m �exp(jF j)), wherejF j is the maximum family size.Proof: Since approx-mpe(i,m) computes an upper bound in each bucket it yieldsan overall upper bound on the resulting MPE. The complexity of approx-mpe(i,m)can be derived as follows. Processing a bucket is linear in the number of its mini-buckets. Since in each mini-bucket there are at most m functions having arity ofat most i (i.e., of size at most exp(i)), multiplication takes at most O(m � exp(2i))time-wise and O(exp(i)) space-wise. The number of mini-buckets is bounded by 2i,the number of subsets of size i. For m = 1, each mini-bucket contains only one familyand perhaps some subsumed functions. The arity of the recorded functions will onlydecrease, thus yielding time and space complexity of O(m � exp(jF j)), where jF j ismaximum family size. 2129



In general, as m and i increase we get more accurate approximations. However, aclear hierarchy can only be obtained relative to the partial order of re�nement.Example 13: Figure 4.3b illustrates how algorithms elim-mpe and approx-mpe(i,m)for i = 3 and m = 2 process the network in Figure 4.3a along the ordering (A; E;D;C;B). First, all functions are partitioned into buckets that are the same for bothalgorithms. The exact algorithm elim-bel sequentially processes the variables B, C,D, and E, recording the new functions (shown in boldface) hB(a; d; c; e), hC(a; d; e),hD(a; e), and hE(a). Then, in the bucket of A, it computes MPE = maxa P (a)hE(a).Subsequently, an MPE assignment (A = a0; B = b0; C = c0, D = d0, E = 0) whereE = 0 is an evidence is computed for each variable from A to B by selecting a valuethat maximizes the product of functions in the corresponding buckets conditionedon the previously assigned values. Namely, a0 = arg maxa P (a)hE(a), e0 = 0, d0 =arg maxd hC(a0; d; e = 0), and so on.On the other hand, the approximation algorithm approx-mpe(3,2) runs as follows.Since the bucket of B includes �ve variables it is split into two mini-buckets fP (ejb; c)gand fP (dja; b); P (bja)g, each containing no more than 3 variables, as shown in Fig-ure 4.3b (tie-breaking is arbitrary when selecting mini-buckets). The new functionshB(e; c) and hB(d; a) are computed separately in each mini-bucket and are placedin their highest-variable buckets. In each of the remaining buckets the number ofvariables is not larger than 3 and therefore no mini-bucket partitioning occurs. Anupper bound on the MPE value is computed by maximizing over A the product offunctions in A's bucket. A suboptimal MPE tuple is computed similarly to MPEtuple by assigning a value to each variable that maximizes the product of functionsin the corresponding bucket, given the assignments to the previous variables.Note, that approx-mpe(3,2) does not produce new functions on more than i � 1(i.e., 2) variables, while the exact algorithm elim-mpe records a function on 4 variables.The probability of the tuple generated by approx-mpe provides a lower bound onthe MPE and can be computed using the joint-probability's product form. Thus,130



Algorithm approx-mpe(i,m)Input: A belief network BN = (G;P ), an ordering o, evidence e.Output: An upper and a lower bounds on the MPE given evidence e.1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, wherebucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hi and put the resultin its highest-variable bucket (put constants in bucket1).� Else for h1; h2; :::; ht in bucketp doGenerate an (i;m)-mini-bucket-partitioning, Q0 = fQ1; :::; Qrg.for each Ql 2 Q0 containing hl1 ; :::hlt, compute hl = maxXp�ti=1hli and add itto the bucket of the highest-index variable in Ul  Sti=1 Sli � fXpg, whereSli is the set of arguments of hli (put constants in bucket1).3. Forward: for p = 1 to n, given X1 = xopt1 ; :::; Xp�1 = xoptp�1,assign a value xoptp to Xp that maximizes the product of all functions in bucketp.4. Return the assignment xopt = (xopt1 ; :::; xoptn ), a lower bound L = P (xopt),and an upper bound U = Qti=1 hi on the MPE, where hi are constants in bucket1.(a) Algorithm approx-mpe(i,m).
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algorithm approx-mpe(i,m) computes an interval [L;U ] containing the MPE.4.3 Approximating belief updateAs shown in Section 3.2 the bucket-elimination algorithm elim-bel for belief assessmentis identical to elim-mpe except that maximization is replaced by summation. Lete be a set of observations. Algorithm elim-bel �nds P (x1; e) and then computesP (x1je) = �P (x1; e) where � is the normalization constant. This procedure hasonly a backward phase (see Figure 3.2a). When processing the bucket of Xp, wemultiply all its matrices, h1; :::; ht, de�ned over subsets S1; :::; St, and sum over Xp.The computed function is hp : Up ! <, where hp =PXp �ti=1hi, and Up = [iSi�Xp.Once all the buckets are processed, the updated probability P (x; e) is available in thebucket of X1.The mini-bucket idea can be applied to belief updating as follows. Let Q0 =fQ1; :::; Qrg be a partitioning into mini-buckets of the functions h1; :::ht in Xp'sbucket. The exact algorithm elim-bel computes hp = PXp �ti=1hi, which can berewritten as hp = PXp �rl=1�lihli. If we follow the MPE approximation preciselyand migrate the summation operator into each mini-bucket, we will compute fpQ0 =�rl=1PXp �lihli. This, however, is an unnecessarily large upper bound of hP sinceeach �lihli is replaced by PXp �lihli. Instead, we process the �rst mini-bucket sepa-rately and get hp = PXp(�l1hl1) � (�rl=2�lihli). Subsequently, instead of bounding afunction of X by its sum over X, we can bound i > 1, by its maximum over X, whichyields gpQ0 = (PXp �l1hl1) � (�rl=2maxXp �lihli). Clearly,Proposition 4: For every partitioning Q, hp � gpQ � fpQ. Also, if Q00 is a re�nementpartitioning of Q0, then hp � gpQ0 � gpQ00 . 2The proof is similar to the one for MPE.In summary, an upper bound gp of hp can be obtained by processing one of Xp'smini-buckets by summation and the rest by maximization. We can also compute a132



Algorithm approx-bel-max(i,m)Input: A belief network BN = (G;P ), an ordering o, and evidence e.Output: an upper bound on P (x1; e).1. Initialize: Partition P = fP1; :::; Png into bucketsbucket1, : : :, bucketn, where bucketp contains allmatrices h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hi and put the resultin its highest-variable bucket (put constants in bucket1).� Else for h1; h2; :::; ht in bucketp doGenerate an (i;m)-mini-bucket-partitioning, Q0 = fQ1; :::; Qrg.for each Ql 2 Q0 , containing hl1 ; :::hlt, doIf l = 1 compute hl =PXp �ti=1h1iElse compute hl = maxXp�ti=1hliAdd hl to the bucket of the highest-index variable in Ul  Sti=1 Sli � fXpg,where Sli is the set of arguments of hli (put constants in bucket1).3. Return the product of functions in the bucket of X1,which is an upper bound on P (x1; e) (denoted g(x1)).Figure 4.4: algorithm approx-bel-max(i,m)lower bound, or the mean value by applying to each mini-bucket (i > 1) the minor the mean operator, respectively. Algorithm approx-bel-max(i,m) that uses themaximizing elimination operator is described in Figure 4.4. Algorithms approx-bel-min and approx-bel-mean can be obtained by replacing the operator max by min andby mean, respectively.4.3.1 NormalizationNote that aprox-bel-max computes an upper bound on P (x1; e) but not on P (x1je).If an exact value of P (e) is not available, deriving a bound on P (x1je) from a boundon P (x1; e) may not be easy. For example, g(x1)sumx1g(x1) , where g is the upper boundon P (x1; e), is not necessarily an upper bound on P (x1je). However, we can derivea lower bound f on P (e) using approx-bel-min (in this case the observed variables133



initiate the ordering), and then compute g(x1)f as an upper bound on P (x1je).4.4 Approximating the MAPAlgorithm elim-map for computing the MAP presented in [24] is a combination ofelim-mpe and elim-bel; some of the variables are eliminated by summation, the rest bymaximization. Consequently, its mini-bucket approximation is a mix of approx-mpeand approx-bel-max.Given a belief network, a subset of hypothesis variables A = fA1; :::; Akg andsome evidence, the problem is to �nd an assignment to the hypothesized variablesthat maximizes their probability given evidence e. Formally, we wish to computemax�ak P (�akje) = (max�ak X�xnk+1 �ni=1P (xi; ejxpai))=P (e) (4.5)when x = (a1; :::; ak; xk+1; :::; xn). Since P (e) is a normalization constant, this isequivalent to computing P (�akje). The bucket-elimination algorithm for MAP, elim-map [24], assumes only orderings in which the hypothesized variables appear �rstand thus are processed last by the algorithm. The algorithm has a backward phaseas usual but its forward phase is relative to the hypothesis variables only. Theapplication of the mini-bucket scheme to elim-map is a straightforward extension toapprox-mpe and approx-bel-max. We partition each bucket to mini-buckets as before.If the bucket's variable is a summation variable we apply the rule we have in approx-bel-max in which one mini-bucket is approximated by summation and the rest bymaximization. When the algorithm reaches the hypothesis buckets their processingis identical to that of approx-mpe. Algorithm approx-map(i,m) is described in Figure4.5.Example 14: We will next demonstrate the mini-bucket approximation for MAPon an example inspired by probabilistic decoding [77, 45] 1. Consider a belief network1Probabilistic decoding is discussed in more details in Section 4.9.5.134



Algorithm approx-map(i,m)Input: A belief network BN = (G;P ), a subset of variables A = fA1; :::; Akg,an ordering of the variables, o, in which the A's appear �rst, and evidence e.Output: An upper bound on the MAP and an assignment A = a.1. Initialize: Partition P = fP1; :::; Png into buckets bucket1, : : :, bucketn, wherebucketp contains all matrices h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hi and put the resultin its highest-variable bucket (put constants in bucket1).� Else for h1; h2; :::; hj in bucketp doGenerate an (i;m)-partitioning, Q0 of the matrices hi into mini-buckets Q1; :::; Qr.� If XP 62 A /* not a hypothesis variable */for each Ql 2 Q0 , containing hl1 ; :::hlt, doIf l = 1, compute hl =PXp �ti=1h1iElse compute hl = maxXp�ti=1hliAdd hl to the bucket of the highest-index variable in Ul  Sti=1 Sli � fXpg,where Sli is the set of arguments of hli (put constants in bucket1).� Else (XP 2 A) /* a hypothesis variable */for each Ql 2 Q0 containing hl1 ; :::hlt compute hl = maxXp�ti=1hli and add itto the bucket of the highest-index variable in Ul  Sti=1 Sli � fXpg,where Sli is the set of arguments of hli (put constants in bucket1).3. Forward: for p = 1 to k, given A1 = aopt1 ; :::; Ap�1 = aoptp�1,assign a value aoptp to Ap that maximizes the product of all functions in bucketp.4. Return the assignment A1 = aopt1 ; :::; Ak = aoptk , and an upper bound U = Qti=1 hion the MAP, where hi are constants in bucket1.Figure 4.5: Algorithm approx-map(i,m)
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which describes the decoding of a linear block code, shown in Figure 4.6. In this net-work, Ui are information bits and Xj are code bits, which are functionally dependenton Ui. The vector (U;X), called channel input, is transmitted through a noisy chan-nel which adds Gaussian noise and results in the channel output vector Y = (Y u; Y x)(see Figure 4.6). The decoding task is to assess the most likely values for the Us giventhe observed Y s. This it formulates to the MAP task where A = [ifUig is the set ofhypothesis variables. Therefore, when processing by bucket-elimination, the X's aresummation variables while the U 's are maximization variables. After processing theobserved buckets we get the following bucket con�guration:bucket(X0) = P (yx0 jX0); P (X0jU0; U1; U2),bucket(X1) = P (yx1 jX1); P (X1jU1; U2; U3),bucket(X2) = P (yx2 jX2); P (X2jU2; U3; U4),bucket(X3) = P (yx3 jX3); P (X3jU3; U4; U0),bucket(X4) = P (yx4 jX4); P (X4jU4; U0; U1),bucket(U0) = P (U0); P (yu0 jU0),bucket(U1) = P (U1); P (yu1 jU1),bucket(U2) = P (U2); P (yu2 jU2),bucket(U3) = P (U3); P (yu3 jU3),bucket(U4) = P (U4); P (yu4 jU4).Processing the �rst top �ve buckets from the top by summation and the rest bymaximization by approx-map(4; 1) results in the following mini-bucket partitionings:bucket(X0) = fP (yx0 jX0); P (X0jU0; U1; U2)g,bucket(X1) = fP (yx1 jX1); P (X1jU1; U2; U3)g,bucket(X2) = fP (yx2 jX2); P (X2jU2; U3; U4)g,bucket(X3) = fP (yx3 jX3); P (X3jU3; U4; U0)g,bucket(X4) = fP (yx4 jX4); P (X4jU4; U0; U1)g,bucket(U0) = fP (U0); P (yu0 jU0); hX0(U0; U1; U2)g; fhX3(U3; U4; U0); hX4(U4; U0; U1)g,bucket(U1) = fP (U1); P (yu1 jU1); hX1(U1; U2; U3); hU0(U1; U2)g; fhU0(U3; U4; U1)g,136



bucket(U2) = fP (U2); P (yu2 jU2); hX2(U2; U3; U4); hU1(U2; U3)g,bucket(U3) = fP (U3); P (yu3 jU3); hU0(U3; U4); hU1(U3; U4); hU2(U3; U4)g,bucket(U4) = fP (U4); P (yu4 jU4); hU3(U4)g.Note, that the arity of recorded functions is bounded by 3.4.5 Approximating discrete optimizationThe mini-bucket principle which we developed for probabilistic optimization tasksof �nding MPE and MAP can also be applied to deterministic discrete optimizationproblems which can be de�ned by cost networks. This principle yields an approxima-tion to dynamic programming which is the bucket-elimination algorithm for discreteoptimization [7]. A cost network is a triplet (X;D;C), where X is a set of dis-crete variables, X = fX1; :::;Xng, over domains D = fD1; :::;Dng, and C is a set ofreal-valued cost functions C1; :::; Cl, also called cost components. Each function Ciis de�ned over a subset of variables, Si = fXi1 ; :::;Xirg, Ci : �rj=1Dij ! R+. Thecost graph of a cost network has a node for each variable and edges connecting vari-ables that are arguments of the same cost function. The cost function is de�ned asC(X) =Pli=1 Ci(Si). Given a cost network the optimization (minimization) problemis to �nd an assignment xopt = (xopt1; :::; xoptn) such that C(xopt) = min�xn C(X):The dynamic programming algorithm in [7], is presented using the bucket elim-ination scheme in Figure 4.7. Given a partitioning of the cost functions into theirrespective buckets, algorithm elim-opt processes buckets from top to bottom. Whenprocessing Xp, it generates a new function by taking the minimum relative to Xp,over the sum of the functions in that bucket. Step 2 (backward step) computes thecost function while step 3 (forward step) generates an optimal solution.As usual, the time and space complexity of elim-opt is exponential in the inducedwidth w� of the cost graph. Thus, when its induced width is not small, we mustresort to approximations. 137



Algorithm elim-optInput: A cost network (X;D;C), C = fC1; :::; Clg, an ordering o,a set of assignments e.Output: The minimal cost assignment.1. Initialize: Partition C and e into bucket1, : : :, bucketn, where bucketpcontains all components h1; h2; :::; ht whose highest-index variable is Xi.1. Backward: for p = n to 1 do� If bucketp contains Xp = a, replace Xp by a in each hiand put the resulting function in its highest-variable bucket.� Else compute hp = minxpPti=1 hi,xoptp = argminxpPti=1 hi,and place hp in its highest-variable bucket.3. Forward: for p = 1 to n,given X1 = xopt1 ; :::; Xp�1 = xoptp�1, assign xoptp to Xp.4. Return the assignment xopt = (xopt1 ; :::; xoptn ).Figure 4.7: Algorithm elim-optNote that elim-opt can be applied to the MPE task if the product form is trans-formed into an additive cost function using the logarithmic function. The resultingalgorithm is identical to applying elim-mpe directly to the original product form.Similarly, the mini-bucket approximation presented for MPE can be applied todiscrete optimization in a straightforward way. Maximization is replaced by mini-mization, while the product is replaced by the sum. Algorithm approx-opt is describedin Figure 4.8. Step 2 (backward step) computes a lower bound on the cost function,while step 3 (forward step) generates a suboptimal solution which provides an upperbound on the cost function.4.6 Complexity and tractabilityAll mini-bucket algorithms have similar worst-case complexity bounds and complete-ness conditions. For the sake of presentation, we denote bymini-bucket(i,m) a genericmini-bucket algorithm with parameters i and m, irrespective of the task it solves.138



Algorithm approx-opt(i,m)Input: A cost network (X;D;C), fC1; :::; Clg; ordering o, a set of assignments e.Output: A lower and an upper bounds on the optimal cost.1. Initialize: Partition C and e into bucket1, : : :, bucketn, where bucketpcontains all components h1; h2; :::; ht whose highest-index variable is Xi.2. Backward: for p = n to 1 do� If Xp is observed (Xp = a), replace Xp by a in each hi and put the resultin its highest-variable bucket (put constants in bucket1).� Else for h1; h2; :::; ht in bucketp doGenerate an (i;m)-mini-bucket-partitioning, Q0 = fQ1; :::; Qrg.for each Ql 2 Q0 containing hl1 ; :::hlt, compute hl = minXpPti=1 hli and add itto the bucket of the highest-index variable in Ul  Sti=1 Sli � fXpg, where Sliis the set of arguments of hli (put constants in bucket1).3. Forward: for p = 1 to n, given X1 = xopt1 ; :::; Xp�1 = xoptp�1,assign a value xoptp to Xp that minimizes the sum of all functions in bucketp.4. Return the assignment xopt = (xopt1 ; :::; xoptn ), an upper bound U = C(xopt),and a lower bound L =Pti=1 hi on the optimal cost, where hi are constants in bucket1.Figure 4.8: Algorithm approx-opt(i,m)Theorem 24 can obviously be extended to all mini-buckets algorithms:Theorem 25: Algorithm mini-bucket(i,m) takes O(m � exp(2i)) time and O(m �exp(i)) space, where i � n and m � 2i. For m = 1, the algorithm is time and spaceO(m � exp(jF j)), where jF j is maximum family size.We next identify cases for which the mini-bucket algorithms coincide with theexact algorithm, and are therefore complete. Clearly,mini-bucket(n,n) coincides withfull bucket elimination. More interestingly,Theorem 26: Given an ordering of the variables d, algorithm mini-bucket(i,n) iscomplete for ordered networks having w�(d) � i.Proof: In this case, each full bucket satis�es the condition of being an (i; n)-partitioning and it is the only one which is re�nement-maximal. 2139
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since all the variables are subsumed by the component relatingX1 to its parents. Theresulting function hU1(X1; U2; U3) is placed in bucket(U2). Likewise, when processingall the rest of the buckets the only legal partitionings are full buckets. The �nalresulting buckets are:bucket(U1) = P (U1); P (X1jU1; U2; U3); P (z1jU1),bucket(U2) = P (U2)P (z2jU2), hU1(X1; U2; U3),bucket(U3) = P (U3)P (z3jU3), hU2(X1; U3)bucket(X1) = P (Y1jX1), hU1(X1).Another case of completeness for mini-bucket(n,1) is layered complete networks.These networks are composed of a sequence of layered nodes such that the parents ofeach child in layer i are all the variables in layer i � 1. If processing is done usingan ordering that eliminates all variables in layer i before those in layer i � 1, thenit is easy to see that mini-bucket(n,1) coincides with the full bucket-elimination. Insummary, and as noted in Theorem 4 for poly-trees,Theorem 27: Given a legal variable ordering, algorithm approx-mpe(n,1) solves theMPE task on poly-trees and complete layered networks in time and space O(exp(jF j)),where jF j is the cardinality of the maximum family size.4.6.2 Pearl's algorithm and mini-bucket(n,1)On poly-trees, mini-bucket(n,1) is similar to Pearl's propagation algorithm. It hassimilar time bounds. One di�erence, however, between approx-mpe(n; 1) and Pearl'salgorithm is that the latter records only functions on a single variable, while the mini-bucket(n,1) records intermediate results whose arity is at most the size of the family.For instance in Example 15 the mini-bucket algorithm records the intermediate resulthU3(X1; U2; U1) which requiresO(k3) space if k bounds the variables' domain sizes. Torestrict space needs we can modify elim-mpe and approx-mpe as follows. Wheneverthe algorithm reaches a set of buckets from the same family, all such buckets are141



combined into one super-bucket indexed by all the constituent buckets' variables. Asuper-bucket is processed exactly like a regular bucket except that elimination (bysummation or maximization) is performed relative to all the variables indexing thebucket. Once we apply this change, and if we have a poly-tree processed along alegal ordering, then approx-mpe(n,1) coincides with Pearl's propagation algorithm2.Processing a super bucket amounts to eliminating all the super-bucket's variableswithout recording intermediate functions.Example 16: In Example 15, instead of processing each bucket of Ui separately, wesimply compute the function hU1;U2;U3(X1) in the super-bucket of U1; U2; U3 and placeit in the bucket of X1, hU1;U2;U3(X1) = maxU1;U2;U3 P (U3) P (X1jU1; U2; U3) P (z3jU3)P (U2)P (z2jU2) P (U1)P (z1jU1).In summary,Proposition 5: If applied along a legal ordering, algorithm approx-mpe(n,1) withthe supper-bucket modi�cation is complete for poly-trees.The modi�ed algorithm'scomplexity is time exponential in the family size while it requires only O(n) space.24.7 Extensions of the mini-bucket schemeIn this section we embed the the mini-bucket scheme inside complete algorithms suchas anytime algorithms and heuristic search.4.7.1 Anytime algorithmsThe mini-bucket scheme provides adjustable levels of accuracy and e�ciency. How-ever, it is generally not possible to predict the performance of a particular parameter2Actually, Pearl's algorithm should be restricted to message passing relative to one rooted treein order to be identical to ours. 142



anytime-mpe(�)Input: Initial values of i and m, i0 and m0; increments istep and mstep; anddesired approximation error �.Output: U and L1. Initialize: i = i0; m = m0.2. While computational resources are available,3. Increase i and m:i i+ istep andm m+mstep4. U  upper bound of approx-mpe(i,m)5. L lower bound of approx-mpe(i,m)6. Retain best solution found so far7. If 1 � U=L � 1 + �, return solution8. end-while9. Return the largest L and the smallest U found so far.Figure 4.10: Algorithm anytime-mpe(�).setting. It is possible, however, to use this scheme within an anytime framework. Theidea of the anytime algorithm is to run a sequence of mini-bucket algorithms withincreasing values of i and m until either a desired level of accuracy or a bound onthe computational resources is reached. The anytime algorithm anytime-mpe(�) forthe MPE task is presented in Figure 4.10. The parameter � is the desired accuracylevel. The algorithm uses an initial parameter setting, i0 and m0, and incrementsistep and mstep. Starting with i = i0 and m = m0, approx-mpe(i,m) computes a lowerbound (L) and an upper bound (U) on MPE for increasing values of i and m. Thealgorithm terminates when either 1 � U=L � 1 + �, or the computational resourcesare exhausted, returning the largest lower bound and the smallest upper bound foundso far.Note that the algorithm is complete when � = 0. In the last section we discussedspecial cases for which anytime-mpe(0) is polynomial. It would be interesting toidentify cases of � > 0 for which anytime-mpe(�) is polynomial.143



4.7.2 Best-�rst search heuristicsAnother way of embedding the mini-bucket scheme within a complete algorithm isto combine it with heuristic search. We can use the recorded bounds in each bucketas heuristics in best-�rst search or in branch-and-bound search. Since the functionscomputed by approx-mpe(i,m) are always upper bounds of the exact quantities thatwould be computed by full bucket-elimination, they can be viewed as over-estimatingheuristic functions in a maximization problem. Alternatively, for a minimizationproblem they produce a lower-bounding heuristic. For example, focusing on theMPE task, we can derive those heuristics as follows. With each partial assignment�xp�1 = (x1; :::; xp�1) we associate an evaluation function f(�xp) = g(�xp) � h(�xp), whereg(�xp) = �p�1i=1P (xijxpai) and h(�xp) = �hj2bucketphj . It is easy to see that for everypartial assignment the evaluation function f provides an upper bound on the MPErestricted to that assignment �xp�1.We can use a best-�rst search algorithm [87] with this evaluation function. Thealgorithm maintains an OPEN list of all the frontier nodes in the search tree andexpands them in decreasing order of their evaluation function. From the theory ofbest-�rst search we know that: (1) when the algorithm terminates with a completeassignment, it has found an optimal solution; (2) as the heuristic function becomesmore accurate, fewer nodes will be expanded; and (3) if we use heuristics generatedby the full bucket-elimination algorithm best-�rst search will become a greedy andcomplete algorithm for the MPE task [87].Alternatively we can use the evaluation function f , or just h while exploring thesearch tree in a depth-�rst manner. In that case the next node to be expandedis selected from the child nodes of the most recently expanded node. Once a fullassignment is created it serves as a lower bound on the solution. Subsequent branchesof the search tree can be pruned by comparing the upper bound of each branch tothe current lower bound, resulting in the well-known branch-and-bound algorithm.In summary, the scheme of mini-bucket approximations can be viewed as a way of144



generating heuristics that can be used in a best-�rst or in a branch-and-bound search.These two approaches of anytime algorithms and heuristic search are highly promis-ing and are pursued in our ongoing work. In this work, however, we restrict ourempirical evaluation to the pure mini-bucket scheme.4.8 Related workThe basic idea for approximating dynamic-programming type algorithms appears inthe early work of Montanari [83]. There it is proposed to approximate a discretefunction of high arity by a sum of functions having lower arity. The paper uses themean square error in choosing the low-arity representation.The mini-bucket approximation is the �rst attempt to approximate all bucket-elimination algorithms within a single principled framework. The bucket-eliminationframework [26] provides a convenient and succinct language for expressing elimina-tion algorithms in many areas. In addition to dynamic programming [7], constraintsatisfaction [33], and Fourier elimination [74], there are variations on these ideas andalgorithms for probabilistic inference [9, 112, 107, 114].Mini-bucket algorithms parallel directional local consistency-enforcing algorithmsfor constraint processing. Our approach is inspired by adaptive-consistency, a fullbucket-elimination algorithm whose approximation, directional i-consistency or itsrelational variant directional-relational-consistency(i,m) (DRC(i;m)), enforce boundedlevels of consistency [37]. For example, directional relational arc-consistency, DRC1,is similar to mini-bucket(m = 1); directional path-consistency, DRC2, corresponds tomini-bucket(m = 2); and so on.The use of mini-bucket approximations as heuristics for subsequent search parallelspre-processing by local consistency prior to backtrack search for constraint solving.In propositional satis�ability, bounded-directional-resolution with bound b [36] corre-sponds to mini-bucket(i = b). It bounds the original resolution-based Davis-Putnamalgorithm [19] which can be formulated as a bucket-elimination algorithm.145



Another related idea is to remove weak dependencies in a join-tree clusteringscheme presented in [73]. This work suggests the use of Kullback-Leibler distance(KL-distance, or relative entropy) in deciding which dependencies to remove. Boththe KL-distance measure and the mean square error can be used to improve themini-bucket partitioning scheme.Finally, a collection of approximation algorithms for sigmoid belief networks wasrecently presented [66] in the context of a recursive algorithm similar to bucket-elimination. Upper and lower bounds are derived by approximating sigmoid functionsby Gaussian functions. This approximation can be viewed as a singleton mini-bucketalgorithm (m=1) where Gaussian functions replace themin or max operations appliedin each mini-bucket.4.9 Empirical evaluation4.9.1 MethodologyOur empirical study is focused on approximating the MPE. We used both randomlygenerated problems (uniform random networks and random noisy-OR networks), andrealistic domains such as medical diagnosis (CPCS networks [90]) and probabilisticdecoding [79, 46, 77, 47]. We tested algorithm approx-mpe(i,m) for various valuesof i and m, and compared it to the complete algorithm elim-mpe. For decodingproblems, we also compared approx-mpe(i,m) against the state-of-the-art decodingalgorithms. Rather than testing many combinations of i and m, we studied theimpact of each parameter separately using the following two schemes. The �rst one,called approx-mpe(m), assumes an unrestricted i and a varying m, while the secondone, called approx-mpe(i), assumes an unrestricted m and a varying i. For eachalgorithm we settled on a simple strategy for selecting mini-bucket partitioning. We�nd a canonical partitioning (put each subsumed functions into the mini-bucket ofits subsuming function). Then, for approx-mpe(m), we combine each m successive146



mini-buckets into one mini-bucket. For approx-mpe(i), we successively merge thecanonical mini-buckets into a new one until the total number of variables exceeds i.Then the process is repeated for the next group of canonical mini-buckets, etc. Also,in our implementation, we use a slightly di�erent interpretation of the parameter i.We allow i < jF j, where jF j is maximum family size, assuming that the number ofvariables in a mini-bucket is always bounded by maxfi; jF jg.For each problem instance that could be solved by elim-mpe, we compared the up-per bound (denoted U) and the lower bound (denoted L) found by the approximation,to the exact MPE value (denoted M), using the error ratios M=L and U=M . Thetime ratio TR = Te=Ta was computed, where Te was the running time of elim-mpeand Ta was the running time for approx-mpe. When elim-mpe was infeasible we reportonly the ratio U=L. Note, that U=L is an upper bound on the error ratios M=L andU=M . We also recorded the width, w, and the induced width, w�, of the network'sgraph along the min-degree 3 ordering [7, 40] used by the algorithms. Remember thatfor i > w� approx-mpe(i) coincides with elim-mpe. For diagnostic purposes we alsoreport the maximum number of mini-buckets recorded, max mb.We observe that in many cases the mini-bucket scheme quickly �nds a relativelyclose approximation to the MPE while the exact algorithm is orders of magnitudeslower. However, there are also many cases when the approximation quality is un-satisfactory. For example, the mini-bucket scheme works much better on structuredproblems such as noisy-OR networks (both random and realistic, like the CPCS net-works), rather than on uniform random belief networks. Our objective is to assessthe e�ectiveness of the mini-bucket algorithms for various problem classes and to �ndout which structural properties a�ect it most.3The min-degree ordering procedure works as follows. Given a moralized belief network with Nnodes, a node with minimum degree is assigned index N (placed last in the ordering). Then thenode's neighbors are connected to each other, the node is deleted from the graph, and the procedurerepeats, selecting the N � 1-th node, etc. 147



4.9.2 Uniform random problemsRandom problem generatorsOur uniform random problem generator takes as an input the number of nodes,n, the number of edges, e, and the number of values per variable, v. An acyclicdirected graph is generated by randomly picking e edges and subsequently removingpossible directed cycles, parallel edges, and self-loops. Then, for each node xi andits parents xpai, the conditional probability tables (CPTs) P (xijxpai) are generatedfrom the uniform distribution over [0; 1]. Finally, the probabilities are normalized,i.e. P (xijxpai)  P (xijxpai)= Pxi P (xijxpai).We also used a similar random generator that was implemented by J. Suermondt atStanford University School of Medicine. The generator takes as an input the numberof nodes in the network, the average number of edges per node, and the maximumnumber of values per variable. It �rst creates a complete graph and then removesedges until the required average number of edges per node is reached. The numberof values for each node is selected randomly between 2 and the maximum number ofvalues speci�ed. Then the CPTs are generated uniformly in the way described above.These two classes of random problems will later be referred to as Type-1 andType-2, respectively.ResultsIn Tables 4.1 and 4.2 we present the results obtained when running approx-mpe(m)and approx-mpe(i) on 200 instances of Type-1 networks having 30 nodes and 80 edges(\dense" networks), and on 200 instances 60 nodes and 90 edges (\sparse" networks).We computed the MPE and its approximations assuming no evidence.Tables 4.1a and 4.1b report on the mean values of M=L, U=M , TR, Ta, maxmb, w, and w�, for m = 1; 2; 3, and for i = 5; 8; 11. Tables 4.2a and 4.2b showin a histogram-like manner the percentage of instances whose error ratio (M=L orU=M) belongs to one of the intervals [r; r + 1], where r = 1; 2; 3, or to [4;1]. For148



Table 4.1: Averages on 200 instances of Type-1 binary-valued random networks with30 nodes, 80 edges, and with 60 nodes, 90 edges.approx-mpe(m) for m = 1; 2; 3m M/L U/M TR Ta maxmb30 nodes, 80 edgesw = 8; w� = 111 43.2 46.2 296.1 0.1 42 4.0 3.3 25.0 2.2 23 1.3 1.1 1.4 26.4 160 nodes, 90 edgesw = 4; w� = 111 9.9 21.7 131.5 0.1 32 1.8 2.8 27.9 0.6 23 1.0 1.1 1.3 11.9 1
approx-mpe(i) for i = 5; 8; 11i M/L U/M TR Ta maxmb30 nodes, 80 edgesw = 8; w� = 115 29.2 20.7 254.6 0.1 38 17.3 7.5 151.0 0.2 311 5.0 3.0 45.3 0.6 260 nodes, 90 edgesw = 4; w� = 115 2.8 6.1 112.8 0.1 28 1.9 2.8 71.7 0.2 211 1.4 1.6 24.2 0.5 2(a) (b)each interval, we also show the mean time ratio TR computed on the correspondinginstances.The most important observation from these tables is that the approximation al-gorithm solves many problem instances quite accurately (M=L 2 [1; 2] and U=M 2[1; 2]), spending 1-2 orders of magnitude less time than the complete algorithm. Forinstance, in table 4.1a, approx-mpe(m=2) on sparse instances solved all problems withmean M=L ratio less than 2 and with speedup of almost 28. When controlled by i,performance was even better. An accuracy M=L < 2 was achieved with speedup ofalmost 72 (i = 8) on sparse networks. We see that1. As expected, the average errorsM=L and U=M decrease with increasing m andi, approaching 1, while the time complexity of the approximation algorithms,Ta, increases, approaching the runtime of the exact algorithm, Te (see Tables4.1 and 4.2). Table 4.2 demonstrates how the distribution of error changes withincreasing m and i. Namely, a larger percentage of problems can be solved with149



Table 4.2: Histogram of the results on 200 instances of Type-1 networks with 30nodes, 80 edges, and with 60 nodes, 90 edges.approx-mpe(m)30 nodes, 80 edgesrange m M/L Mean U/M Mean% TR % TR[1; 2] 1 8.5 176.4 0 0.0(2; 3] 1 9.0 339.5 0 0.0(3; 4] 1 8.5 221.3 0 0.0(4;1) 1 74 313.1 100 296.1[1; 2] 2 48 20.8 29.5 10.9(2; 3] 2 16 25.7 27.5 22.2(3; 4] 2 7.5 53.1 17 22.1(4;1) 2 29.5 25.3 26 46.0[1; 2] 3 92 1.4 97 1.4(2; 3] 3 5 2.0 3 4.9(3; 4] 3 1 1.2 1 1.3(4;1) 3 3 1.6 0 0.0
approx-mpe(i)30 nodes, 80 edgesrange i M/L Mean U/M Mean% TR % TR[1; 2] 5 15.5 270.7 0.5 11.3(2; 3] 5 9 265.6 0 0.0(3; 4] 5 6.5 248.7 0.5 74.4(4;1) 5 69 250.1 99 256.8[1; 2] 8 31 150.1 2.5 33.0(2; 3] 8 10 100.5 7 101.1(3; 4] 8 10.5 114.7 12.5 132.9(4;1) 8 48.5 169.8 78 162.1[1; 2] 11 51 41.3 29 27.0(2; 3] 11 15 41.3 32 50.5(3; 4] 11 11 69.2 17 45.4(4;1) 11 23 44.5 22 60.660 nodes, 90 edgesrange m M/L Mean U/M Mean% TR % TR[1; 2] 1 26.5 172.8 0 0.0(2; 3] 1 16 64.3 0 0.0(3; 4] 1 9 43.5 1 17.4(4;1) 1 48.5 147.5 99 132.7[1; 2] 2 79.5 26.1 41 21.2(2; 3] 2 10 28.0 31 32.6(3; 4] 2 5.5 42.4 14 24.4(4;1) 2 5 40.5 14 40.3[1; 2] 3 100 1.3 100 1.3(2; 3] 3 0 1.0 1 1.0(3; 4] 3 0 0.0 0 0.0(4;1) 3 0 0.0 0 0.0

60 nodes, 90 edgesrange i Lower bound Upper bound% TR % TR[1; 2] 5 57.5 91.4 3 28.5(2; 3] 5 15 158.3 15.5 71.0(3; 4] 5 9 82.3 17.5 57.2(4;1) 5 18.5 157.2 64 142.0[1; 2] 8 80 64.9 38.5 36.9(2; 3] 8 11.5 88.9 25 72.0(3; 4] 8 3 27.4 21 96.3(4;1) 8 5.5 158.4 15.5 124.5[1; 2] 11 85.5 24.4 81 23.5(2; 3] 11 11.5 29.7 13.5 29.1(3; 4] 11 0.5 11.4 5 37.3(4;1) 11 2.5 21.1 0.5 14.0(a) (b)150



Table 4.3: elim-mpe vs. approx-mpe(i,m) on 100 instances of random networks with100 nodes and 130 edges (width 4). Mean values on 100 instances.approx-mpe(m)m U/L Ta maxmb1 781.1 0.1 32 10.4 3.4 23 1.2 132.5 14 1.0 209.6 1approx-mpe(i)i U/L Ta maxmb2 475.8 0.1 35 36.3 0.2 28 14.6 0.3 211 7.1 0.8 214 3.0 3.7 217 1.7 24.8 1Table 4.4: elim-mpe vs. approx-mpe(i) for i = 3 � 21 on 100 instances of randomnetworks with 100 nodes and 200 edges (width w = 6). Mean values on 100 instances.i U/L Ta maxmb2 1350427.6 0.2 45 234561.7 0.3 38 9054.4 0.5 311 2598.9 1.8 314 724.1 10.5 317 401.8 75.3 320 99.5 550.2 2151



Table 4.5: approx-mpe(i) on random networks created by J. Suermondt's generator(1 instance per given number of nodes and edges) with binary nodes and 10 randomlygenerated evidence nodes.i U L U/L Ta max w�amb50 nodes, 100 edges11 6.9e-12 6e-12 1.2 0.2 2 1413 6e-12 6e-12 1.0 0.3 2 1650 nodes, 400 edgesGreedy value=6.82e-15, greedy time = 0.519 1.4e-09 1.2e-10 12.1 69.1 3 2521 1.3e-09 1.1e-10 11.9 255.9 3 25100 nodes, 200 edgesGreedy value=1.16e-24, greedy time =0.115 1.2e-20 9.9e-22 12.5 4.7 3 2317 9.9e-21 1.2e-21 8.4 17.1 2 23100 nodes, 300 edgesGreedy value=1.39e-25, greedy time =0.415 5.1e-18 6.1e-23 83540.5 10.1 5 3217 5.2e-18 1.2e-21 4393.9 33.3 5 36200 nodes, 300 edgesGreedy value=0.0e+0, greedy time =0.117 1.7e-40 2.2e-41 7.8 39.2 2 2719 2.3e-40 2.7e-41 8.8 128.4 3 30200 nodes, 400 edgesGreedy value=0.0e+0, greedy time =0.217 2.2e-37 7.7e-42 28811.4 46.4 3 3919 2.1e-37 1.8e-41 11463.8 231.3 4 44
152



a lower error.2. On sparse random problems we observe a substantial time speedup accompaniedwith low error. For example, approx-mpe(i=8) and approx-mpe(i=11) achievea relatively small error (M=L < 2 and U=M < 2) in around 80% of cases, whilebeing up to 2 orders of magnitude more e�cient than elim-mpe (see the data forthe 60-node networks in Table 4.2b). Clearly, for dense random problems theapproximation quality is worse since they tend to have larger induced width.For example, for approx-mpe(i=8), the average M=L ratio increases from 1.9to 17.3 when going from sparse 60-node networks to dense 30-node networks(Table 4.1b). However, even for dense networks we observe that, for example,for i = 11 and for m = 2, approximately 50% of the instances were solved withan accuracy M=L < 2 accompanied with an order of magnitude speedup overthe exact algorithm (see Tables 4.2a and (b) for 30-node networks).3. The solution tuple provides a lower bound which is closer to the MPE valuethen the upper bound. Namely, M=L 2 [1; 2] in a larger percent of cases thanU=M 2 [1; 2] for both problem classes and for all i and m (see Table 4.2).4. We observe that the parameter i, bounding the number of variables in a mini-bucket, often allows a better control over the approximation level than m whichbounds the number of (non-subsumed) functions in a mini-bucket. This resultsin a more accurate approximation scheme and in a larger time speedup. Forexample, as we can see from Table 4.2, approx-mpe(m=2) solved about 80% ofthe instances with accuracy M=L 2 [1; 2] and average speedup TR = 26, whileapprox-mpe(i=8) solved 80% of the sparse instances in the same M=L rangewith time speedup TR = 65.We next experimented with larger problems of Type-1, where running the com-plete elimination algorithm was often too costly. The results for both approx-mpe(m)and approx-mpe(i) on 100 problem instances having 100 variables and 130 edges, and153



100 variables and 200 edges, are reported in Tables 4.3 and 4.4. The �rst column isthe value of the controlling parameter (m or i). Since we did not run the completealgorithm on those instances, instead of M=L and U=M we show U=L (second col-umn). We also show the running time Ta and the maximum number of mini-bucketscreated in a bucket, max mb.The most striking observation from Table 4.3, presenting data on sparse problems,is the di�erent behavior of the algorithm if controlled by a di�erent parameter, i.e.,by m or by i. We observe, even more strongly than before, that the parameter iallows more re�ned control: increasing m by 1 results in a drastic change both inaccuracy and in time, while incrementing i allows a more re�ned levels of accuracyand e�ciency. Indeed, approx-mpe(i) can reach the same accuracy as approx-mpe(m)with better performance. For example, in table 4.3, U=L � 10:4 is achieved in 3.4seconds by approx-mpe(m=2), while U=L � 7:1 requires 0.8 seconds on the averageby approx-mpe(i=11). On denser problems having 100 nodes and 200 edges approx-mpe(m) is too inaccurate for m = 1 and m = 2, but already infeasible for m = 3and m = 4. Therefore, we report only the results for approx-mpe(i), which allowedmuch smaller error in a reasonable amount of time. However, its accuracy was stillnot acceptable (U=L � 100), even when the number of mini-buckets was boundedjust by 2 (see Table 4.4).Next, we tested approx-mpe(i) on several Type-2 networks having 50, 100, and 200variables and varying number of edges (Table 4.5). For each parameter combination,we generated a single network instance and a set of 10 randomly selected evidencenodes. Here we also computed a candidate MPE approximation using a simple greedystrategy as follows. Before applying a mini-bucket algorithm we generate a tuple(forward step) using only the original functions in each bucket. Namely, for eachvariable xi along the given ordering we assign to xi a value vj = arg maxv Qj fj(v),where fj is a function in bucketi. The probability of the generated tuple is anotherlower bound on the MPE value. This bound is shown as \Greedy value" in separaterows of Table 4.5. We see that such a \weak" lower bound is by several orders of154



magnitude worse than the one obtained by approx-mpe. This indicates the impactthe mini-bucket processing has, even for low i. As observed before, and as theorypredicts, the approximation is more e�cient on sparse networks. We see that thequality of the approximation decreases when going from 100 to 400 edges in networkshaving 50 variables; from 200 to 300 edges in 100-node networks; and from 300 to 400edges in 200-node networks. Note that the parameter i is increased for the densernetwork which results in a drastic increase in CPU time. However, this is still notenough to get an accurate approximation.We should note again that the results here are based on U=L, which may be avery loose upper bound on accuracy, in contrast to cases when exact elim-mpe couldrun and the bounds U=M and M=L could be computed.4.9.3 Random noisy-OR problemsNext, we ran a set of experiments on randomly generated networks whose CPTs havea noisy-OR structure. Noisy-OR CPTs assume a disjunctive interaction betweenboolean variables where several causes contribute independently to a common e�ect(a property known as causal independence [63]). A noisy-OR CPT de�nes a logicalOR gate disturbed by noise as follows: given a child node x, and its parents y1,...,yn,each yi is associated with a noise parameter qi, de�ned as qi = P (x = 0jyi = 1; yk = 0)for k 6= i. The conditional probabilities are de�ned as follows [89]:P (xjy1; : : : ; yn) = 8><>: Qyi=1 qi if x = 0;1 �Qyi=1 qi if x = 1: (4.6)Obviously, when all qi = 0, we have a logical OR-gate. The parameter 1�qi = P (x =1jyi = 1; yk = 0) for k 6= i is called the link probability.We used the random graph generator of Type-1. Random noisy-OR CPTs wereobtained as follows. Given a maximum noise level q, the individual values qi arerandomly selected from the interval [0; q].155



Table 4.6: elim-mpe vs. approx-mpe(i,m) on 200 noisy-OR network instances withone evidence node (X1 = 1).Mean values on 30 instances30 nodes, 90 edges, 2 values/node, w = 9; w� = 12m M/L U/M TR Ta maxmbelim-mpe vs. approx-mpe(m)1 1285.8 59.0 441.2 0.0 42 179.9 5.5 30.8 1.0 23 1.3 1.2 1.2 15.5 14 1.1 1.1 1.0 18.0 1elim-mpe vs. approx-mpe(i)2 1360824.2 65.0 676.0 0.0 45 48585.6 47.7 578.3 0.0 47 126.2 22.2 347.6 0.1 311 1.3 16.4 105.1 0.2 214 1.2 1.5 19.2 1.2 2
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Table 4.7: Random noisy-OR networks (50 nodes, 150 edges, 10 evidence nodes).q = 0range i U/L Ta MB111 experiments[0; 1] 8 100.0 0.1 3[1; 2] 8 0.0 0.0 0[2; 3] 8 0.0 0.0 0[3; 4] 8 0.0 0.0 0[4;1) 8 0.0 0.0 0129 experiments[0; 1] 11 100.0 0.3 3[1; 2] 11 0.0 0.0 0[2; 3] 11 0.0 0.0 0[3; 4] 11 0.0 0.0 0[4;1) 11 0.0 0.0 0164 experiments[0; 1] 17 100.0 11.4 2[1; 2] 17 0.0 0.0 0[2; 3] 17 0.0 0.0 0[3; 4] 17 0.0 0.0 0[4;1) 17 0.0 0.0 0
q = 0:001range i U/L Ta MB196 experiments(0;1] 8 72.4 0.1 3(1;2] 8 0.0 0.0 0(2;3] 8 0.0 0.0 0(3;4] 8 0.0 0.0 0(4;1) 8 27.6 0.1 3198 experiments(0;1] 11 82.8 0.3 3(1;2] 11 0.0 0.0 0(2;3] 11 0.0 0.0 0(3;4] 11 0.0 0.0 0(4;1) 11 17.2 0.3 3198 experiments(0;1] 17 90.9 11.7 2(1;2] 17 0.0 0.0 0(2;3] 17 0.0 0.0 0(3;4] 17 0.0 0.0 0(4;1) 17 9.1 11.9 2

q = 0:01range i U/L Ta MB94 experiments(0;1] 8 74.5 0.1 3(1;2] 8 0.0 0.0 0(2;3] 8 0.0 0.0 0(3;4] 8 0.0 0.0 0(4;1) 8 25.5 0.1 394 experiments(0;1] 11 86.2 0.3 3(1;2] 11 0.0 0.0 0(2;3] 11 0.0 0.0 0(3;4] 11 0.0 0.0 0(4;1) 11 13.8 0.3 396 experiments(0;1] 17 91.7 11.8 2(1;2] 17 0.0 0.0 0(2;3] 17 0.0 0.0 0(3;4] 17 0.0 0.0 0(4;1) 17 8.3 11.7 2q = 0:1range i U/L Ta MB196 experiments(0;1] 8 55.1 0.1 3(1;2] 8 22.4 0.1 3(2;3] 8 0.0 0.0 0(3;4] 8 0.0 0.0 0(4;1) 8 22.4 0.1 3199 experiments(0;1] 11 63.8 0.3 3(1;2] 11 20.6 0.3 3(2;3] 11 0.0 0.0 0(3;4] 11 0.0 0.0 0(4;1) 11 15.6 0.3 3198 experiments(0;1] 17 83.8 11.5 2(1;2] 17 7.6 12.9 2(2;3] 17 0.0 0.0 0(3;4] 17 0.0 0.0 0(4;1) 17 8.6 10.9 2
q = 0:5range i U/L Ta MB198 experiments(0;1] 8 36.9 0.1 3(1;2] 8 23.7 0.1 3(2;3] 8 6.6 0.1 3(3;4] 8 3.5 0.1 3(4;1) 8 29.3 0.1 3199 experiments(0;1] 11 46.7 0.3 3(1;2] 11 27.1 0.3 3(2;3] 11 7.0 0.3 3(3;4] 11 4.0 0.3 3(4;1) 11 15.1 0.3 3198 experiments(0;1] 17 67.7 11.5 2(1;2] 17 21.7 11.1 2(2;3] 17 3.0 10.6 2(3;4] 17 2.5 11.3 2(4;1) 17 5.1 12.3 2

q = 1range i U/L Ta MB91 experiments(0;1] 8 31.9 0.1 3(1;2] 8 3.3 0.1 4(2;3] 8 3.3 0.1 3(3;4] 8 5.5 0.1 3(4;1) 8 56.0 0.1 390 experiments(0;1] 11 31.1 0.3 3(1;2] 11 15.6 0.3 3(2;3] 11 5.6 0.3 3(3;4] 11 4.4 0.3 3(4;1) 11 43.3 0.3 392 experiments(0;1] 17 43.5 11.8 2(1;2] 17 22.8 10.9 2(2;3] 17 10.9 12.8 2(3;4] 17 3.3 10.4 2(4;1) 17 19.6 10.6 2157



Table 4.8: Random noisy-OR networks with 10 evidence nodesNetworks with 50 nodes, 200 edgesq = 0:1range i U/L % Ta MB163 experiments(0;1] 8 44.8% 0.1 4(1;2] 8 15.3% 0.1 4(2;3] 8 0.0% 0.0 0(3;4] 8 0.0% 0.0 0(4;1) 8 39.9% 0.1 4163 experiments(0;1] 11 54.6% 0.5 4(1;2] 11 19.0% 0.5 4(2;3] 11 0.0% 0.0 0(3;4] 11 0.0% 0.0 0(4;1) 11 26.4% 0.5 4164 experiments(0;1] 17 73.2% 17.9 3(1;2] 17 8.5% 16.8 3(2;3] 17 0.0% 0.0 0(3;4] 17 0.0% 0.0 0(4;1) 17 18.3% 19.4 3
q = 0:5range i U/L % Ta MB176 experiments(0;1] 8 31.2% 0.1 4(1;2] 8 27.8% 0.1 4(2;3] 8 6.8% 0.1 4(3;4] 8 3.4% 0.2 4(4;1) 8 30.7% 0.1 4177 experiments(0;1] 11 41.2% 0.5 4(1;2] 11 33.9% 0.5 4(2;3] 11 2.8% 0.5 4(3;4] 11 4.0% 0.5 4(4;1) 11 18.1% 0.5 4178 experiments(0;1] 17 57.9% 18.5 3(1;2] 17 27.5% 19.5 3(2;3] 17 1.1% 19.3 4(3;4] 17 3.9% 19.2 3(4;1) 17 9.6% 19.5 3Networks with 100 nodes, 200 edgesq = 0:1range i U/L % Ta MB84 experiments(0;1] 8 94.0 0.1 3(1;2] 8 2.4 0.1 3(2;3] 8 0.0 0.0 0(3;4] 8 0.0 0.0 0(4;1) 8 3.6 0.1 385 experiments(0;1] 11 92.9 0.5 3(1;2] 11 2.4 0.4 4(2;3] 11 0.0 0.0 0(3;4] 11 0.0 0.0 0(4;1) 11 4.7 0.5 386 experiments(0;1] 17 91.9 19.8 2(1;2] 17 3.5 16.9 3(2;3] 17 0.0 0.0 0(3;4] 17 0.0 0.0 0(4;1) 17 4.7 18.9 2
q = 0:5range i U/L % Ta MB85 experiments(0;1] 8 90.6 0.1 3(1;2] 8 0.0 0.0 0(2;3] 8 0.0 0.0 0(3;4] 8 0.0 0.0 0(4;1) 8 9.4 0.1 386 experiments(0;1] 11 89.5 0.5 3(1;2] 11 0.0 0.0 0(2;3] 11 0.0 0.0 0(3;4] 11 0.0 0.0 0(4;1) 11 10.5 0.5 388 experiments(0;1] 17 88.6 19.8 2(1;2] 17 2.3 20.2 3(2;3] 17 1.1 19.2 3(3;4] 17 0.0 0.0 0(4;1) 17 8.0 17.8 3158
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varying values of q are reported in Table 4.7 and in Figure 4.12. Table 4.8 presentsthe results on larger networks having 50 nodes and 200 edges, and 100 nodes and 200edges. We ran up to 200 experiments per each parameter combination.The Tables 4.7 and 4.8 summarize the data in a histogram manner, as before. Thecase of U=L = 1 ( up to the oating point precision of our computer) corresponds tothe interval (0; 1], since U=L cannot be less than 1.As previously observed, the approximation is better on sparser networks (100nodes/200 edges) than on denser ones (50 nodes/150 edges and 50 nodes/200 edges).For example, given i = 8 and given q 2 [0; 0:1], approximation was 100% accurate(U=L = 1) in 94% of all sparse instances with 100 nodes, 200 edges and only in 44.8%of all dense instances with 50 nodes, 200 edges (Table 4.8).The most apparent new phenomenon here is that the approximation improveswith decreasing noise q, i.e., U=L ! 1 for q ! 0. For example, for 50-node networks(Table 4.7) and for i = 8, approximation was 100 % accurate (U=L = 1) in 31.9% of allinstances when q = 1, in 36.9% when q = 0:5, in 55.1% when q = 0:1, in 74.5% whenq = 0:01, and in 100% when q = 0. In Figure 4.12a, the percentage of instances forwhich U=L = 1 is plotted against q for approx-mpe(8), approx-mpe(14), and approx-mpe(20). When q = 0 (deterministic dependence x , y1 _ ::: _ yk between a childx and its parents yi; i = 1; :::; k ), we observe 100% accuracy. Another interestingobservation is that the algorithm's behavior is also extreme; it is either very accurate,or very inaccurate, as is observed by the distribution of the error U=L in Figure 4.12b.This phenomenon becomes even more pronounced when q gets closer to 0.4.9.4 CPCS networksTo evaluate the mini-bucket approach on realistic benchmarks we used the CPCSnetworks [90] derived from the Computer-based Patient Case Simulation system [85].CPCS network representation is based on INTERNIST-1 [81] and Quick MedicalReference (QMR) [80] expert systems. The nodes of CPCS networks correspond to160



diseases and �ndings. In the original knowledge base, the probabilistic dependenciesbetween the nodes were represented by frequency weights that specify the increasein the probability of a �nding (child node) given a certain disease (parent node).Conversion to a coherent belief network required a set of simplifying assumptions:(1) conditional independence of �ndings given diseases, (2) noisy-OR dependenciesbetween diseases and �ndings, and (3) marginal independence of diseases [108].In CPCS networks noisy-OR CPTs may also include leak probabilities not speci�edin the original de�nition 4.6. Namely, given a child node x and its parents y1,...,yn,the leak probability is de�ned as leak = P (x = 1jy1 = 0; :::; yn = 0). The de�nition ofa noisy-OR CPT is then modi�ed as follows:P (x = 0jy1; : : : ; yn) = (1� leak) nYyi=1 qi; (4.7)where qi are noise coe�cients. Some CPCS networks include multivalued variablesand noisy-MAX CPTs, which generalize noisy-OR by allowing k values per node, asfollows: li = P (x = ijy1 = 0; : : : ; yn = 0); i = 1; : : : k � 1; andP (x = ijy1; : : : ; yn) = li nYj=1 qyjj ; i = 0; : : : k � 2;P (x = k � 1jy1; : : : ; yn) = 1 � i=k�2Xi=0 li nYj=1 qyjj ;where qyjj is a noise coe�cient for parent j and the parent's value yj. This de�nitioncoincides with the de�nition in 4.7 for k = 2, assuming l0 = 1 � leak, q0j = 1, andq1j = qj.We experimentedwith both binary (noisy-OR) and non-binary (noisy-MAX) CPCSnetworks. The noisy-MAX network cpcs179 (179 nodes, 305 edges) has 2 to 4 val-ues per node, while the noisy-OR networks cpcs360b (360 nodes, 729 edges) andcpcs422b (422 nodes, 867 edges) have binary nodes. (the letter 'b' in the network'sname stands for \binary"). Since our implementation used standard conditional prob-ability tables the non-binary versions of the larger CPCS networks with 360 and 422161



nodes did not �t into memory. We plan to use a special representation for noisy-MAX and noisy-OR in the future. Each CPCS network was tested for di�erent setsof evidence nodes.Experiments without evidenceIn Table 4.9.4 we present the results obtained on cpcs179, cpcs360b, and cpcs422bnetworks without using evidence. In this case we can run only one experiment pernetwork. We compare approx-mpe(i) for various values of i against the exact elim-mpe, which is equivalent to approx-mpe(w� + 1). We use the min-degree orderingin all algorithms, as before. Each row contains the value of parameter i, the MPEvalue, upper (U) and lower (L) bounds, computed by approx-mpe(i), the error ratiosU=MPE and MPE=L, time of approximation (Ta), time of exact algorithm (Te),and their ratio, the maximum number of mini-buckets in a bucket, and an additionalparameter which is the e�ective induced width of approximation, w�a , de�ned as thesize of largest mini-bucket minus one. This parameter does not exceed the maximumbetween i � 1 and the largest family size. We also compute a lower bound on theMPE using the simple greedy strategy (Greedy) described in the previous section.For each network, we report the Greedy lower bound and the ratio MPE=Greedy ina separate row.For those three instances, the lower bound computed by approx-mpe(1) alreadyprovides the exact MPE value. For cpcs179 and cpcs360b, even the greedy solutioncoincides with the MPE. The upper bound converges slowly and reaches the MPEat higher values of i, such as i=6 for cpcs179, i=19 for cpcs360b, and i = 21 forcpcs422b. Still, those values are smaller than w�+1, which is 9 for cpcs179, 21 forcpcs360b, and 24 for cpcs422b. Therefore, the exact solution is found before theapproximate algorithm coincides with the exact one (we see that there are still 2 or 3mini-buckets in a bucket). Note the non-monotonic convergence of the upper bound.For example, on cpcs360b network, the upper bound U equals 3.7e-7 for i = 1, butthen jumps to 4.0e-7 for i = 6. Similarly, on cpcs422b network, U = 0:0050 for162



Table 4.9: approx-mpe(i) on CPCS networks in case of no evidence.i MPE U L U/MPE MPE/L Ta Te Te=Ta max mb w�acpcs179 network, w = 8; w� = 8Greedy value=6.9e-3, MPE/greedy=1.0, greedy time = 0.01 6.9e-3 9.1e-3 6.9e-3 1.3 1.0 0.3 1.0 3.3 4 84 6.9e-3 9.1e-3 6.9e-3 1.3 1.0 0.3 1.0 3.3 3 86 6.9e-3 6.9e-3 6.9e-3 1.0 1.0 0.4 1.0 2.5 2 88 6.9e-3 6.9e-3 6.9e-3 1.0 1.0 1.0 1.0 1.0 1 8cpcs360b network, w = 18; w� = 20Greedy value=2.0e-7, MPE/greedy=1.0, greedy time = 0.01 2.0e-7 3.7e-7 2.0e-7 1.8 1.0 0.4 115.8 289.5 8 116 2.0e-7 4.0e-7 2.0e-7 2.0 1.0 0.4 115.8 289.5 9 1111 2.0e-7 2.4e-7 2.0e-7 1.2 1.0 0.5 115.8 231.6 6 1116 2.0e-7 2.2e-7 2.0e-7 1.1 1.0 4.9 115.8 23.6 3 1519 2.0e-7 2.0e-7 2.0e-7 1.0 1.0 30.4 115.8 3.8 3 18cpcs422b network, w = 22; w� = 23Greedy value=1.19e-4, greedy time =0.11 0.0049 0.1913 0.0049 3.88 1.00 7.7 1697.6 220.5 12 176 0.0049 0.0107 0.0049 2.17 1.00 7.7 1697.6 220.5 10 1711 0.0049 0.0058 0.0049 1.17 1.00 7.8 1697.6 217.6 9 1718 0.0049 0.0050 0.0049 1.01 1.00 34.6 1697.6 49.1 3 1720 0.0049 0.0069 0.0049 1.40 1.00 98.8 1697.6 17.2 3 1921 0.0049 0.0049 0.0049 1.00 1.00 156.1 1697.6 10.9 2 2022 0.0049 0.0050 0.0049 1.06 1.00 311.7 1697.6 5.5 2 21i = 18, but U = 0:0069 for i = 20. The non-monotonic convergence of the errorU=L is depicted in Figure 4.13a using data from Table 4.9.4. Figure 4.13b presentssimilar data for the cases of evidence that will be discussed later. We also observethat the greedy approximation for cpcs422b is an order of magnitude less accuratethan the lower bound found by approx-mpe(1) (see Table 4.9.4), demonstrating thatthe mini-bucket scheme with i = 1 can accomplish a non-trivial task very e�ectively.The results in Table 4.9.4 are reorganized in Figure 4.14 from the perspective ofalgorithm anytime-mpe(�). Anytime-mpe(�) runs approx-mpe(i) for increasing i untilU=L < 1 + �. We started with i = 1 and incremented i by 1. We present the resultsfor � = 0:0001 in Figure 4.14, observing how the approximation error U=L decreaseswith time. The table under the �gure compares the time of anytime�mpe(0:0001)and of anytime�mpe(0:1) against the time of the exact algorithm. We see that theanytime approach can save an order of magnitude time.163
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Table 4.10: approx-mpe(i) on cpcs360b (360 nodes, 729 edges, w = 18; w� = 20).ONE SAMPLE of each evidence typei MPE U L U/L U/MPE MPE/L Ta Te Te=Ta max mb w�aLIKELY evidence: 10 nodesGreedy value=4.5e-10, MPE/greedy=1.0, greedy time = 0.01 4.5e-10 4.1e-9 4.5e-10 9.0 9.0 1.0 0.4 115.8 289.5 8 113 4.5e-10 3.6e-9 4.5e-10 8.1 8.1 1.0 0.4 115.8 289.5 8 115 4.5e-10 3.6e-9 4.5e-10 8.0 8.0 1.0 0.4 115.8 289.5 9 117 4.5e-10 3.3e-9 4.5e-10 7.3 7.3 1.0 0.4 115.8 289.5 9 119 4.5e-10 2.7e-9 4.5e-10 6.0 6.0 1.0 0.4 115.8 289.5 10 1111 4.5e-10 1.9e-9 4.5e-10 4.1 4.1 1.0 0.5 115.8 231.6 6 1115 4.5e-10 8.8e-10 4.5e-10 2.0 2.0 1.0 2.9 115.8 39.9 4 1417 4.5e-10 4.7e-10 4.5e-10 1.1 1.1 1.0 9.8 115.8 11.9 3 1619 4.5e-10 4.5e-10 4.5e-10 1.0 1.0 1.0 30.5 115.8 3.8 3 18RANDOM evidence: 10 nodesGreedy value=1.1e-29, MPE/greedy=7.0, greedy time = 0.01 7.7e-29 8.9e-27 7.7e-29 115.4 115.4 1.0 0.4 116.0 290 7 113 7.7e-29 8.9e-27 7.7e-29 115.4 115.4 1.0 0.4 116.0 290 7 115 7.7e-29 7.0e-27 7.7e-29 89.8 89.8 1.0 0.4 116.0 290 7 117 7.7e-29 2.2e-26 7.7e-29 284.4 284.4 1.0 0.4 116.0 290 7 119 7.7e-29 1.7e-28 7.7e-29 2.2 2.2 1.0 0.4 116.0 290 8 1111 7.7e-29 4.0e-28 7.7e-29 5.2 5.2 1.0 0.5 116.0 232 5 1115 7.7e-29 8.7e-29 7.7e-29 1.1 1.1 1.0 2.1 116.0 55.2 4 1417 7.7e-29 8.3e-29 7.7e-29 1.1 1.1 1.0 8.0 116.0 14.5 3 1619 7.7e-29 7.7e-29 7.7e-29 1.0 1.0 1.0 28.5 116.0 4.1 2 18AVERAGES on 1000 instancesi MPE U L U/L U/MPE MPE/L Ta Te Te=Ta max mb w�aLIKELY evidence: 10 nodesGreedy = 1.18e-7, MPE/Greedy = 17.2, greedy time = 0.01 1.2e-7 2.4e-7 1.2e-7 82 11 2.1 0.40 41.44 104.16 7.98 113 1.2e-7 2.4e-7 1.2e-7 81 11 2.1 0.40 41.44 103.78 7.98 115 1.2e-7 2.4e-7 1.2e-7 14 11 1.1 0.40 41.44 103.35 8.94 117 1.2e-7 2.1e-7 1.2e-7 8.6 8.2 1.0 0.40 41.44 103.53 8.94 119 1.2e-7 2.0e-7 1.2e-7 4.3 4.2 1.0 0.41 41.44 103.13 9.91 1111 1.2e-7 1.5e-7 1.2e-7 3.5 3.3 1.0 0.51 41.44 80.93 5.86 1115 1.2e-7 1.4e-7 1.2e-7 1.5 1.5 1.0 2.87 41.44 14.56 3.96 1417 1.2e-7 1.3e-7 1.2e-7 1.3 1.3 1.0 9.59 41.44 4.35 3.04 1619 1.2e-7 1.2e-7 1.2e-7 1.1 1.1 1.0 30.50 41.44 1.37 2.93 18RANDOM evidence: 10 nodesGreedy = 5.01e-21, MPE/Greedy = 2620, greedy tim= 0.001 6.1e-21 2.3e-17 2.4e-21 2.5e+6 2.8e+5 25 0.40 40.96 102.88 7.95 113 6.1e-21 1.8e-17 2.4e-21 1.7e+6 2.6e+5 20 0.40 40.96 102.46 7.95 115 6.1e-21 7.6e-17 5.7e-21 1.9e+6 7.9e+5 14 0.40 40.96 102.43 8.88 117 6.1e-21 7.3e-17 5.9e-21 1.3e+5 1.2e+5 1.5 0.40 40.96 102.41 8.89 119 6.1e-21 6.4e-18 6.0e-21 4.2e+4 1.1e+4 4.3 0.40 40.96 102.21 9.84 1111 6.1e-21 2.4e-18 6.0e-21 2.4e+4 2.1e+3 3.1 0.51 40.96 80.02 5.81 1115 6.1e-21 7.7e-20 6.0e-21 94 90 1.1 2.85 40.96 14.46 3.98 1417 6.1e-21 1.8e-20 6.1e-21 15 15 1.0 9.53 40.96 4.31 3.03 1619 6.1e-21 1.1e-20 6.1e-21 8.1 7.9 1.0 30.45 40.96 1.35 2.90 18165



Table 4.11: approx-mpe(i) on cpcs422b (422 nodes, 867 edges, 2 values per node,w = 22; w� = 23). ONE SAMPLE of each evidence typei U L U/L Ta max mb w�aLIKELY evidence: 10 nodesGreedy value=1.2e-7, greedy time =0.310 1.6e-3 1.4e-3 1.13 16.9 10 1712 1.6e-3 1.4e-3 1.15 17.4 10 1714 1.5e-3 1.4e-3 1.05 19.8 6 1716 1.6e-3 1.4e-3 1.12 30.7 4 1718 1.4e-3 1.4e-3 1.01 76.5 3 1720 2.0e-3 1.4e-3 1.40 221.0 3 19RANDOM evidence: 10 nodesGreedy value=6.0e-40, greedy time =0.310 4.4e-30 1.3e-35 330235 17.0 10 1712 5.6e-30 1.3e-35 419492 17.4 10 1714 5.1e-32 1.6e-37 320807 19.5 6 1716 9.6e-31 1.3e-35 71991.4 30.3 4 1718 4.6e-32 1.3e-35 3469.7 75.4 3 1720 3.6e-33 1.3e-35 268.8 218.9 3 19AVERAGES on 1000 instancesi U L U/L Ta max mb w�aLIKELY evidence: 10 nodesGreedy = 6.81e-5, greedy time = 0.8110 2.4e-3 1.8e-3 3.7e+5 17 9.95 1712 2.3e-3 1.8e-3 1.3e+5 17.57 9.94 1714 2.1e-3 1.8e-3 1.2e+4 19.77 6.05 1716 2.2e-3 1.8e-3 1.1e+4 30.73 4.11 1718 2.0e-3 1.8e-3 1.5e+2 75.93 3.06 1720 2.5e-3 1.8e-3 6.2e+2 223.63 2.98 19RANDOM evidence: 10 nodesGreedy = 1.39e-31, greedy time = 0.5510 4.1e-16 2.7e-25 5.8e+12 17.01 9.89 1712 1.9e-18 2.6e-25 2.5e+10 17.61 9.86 1714 1.3e-20 2.8e-25 8.6e+7 19.80 6.05 1716 1.6e-19 2.9e-25 2.1e+9 30.72 4.09 1718 7.0e-23 3.1e-25 3.5e+5 76.24 3.11 1720 3.7e-23 5.4e-25 3.6e+4 221.25 2.92 19
166



Anytime-mpe(0.0001) 
   U/L error vs time

Time and parameter i

1 10 100 1000

U
pp

er
/L

ow
er



0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8
cpcs422b
cpcs360b

i=1 i=21 Time (sec)Algorithm cpcs360 cpcs422elim-mpe 115.8 1697.6anytime-mpe(�), � > 0:0001 70.3 505.2anytime-mpe(�), � > 0:1 70.3 110.5Figure 4.14: anytime-mpe(0.0001) on cpcs360b and cpcs422b networks for the caseof no evidence.instances of random evidence, each of size 10. Similarly, for cpcs422b, we generated200 sets of likely evidence and 200 sets of random evidence, each of size 10. In eachTable, we show the results for single instances (one per each type of evidence) atthe top, and the average results over the whole sample set at the bottom. Let us�rst analyze the results for cpcs360b (Table 4.10). We see that the MPE valuedecreases dramatically when switching from likely to random evidence (from 4.5e-10to 7.7e-29 on two single instances, and from 1.2e-7 to 6.1e-21 on average). Both ina single sample of likely evidence and on average over all such instances we observethat approx �mpe(i = 1) and the simple greedy approximation compute the exact167



MPE, while the upper bound converges to MPE for larger values of i. The averageMPE=L ratio, however, is greater than 1 for i � 5 (e.g., MPE=L = 2:1 for i = 1),which tells us that the lower bound di�ers from MPE on some instances. The averageMPE=Greedy = 17:2 is signi�cantly larger. For random evidence the approximationerror increases. The average lower bound is strictly less than the MPE for i < 17,and the average MPE=L = 25 for i = 1. The greedy approximation is now evenworse: the averageMPE=Greedy is 2620. Figure 4.13b compares the approximationerror U=L versus parameter i for three di�erent sample runs: one with no evidence,one with likely evidence, and one with random evidence on cpcs360b network.For cpcs422b (Table 4.11) we do not have the MPE value since running the exactalgorithm on 200 instances was too costly. Therefore, the only error measure hereis U=L. We observe again that for the same value of i the error U=L is signi�cantlysmaller for likely evidence than for random evidence.We noticed that the average approximation error U=L is orders of magnitudelarger than U=L observed in many instances (e.g., see Table 4.11 for i = 10 and likelyevidence: the average U=L is 3.7e5, while it is only 1.13 in a typical instance). Thisfact indicates that U=L has a long-tail distribution, as we noticed before in the caseof random and noisy-OR networks. Therefore, we also present histograms in Tables4.12-4.17 and in Figures 4.15 and 4.16.Table 4.12 shows the histograms of MPE/Greedy on the cpcs360b network.As before, we split the interval (0;1) into several intervals and report the per-cent of the cases when MPE=Greedy appears in each interval, as well as the av-erage MPE=Greedy in that interval. Note that the interval (0:5; 1:0] correspondsto the exact solution, since MPE=Greedy � 1. An interesting observation is thatfor likely evidence the greedy lower bound provides an exact MPE in 97.3% of cases.However, in a very small fraction of instances (0.5%) the error was huge (averageMPE=Greedy = 3174:4). For the random evidence the distribution of the error isshifted to the right: MPE=Greedy = 1 in less than 51% of all cases, and in 24.2168
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Table 4.12: Histogram of the error ratio MPE/Greedy computed by simple greedyalgorithm on cpcs360b network. Summary on 1000 instances of two types of evi-dence. LIKELY evidence (10 nodes)range % MPE/Greedy Mean(0:5; 1:0] 97.3 1.0(1:0; 1:5] 1.7 1.1(1:5; 2:0] 0.3 1.7(2:0; 2:5] 0.1 2.3(2:5; 3:0] 0.1 2.5(3:0;1) 0.5 3174.4RANDOM evidence (10 nodes)(0:5; 1:0] 54.8 1.0(1:0; 1:5] 10.2 1.1(1:5; 2:0] 6.0 1.7(2:0; 2:5] 3.4 2.3(2:5; 3:0] 1.4 2.7(3:0;1) 24.2 10908.5% of the cases the error is very large (more than 10000 on average). Tables 4.13-4.16 present the histograms for U/L and MPE/L computed by approx-mpe(i) on thecpcs360b network, both for likely and for random evidence. The histograms of U/Lon the cpcs422b network with likely and random evidence are shown in Table 4.17.Note that if the error never appears in a particular interval the corresponding averagesare marked \n/a" (non-applicable). As expected, we observe that with increasing ithe histograms of both errors U=L and MPE=L shift to the smaller values. Figure4.15 shows the histograms of log(U=L) for i = 1; 10; 20 for both likely and randomevidence on the cpcs360b network. The tables also show the time ratio TR be-tween the exact and the approximate algorithms. We see that approx-mpe(i) oftencomputes a close approximation to MPE and is orders of magnitude faster than theexact algorithm. For example, for likely evidence on the cpcs360b network, andfor i = 11, U=L 2 (1:0; 1:5] in 80% of the cases, while its runtime is more than 80times smaller than the runtime of elim-mpe. As we observed before, the lower bound171



Table 4.13: Histogram of the error ratio U/L computed by approx-mpe(i) algorithm oncpcs360b network with LIKELY evidence (10 nodes). Summary on 1000 instances.range % U/L Mean Mean Mean Mean Mean MeanMPE U/L Ta Te TR max-mbU/L histogrami=1(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 2.3 1.8e-7 1.4 0.4 43.1 107.7 8.0(1:5;2:0] 73.6 1.5e-7 1.8 0.4 41.4 104.0 8.0(2:0;2:5] 2.9 1.2e-7 2.2 0.4 43.7 109.3 8.0(2:5;3:0] 1.2 3.7e-8 2.9 0.4 41.5 103.8 8.0(3:0;1) 20.0 1.2e-8 401.9 0.4 41.1 103.5 8.0i=5(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 1.9 1.9e-7 1.4 0.4 43.5 108.7 9.0(1:5;2:0] 73.2 1.5e-7 1.8 0.4 41.3 103.0 8.9(2:0;2:5] 3.0 1.2e-7 2.2 0.4 43.9 109.7 8.9(2:5;3:0] 1.2 3.7e-8 2.8 0.4 41.7 102.5 9.0(3:0;1) 20.7 1.2e-8 61.1 0.4 41.2 103.1 8.9i=9(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 8.1 1.6e-7 1.3 0.4 42.4 105.6 9.9(1:5;2:0] 71.6 1.5e-7 1.6 0.4 41.4 102.9 9.9(2:0;2:5] 0.9 1.3e-8 2.2 0.4 41.8 104.5 10.0(2:5;3:0] 2.1 2.1e-8 2.8 0.4 41.3 103.2 9.9(3:0;1) 17.3 1.1e-8 17.4 0.4 41.2 102.9 9.9i=11(0:5;1:0] 2.2 1.6e-7 1.0 0.5 42.6 85.2 5.9(1:0;1:5] 80.1 1.4e-7 1.2 0.5 41.5 80.8 5.9(1:5;2:0] 1.1 5.6e-9 1.7 0.5 42.1 84.1 5.9(2:0;2:5] 2.3 1.3e-8 2.3 0.5 41.1 79.4 5.9(2:5;3:0] 1.2 1.7e-8 2.7 0.5 41.0 81.0 6.0(3:0;1) 13.1 1.0e-8 18.4 0.5 41.2 81.0 5.9i=15(0:5;1:0] 0.3 8.4e-8 1.0 3.0 38.2 12.6 3.0(1:0;1:5] 90.4 1.3e-7 1.1 2.9 41.5 14.6 4.0(1:5;2:0] 1.5 3.3e-9 1.8 2.9 42.1 14.6 3.9(2:0;2:5] 0.3 1.1e-8 2.3 3.1 39.5 13.0 4.3(2:5;3:0] 1.6 2.3e-8 2.7 2.8 41.4 14.9 4.0(3:0;1) 5.9 5.6e-9 7.6 2.8 41.1 14.6 4.0i=20(0:5;1:0] 97.8 1.2e-7 1.0 65.4 41.4 0.6 2.0(1:0;1:5] 1.9 1.2e-8 1.0 63.6 41.7 0.7 2.0(1:5;2:0] 0.0 n/a n/a n/a n/a n/a n/a(2:0;2:5] 0.1 2.0e-8 2.2 71.8 37.5 0.5 2.0(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.2 3.7e-9 28.3 68.4 41.9 0.6 2.0172



Table 4.14: Histogram of the error ratio MPE/L computed by approx-mpe(i) algo-rithm on cpcs360b network with LIKELY evidence (10 nodes). Summary on 1000instances. range % MPE/L Mean Mean Mean Mean Mean MeanMPE MPE/L Ta Te TR max-mbMPE/L histogrami=1(0:5;1:0] 98.2 1.2e-7 1.0 0.4 41.5 104.2 8.0(1:0;1:5] 1.1 3.6e-9 1.3 0.4 40.4 101.0 7.9(1:5;2:0] 0.1 6.4e-9 1.9 0.4 41.9 104.8 8.0(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.6 1.4e-9 182.1 0.4 41.0 102.6 8.0i=5(0:5;1:0] 98.6 1.2e-7 1.0 0.4 41.5 103.4 8.9(1:0;1:5] 1.1 3.6e-9 1.3 0.4 40.4 101.0 8.8(1:5;2:0] 0.1 6.4e-9 1.9 0.4 41.9 104.8 9.0(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.1 5.1e-13 2.5 0.4 42.6 106.5 9.0(3:0;1) 0.1 6.4e-10 91.8 0.4 41.9 104.8 9.0i=9(0:5;1:0] 99.7 1.2e-7 1.0 0.4 41.4 103.1 9.9(1:0;1:5] 0.2 3.0e-10 1.2 0.4 41.8 104.4 10.0(1:5;2:0] 0.0 n/a n/a n/a n/a n/a n/a(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.1 6.4e-10 39.5 0.4 41.9 104.8 10.0i=11(0:5;1:0] 99.8 1.2e-7 1.0 0.5 41.4 80.9 5.9(1:0;1:5] 0.2 1.4e-10 1.2 0.5 44.0 88.0 6.0(1:5;2:0] 0.0 n/a n/a n/a n/a n/a n/a(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.0 n/a n/a n/a n/a n/a n/ai=15(0:5;1:0] 100.0 1.2e-7 1.0 2.9 41.4 14.6 4.0(1:0;1:5] 0.0 n/a n/a n/a n/a n/a n/a(1:5;2:0] 0.0 n/a n/a n/a n/a n/a n/a(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.0 n/a n/a n/a n/a n/a n/ai=19(0:5;1:0] 100.0 1.2e-7 1.0 30.5 41.4 1.4 2.9(1:0;1:5] 0.0 n/a n/a n/a n/a n/a n/a(1:5;2:0] 0.0 n/a n/a n/a n/a n/a n/a(2:0;2:5] 0.0 n/a n/a n/a n/a n/a n/a(2:5;3:0] 0.0 n/a n/a n/a n/a n/a n/a(3:0;1) 0.0 n/a n/a n/a n/a n/a n/a173



Table 4.15: Histogram of the error ratio U/L computed by approx-mpe(i) algorithm oncpcs360b network with RANDOM evidence (10 nodes). Summary on 1000 instances.range % U/L Mean Mean Mean Mean Mean MeanMPE U/L Ta Te TR max-mbU/L histogrami=1(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 0.0 n/a n/a n/a n/a n/a n/a(1:5;2:0] 1.0 6.0e-22 1.8 0.4 41.6 104.0 8.0(2:0;2:5] 0.4 1.9e-20 2.3 0.4 41.3 103.3 8.0(2:5;3:0] 0.4 5.9e-24 2.8 0.4 43.0 107.5 8.0(3:0;1) 98.2 6.1e-21 2495244.3 0.4 40.9 102.8 8.0i=5(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 0.0 n/a n/a n/a n/a n/a n/a(1:5;2:0] 0.8 2.5e-23 1.9 0.4 42.8 106.9 9.0(2:0;2:5] 0.7 7.6e-23 2.1 0.4 42.4 106.1 9.0(2:5;3:0] 0.4 7.1e-25 2.7 0.4 42.0 105.1 9.0(3:0;1) 98.1 6.2e-21 1976251.4 0.4 40.9 102.4 8.9i=9(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 0.6 1.2e-20 1.4 0.4 42.2 105.5 10.0(1:5;2:0] 3.5 2.8e-22 1.6 0.4 42.0 104.9 9.9(2:0;2:5] 1.1 4.6e-22 2.2 0.4 38.4 95.9 9.4(2:5;3:0] 1.3 9.5e-21 2.7 0.4 42.0 103.3 9.8(3:0;1) 93.5 6.2e-21 44607.6 0.4 40.9 102.1 9.8i=11(0:5;1:0] 0.6 1.2e-20 1.0 0.5 33.5 67.1 5.2(1:0;1:5] 6.8 4.3e-21 1.2 0.5 41.9 80.6 5.8(1:5;2:0] 1.8 3.7e-22 1.7 0.5 40.8 80.0 5.8(2:0;2:5] 2.6 2.3e-23 2.2 0.5 40.9 77.0 5.7(2:5;3:0] 1.6 4.7e-23 2.7 0.5 42.3 82.9 5.9(3:0;1) 86.6 6.6e-21 27620.2 0.5 40.9 80.1 5.8i=15(0:5;1:0] 0.0 n/a n/a n/a n/a n/a n/a(1:0;1:5] 28.7 1.4e-21 1.2 2.9 40.6 14.2 4.0(1:5;2:0] 9.4 1.9e-21 1.7 2.8 41.4 14.6 3.9(2:0;2:5] 3.9 4.3e-22 2.2 2.8 40.7 14.8 4.1(2:5;3:0] 2.9 2.1e-20 2.8 2.9 38.9 13.6 3.8(3:0;1) 55.1 8.8e-21 169.3 2.8 41.2 14.6 4.0i=19(0:5;1:0] 62.2 2.1e-21 1.0 30.3 40.8 1.4 2.9(1:0;1:5] 14.8 2.5e-21 1.1 30.4 41.0 1.4 2.9(1:5;2:0] 1.3 9.5e-23 1.7 31.7 41.1 1.3 3.0(2:0;2:5] 3.6 1.2e-19 2.1 30.8 41.7 1.4 3.0(2:5;3:0] 0.5 8.6e-24 2.7 31.3 38.7 1.2 2.8(3:0;1) 17.6 4.1e-22 41.0 30.8 41.3 1.4 2.9174



Table 4.16: Histogram of the error ratio MPE/L computed by approx-mpe(i) algo-rithm on cpcs360b network with RANDOM evidence (10 nodes). Summary on 1000instances. range % MPE/L Mean Mean Mean Mean Mean MeanMPE MPE/L Ta Te TR max-mbMPE/L histogrami=1(0:5;1:0] 62.2 3.7e-21 1.0 0.4 41.1 103.0 8.0(1:0;1:5] 6.4 5.0e-22 1.2 0.4 41.2 103.9 8.0(1:5;2:0] 5.5 6.6e-22 1.7 0.4 40.2 101.0 7.9(2:0;2:5] 1.5 6.1e-22 2.3 0.4 41.3 103.3 8.0(2:5;3:0] 2.7 1.4e-23 2.7 0.4 42.6 106.5 8.0(3:0;1) 21.7 1.7e-20 110.4 0.4 40.6 102.2 7.9i=5(0:5;1:0] 69.2 3.0e-21 1.0 0.4 40.9 102.1 8.9(1:0;1:5] 6.7 5.4e-20 1.2 0.4 41.1 103.7 8.9(1:5;2:0] 5.2 7.0e-22 1.7 0.4 40.6 102.0 8.8(2:0;2:5] 1.5 6.1e-22 2.3 0.4 41.5 103.8 9.0(2:5;3:0] 3.3 1.8e-22 2.6 0.4 42.4 105.9 9.0(3:0;1) 14.1 2.1e-21 92.1 0.4 41.0 102.5 8.9i=9(0:5;1:0] 81.8 7.3e-21 1.0 0.4 41.0 102.3 9.8(1:0;1:5] 4.4 4.4e-22 1.2 0.4 41.3 102.7 9.8(1:5;2:0] 2.5 1.3e-21 1.6 0.4 40.8 101.9 9.8(2:0;2:5] 1.4 2.3e-22 2.3 0.4 39.4 98.4 9.9(2:5;3:0] 0.9 4.6e-22 2.7 0.4 43.7 109.3 10.1(3:0;1) 9.0 2.7e-22 37.1 0.4 40.4 100.7 9.7i=11(0:5;1:0] 84.4 7.1e-21 1.0 0.5 41.0 79.9 5.8(1:0;1:5] 3.7 5.1e-22 1.2 0.5 41.2 81.0 5.8(1:5;2:0] 2.5 1.4e-21 1.6 0.5 40.9 79.0 5.8(2:0;2:5] 1.0 3.1e-22 2.3 0.5 39.1 77.0 5.8(2:5;3:0] 1.3 2.7e-23 2.7 0.5 43.2 86.3 5.7(3:0;1) 7.1 4.0e-22 30.3 0.5 40.8 80.0 5.8i=15(0:5;1:0] 93.9 6.4e-21 1.0 2.9 41.0 14.5 4.0(1:0;1:5] 3.4 6.9e-23 1.2 2.9 42.2 14.5 4.1(1:5;2:0] 1.1 3.8e-23 1.7 2.7 39.9 15.1 3.9(2:0;2:5] 0.1 2.2e-32 2.4 2.1 21.4 10.2 4.0(2:5;3:0] 0.4 1.2e-21 2.6 2.7 42.0 15.5 4.0(3:0;1) 1.1 2.2e-24 7.8 3.0 39.7 13.5 3.9i=19(0:5;1:0] 98.1 6.2e-21 1.0 30.5 41.0 1.4 2.9(1:0;1:5] 0.6 1.2e-22 1.2 30.4 41.0 1.3 3.0(1:5;2:0] 0.8 5.3e-23 1.7 31.5 42.3 1.4 3.0(2:0;2:5] 0.1 2.2e-32 2.4 18.3 21.4 1.2 2.0(2:5;3:0] 0.1 4.8e-22 2.5 29.7 38.1 1.3 3.0(3:0;1) 0.3 1.2e-25 4.9 31.9 40.6 1.3 3.0175



Table 4.17: Histogram of the error ratio U/L computed by approx-mpe(i) algorithm oncpcs422b network with LIKELY and RANDOM evidence (10 nodes). 1000 instancesper each value of i. range % U/L Mean Mean MeanU/L Ta max-mbU/L histogramLIKELY evidencei=10(0:5;1:0] 0.0 n/a n/a n/a(1:0;1:5] 45.0 1.1 16.8 10.0(1:5;2:0] 3.0 1.7 16.3 10.0(2:0;2:5] 0.5 2.5 17.4 10.0(2:5;3:0] 0.0 n/a n/a n/a(3:0;1) 51.5 7.1e6 17.2 9.9i=14(0:5;1:0] 0.0 n/a n/a n/a(1:0;1:5] 50.5 1.1 19.6 6.1(1:5;2:0] 2.0 1.7 19.9 6.0(2:0;2:5] 0.5 2.1 20.6 6.0(2:5;3:0] 0.5 2.6 19.7 6.0(3:0;1) 46.5 25168.1 20.0 6.0i=20(0:5;1:0] 6.0 1.0 225.6 2.9(1:0;1:5] 70.0 1.3 222.5 3.0(1:5;2:0] 2.5 1.6 229.6 3.0(2:0;2:5] 1.0 2.2 216.9 3.0(2:5;3:0] 3.0 2.9 218.9 3.0(3:0;1) 17.5 3515.7 227.7 2.9RANDOM evidencei=10(0:5;1:0] 0.0 n/a n/a n/a(1:0;1:5] 0.5 1.1 17.6 10.0(1:5;2:0] 0.5 1.6 17.4 10.0(2:0;2:5] 0.5 2.3 13.8 10.0(2:5;3:0] 0.0 n/a n/a n/a(3:0;1) 98.5 5.9e13 17.0 9.9i=14(0:5;1:0] 0.0 n/a n/a n/a(1:0;1:5] 2.0 1.2 19.3 6.0(1:5;2:0] 0.0 n/a n/a n/a(2:0;2:5] 1.5 2.3 20.3 6.0(2:5;3:0] 5.0 2.7 19.8 6.0(3:0;1) 91.5 9.4e8 19.8 6.1i=20(0:5;1:0] 5.0 1.0 216.4 2.8(1:0;1:5] 23.5 1.2 221.2 2.9(1:5;2:0] 10.5 1.7 218.5 3.0(2:0;2:5] 6.0 2.1 221.0 3.0(2:5;3:0] 5.5 2.8 212.4 2.8(3:0;1) 49.5 72932.0 223.4 2.9176



is very accurate even for i = 1 (MPE=L = 1 in 98.2% of cases, which is slightlyhigher than for the greedy approximation which gave an exact MPE on the sameset of instances in 97.3% of cases). And, as before, we see a dramatic decrease inaccuracy in case of random evidence. For example, almost 87% of all instances fori = 11 appear in (3;1), where average U=L is 27620, and just 6.8% of the instancesfall into the interval (1:0; 1:5], while for likely evidence and for the same value of i80.1% of the instances were in (1:0; 1:5] and 13.1% of them were in (3;1), with muchsmaller average error 18.4.The di�erence between U=L for likely and unlikely evidence is demonstrated inFigure 4.15. A comparison between U=L and MPE=L, and between likely and ran-dom evidence is shown in Figure 4.16.In summary, on CPCS networks we observed that:1. approx-mpe(i) computed accurate solutions for relatively small i. At the sametime, the algorithm was sometimes orders of magnitude faster than elim-mpe.2. As i increases, both the upper and the lower bounds converge to the exact MPEvalue (although sometimes non-monotonically). The lower bound is much closerto the MPE, meaning that approx-mpe(i) can �nd a good (suboptimal) MPEassignment before it is con�rmed by the upper bound.3. The preprocessing done by approx-mpe(i) is necessary. A simple greedy assign-ment often provided much less accurate lower bound.4. The approximation is signi�cantly more accurate for likely than for unlikelyevidence.4.9.5 Probabilistic decodingIn this section we evaluate the quality of the mini-bucket algorithm approx-mpe for thetask of probabilistic decoding. We compare it to the exact elimination algorithms andto the state-of-the-art approximate decoding algorithm iterative belief propagation177



(IBP), on several classes of linear block codes, such as Hamming codes, randomlygenerated block codes, and structured low-induced-width block codes.Channel codingThe purpose of channel coding is to provide reliable communication through a noisychannel. Transmission errors can be reduced by adding redundancy to the informationsource. For example, a systematic error-correcting code [79] maps a vector of Kinformation bits u = (u1; :::; uK); ui 2 f0; 1g, into an N -bit codeword c = (u; x),adding N � K code bits x = (x1; :::; xN�K); xj 2 f0; 1g. The code rate R = K=Nis the fraction of the information bits relative to the total number of transmittedbits. A broad class of systematic codes includes linear block codes. Given a binary-valued generator matrix G, an (N,K) linear block code is de�ned so that the codewordc = (u; x) satis�es c = uG, assuming summation modulo 2. The bits xi are also calledthe parity-check bits. For example, the generator matrix1 0 0 0 1 1 0G = 0 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 1de�nes a (7,4) Hamming code.The codeword c = (u; x), also called the channel input, is transmitted through anoisy channel. A commonly used Additive White Gaussian Noise (AWGN) channelmodel assumes that independent Gaussian noise with variance �2 is added to eachtransmitted bit, producing a real-valued channel output y. Given y, the decoding taskis to restore the input information vector u [45, 79, 77].It was recently observed that the decoding problem can be formulated as a prob-abilistic inference task over a belief network [79]. For example, a (7,4) Hammingcode can be represented by a belief network in Figure 4.17, where the bits of u, x,and y vectors correspond to the nodes, the parent set for each node xi is de�ned by178



u u u1 2 3 u4

x x x1 2 3

y y y y1 2 3 4

y y y5 6 7Figure 4.17: Belief network for a (7,4) Hamming codenon-zero entries in the (K + i)th column of G, and the (deterministic) conditionalprobability function P (xijpai) equals 1 if xi = uj1� :::�ujp and 0 otherwise, where �is addition modulo 2. Each output bit yj has exactly one parent, the correspondingchannel input bit. The conditional density function P (yj jcj) is a Gaussian (normal)distribution N(cj ;�), where the mean equals the value of the transmitted bit, and �2is the noise variance.The probabilistic decoding task can be formulated in two ways. Given the observedoutput y, the task of bit-wise probabilistic decoding is to �nd the most probable valueof each information bit, namely:u�k = arg maxuk2f0;1gP (ukjy); for 1 � k � K:The block-wise decoding task is to �nd a maximum a posteriori (maximum-likelihood)information sequence u0 = arg maxu P (ujy):Block-wise decoding is sometimes formulated as �nding a most probable explanation(MPE) assignment (u0; x0) to the codeword bits, namely, �nding(u0; x0) = arg max(u;x) P (u; xjy):Accordingly, bit-wise decoding, which requests the posterior probabilities for eachinformation bit, can be solved by belief updating algorithms, while the block-wise179



decoding translates to the MAP or MPE tasks, respectively.In the practice of coding community, decoding error is measured by the bit er-ror rate (BER), de�ned as the average percentage of incorrectly decoded bits overmultiple transmitted words (blocks). It was proven by Shannon [106] that, given thenoise variance �2, and a �xed code rate R = K=N , there is a theoretical limit (calledShannon's limit) on the smallest achievable BER, no matter which code is used. Un-fortunately, Shannon's proof is non-constructive, leaving open the problem of �ndingan optimal code that achieves this limit. In addition, it is known that low-error (i.e.,high-performance) codes tend to be long [93], and thus intractable for exact (opti-mal) decoding algorithms [79]. Therefore, low-error codes should be accompanied bye�cient approximate decoding algorithms.Recently, several high-performance coding schemes have been proposed (turbocodes [6], low-density generator matrix codes [11], low-density parity-check codes [77]),that outperform by far the best up-to-date codes and get quite close to Shannon'slimit. This is considered \the most exciting and potentially important developmentin coding theory in many years" [79]. Surprisingly, it was observed that the decod-ing algorithm employed by those codes is equivalent to an iterative application ofPearl's belief propagation algorithm [89], that is designed for polytrees and, therefore,performs only local computations. This successful performance of iterative beliefpropagation (IBP), on multiply-connected coding networks suggests that approxima-tions by local computations may be suitable for the coding domain. In the followingsection, we discuss iterative belief propagation in more detail.Iterative belief propagationIterative belief propagation (IBP) computes an approximate belief for each variablein the network. It applies Pearl's belief propagation algorithm [89], developed forsingly-connected networks, to multiply-connected networks, as if there are no cycles.The algorithm works by sending messages between the nodes: each parent ui of anode x sends causal support message �ui ;x to x, while each of x's children, yj, sends180



to x diagnostic support message �yj ;x. The causal support from all parents and thediagnostic support from all children are combined into vectors �x and �x, respectively.Nodes are processed (activated) in accordance with a variable ordering called anactivation schedule. Processing all nodes along the given ordering yields one itera-tion of the belief propagation. Subsequent iterations update the messages computedduring previous iterations. Algorithm IBP(I) stops after I iterations. If applied topoly-trees, two iterations of the algorithm are guaranteed to converge to the cor-rect a posteriori beliefs [89]. For multiply-connected networks, however, there is nosuch guarantee: the algorithm may not even converge, or it may converge to incor-rect beliefs. Initial analysis of iterative belief propagation on networks with cycles ispresented in [113] for the case of single cycle.The algorithm IBP(I) is shown in Figure 4.18. In our implementation, we assumedan activation schedule that �rst updates the input variables of the coding network andthen updates the parity-check variables. Clearly, evidence variables are not updated.Bel(x) computed for each node can be viewed as an approximation to the posteriorbeliefs. The tuple generated by selecting the most probable value for each node is theoutput of the decoding algorithm.Experimental methodologyWe experimented with several types of (N;K) linear block codes, which include (7; 4)and (15; 11) Hamming codes, randomly generated codes, and structured codes withrelatively low induced width. The code rate was R = 1=2, i.e. N = 2K. As describedabove, linear block codes can be represented by four-layer belief networks having Knodes in each layer (see Figure 4.19). The two outer layers represent the channeloutput y = (yu; yx), where yu and yx result from transmitting the input vectors uand x, respectively. The input nodes are binary (0/1), while the output nodes arereal-valued.Random codes are generated as follows. For each parity-check bit xj, P parentsare selected randomly out of the K information bits. Random codes are similar to181



Figure 4.18: Iterative belief propagation (IBP) algorithmIterative belief propagation (IBP)Input: A Belief Network BN = fP1; :::; Png, evidence e, an activation schedule A, thenumber of iterations I .Output: Belief in every variable.1. Initialize � and �.For evidence node xi = j, set �xi(k) to 1 for j = k and to 0 for j 6= k. For node x havingno parents set �x to prior P (x). Otherwise, set �x and �x to (1; :::; 1).2. For iterations = 1 to I :For each node x along A, do:� For each x = j, compute �x;ui(j) = �Pj �x(j)Pul:l6=i P (x = j j u1; :::; um)Ql6=i �ul;x/* � is a normalization constant */� For each x = j, compute �x;yi(j) = �Qk 6=i �yk;x(j)Pul P (x = j j u1; :::; um)Ql �ul;x.3. Belief update: For each x along A� For each x = j, compute �x(j) = Qi �yi;x(j), where yi are x's children.� For each x = k, compute �x(j) =Pu1;:::;um P (x = j j u1; :::; um)Qi �ui;x,where ui are x's parents.� Compute BEL(x) = ��x�x.the low-density generator matrix codes [11], which select randomly a given number Cof children nodes for each information bit.Structured codes are generated as follows. For each parity bit xi, P sequentialparents fu(i+j)modK ; 0 � j < Pg are selected. Figure 4.19 shows a belief network ofthe structured code with K=5 and P=3. Note that the induced width of the networkis 3, given that the elimination order is x0,...,x4, u0,...,u4. In general, a structured(N,K) block code with P parents per each code bit has induced width P , no matterhow large K and N are.Given K, P, and the channel noise variance �2, a coding network instance is gen-erated as follows. First, the appropriate belief network structure is created. Then,an input signal is simulated, assuming uniform prior distribution of information bits.The parity-check bits are computed accordingly and the codeword is \transmitted"through the channel. As a result, Gaussian noise with variance �2 is added to eachinformation and parity-check bit yielding the channel output y, namely, a real-valued182
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Table 4.18: BER of exact decoding algorithms elim-bel (denoted bel) and elim-mpe(denoted mpe) on several block codes (average on 1000 randomly generated inputsignals).� Hamming code Random code Structured code(7,4) (15,11) K=10, N=20, P=3 K=10, N=20, P=5 K=10, N=20, P=7 K=25, P=4bel mpe bel mpe bel mpe bel mpe bel mpe bel mpe0.3 6.7e-3 6.8e-3 1.6e-2 1.6e-2 1.8e-3 1.7e-3 5.0e-4 5.0e-4 2.1e-3 2.1e-3 6.4e-4 6.4e-40.5 9.8e-2 1.0e-1 1.5e-1 1.6e-1 8.2e-2 8.5e-2 8.0e-2 8.1e-2 8.7e-2 9.1e-2 3.9e-2 4.1e-2limit and to the performance of a K=65,536 rate 1/2 turbo-code (using 18 iterationsof IBP) [45], one of the state-of-the-art codes. In the coding community, the channelnoise is commonly measured in units of decibels (dB),10log10Eb=No;where Eb=No is called signal-to-noise-ratio and de�ned asEb=No = P2�2R:P is the transmitter power, i.e. bit 0 is transmitted as �pP , and bit 1 is transmittedas pP ; R is the code rate, and �2 is the variance of Gaussian noise. We use 0/1signalling (equivalent to �12=+ 12 signalling ), so that P = 14 .ResultsExact MPE versus exact belief-update decoding:Before experimenting with the approximation algorithms for bit-wise and forblock-wise decoding (namely, for belief updating and for MPE), we tested whetherthere is a signi�cant di�erence between the corresponding exact decoding algorithms.We compared the exact elim-mpe algorithm against the exact elim-bel algorithm onseveral types of networks, including two Hamming code networks, randomly gener-ated networks with di�erent number of parents, and structured code. The BER on1000 input signals, generated randomly for each network, are presented in Table 4.18.When noise is relatively low (� = 0:3), both algorithms have practically the same184



decoding error, while for larger noise (� = 0:5) the bit-wise decoding (elim-bel) givesa slightly smaller BER than the block-wise decoding (elim-mpe).Consequently, comparing an approximation algorithm for belief updating, IBP(I),to an approximation algorithm for MPE (approx-mpe(i)) makes sense in the codingdomain.Structured linear block codes:In Figures 4.20a-d, we compare the algorithms on the structured linear blockcode networks with K=25 and 50, and P=4 and P=7. The �gures also display theShannon limit and the performance of IBP(18) on a state-of-the-art K=65,536 rate1/2 turbo-code (the results are copied from [45]). Clearly, our codes are far from beingoptimal: even the exact elim-mpe decoding yields a much higher error than the BERof the turbo-code. However, the emphasis of our preliminary experiments was not onimproving the state-of-the-art decoder but rather on relative performance of IBP(i)and approx-mpe on di�erent types of networks, which leads to a better understandingof properties of those algorithms.We observe that:1. as expected, the exact elim-mpe decoder always gives the smallest error amongthe algorithms we tested;2. IBP(10) is more accurate on average than IBP(1);3. as expected, elim-mpe(i), even for i = 1, is close to elim-mpe, due to the lowinduced width of the networks (w� = 6 for P=4, and w� = 12 for P=7);4. algorithm elim-mpe(i) outperforms IBP on all structured networks;5. with increasing the parents set size from P=4 (�gures 4.20a and 4.20b) to P=7(�gures 4.20c and 4.20d), the di�erence between IBP and elim-mpe(i) becomesevenmore pronounced. On networks with P=7 both approx-mpe(1) and approx-mpe(7) achieve an order of magnitude smaller error than IBP(10).185
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Next, we consider the results for each algorithm separately, while varying thenumber of parents from P=4 to P=7. We see that the error of IBP(1) practically doesnot change, the error of the exact elim-mpe changes only slightly, while the error ofIBP(10) and approx-mpe(i) increases. However, the BER of IBP(10) increased moredramatically with increased parent set. Note that the induced width of the networkincreases with the increase in parent set size. In the case of P=4 (induced width 6),approx-mpe(7) coincides with elim-mpe; in the case of P=7, (induced width 12) theapproximation algorithms do not coincide with elim-mpe. Still, they are better thanIBP.Random linear block code:On randomly generated linear block networks (Figure 4.21a) the picture was re-versed: approx-mpe(i) for both i = 1 and i = 7 was worse than IBP(10), althoughas good as IBP(1). Elim-mpe always ran out of memory on those networks (the in-duced width exceeded 30). The results are not surprising since approx-mpe(i) can beinaccurate if i is much lower than the induced width. However, it is not clear whyIBP was better in this case. Also, note that the experiments on random networksdi�er from those described above. Rather than simulating many input signals for onenetwork, we average results over many random networks with one random signal pereach network. To be more conclusive, we need to compare our algorithms on otherrandom code generators such as recently proposed low-density generator matrix codes[11] and low-density parity-check codes [77].Hamming codes:We tested the belief propagation and the mini-bucket approximation algorithmson two Hamming code networks, one with K = 4; N = 7, and the other one withK = 11; N = 15. The results are shown in Figures 4.21b and 4.21c. Again, the mostaccurate decoder was the exact elim-mpe. Since the induced width of the (7,4) Ham-ming network is only 3, approx-mpe(7) coincides with the exact algorithm. IBP(1) ismuch worse than the rest of the algorithms, while IBP(5) is very close to elim-mpe.Algorithm approx-mpe(1) is slightly worse than IBP(5). On the larger Hamming code188



network, the results are similar, except that both approx-mpe(1) and approx-mpe(7)are signi�cantly inferior to IBP(5). Since the networks were quite small, the runtimeof all the algorithms was less than a second, and the time of IBP(5) was comparableto the time of exact elim-mpe.SummaryIn this section, we evaluated the mini-bucket scheme on belief networks associatedwith decoding problems. We observed that:1. on a class of structured codes having low induced width the mini-bucket ap-proximation approx-mpe outperforms IBP ;2. on a class of random networks having large induced width and on some Ham-ming codes IBP outperforms approx-mpe;3. as expected, exact MPE decoding, elim-mpe, outperforms approximate decod-ing. However, on random networks exact MPE decoding was not feasible dueto the large induced width.4. We demonstrated on some classes of problems that the exactmaximum-likelihooddecoding using elim-mpe and the exact belief update decoding using elim-belhave comparable error for relatively low channel noise; for larger noise, beliefupdate decoding gives a slightly smaller (by � 0:1%) bit error than the MPEdecoding.As dictated by theory, we observed a dependence between the network's inducedwidth and the quality of the mini-bucket's approach, as well as increasing accuracy ofapprox-mpe(i) for larger i. In summary, our results on structured codes demonstratethat the mini-bucket scheme may be a better decoder than IBP on coding networkshaving relatively low induced width. Additional experiments are required in order togeneralize this result for practical codes having large block size (e.g., N � 104).189



Our experiments were restricted to networks having small parent sets since themini-bucket approach and the belief propagation approaches are, in general, time andspace exponential in the parent set. This limitation can be eliminated by using thespeci�c structure of deterministic CPTs in coding networks, which is a special caseof causal independence [63, 114]. Such networks can be transformed into networkshaving families of size three only. Indeed, in coding practice, the belief propagationalgorithm exploits the special structure of CPTs and is linear in the family size.4.10 ConclusionsThis chapter has described the general framework of mini-bucket approximation al-gorithms { algorithms that trade accuracy for e�ciency in those cases when compu-tational resources are bounded.Our method was to approximate high-dimensional dependencies, recorded by ex-act inference algorithms, using a collection of low-dimensional ones. The mini-bucketscheme is based on the bucket-elimination framework [26], one that can be uniformlyapplied across many areas.In this chapter we presented and analyzed the approximation algorithms for proba-bilistic tasks of belief updating, �nding the most probable explanation (MPE), �ndingthe maximum a posteriori hypothesis (MAP), and for optimization tasks in general.We identi�ed regions of completeness and demonstrate promising empirical re-sults obtained both on randomly generated networks and on realistic domains (suchas medical diagnosis and probabilistic decoding). Theoretical bounds on the com-plexity of mini-bucket algorithms allow us to predict in advance, using both memoryconsiderations and the problem's graph, the suitability of the algorithm's parametersfor given networks.We also presented an anytime version of the mini-bucket approximation. Thisversion iteratively increments the controlling parameters of the algorithm and guar-antees an increase in accuracy as long as computational resources are available. In190



addition, we discussed how the mini-bucket functions can be used as heuristics withina heuristic search.Our experimental work is focused on evaluating approx-mpe, the mini-bucket ap-proximation algorithm for �nding the MPE. We demonstrated that the algorithmprovides a good approximation accompanied by a substantial time speedup in manycases. We observed that, as predicted by theory, the approximation quality of thealgorithm improves as we increase the resource bounds (e.g., the limit on the size ofthe recorded tables, or the time bound in the anytime version of the algorithm).Our objective was to assess the e�ectiveness of the mini-bucket algorithms for var-ious problem classes and to determine its dependence on some structural properties.We observe that:a) as expected, the algorithm's performance decreases with increasing network den-sity.b) the algorithm works signi�cantly better for structured rather than for uniformlydistributed CPTs. For example, for noisy-OR random networks and for CPCS net-works (noisy-OR and noisy-MAX CPTs), we often computed an accurate solution incases when the exact algorithm was much slower, or infeasible.c) the approximation accuracy is signi�cantly better in cases of high MPE, such asthe case of likely evidence.d) the algorithm's performance improves considerably with decreasing noise in noisy-OR CPTs, yielding an exact solution in practically all zero-noise cases while usinga relatively low bound i. One posible explanation is that in the absence of noise weget loosely connected constraint-satisfaction problems which can be easily solved bylocal constraint propagation techniques coinciding in this case with the mini-bucketscheme.e) for probabilistic decoding we obtained preliminary results that demonstrate theadvantages of the mini-bucket scheme over the state-of-the-art iterative belief propa-gation decoding algorithm on problems having low w�. However, on high-w� randomly191



generated codes, that are potentially more interesting for practical coding, the mini-bucket approximation was much less accurate than IBP.In addition, we saw that the lower bound computed by approx-mpe was often closerto the MPE than the corresponding upper bound. This indicates that the algorithmarrives at good solutions long before this can be veri�ed by its upper bound.We believe that our approach has a signi�cant potential for further improvements,and that it can be applied to many other tasks and areas of reasoning. Speci�cally,the scheme should be tested for belief updating, for �nding MAP, and extended todecision-making.The algorithm can be improved along the following lines. Instead of using thesimple tie-breaking procedure for partitioning a bucket into mini-buckets we can im-prove the decomposition by minimizing a distance metric between the exact functionand its approximation. Candidate metrics are relative entropy (KL-distance) [73] andthe min-square error [83].The approximation may be improved for the special cases of noisy-OR, noisy-MAX, and noisy-XOR (also known as causal independence [63, 114, 95]) structurethat is often present in real-life domains (e.g., CPCS and coding networks). Ourcurrent implementation does not take advantage of these special properties.Finally, we believe that combining the mini-bucket scheme with heuristic searchhas a great potential. It is the focus of our current research.Our empirical evaluation raises several questions, however:a) why is the approximation in noisy-OR networks more accurate when the noise levelis low, when it is known that allowing extreme (close to 0 or 1) probabilities makesapproximate belief updating NP-hard [86]?b) why is the approximation much more accurate for likely evidence yielding higherMPE value? Finally,c) is it possible to give a theoretical prediction of the mini-bucket approximationaccuracy? 192



Chapter 5ConclusionsIf what you did yesterday still looks good to you, then your goals fortomorrow are not big enough. { Ling Fu Yu, ca. 600 BC.Most arti�cial intelligence problems are computationally hard (NP-hard). However, inpractice, the pessimistic worst-case complexity can often be decreased by exploitinga problem structure. Theoretical studies identify tractable problem classes whileempirical evaluations shed light on average-case performance.This thesis is concerned with e�cient algorithms for automated inference. Weconsider both logical (propositional) inference and probabilistic inference in Bayesiannetworks. We use a general graph-based algorithmic framework called bucket elimi-nation [26, 27], which generalizes non-serial dynamic programming techniques [7]. Weinvestigated the e�ects of certain problem structures, identi�ed new tractable classes,proposed structure-exploiting algorithms, and provided their empirical evaluationson a variety of randomly generated problems and on real-life domains. Variable-elimination algorithms are contrasted with conditioning techniques, such as back-tracking search, and combined with search into more e�cient hybrid algorithms.An important property of bucket-elimination algorithms is that their performancecan be predicted using a graph parameter called induced width [33] (also known astree-width [2]). The central idea of this thesis is to achieve a better performance by193



reducing the \e�ective" induced width. We propose several ways of handling thisproblem: combining elimination with conditioning in order to reduce connectivity ofthe resulting subproblems; exploiting hidden structure such as causal independencein the conditional probabilities which decomposes a dependency among k variablesinto k pairwise dependencies; and using approximation algorithms that break largedependencies into smaller ones. We next summarize our contributions and outlinepossible directions for future research.5.1 Hybrid algorithms for SATContributionsIn Chapter 2, we compared two popular strategies for solving propositional satis�abil-ity, backtracking search and resolution, and analyzed the complexity of a directionalresolution algorithm (DR) as a function of the induced width of the problem's graph.Our empirical evaluation con�rms theoretical prediction, showing that on low-w�problems DR is very e�cient, greatly outperforming the backtracking-based Davis-Putnam-Logemann-Loveland procedure (DP). We proposed two hybrid algorithms,BDR � DP (i) and DCDR(b), that combine the advantages of both DR and DP.These algorithms use control parameters that bound the complexity of resolutionand allow time/space trade-o�s that can be adjusted to the problem structure and tothe user's computational resources. Empirical studies demonstrated the advantagesof such hybrid schemes.Future workThe performance of algorithm DCDR(b) depends on choice of b. Good heuristics forselecting b are desirable. Also, the algorithm may have to use di�erent values of b fordi�erent variables. Generally, we wish to have a good estimate of the remaining run-time for both backtracking search and directional resolution if applied to a particular194



subproblem; then we can make a better decision which algorithm to apply next.Hybrid algorithm BDR-DP(i) uses bounded directional resolution as a preprocess-ing before search; however, rather than bounding the size of the clauses, we coulduse other bounding strategies such as bounding the number of clauses or ignoringsome resolvents. There are many other possible schemes of combining backtrackingwith resolution. For example, [55] uses undirected bounded resolution between con-ditioning on each variable. Namely, resolution is performed as long as new resolventsof length no more than k can be generated (the operation called k-closure). Furtherinvestigation of di�erent hybrid schemes and testing them empirically on a variety ofbenchmark problems is needed.Hybrids of conditioning and elimination can also be used in other areas of rea-soning. For example, mini-bucket elimination can be used as a preprocessing step,computing heuristics for subsequent branch-and-bound search when solving MPEproblem.5.2 Causal independenceContributionsReasoning in belief networks is exponential in the induced width of the network'smoral graph. In chapter 3, we investigated the potential of causal independence (CI)for improving this performance. We considered several tasks such as belief updat-ing, �nding a most probable explanation (MPE), �nding a maximum a posteriorihypothesis (MAP), and �nding the maximum expected utility (MEU).We showed that exploiting CI in belief updating can signi�cantly reduce the ef-fective induced width, sometimes down to the induced width of the unmoralizednetwork's graph. For example, for poly-trees, CI reduces the complexity from expo-nential to linear in the family size. Similar results hold for the MAP and MEU tasks,while the MPE task, in general, does not bene�t from CI. These enhancements were195



incorporated into causally-informed bucket-elimination algorithms based on knownapproaches of network transformations [63, 84] and elimination [114]. We also pro-vided an ordering heuristic which guarantees that causally-informed algorithms arenever worse than standard causally-blind ones.Finally, we discussed an e�cient way of propagating evidence in CI-networks usingarc-consistency, and applied this idea to noisy-OR networks. The resulting algorithmNOR-elim-bel generalizes the Quickscore algorithm [60] for BN2O networks.Future workEmpirical evaluation of the causally-informed algorithms is an important direction forfuture work. Particularly, the e�ect of exible ordering should be tested empirically,as well as the e�ect of exploiting negative evidence in noisy-OR networks as o�eredby algorithm NOR-elim-bel.5.3 Mini-bucket approximation algorithmsContributionsChapter 4 presented a class of mini-bucket approximate inference algorithms thattrade accuracy for e�ciency in cases when computational resources are bounded.Our approach applies the idea of local inference, known as directional i-consistencyin constraint networks, to combinatorial optimization and to probabilistic reasoning.We identi�ed regions of completeness and demonstrated promising empirical resultsobtained both on randomly generated networks and on realistic domains such asmedical diagnosis and probabilistic decoding.Future workThe mini-bucket approximation scheme can be further improved along the followinglines. 196



Instead of using the simple tie-breaking procedure for partitioning a bucket intomini-buckets we can improve the decomposition by minimizing a distance metricbetween the exact function and its approximation. Candidate metrics are relativeentropy (KL-distance) [73] and the min-square error [83].The approximation may be applied to causal independence structure, such asnoisy-OR and noisy-MAX, that is often present in real-life domains (e.g., CPCSnetworks). Our current implementation does not take advantage of these specialproperties.Combining the mini-bucket scheme with heuristic search has great potential, andis the focus of our current research.The mini-bucket scheme should be empirically evaluated for other tasks such asbelief updating, �nding MAP and MEU.Finally, theoretical prediction of the approximation error as a function of a prob-lem structure is desirable. Speci�cally, we would like to investigate the impact ofdi�erent factors such as causal independence, likely evidence, and extreme probabili-ties, on the quality of approximation.
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Appendix ATheorem 2: (model generation)Given Eo(') of a satis�able theory ', the procedure �nd-model generates a model of' backtrack-free, in time O(jEo(')j).Proof: Suppose the model-generation process is not backtrack-free. Namely, sup-pose there exists a truth assignment q1; :::; qi�1 for the �rst i � 1 variables in theordering o = (Q1; :::; Qn) that satis�es all the clauses in the buckets of Q1,..., Qi�1,but cannot be extended by any value of Qi without falsifying some clauses in bucketi.Let � and � be two clauses in the bucket of Qi that cannot be satis�ed simultaneously,given the assignment q1; :::; qi�1. Clearly, Qi appears negatively in one clause and pos-itively in the other. Consequently, while being processed by DR, � and � should beresolved, resulting in a clause  that must reside now in a bucketj, j < i. That clausecan not allow the partial model q1; :::; qi, which contradicts our assumption. Sincethe model-generation is backtrack-free, it takes O(jEo(')j) time consulting all thebuckets. 2Theorem 3: (complexity)Given a theory ' and an ordering o, the complexity of algorithm DR is O(njEo(')j2)where n is the number of variables.Proof: There are at most n buckets, each containing no more clauses than theoutput directional extension. The number of resolution operations in a bucket doesnot exceed the number of all possible pairs of clauses, which is quadratic in the size210



of the bucket. This yields the complexity O(n � jEo(')j2). 2Lemma 1: Given a theory ' and an ordering o, G(Eo(')) is a subgraph of Io(G(')).Proof: The proof is by induction on the variables along ordering o = (Q1; :::; Qn).The induction hypothesis is that all the edges incident to Qn; :::; Qi in G(Eo(')) ap-pear also in Io(G(')). The claim is clearly true for Qn. Assume that the claim is truefor Qn; :::; Qi; as we show, this assumption implies that if (Qi�1; Qj), j < i� 1, is anedge in G(Eo(')), then it also belongs to Io(G(')). There are two cases: either Qi�1and Qj initially appeared in the same clause of ' and so are connected in G(') and,therefore, also in Io(G(')), or a clause containing both variables was added duringdirectional resolution. In the second case, that clause was obtained while processingsome bucket Qt; where t > i � 1. Since Qi�1 and Qj appeared in the bucket of Qt,each must be connected to Qt in G(Eo(')) and, by the induction hypothesis, eachwill also be connected to Qt in Io(G(')). Since Qi�1 and Qj are parents of Qt, theymust be connected in Io(G(')). 2Lemma 2: Given a theory ' and an ordering o = (Q1; :::; Qn), if Qi has at mostk parents in the induced graph along o, then the bucket of a variable Qi in Eo(')contains no more than 3k+1 clauses.Proof: Given a clause � in the bucket of Qi, there are three possibilities for eachparent P : either P appears in �, or :P appears in �, or neither of them appears in�. Since Qi also appears in �, either positively or negatively, there are no more than2 � 3k < 3k+1 di�erent clauses in the bucket. 2Theorem 4: (complexity of DR)Given a theory ' and an ordering of its variables o, the time complexity of algorithmDR along o is O(n � 9w�o ), and Eo(') contains at most n � 3w�o+1 clauses, where w�o isthe induced width of ''s interaction graph along o.Proof: The result follows from lemmas 1 and 2. The interaction graph of Eo(') is211



a subgraph of Io(G) (lemma 1), and the size of theories having Io(G) as their inter-action graph is bounded by n � 3w�(o)+1 (lemma 2). The time complexity of algorithmDR is bounded by O(n � jbucketij2), where jbucketij is the size of the largest bucket.By lemma 2, jbucketij = O(3w�(o)). Therefore, the time complexity is O(n � 9w�(o)). 2Theorem 7: Given a theory ' de�ned on variables Q1,..., Qn, such that each symbolQi either (a) appears only negatively (only positively), or (b) it appears in exactly twoclauses, then div�(') � 1 and ' is tractable.Proof: The proof is by induction on the number of variables. If ' satis�es either(a) or (b), we can select a variable Q with the diversity of at most 1 and put it lastin the ordering. Should Q have zero diversity (case a), no clause is added. If it hasdiversity 1 (case b), then at most one clause is added when processing its bucket.Assume the clause is added to the bucket of Qj. If Qj is a single-sign symbol, it willremain so. The diversity of its bucket will be zero. Otherwise, since there are atmost two clauses containing Qj, and one of these was in the bucket of Qn, the cur-rent bucket of Qj (after processing Qn) cannot contain more than two clauses. Thediversity of Qj is therefore 1. We can now assume that after processing Qn; :::; Qi theinduced diversity is at most 1, and can also show that processing Qi�1 will leave thediversity at most 1. 2Theorem 8: Algorithm min-diversity generates a minimal diversity ordering of atheory in time O(n2 � c), where n is the number of variables and c is the number ofclauses in the input theory.Proof: Let o be an ordering generated by the algorithm and let Qi be a variablewhose diversity equals the diversity of the ordering. If Qi is pushed up, its diversitycan only increase. When it is pushed down, it must be replaced by a variable whosediversity is equal to or higher than the diversity of Qi. Computing the diversity ofa variable takes O(c) time, and the algorithm checks at most n variables in order to212



select the one with the smallest diversity at each of n steps. This yields the totalO(n2 � c) complexity. 2Theorem 9: (DCDR(b) soundness and completeness)Algorithm DCDR(b) is sound and complete for satis�ability. If a theory ' issatis�able, any model of ' consistent with the output assignment I(C) can be generatedbacktrack-free in O(jEo('I(C))j) time, where o is the ordering computed dynamicallyby DCDR(b).Proof: Given an assignment I(C), DCDR(b) is equivalent to applying DR to thetheory 'I(C) along ordering o. From Theorem 2 it follows that any model of 'I(C)can be found in a backtrack-free manner in time O(jEo('I(C))j). 2Theorem 10: (DCDR(b) complexity) The time complexity of algorithm DCDR(b)is O(n2��b+jCj), where C is the largest cutset ever instantiated by the algorithm, and� � log29. The space complexity is O(n � 2��b).Proof: Given a cutset assignment, the time and space complexity of resolutionsteps within DCDR(b) is bounded by O(n�9b) (see theorem 4). Since in the worst-casebacktracking involves enumerating all possible instantiations of the cutset variablesC in O(2jCj) time and O(jCj) space, the total time complexity is O(n � 9b � 2jCj)= O(n � 2��b+jCj), where C is the largest cutset ever instantiated by the algorithm,and � � log29. The total space complexity is O(jCj+ n � 9b) = O(n � 9b). 2
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Table 1: BDR-DP(i) on 100 instances of (1,4)-trees, Ncliq = 100, Ncls = 11. Themaximum number of deadends is bounded by 50,000. The orderings used: inputordering, max-cardinality ordering, min-degree ordering, min-width ordering. Notethat BDR-DP(1) is equivalent to DP (BDR(1) has no e�ect on a 3-cnf theory).i BDR(i) DP after BDR(i) BDR-DP(i) New w�time Deadends clausesINPUT ordering1 0.1 127.5 14927 127.9 0 42 0.4 82.6 8987 83.2 75 43 2.4 12.3 1000 15.0 403 44 3.1 0.7 0 4.0 461 45 3.1 0.7 0 4.0 461 46 3.1 0.7 0 4.0 461 47 3.1 0.7 0 4.0 461 4MAX-CARDINALITY ordering1 0.1 129.0 15106 129.3 0 42 0.4 81.0 8987 81.6 75 43 2.3 12.0 1000 14.6 403 44 3.0 0.7 0 3.9 461 45 3.0 0.7 0 3.9 461 46 3.0 0.7 0 3.9 461 47 3.0 0.7 0 3.9 461 4MIN-DEGREE ordering1 0.1 156.3 18093 156.7 0 42 0.3 97.2 10671 97.8 75 43 2.1 6.4 511 8.7 397 44 2.6 0.7 0 3.5 452 45 2.6 0.7 0 3.5 452 46 2.6 0.7 0 3.5 452 47 2.6 0.7 0 3.5 452 4MIN-WIDTH ordering1 0.1 168.1 19430 168.5 0 142 0.4 81.0 8913 81.6 79 143 2.3 8.3 651 10.8 407 144 3.0 9.8 731 12.9 477 145 3.0 12.2 929 15.4 483 146 3.0 12.2 929 15.4 484 147 3.0 12.2 929 15.4 484 14214



Table 2: BDR-DP(i) on 100 instances of (4,8)-trees, Ncliq = 60, Ncls = 23. Themaximum number of deadends is bounded by 50,000. The orderings used: inputordering, max-cardinality ordering, min-degree ordering, min-width ordering. Notethat BDR-DP(1) is equivalent to DP (BDR(1) has no e�ect on a 3-cnf theory).i BDR(i) DP after BDR(i) BDR-DP(i) New w�time Deadends clausesINPUT ordering1 0.1 68.2 6171 68.6 0 102 0.1 84.7 7618 85.2 10 103 1.5 26.3 1895 28.1 353 104 9.6 19.9 710 29.7 1766 105 15.2 1.6 0 17.0 2277 106 16.8 1.7 0 18.6 2331 107 16.9 1.6 0 18.7 2332 10MAX-CARDINALITY ordering1 0.1 89.6 8197 89.9 0 92 0.1 109.4 9964 109.8 11 93 1.4 16.7 1215 18.4 328 94 6.6 5.7 234 12.5 1221 95 9.3 1.2 0 10.7 1498 96 9.8 1.3 0 11.2 1523 97 9.8 1.3 0 11.2 1524 9MIN-DEGREE ordering1 0.1 97.3 8903 97.6 0 92 0.1 99.6 9070 100.0 10 93 1.0 35.3 2613 36.6 330 94 6.3 1.3 0 7.7 1432 95 8.9 1.4 0 10.5 1734 96 9.4 1.4 0 10.9 1761 97 9.4 1.4 0 10.9 1762 9MIN-WIDTH ordering1 0.1 109.3 10159 109.7 0 172 0.1 94.4 8543 94.7 11 173 1.2 41.3 3089 42.8 330 174 6.3 1.2 1 7.7 1325 175 9.5 1.4 0 11.1 1718 176 10.8 1.4 0 12.4 1834 177 11.4 1.5 0 13.0 1875 17215



Table 3: BDR-DP(i) on 100 instances of (5,12)-trees, Ncliq = 60, Ncls = 36. Themaximum number of deadends is bounded by 50,000. The orderings used: inputordering, max-cardinality ordering, min-degree ordering, min-width ordering. Notethat BDR-DP(1) is equivalent to DP (BDR(1) has no e�ect on a 3-cnf theory).i BDR(i) DP after BDR(i) BDR-DP(i) New w�time Deadends clausesINPUT ordering0 0.0 407.0 23083 407.0 0 151 0.1 405.2 23083 405.8 0 152 0.2 366.5 20783 367.0 7 153 2.8 302.5 14640 305.6 405 154 27.6 293.5 6113 321.4 3563 155 72.4 54.9 625 127.6 6827 156 116.7 5.4 0 122.3 8271 157 140.2 5.7 0 146.1 8563 15MAX-CARDINALITY ordering0 0.0 418.3 23755 418.3 0 131 0.1 414.0 23755 414.4 0 132 0.1 344.0 19600 344.5 8 133 2.5 193.1 9513 195.9 371 134 18.3 66.5 1732 85.1 2365 135 41.1 29.5 500 70.8 4077 136 57.5 3.5 0 61.1 4740 137 63.2 3.5 0 66.9 4860 13MIN-DEGREE ordering0 0.0 384.2 21642 384.2 0 121 0.1 383.4 21642 383.8 0 122 0.1 324.3 18232 324.7 7 123 1.7 196.1 9439 198.1 380 124 18.7 115.1 2633 134.1 2890 125 46.2 3.7 0 50.1 4951 126 67.5 4.1 0 71.8 5758 127 75.3 4.2 0 79.7 5904 12MIN-WIDTH ordering0 0.0 418.4 23584 418.4 0 241 0.1 415.8 23584 416.3 0 242 0.1 347.6 19604 348.0 8 243 2.1 259.1 12668 261.6 373 244 16.6 154.7 3991 171.7 2461 245 40.2 8.3 82 48.7 4504 246 64.7 4.8 7 69.7 5759 247 88.9 4.9 0 94.0 6513 24216



Appendix BProofsTheorem 15: [best-case complexity]If convergent variables (i.e. children in causally-independent families) in a networkBN = (G;P ) never have more than one common parent (e.g., Figure 3.9a, but not3.10a), then for every transformed network TBN w�(GMT ) equals the induced width ofthe (unmoral) graph G.Proof: We will show that, for every ordering o of BN, there exists an orderingo0 of TBN such that w�o(GM ) = w�o0(GMT ). Let us extend the ordering o of BN to theordering o0 of TBN so that the hidden variables associated with a convergent variablex are always eliminated immediately before x (namely, we always place them righton top of x in the ordering o0). As it is shown in the proof of theorem 18, in such acase elimination along the ordering o0 does not induce new edges between the inputnodes which are not already induced in the unmoralized BN along the ordering o.Also, the hidden variables of x should follow a width-1 ordering of the correspondingbinary decomposition tree. Since convergent variables xi and xj do not share par-ents, their hidden variables will never become connected to each other. Therefore,the induced width of TBN along o0 coincides with the induced width of BN along o. 2Theorem 17: [k-n-networks] The complexity of algorithm ci-elim-bel applied to acausally-independent k-n-network is O(dminfk;2ng).Proof: Let us consider a k-n-network BN, where di denote the upper-layer nodes217



(\diseases") and fj denote the low-layer node (\�ndings"). We will show that thereare always two orderings, o1 and o2, that have the induced width k and 2n, respec-tively, and that either of those two has the minimal induced width. Consider orderingo1 = d1;..., dk, f1; ..., fn, fuijg, where fuijg is the set of all hidden nodes, ordered alongthe depth-�rst ordering of the corresponding binary-tree decomposition (thus the in-duced width of uij is not larger than 2). Processing the hidden variables reconstructsthe CPTs, so that all di become interconnected. Sequential elimination of fj does notadd new edges; thus the induced width of TBN along o is k. Now consider orderingo2 = f1; ..., fn, fuijg, d1;..., dk, using again depth-�rst orderings for uij. Eliminatingparent di before its n hidden nodes, each corresponding to one of di's children in theoriginal network (e.g.,ua1, ub1, and uc1 in Figure 3.11b), creates a clique on those hiddennodes. Given that at least two parents d1 and d2 are eliminated before their hiddennodes, we obtain two such cliques, each of size n (e.g., the clique of all ui1s and theclique of all uj2s in Figure 3.11b). Then, following the depth-�rst ordering of hiddennodes, a pair of hidden nodes, one node from each clique, must be eliminated togetherat some point (e.g., ua1 and ua2 in Figure 3.11b). This yields the induced width of 2n.Now we will prove that the minimal induced width among all orderings is k if k < 2n,and 2n otherwise. Given an ordering o of TBN, there are two possible situations: if atleast two parents di and dj are processed before all hidden nodes, then a clique on 2nvariables is created; otherwise, all di become connected in a clique yielding w� = k.Thus, minfk; 2ng is the lower bound on the induced width. If k < 2n, it is attainedwhen using ordering o1, otherwise ordering o2 must be used. Thus the complexity ofelim-bel on TBN of a k-n-network is O(dminfk;2ng), which concludes the proof. 2Theorem 18: [w� on the input variables]Given a causally-independent belief network BN = (G;P ) having induced width w�o(G)along o, and given a transformed network TBN , there exists an extension of o to o0such that the induced width of the input variables in TBN along o0, computed only withrespect to the edges induced between the input variables, is not larger than w�o(G).218
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for the induced edges in G0T . We do it by induction on the variables in G0T along theordering o0 = (z1, :::; zm).Induction basis:The last variable in o0, zm, is either a) an input variable x or b) a hidden variable uxi .a) zm = x. Then x must be regular; otherwise hidden variables uxi would appear ontop of x according to our construction of o0. Consider all possible edges that can beinduced by eliminating x. Type-1 edge: an edge (y1; y2) between two input variablesis created if there are edges (x; y1) and (x; y2) in T (and therefore, in BN), and y1,y2 precede x in the ordering o0, and, therefore, in o. But then the edge (y1; y2) willbe also induced in G0 along o. Type-2 edge: creating an edge (uy1i ; uy2j ) means thatx is connected to uy1i and uy2i preceding x in o0, and, therefore, x is connected to y1and y2 which precede x in o, so that the edge (y1; y2) is induced in G0. Type-3 edge:similarly, inducing an edge (uy1i ; y2) in G0T along o0 corresponds to inducing an edge(y1; y2) in G0 along o.b)zm = uxi . As shown above, uxi can be connected either to other hidden variablesof x, or to x, or to x's parents. Therefore, a type-1 edge (uy1i ; uy2j ), where y1 6= y2,cannot be created. A type-2 edge (uxi ; y) corresponds to the edge between x and itsparent y in G0. Finally, a new type-3 edge (y1; y2) can be created only if nodes y1and y2 are both parents of x, and precede x in the orderings o0. But then y1 and y2precede x in o as well, thus inducing the edge (y1; y2) in G0.Induction step:Assume that statement S is correct for all edges induced by the last k variables ino0. Namely, for every edge (x; y), (uxi ; uyj ), or (uxi ; y) in G0T , induced by some zi,i = n; :::; n � k, there is an edge (x; y) in G0. Then we can show that the sameproperty holds for every edge induced by zn�k�1.Type-1 edge: indeed, creating an edge of type-1 between two input variables y1and y2 means that those variables are already connected to zn�k�1 in G0T and precede220



it in the ordering o0. If zn�k�1 = x, where x is an input variable, then both y1 andy2 are connected to x in G0 and precede it in the ordering o, by de�nition of o0.Therefore, the edge (y1; y2) is induced in G0. If zn�k�1 = uxi , then, by induction,the edges (uxi ; y1) and (uxi ; y2) must correspond to the edges (x; y1) and (x; y2) in G0.Also, y1 and y1 must precede x in o, since they precede uxi in o0, by de�nition of theordering o0. Then the edge (y1; y2) is created in G0.Type-2 edge: creating a new edge (uy1i ; uy2j ) implies that zn�k�1 is already connectedto both uy1i and uy2j preceding zn�k�1 in o0. Either zn�k�1 = x or zn�k�1 = uxi ; inboth cases, by induction, the edges (x; y1) and (x; y2) have been also induced in G0,and, by de�nition of o0, both y1 and y1 must precede x in o, thus resulting into a newinduced edge (y1; y2) in G0. Similar argument holds for a new type-3 edge (uy1i ; y2),thus proving that, in all three cases a corresponding edge (y1; y2) is created in G0 alongo. Therefore, we proved by induction that for every edge (x; y), (uxi ; uyj ), or (uxi ; y) inG0T , where x 6= y, there is an edge (x; y) in G0. This implies that the induced widthof G0T restricted to the input variables is not larger than the induced width of G0. 2Relational arc-consistencyDe�nition 11: (relational arc-consistency [37]) Let R be a constraint network over aset of variables X = fx1; :::; xng, having domains D1; :::;Dn, and let RS be a relation(constraint) in R de�ned over a subset of variables S. We say that RS in networkR is relationally arc-consistent relative to a variable x 2 S i� for any consistentassignment to the variables in S � fxg there exists an assignment to x such that thecombined assignment satis�es RS. A relation RS in R is relationally arc-consistent ifit is relationally arc-consistent relative to every variable in S. A network is relationallyarc-consistent i� every relation is relationally arc-consistent.Enforcing relational arc-consistency implies adding new constraints that rule out221



Revise(RS ; Xi)Input: constraint RS de�ned on a set of variables S = fX1; :::; Xkg,where each Xj has domain Dj , and a variable Xi 2 S.Output: constraint R0S relationally arc-consistent relative to x1. for each consistent tuple (x1; :::xk) 2 (S � fxg)n,where (S � fxg)n is n-times Cartesian product of (S � fxg), do2. if there is no assignment to x s.t. (x1; :::; xk; x) 2 RS ,3. then , add a constraint that prohibits (x1; :::; xk)Figure 1: The Revise procedure.
RACInput: a constraint network CN =< X;D;C >.Output: a relationally arc-consistent constraint network CN 0 =< X;D0; C 0 >equivalent to CN .1. For each variable Xi 2 X2. for each constraint R involving Xi3. Revise(R;Xi)4. Repeat steps 1-3 until no more changes occur in the network.5. Return the modi�ed network.Figure 2: Relational arc-consistency enforcing procedure (RAC).222



all variable assignments contradicting the de�nition above. Algorithm RAC for en-forcing relational arc-consistency in an arbitrary constraint network is shown in Figure2. The algorithm iterates over all variables and over all constraints until the networkremains unchanged between the two successive iterations. At each iteration, an invo-cation of the procedure Revise (see Figure 1) enforces relational arc-consistency of agiven constraint relative to one of its variables. The output of the algorithm RAC isa relationally arc-consistent network that is equivalent to the input network, i.e., hassame set of solutions.
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