
A New Perspective on Algorithms for Optimizing Policies Under
Uncertainty

Rina Dechter
Department of Computer and Information Science

University of California, Irvine
Irvine, California, USA 92717

dechter@@ics.uci.edu

Abstract

The paper takes a fresh look at algorithms for maxi-
mizing expected utility over a set of policies, that is, a
set of possible ways of reacting to observations about
an uncertain state of the world. Using the bucket-
elimination framework, we characterize the complexity
of this optimization task by graph-based parameters,
and devise an improved variant of existing algorithms.
The improvement is shown to yield a dramatic gain in
complexity when the probabilistic subgraph (of the in-

uence diagram) is sparse, regardless of the complexity
introduced by its utility subgraph.

Introduction

In
uence diagram (IDs) (Howard & Matheson 1984)
are a popular framework for decision analysis. They
subsume �nite horizon factored observable and par-
tially observable, Markov decision processes (MDPs,
POMDPs) used to model planning problems under un-
certainty (Boutilier, Dean, & Hanks 1999).
The paper presents a bucket elimination algorithm

for computing a sequence of policies which maximize
the expected utility (meu) for an in
uence diagram.
An earlier version of this algorithm (Dechter 1996)
describes the algorithm only for the very restricted
case where decision variables are roots in the network,
namely for "blind" policies. Our derivation highlights
topological properties of these algorithms, and in par-
ticular ties its time and space complexity to the induced
width of an underlying graph.
In principle, the algorithm is similar to the variable

elimination algorithm proposed by Shachter and others
(Shachter 1986; 1988; 1990; Tatman & Shachter 1990;
Shachter & Peot 1992; Shenoy 1992; Zhang 1998;
F. Jensen & Dittmer 1994), and in particular, it is
analogous to the join-tree clustering algorithm for eval-
uating in
uence diagrams (F. Jensen & Dittmer 1994).
However, the new exposition using the bucket data-
structure uni�es the algorithm with a variety of infer-
ence algorithms in constraint satisfaction, propositional
satis�ability, dynamic programming and probabilistic

Copyright c
 2000, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

inference. Such algorithms can be expressed succinctly,
are relatively easy to implement and the uni�cation
highlights ideas for improved performance, for incor-
porating variable elimination with search, for trading
space for time and for approximation, all of which are
applicable within the framework of bucket-elimination
(Dechter 1996; 1999).
The derivation highlights the role of decision vari-

ables in increasing the algorithm's complexity, by forc-
ing dependencies over independent reward components.
However, we also show that performance can be im-
proved exponentially relative to chance variables. In
particular, we show, that computing expected utility
can be improved dramatically in cases when the proba-
bilistic subgraph is sparse, regardless of the complexity
of the utility components. For example, when the belief
subnetwork is singly connected (a poly-tree), comput-
ing the network's expected utility can be accomplished
in linear time, even if the graph describing the utility
components is fully connected. To our knowledge, this
improvement is not yet incorporated in existing algo-
rithms.

Background
Belief networks

Belief networks provide a formalism for reasoning about
partial beliefs under conditions of uncertainty. It is de-
�ned by a directed acyclic graph over nodes represent-
ing random variables of interest The arcs are quanti�ed
by conditional probabilities that are attached to each
cluster of parents-child nodes in the network.
A directed graph is a pair, G = fV;Eg, where

V = fX1; :::; Xng is a set of elements and E =
f(Xi; Xj)jXi; Xj 2 V; i 6= jg is the set of edges. If
(Xi; Xj) 2 E, we say that Xi points to Xj . For each
variableXi, the set of parent nodes ofXi, denoted paXi
or pai, comprises the variables pointing toXi in G. The
family of Xi, Fi, includes Xi and its parent variables.
A directed graph is acyclic if it has no directed cycles.
In an undirected graph, the directions of the arcs are ig-
nored: (Xi; Xj) and (Xj ; Xi) are identical. The moral
graph of a directed graph is the undirected graph ob-
tained by connecting the parent nodes of each variable
and eliminating direction.

Let X = fX1; :::; Xng be a set of random vari-
ables over multivalued domains. A belief network is
a pair (G;P) where G is a directed acyclic graph and
P = fP (Xijpai)g, denote conditional probability tables
(CPTs). The belief network represents a probability
distribution over X having the product form

P (x1; ::::; xn) = �n
i=1P (xijxpai)

where an assignment (X1 = x1; :::; Xn = xn) is abbre-
viated to x = (x1; :::; xn) and where xS denotes the
restriction of a tuple x to the subset of variables S. An
evidence set e is an instantiated subset of variables. We
use upper case letter for variables and nodes in a graph
and lower case letters for values in variables' domains.

In
uence diagrams

An In
uence diagram extends belief networks by adding
also decision variables and reward functional compo-
nents. Formally, an in
uence diagram is de�ned by
ID = (X;D;P;R), where X = fX1; :::; Xng is a set
of chance variables on multi-valued domains (the be-
lief network part) and D = fD1; ::::; Dmg is a set of
decision nodes (or actions). The chance variables are
further divided into observable meaning they will be
observed during execution, or unobservable. The dis-
crete domains of decision variables denote its possible
set of action. An action in the decision node Di is de-
noted by di. Every chance node Xi is associated with a
conditional probability table (CPT), Pi = fP (Xijpai)g,
pai � X [D � fXig. Each decision variable Di has a
parent set paDi � X [D denoting the variables, whose
values will be known and may directly a�ect the deci-
sion. The reward functions R = fr1; :::; rjg are de�ned
over subsets of variables Q = fQ1; :::; Qjg, Qi � X[D,
called scopes, and the utility function is de�ned by
u(x) =

P
j rj(xQj).

1.

The graph of an ID contains nodes for chance vari-
ables (circled) decision variables (boxed) and for reward
components (diamond). For each chance or decision
node there is an arc directed from each of its parent
variables towards it, and there is an arc directed from
each variable in the scope of a reward component to-
wards its reward node.
Let D1; :::; Dm be the decision variables in an in
u-

ence diagram. A decision rule for a decision node Di is
a mapping

�i :
paDi !
Di

where for S � X [D,
S is the cross product of the
individual domains of variables in S. A policy is a
list of decision rules � = (�1; ::::; �m) consisting of one
rule for each decision variable. To evaluate an in
u-
ence diagram is to �nd an optimal policy that maxi-
mizes the expected utility (meu) and to compute the

1The original de�nition of ID had only one reward node.
We allow multiple rewards as discussed in (Tatman &
Shachter 1990)

optimal expected utility. Assume that x is an assign-
ment over both chance variables and decision variables
x = (x1; :::; xn; d1; :::; dm), The meu task is to compute

E = max
�=(�1;:::;�m)

X

x1;:::;xn

�xiP (xi; ejx
�
pai

)u(x�); (1)

where x� denotes
an assignment x = (x1; :::; xn; d1; :::dm) where each di
is determined by �i 2 � as a functions of (x1; :::; xn).
Namely: di = �i(x).

Example 1 Figure 1 describes the in
uence diagram
of the oil wildcatter problem (adapted from (N. L. Zhang
& Poole 1994)). The diagram shows that the test deci-
sion (T) is to be made based on no information, and the
drill (D) decision is to be made based on the decision to
test (T) and the test results (R). The test-results are
dependent on test and seismic-structure (S), which de-
pends on an unobservable variable oil underground (O).
The decision regarding oil-sales-policy (OSP) is made
once the market information (MI) and the oil-produced
(OP) are available. There are four reward compo-
nents: cost of test, r(T), drill cost r(D;OP), sales cost
r(OP;OSP) and oil sales r(OP;OSP;MI). The meu
task is to �nd the three decision rules �T ; �D and �OSP :
�T :!
T , �D :
R !
D, �OSP :
MI;OP !
OSP
such that:

E = max
�T ;�D;�OSP

X

t;r;op;mi;s;o

P (rjt; s)P (opjd; o)P (mi)P (sjo)�

P (o)[r(t) + r(d; op) + r(op; osp) + r(op; osp;mi)]

IDs are required to satisfy several constraints. There
must be a directed path that contains all the decision
nodes and there must be no forgetting in the sense that
a decision node and its parents be parents to all sub-
sequent decision nodes. The rationale behind the no-
forgetting constraint is that information available now
should be available later if the decision-maker does not
forget. In this paper, however we do not force these
requirements. For a discussion of the implications of
removing these restrictions see (N. L. Zhang & Poole
1994).

De�nition 1 (elimination functions)
Given a function h de�ned over subset of variables
S, where X 2 S, the functions (

P
X h) is de�ned

over U = S � fXg as follows. For every U = u,
(
P

X h)(u) =
P

x h(u; x). Given a set of functions
h1; :::; hj de�ned over the subsets S1; :::; Sj, the prod-
uct function (�jhj) and

P
J hj are de�ned over U =

[jSj . For every U = u, (�jhj)(u) = �jhj(uSj), and
(
P

j hj)(u) =
P

j hj(uSj).

An elimination algorithm for MEU
We will �rst derive the bucket elimination algorithm
using the well known car example (Howard 1976), and
subsequently derive the general case.

T R

S O

D OP OSP

MI

TC DC

SC

OS

Figure 1: An in
uence diagram

T

D

C C

t
t

r(T)

1 2

1
2

r(C2,D)r(C1 ,D)

Figure 2: In
uence diagram for car buyer example

The car buyer example

Consider a car buyer that needs to buy one of two
used cars. The buyer of the car can carry out vari-
ous tests with various costs, and then, depending on
the test results, decide which car to buy. Figure 2 gives
the in
uence diagram representing the car buyer exam-
ple adapted from (Pearl 1988). T denotes the choice
of test to be performed, T 2 ft0; t1; t2g (t0 means
no test, t1 means test car 1, and t2 means test car
2). D stands for the decision of which car to buy,
D 2 fbuy 1; buy2g. Ci represents the quality of car
i, i 2 f1; 2g and Ci 2 fq1; q2g (denoting good and
bad qualities. ti represents the outcome of the test
on car i, ti 2 fpass; fail; nullg. (The "null" value
is for the irrelevant case when the Test is applied to
car 1 and the results are related to car 2, and vice
versa.) The cost of testing is given as a function of
T , by r(T), the reward in buying car 1 is de�ned by
r(C1; D = buy 1) and the reward for buying car 2 is
r(C2; D = buy 2). The rewards r(C2; D = buy 1) = 0,
and r(C1; D = buy 2) = 0. The total reward or utility
is given by r(T) + r(C1; D) + r(C2; D).

The task is to determine T and D that maximize the

expected utility. Namely,

E = max
T;D

X

t2;t1;C2;C1

P (t2jC2; T)P (C2)P (t1jC1; T)�

P (C1)[r(T) + r(C2; D) + r(C1; D)]:

Reorganizing, and pushing operators as far to the right,
while ordering decision variables to follow their parents,
and unobservable chance variables (C1; C2) to be placed
last in the order, we get

E = max
T

X

t2

X

t1

max
D

X

C2

P (t2jC2; T)P (C2)�

[
X

C1

P (t1jC1; T)P (C1)[r(T) + r(C1; D) + r(C2; D)] =

(2)
Performing the summation or maximization from right
to left we get,
summing over C1 �rst:

E = max
T

X

t2

X

t1

max
D

X

C2

P (t2jC2; T)P (C2)�C1
(t1; T)�

(3)
[r(T) + r(C2; D) + �C1

(t1; T;D)]

where

�C1
(t1; T) =

X

C1

P (t1jC1; T)P (C1) (4)

and

�C1
(t1; T;D) =

1

�C1
(t1; T)

�
X

C1

P (t1jC1; T)P (C1)r(C1; D)

(5)
Therefore, eliminating C1 creates a new probabilistic
component (�C1

) and a new utility component (�C1
).

Pushing expression not involving C2 and summing
over C2, we get (from EQ. (3):

E = max
T

X

t2

X

t1

�C1
(t1; T)max

D

X

C2

P (t2jC2; T)P (C2)�

[r(T) + r(C2; D) + �C1
(t1; T;D)]

E = max
T

X

t2

X

t1

�C1
(t1; T)max

D
�C2

(t2; T)� (6)

[r(T) + �C1
(t1; T;D) + �C2

(t2; T;D)]

where

�C2
(t2; T) =

X

C2

P (t2jC2; T)P (C2) (7)

and

�C2
(t2; T;D) =

1

�C2
(t2; T)

X

C2

P (C2jt2; T)P (C2)r(C2; D):

(8)
Again, processing C2 created a probabilistic component
(EQ. 7) and a utility component (EQ. 8).

Reorganizing EQ. (6) andmaximizing over D, we
get:

E = max
T

X

t2

�C2
(t2; T)

X

t1

�C1
(t1; T)� (9)

[r(T) + max
D

(�C1
(t1; T;D) + �C2

(t2; T;D))] =

max
T

X

t2

�C2
(t2; T)

X

t1

�C1
(t1; T)[r(T) + �D(t1; t2; T)]

(10)
where

�D(t1; t2; T) = max
D

[�C1
(t1; T;D) + �C2

(t2; T;D)] (11)

Here, we generated only one utility component by max-
imizing over the relevant sum of utilities.
Next summing over t1, from 10, we get:

E = max
T

X

t2

�C2
(t2; T)�t1(T)[r(T) + �t1(t2; T)] (12)

where
�t1(T) =

X

t1

�C1
(t1; T) (13)

and

�t1 (t2; T) =
1

�t1(T)

X

t1

�C1
(t1; T)�D(t1; t2; T)] (14)

Summing the result over t2, from 12, we get:

E = max
T

�t1(T)
X

t2

�C2
(t2; T)[r(T) + �t1 (t2; T)] =

(15)
max
T

�t1(T)�t2 (T)[r(T) + �t2 (T)] (16)

where
�t2(T) =

X

t2

�C2
(t2; T) (17)

and

�t2(T) =
1

�t2(T)

X

t2

�C2
(t2; T)�t1(t2; T) (18)

Finally, we �nd T that maximizes:

E = max
T

�t1(T)�t2(T)[r(T) + �t2(T)]: (19)

So, for each chance variable we generate a probability
component, � (by a local product and summation) and
a utility component � (by computing local normalized
expected utility.) Decision variables were processed by
maximizing over the relevant sum of utility functions,
generating a � component2.
This whole algebraic manipulation can be conve-

niently organized using the bucket data structure as fol-
lows. We partition the probabilistic and reward compo-
nents into ordered buckets in the usual manner (Dechter
1996), namely each functional component is placed in
the latest bucket that mentions any of the variables in
its scope. Using the ordering o = T; t2; t2; D;C2; C1,

bucket(C1): P (C1); P (t1jC1; T); r(C1; D)
bucket(C2): P (C2); P (t2jC2; T); r(C2; D)
bucket(D):
bucket(t1):
bucket(t2):
bucket(T): r(T)

Figure 3: Initial partitioning into buckets

bucket(C1): P (C1); P (t1jC1; T); r(C1; D)
bucket(C2): P (C2); P (t2jC2; T); r(C2; D)
bucket(D): jj �C1

(t1; T;D); �C2
(t2; T;D)

bucket(t1): jj �C1
(t1; T); �D(t1; t2; T)

bucket(t2): jj �C2
(t2; T); �t1 (t2; T)

bucket(T): r(T)jj�t1(T); �t2(T); �t2 (T).

Figure 4: Schematic bucket evaluation of car example

the initial partitioning for the car example is given in
Figure 3.
We distinguish two types of functions in a bucket:

probability components (denoted by �s) and utility
components (denoted by �). When processing a chance
bucket a new probability component and a new utility
component are created, each placed in a closest lower
bucket of a variable in its scope. Figure 4 shows the
recorded functions in the buckets after processing in re-
verse order of o. The new recorded functions are shown
to the right of the bar. The subscript of each function
indicates the bucket originating the function.
The optimizing policies for �T is the function com-

puted in bucket(T) (argmax of EQ. 19), a simple deci-
sion and �D(t1; t2; T) that is recorded in bucket(t1).

General derivation

The general derivation shows that processing decisions
is, in general, more complex than what was demon-
strated by the example. In fact, a decision variable
may cause the decomposed rewards to be completely
coupled. Nevertheless the simpli�ed case appears quite
frequently and can be identi�ed easily.
Given an in
uence diagram, ID = (X;D;P;R) and

evidence e, where R = fr1; :::; rjg de�ned over Q =
fQ1; :::; Qjg, Qi � X [D, and u =

P
j rj. The meu

task is to compute

E = max
�=(�1;:::;�m)

X

x1;:::;xn

Y

Xi

P (xi; ejx
�
pai)u(x

�); (20)

Where �1; :::�m are decision rules, and x is an assign-
ment over both chance variables and decision variables,
x = (x1; :::; xn; d1; :::; dm).
The operations of summation and maximization of

EQ. (20) should be computed along legal orderings.
We use the ordering criteria provided in (F. Jensen &

2We will see that this correspond to a simpli�cation
rather than to the general case

Dittmer 1994): assuming a given ordering for the de-
cision variables, unobservable variables are last in the
ordering, and chance variables between Di and Di+1

are those that become observable following decision Di.
For any legal ordering, expression (20) can be written
as:

E =
~xn
Y

Xi2X

P (xi; ejxpai)
X

j

rj(xQj);

where ~xi = (x1; :::; xi) and where the operation
 is a
summation, if it is applied to a chance variable, or a
maximization if it is applied to a decision variable. For
instance,
(x1;d1;d2;x2) =

P
x1
maxd1 maxd2

P
x2
.

We will now isolate and assess the impact of variable
Xn and derive the function that it induces on the rest
of the problem. Variable Xn stands either for a chance
variable or for a decision variable. Namely:

E =
~xn�1
xn

nY

i=1

P (xi; ejxpai)
X

Qj2Q

rj(xQj)

We can separate the components in the reward func-
tions into those having Xn in their scope, denoted by
the index set tn, and those not mentioning Xn, labeled
with indexes ln = f1; :::; ng� tn. Accordingly we pro-
duce

E =
~xn�1
xn

nY

i=1

P (xi; ejxpai)�(
X

j2ln

rj(xQj)+
X

j2tn

rj(xQj)) =

(21)

=
~xn�1
Y

Xi2X�Fn

P (xi; ejxpai)
xn
Y

Xi2Fn

P (xi; ejxpai)�

(22)

[
X

j2ln

rj(xQj) +
X

j2tn

rj(xQj)]

By migrating to the left of Xn all the functions that
do not have Xn in their scope, we get the following ex-
pressions derived separately for the case when Xn is a
chance variable or a decision variable.

Case of chance variable:
In this case
xn =

P
xn
.

E =
~xn�1
Y

Xi2X�Fn

P (xi; ejxpai)
X

xn

Y

Xi2Fn

P (xi; ejxpai)

(23)

[
X

j2ln

rj(xQj) +
X

j2tn

rj(xQj)] =

~xn�1
Y

Xi2X�Fn

P (xi; ejxpai) � [
X

j2ln

rj(xQj)�

X

xn

Y

Xi2Fn

P (xi; ejxpai)+
X

xn

Y

Xi2Fn

P (xi; ejxpai)(
X

j2tn

rj(xQj)]

We denote by Un the subset of decision and chance vari-
ables that appear withXn in a probabilistic component,
excluding Xn itself, and by Wn the union of variables
(decisions or chance nodes) that appear in probabilistic

and utility components with Xn, excluding Xn itself.
We de�ne �n over Un (x is a tuple over Un [Xn) as

�n(xUn) =
X

xn

Y

Xi2Fn

P (xi; ejxpai) (24)

We de�ne �n over Wn as

�n(xWn
) =

1

�n(xUn)

X

xn

Y

Xi2Fn

P (xi; ejxpai)
X

j2tn

rj(xQj):

(25)
After substituting EQs. (24) and (25) into EQ. (23),
we get

E =
~xn�1
Y

Xi2X�Fn

P (xi; ejxpai) � �n(xUn)� (26)

[
X

j2ln

rj(xQj) + �n(xWn
)]:

The functions �n and �n compute the e�ect of elimi-
nating the chance variable Xn. The result (EQ. (26))
is an expression which does not include Xn, where the
product has a new (probabilistic) function, �n, and the
utility components have a new element �n.

Case of decision variable Xn:
We start from expression (22), only now
xn = maxxn .

E =
~xn�1
Y

Xi2X�Fn

P (xi; ejxpai)�max
xn

Y

Xi2Fn

P (xi; ejxpai)�

[
X

j2ln

rj(xQj) +
X

j2tn

rj(xQj)] (27)

At this point, unless
Q

Xi2Fn
P (xi; ejxpai) = 1, we

cannot migrate the maximization operation anymore
to the right because summation and maximization do
not commute. We de�ne a function � over Vn = Un [
fQ1 [Q2; :::;[Qmg:

�(xVn) = max
xn

Y

Xi2Fn

P (xi; ejxpai) �
X

j

rj(xQj) (28)

Namely, we use all the reward function when comput-
ing �. However, if

Q
Xi2Fn

P (xi; ejxpai) = 1, then max-
imization can be applied in stages only to the reward
components containing Xn as we saw in the example.
The simpli�ed case often happens, either when the de-
cision variable has no associated probabilistic compo-
nents or when the probabilistic product is 1.
Applying similar algebraic manipulation to the rest

of the chance and decision variables in order, yields the
elimination algorithm elim-meu-id in Figure 5. Each
bucket contains utility components �i and probability
components, �i. The algorithm generates the �i of a
bucket by multiplying all its probability components
and summing (if the variable is a chance node) over
Xi. The �i of a chance variable Xi is computed as the
average utility of the bucket, normalized by the bucket's
compiled �. The computation is simpli�ed when � = 1,
namely, when there is no evidence in the bucket, nor
new probabilistic functions.

For a decision variable we compute a � component
by maximization as dictated by EQ. (28), and simplify
when no probabilistic components appear in the deci-
sion bucket. We note therefore that processing a de-
cision variable, does not, in general, allow exploiting a
decomposition in the reward components.
It is known that observed variables frequently sim-

plify computation by avoiding creating new dependen-
cies among variables (although for probabilistic vari-
ables they would make a larger portion of the network
relevant (Dechter 1999)). We see (EQ. (24)) that if
Xn = v is an evidence, �in can be computed by assign-
ing the value Xn = v to each probabilistic component,
and each can be moved separately into a lower bucket.
The e�ect of an observation on a utility component in a
chance bucket is (substitutingXn = v in the expression
for �n):

�n =
1

�n

Y

Xi2Fn

P (xi; ejxn = v; xpai)
X

j2tn

rj(xQj ; xn = v):

Since the multiplicands in the denominator and the
dominator cancel out, we get

�n =
X

j2tn

rj(xQj ; xn = v):

Again, each utility component can be processed inde-
pendently.
Luckily, an instantiated decision bucket can also be

simpli�ed enough and can be processed in an identical
manner to utilities computed in chance variables. Con-
sequently, the utility components can also be assigned
the observed decision value and each can be moved in-
dependently to a lower bucket; either to a chance bucket
or to the closest decision bucket.

Example 2 Consider the in
uence diagram of Figure
1 where u = r(t) + r(d; op) + r(op;mi; osp) the order-
ing of processing is o = T;R;D;OP;MI;OSP; S;O.
The chance variables O and S are unobservable and
therefore placed last in the ordering. The bucket`s par-
titioning and the schematic computation of this decision
problem is given in Figure 7 and is explained next.
Initially, bucket(O) contains P (opjd; o); P (sjo); P (o).

Since this is a chance bucket having no reward compo-
nents we generate

�O(s; op; d) =
X

o

P (opjd; o)P (sjo)P (o)

placed in bucket(S). The bucket of S is processed next
as a chance bucket. We compute

�S(r; op; d; t) =
X

s

P (rjt; s)�O(s; op; d)

placed in bucket(OP). The bucket of the decision vari-
able OSP is processed next. It contains all the reward
components r(op;mi; osp), r(op; osp), r(t) and r(d; op).
Since the decision bucket contains no probabilistic com-
ponent, r(t) is moved to the bucket of D and r(d; op)

Algorithm elim-meu-id
Input: In
uence diagram (X;D;P;R), a legal or-
dering of the variables, o; observations e.
Output: A set of decision rules �1; :::; �k that
maximizes the expected utility.
1. Initialize: Partition components into buck-
ets where bucketi contains all probabilistic compo-
nents whose highest variable is Xi. Reward com-
ponents are partitioned using procedure partition-
rewards (P,R,o).
In each bucket, �1; :::; �j, denote probabilistic
components and �1; :::; �l utility components. Let
S1; :::; Sj be the scopes of probability components,
and Q1; :::; Ql be the scopes of the utility compo-
nents.
2. Backward: For p n downto 1, do
Process bucketp:
for all functions �1; :::; �j; �1; :::; �l in bucketp, do

� If (observed variable) bucketp contains Xp =
xp, assign Xp = xp to each �i; �i, and put each
resulting function in appropriate bucket.

� else,

{ If Xp is a chance variable compute
�p =

P
Xp

Q
i �i and

�p =
1
�p

P
Xp

�j
i=1�i

Pl
j=1 �j ;

{ If Xp is a decision variable, then
If bucket has only �'s , move each free from
Xp �, to its appropriate lower bucket, and for
the rest compute
�p = maxXp

P
j �j

else, (the general case), compute

�p = maxXp
Qj
i=1 �i

Pl
j=1 �j

{ Add �p to the bucket of the largest-index vari-
able in their scopes. Place �p in the closest
chance bucket of a variable in its scope or in
the closest decision bucket.

3. Return : decision rules computed in decision
buckets.

Figure 5: Algorithm elim-meu

Procedure partition-rewards(P;R, o)
For i = n to 1
If Xi is a chance variable, put all rewards men-
tioning Xi in bucketi.
else (decision variable) put all remaining rewards
in current bucketi
end.
Return ordered buckets

Figure 6: partition into buckets

bucket(O) : P (ojop;D)P (sjo); P (o)
bucke(S) : P (rjs; t) jj �O(s; op; d)
bucket(OSP): r(t); r(op; osp); r(op;mi; osp); r(d; op)
bucket(MI): P (mi) jj �OSP (op;mi)
bucket(OP): jj �S(r; t; op; d); r(op; d); �MI(op)
bucket(D): jj �OP (r; t; d); �OP (d; r; t)r(t)
bucket(R): jj �D(r; t)
bucket(T): jj �R(t)

Figure 7: A schematic execution of elim-meu

is moved to the bucket of OP . We then create a utility
component

�OSP (op;mi) = max
osp

[r(op;mi; osp) + r(op; osp)]

Which is the decision rule for OSP , and place it in
bucket(MI). The bucket of MI is processed next as a
chance bucket, generating a constant � = 1 and

�MI(op) =
X

mi

P (mi)�OSP (op;mi);

placed in the bucket of OP . Processing the bucket of
OP yields:

�OP (r; t; d) =
X

op

�S(r; t; op; d)

and

�OP (r; t; d) =
1

�OP

X

op

�S(r; t; op; d)[r(op; d)+ �MI(op)]

both placed in the bucket of decision variable D. Here
we observe the case of a decision bucket that contains
both probabilistic and utility component. The bucket has
two reward components (one original r(t) and one gen-
erated recently.) It computes a � component:

�D(r; t) = max
D

�OP (r; t; d)[r(t)+ �OP (r; t; d)]

which provides the decision rule for D and is placed in
the bucket of R. The bucket of R has only a probability
component yielding:

�R(t) =
X

r

�D(r; t)

placed in bucket(T), and

�T = max
t

�R(t)

is derived and provides the decision rule for T . Also,
maxt �R(t) is the optimal expected utility.
The sequence of solution policies is given by the

argmax functions that can be created in decision buck-
ets. Once decision T is made, the value of R will be
observed, and then decision D can be made based on T
and the observed R.

In summary,

Theorem 1 Algorithm elim-meu-id computes the meu
of an in
uence diagram as well as a sequence of opti-
mizing decision rules. 2

T

t

t

D

C

C

2

1

2

1

(b)

T

D

C C

t
t

1 2

1
2

(a)

T

t

t

D

C

C

2

1

2

1

(c)

Figure 8: The augmented graph of the car example (a)
and its induced order graph (b)

Complexity

As is usually the case with bucket elimination algo-
rithms, their performance can be bounded as a func-
tion of the induced width of some graph that re
ects
the algorithm's execution.
An ordered graph is a pair (G; d) where G is an undi-

rected graph and d = X1; :::; Xn is an ordering of the
nodes. The width of a node in an ordered graph is the
number of the node's neighbors that precede it in the
ordering. The width of an ordering d, denoted w(d), is
the maximumwidth over all nodes. The induced width
of an ordered graph, w�(d), is the width of the induced
ordered graph obtained as follows: nodes are processed
from last to �rst; when node X is processed, all its pre-
ceding neighbors are connected. The induced width of
a graph, w�, is the minimal induced width over all its
orderings.
The relevant graph for elim-meu-id, is the augmented

graph obtained from the ID graph as follows. All the
parents of chance variables are connected (moralizing
the graph), all the parents of reward components are
connected, and all the arrows are dropped. Value nodes
and their incident arcs are deleted. Figure 8(a) gives
the augmented graph of the car example. An ordered
graph is depicted in Figure 8(b) with the solid lines.
The broken lines are those added when creating the
induced ordered graph. We see that the induced-width
of this ordered graph is 3.
To capture the simpli�cation associated with evi-

dence we use the the notion of adjusted induced graph.
The adjusted induced graph is created by processing
the variables from last to �rst in the given ordering.
Only parents of each none-evidence variable are con-
nected. The adjusted induced-width is the width of the
adjusted induced-graph. Figure 8c shows the adjusted
induced-graph relative to the evidence in C2 (assuming
we are told about the quality of car C2). Although the
induced-width remains the same, we see that process-
ing D will be easier since its induced-width is reduced
by the evidence.

To capture the general case, when decision variables
couple reward components, the induced graph should
be computed in a slightly modi�ed manner. We distin-
guish between chance arcs and reward arcs. A new arc,
created using a chance arc, is a chance arc. Given the
ordered augmented graph, we process the nodes from
last to �rst. If the next node is a chance node, connect
all its earlier neighbors (unless it is evidence). If the
next node is a decision node, then, if it is connected
to an earlier node by a chance arc, connect, not only
all its earlier neighbors, but also all the earlier vari-
ables appearing in the scope of any reward component.
The resulting induced graph is called the compounded
induced graph.

Theorem 2 Given an in
uence diagram de�ned on n
variables, and given evidence e, algorithm elim-meu-id
is time and space O(n � exp(w�(o; e)), where w�(o; e) is
the width along o of the adjusted compounded induced
graph.

In the car example the compounded induced graph
is the same as the (regular) induced graph since the
decision nodes are not incident to chance arcs.

Improving elim-meu-id
In this section we show that dependencies created by
multiple reward components can be avoided, whenever
the reward functions are de�ned on chance variables
only. This implies that computing the expected utility
is not harder than the task of belief-updating over the
underlying probabilistic subnetworks.
To illustrate the idea consider the following 6-variable

belief network,

D ! H ! A! B ! C ! E

where D is a decision variable while the rest are chance
variables. Assume also that the reward functions
are r(A;B), r(A;C) r(A;E) r(B;C) r(B;E), r(C;E)
r(H;A), r(H;B), r(H;C), r(H;E). The task is to com-
pute

max
D

X

h;a;b;c;e

P (hjd)P (ajh)P (bja)P (cjb)P (ejc)

[
X

x;y2fa;b;c;h;eg

r(x; y)]

Let's
execute elim-meu-id along the order D;H;A;B;C;E.
The initial buckets are:
bucketE : P (ejc), r(e; c), r(e; b), r(e; a), r(e; h)
bucketC : P (cjb), r(c; b) , r(c; a),r(c; h)
bucketB: P (bja), r(b; a), r(b; h)
bucketA: P (ajh), r(a; h)
bucketH : P (hjd)
bucketD:

Processing bucket E by elim-meu-id generate the
function (assuming no evidence)

�E (a; b; c; h) =
X

e

P (ejc)�[(r(e; c)+r(e; b)+r(e; a)+r(e; h))]

which will be placed in bucket C. However, by exchang-
ing summation order we get:

�E (a; b; c; h) =
X

e

P (ejc) � r(e; c) +
X

e

P (ejc) � r(e; b)+

X

e

P (ejc) � r(e; a) +
X

e

P (ejc)r(e; h):

Therefore, we can sum over variable E relative to each
reward component, separately. Then, instead of record-
ing �E (a; b; c; h) we record several smaller functions:
�E (c) =

P
e P (ejc) � r(e; c),

�E (b; c) =
P

e P (ejc) � r(e; b),
�E (c; a) =

P
eP (cje)r(e; a),

and �E(c; h) =
P

e P (cje)r(e; h),
each to be placed in bucket of C.
When processing bucketC , instead of computing

�C (b; a; h) =
X

c

P (cjb)[r(c; b)+r(c; a)+r(c; h)+�E(c)+

�E (c; b) + �E (c; a) + �E (c; h)]

we can, again, generate several summands:

�C (b) =
X

c

P (cjb)(r(c; b) + �E (c; b) + �E (c))

�C (a; b) =
X

c

P (cjb)(r(c; a) + �E(c; a))

and

�C (h; b) =
X

c

P (cjb)(r(c; h) + �E(c; h))

and so on. The �nal bucket's structure is:

bucketE : P (ejc), r(e; c), r(e; b), r(e; a), r(e; h)
bucketC : P (cjb),r(c; b),r(c; a),r(c; h) jj �E(c),�E(c; h)
�E (c; b) �E (c; a)
bucketB : P (bja), r(b; a), r(b; h) jj , �C (a; b), �C(b; h),
�C (b)
bucketA: P (ajh), r(a; h) jj �C (a; h)
bucketH : jj �A(d; h)
bucketD:

Instead of:
bucketE : P (ejc), r(e; c), r(e; b), r(e; a), r(e; h)
bucketC : P (cjb), r(c; b) , r(c; a), r(c; h) jj �E (c; b; a; h)
bucketB : P (bja), r(b; a), r(b; h) jj , �C(a; b; h)
bucketA: P (ajh), r(a; h) jj �C (a; h)
bucketH : P (hjd) jj �A(h)
bucketD: jj �H (d)

We say that a function f , de�ned by an algebraic
expression, is based-on a function r, if r appears in
the algebraic expression that de�nes f . For example
�E (c; h) is based on r(e; h).

Proposition 3 Given an in
uence diagram whose all
decision nodes are root nodes, every utility function cre-
ated by improved elim-meu-id in a chance bucket is
based on a single original reward component.

Algorithm improved elim-meu-id
Input: An In
uence diagram (X;D;P;R).
Output: A set of policies d1; :::; dk that maxi-
mizes the expected utility.
1. Initialize: Partition components into buck-
ets, where bucketi contains all matrices whose
highest variable is Xi. Call probability matri-
ces �1; :::; �j and utility matrices �1; :::; �l. Let
S1; :::; Sj be the scopes of the probability compo-
nents and Q1; :::; Ql be the scopes of the reward
components.
2. Backward: For p n downto 1, do
for all matrices �1; :::; �j; �1; :::; �l in bucketp, do

� If (observed variable, or a predetermined de-
cision policy) bucketp contains the observation
Xp = xp, then assignXp = xp to each �i; �i, and
put each resulting matrix in appropriate lower
bucket.

� else,

{ if Xp is a chance variable then
�p =

P
Xp

Q
i �i and

for each �i 2 bucketp compute

�ip =
1
�p

P
Xp

�i
Qj
i=1 �i

{ else, if Xi is a decision variable
If bucket has only �'s , move each free from
Xp �, to its appropriate lower bucket, and for
the rest compute
�p = maxXp

P
j �j

else, (the general case), compute

�p = maxXp
Qj

i=1 �i
Pl

j=1 �j

Add �p and �p to the bucket of the largest-index
variable in their argument list.

3. Forward: Return the max value obtained in
the �rst bucket and the set of decision rules.

Figure 9: Algorithm elim-meu-id

Consequently, the scopes of functions generated in
chance buckets equals the the scope that will be cre-
ated by the probabilistic subnetwork, extended by the
scope of a single reward function at the most.

Theorem 4 Given a Bayesian network and a set of
reward functions whose scope is bounded by a con-
stant c, the complexity of �nding the expected utility
is O(exp(w� + c)) where w� is the induced-width along
o of the probabilistic subnetwork only.

We augment this improvement in elim-meu-id, re-
sulting in the improved algorithm of Figure 9. The
improved version of elim-meu-id can sometime save ex-
ponential time. For instance, on singly-connected belief
networks having binary reward functions on every pair
of variables, the complexity of elim-meu-id is O(exp(n))
time and space, while the complexity of the improved

(a)

X1 X2 X3 X4

D1 D2 D3

r1 r2 r3

D0

r0

Y1 Y2 Y3 Y4

X1 X2 X3 X4

D1 D2 D3

r1 r2 r3

D0

r0

(b)

(d)

(c)

X3

X2

X1

X3

X2

X1

Y3

Y2

Y1

D2

D1

D0

D2

D1

D0

Figure 10: An in
uence diagram of an MDP (a) and a
POMDP (b)

algorithm is just n � exp(3), namely O(n). This is be-
cause in each bucket we process functions over 3 vari-
ables at the most.

Relation to MDPs and POMDPs

We next view the complexity associated with �nite
horizon MDPs and POMDPS, through the notion of
augmented graph. In particular, MDPs correspond to
simple in
uence diagrams where the decision variable
allow decomposition of reward components, because
probabilistic components in decision buckets are eval-
uated to constant 1. Figure 10(a) presents a network
that corresponds to an MDP having 4 state variables,
X1; X2; X3; X4, decision variables associated with each
stage, D0; D1; D2; D3, reward components r(Xi) for
each state Xi. In Figure 10(b) the Xi variables are
unobservable, and the decisions are made based on the
observable Yi implied (probabilistically) by Xi.

We see that
using the ordering o = D0; X1; D1; X2; D2; X3; D3; X4

the augmented induced graph is simple. In partic-
ular decision variable can be processed by the sim-
pli�ed version since the corresponding probabilistic
components will evaluate to 1. For the POMDP,
all unobservable variables must appear at the end
of the ordering and be processed �rst, namely
o = D0; Y1; D1; Y2; D2; Y3; D3; Y4; X1; X2; X3; X4 yield-
ing an ordered augmented graph that even its prob-
abilistic subgraph is highly coupled (Figure 10(c,d).)
The compound induced graph is obviously highly con-
nected (not shown in the Figure).

Conclusion
The paper presented a bucket-elimination algorithm
for maximizing the expected utility over a set of poli-
cies and analyzed its complexity using graph parame-
ters such as induced width. A special focus is given
to ways of exploiting decomposable reward functions,
showing that while decision variables enforce depen-
dencies on reward components, chance variables can
fully exploit reward decompositions. Our analysis sug-
gests that to avoid the complexity of inference asso-
ciated with decision variables, combining conditioning
search with bucket-elimination, by conditioning on de-
cision variables only, could be very cost-e�ective, be-
cause instantiated decision variables can be processed
e�ciently. Finally, approximation algorithms like mini-
bucket elimination (Dechter & Rish 1997) or time-space
trading variants (El-Fattah & Dechter 1996), are appli-
cable.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and com-
putational leverag. Arti�cial Intelligence Researc
(JAIR) 11:1{94.

Dechter, R., and Rish, I. 1997. A scheme for ap-
proximating probabilistic inference. In Proceedings of
Uncertainty in Arti�cial Intelligence (UAI'97), 132{
141.

Dechter, R. 1996. Bucket elimination: A unifying
framework for probabilistic inference algorithms. In
Uncertainty in Arti�cial Intelligence (UAI'96), 211{
219.

Dechter, R. 1999. Bucket elimination: A unifying
framework for reasoning. Arti�cial Intelligence 41{85.

El-Fattah, Y., and Dechter, R. 1996. An evaluation of
structural parameters for probabilistic reasoning: re-
sults on benchmark circuits. In Uncertainty in Arti�-
cial Intelligence (UAI'96), 244{251.

F. Jensen, F. J., and Dittmer, S. 1994. From in
uence
diagrams to junction trees. In Tenth Conference on
Uncertainty in Arti�cial Intelligence, 367{363.

Howard, R. A., and Matheson, J. E. 1984. In
uence
diagrams.

Howard, R. A. 1976. The used car buyer. In Readings
in Decision Analysis, 491{520.

N. L. Zhang, R. Q., and Poole, D. 1994. A com-
putational theory of decision networks. International
Journal of Approximate Reasoning 83{158.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann.

Shachter, R., and Peot, M. 1992. Decision making
using probabilistic inference methods. In Proceedings
of Uncertainty in Arti�cial Intelligence (UAI92), 276{
283.

Shachter, R. 1986. Evaluating in
uence diagrams.
Operations Research 34.

Shachter, R. 1988. Probabilistic inference and in
u-
ence diagrams. Operations Research 36.

Shachter, R. D. 1990. An ordered examination of
in
uence diagrams. Networks 20:535{563.

Shenoy, P. 1992. Valuation-based systems for bayesian
decision analysis. Operations Research 40:463{484.

Tatman, J., and Shachter, R. 1990. Dynamic program-
ming and in
uence diagrams. IEEE Transactions on
Systems, Man, and Cybernetics 365{379.

Zhang, N. L. 1998. Probabilistic inference in in
uence
diagrams. Computational Intelligence 475{497.

