
An Anytime Approximation for Optimizing Policies Under Uncertainty

Rina Dechter
Department of Computer and Information Science

University of California, Irvine

Irvine, California, USA 92717

dechter@@ics.uci.edu

Abstract

The paper presents a scheme for approximation
for the task of maximizing the expected utility
over a set of policies, that is, a set of possible
ways of reacting to observations about an un-
certain state of the world. The scheme which
is based on the mini-bucket idea for approxi-
mating variable elimination algorithms, is pa-
rameterized, allowing a
exible control between
e�ciency and accuracy. Furthermore, since the
scheme outputs a bound on its accuracy, it
allows an anytime scheme that can terminate
once a desired level of accuracy is achieved.
The presented scheme should be viewed as a
guiding framework for approximation that can
be improved in a variety of ways.

1 Introduction

In
uence diagram (IDs) [7] are a popular framework
for decision analysis. They subsume �nite horizon fac-
tored observable and partially observable, Markov deci-
sion processes (MDPs, POMDPs) used to model plan-
ning problems under uncertainty [1].
The �rst part of the paper provides an overview of a

bucket elimination algorithm presented in [4] for com-
puting a sequence of policies which maximize the ex-
pected utility for an in
uence diagram. The algo-
rithm is similar to variable elimination algorithms pro-
posed by Shachter and others [12; 13; 11; 15; 10; 14;
16; 6], and in particular, it is analogous to the join-tree
clustering algorithm for evaluating in
uence diagrams
[6]. The new exposition using the bucket data-structure
uni�es the algorithm with a variety of inference algo-
rithms in constraint satisfaction, propositional satis�-
ability, dynamic programming and probabilistic infer-
ence. Such algorithms can be expressed succinctly, are
relatively easy to implement and the uni�cation high-
lights ideas for improved performance, for incorporat-
ing variable elimination with search, for trading space
for time and for approximation, all of which are ap-
plicable within the framework of bucket-elimination [2;
3].
Indeed, in this paper we extend the principle of mini-

bucket approximation [5] that is applicable to any vari-

able elimination algorithm, to the meu task. Speci�cally,
we will derive and analyze the mini-bucket approxima-
tion for the meu task in in
uence diagrams and discuss
its potential.

2 Background

2.1 Belief networks

Belief networks provide a formalism for reasoning about
partial beliefs under conditions of uncertainty. It is de-
�ned by a directed acyclic graph over nodes representing
random variables of interest.
A directed graph is a pair, G = fV;Eg, where

V = fX1; :::; Xng is a set of elements and E =
f(Xi; Xj)jXi; Xj 2 V; i 6= jg is the set of edges. If
(Xi; Xj) 2 E, we say that Xi points to Xj . For each
variable Xi, the set of parent nodes of Xi, denoted paXi

or pai, comprises the variables pointing to Xi in G. The
family of Xi, Fi, includes Xi and its parent variables.
A directed graph is acyclic if it has no directed cycles.
In an undirected graph, the directions of the arcs are ig-
nored: (Xi; Xj) and (Xj ; Xi) are identical. The moral
graph of a directed graph is the undirected graph ob-
tained by connecting the parent nodes of each variable
and eliminating direction.
Let X = fX1; :::; Xng be a set of random vari-

ables over multivalued domains. A belief network is a
pair (G;P) where G is a directed acyclic graph and
P = fP (Xijpai)g, denote conditional probability ta-
bles (CPTs). The belief network represents a prob-
ability distribution over X having the product form
P (x1; ::::; xn) = �n

i=1P (xijxpai) where an assignment
(X1 = x1; :::; Xn = xn) is abbreviated to x = (x1; :::; xn)
and where xS denotes the restriction of a tuple x to the
subset of variables S. An evidence set e is an instan-
tiated subset of variables. We use upper case letter for
variables and nodes in a graph and lower case letters for
values in variable's domains.

2.2 In
uence diagrams

An In
uence diagram extends belief networks by adding
also decision variables and reward functional compo-
nents. Formally, an in
uence diagram is de�ned by
ID = (X;D;P;R), where X = fX1; :::; Xng is a set
of chance variables on multi-valued domains (the belief

network part) and D = fD1; ::::; Dmg is a set of decision
nodes (or actions). The chance variables are further di-
vided into observable meaning they will be observed dur-
ing execution, or unobservable. The discrete domains of
decision variables denote its possible set of action. An
action in the decision node Di is denoted by di. Every
chance nodeXi is associated with a conditional probabil-
ity table (CPT), Pi = fP (Xijpai)g, pai � X [D�fXig.
Each decision variable Di has a parent set paDi

� X[D
denoting the variables, whose values will be known and
may directly a�ect the decision. The reward functions
R = fr1; :::; rjg are de�ned over subsets of variables
Q = fQ1; :::; Qjg, Qi � X [D, called scopes, and the
utility function is de�ned by u(x) =

P
j rj(xQj

).1.
The graph of an ID contains nodes for chance variables

(circled) decision variables (boxed) and for reward com-
ponents (diamond). For each chance or decision node
there is an arc directed from each of its parent variables
towards it, and there is an arc directed from each variable
in the scope of a reward component towards its reward
node.
Let D1; :::; Dm be the decision variables in an in
u-

ence diagram. A decision rule for a decision node Di is a
mapping �i :
paDi

!
Di
where for S � X [D,
S is

the cross product of the individual domains of variables
in S. A policy is a list of decision rules � = (�1; ::::; �m)
consisting of one rule for each decision variable. To eval-
uate an in
uence diagram is to �nd an optimal policy
that maximizes the expected utility (meu) and to com-
pute the optimal expected utility. Assume that x is an
assignment over both chance variables and decision vari-
ables x = (x1; :::; xn; d1; :::; dm), The meu task is to com-
pute

E = max
�=(�1;:::;�m)

X

x1;:::;xn

�xiP (xi; ejx
�
pai

)u(x�); (1)

where x� denotes
an assignment x = (x1; :::; xn; d1; :::dm) where each di
is determined by �i 2 � as a functions of (x1; :::; xn).

Example 1 Figure 1 describes the in
uence diagram of
the oil wildcatter problem (adapted from [8]). The di-
agram shows that the test decision (T) is to be made
based on no information, and the drill (D) decision is
to be made based on the decision to test (T) and the
test results (R). The test-results are dependent on test
and seismic-structure (S), which depends on an unob-
servable variable oil underground (O). The decision re-
garding oil-sales-policy (OSP) is made once the market
information (MI) and the oil-produced (OP) are avail-
able. There are four reward components: cost of test,
r(T), drill cost, r(D;OP), sales cost, r(OP;OSP) and
oil sales, r(OP;OSP;MI). The meu task is to �nd
the three decision rules �T ; �D and �OSP : �T :!
T ,
�D :
R !
D, �OSP :
MI;OP !
OSP such that:

E = max
�T ;�D;�OSP

X

t;r;op;mi;s;o

P (rjt; s)P (opjd; o)P (mi)P (sjo)P (o)�

1The original de�nition of ID had only one reward node.
We allow multiple rewards as discussed in [15]

T R

S O

D OP OSP

MI

TC DC

SC

OS

Figure 1: An in
uence diagram

[r(t) + r(d; op) + r(op; osp) + r(op; osp;mi)]

IDs are required to satisfy several constraints. There
must be a directed path that contains all the decision
nodes and there must be no forgetting in the sense that a
decision node and its parents be parents to all subsequent
decision nodes. The rationale behind the no-forgetting
constraint is that information available now should be
available later if the decision-maker does not forget. In
this paper, however we do not force these requirements.
For a discussion of the implications of removing these
restrictions see [8].

De�nition 1 (elimination functions) Given a func-
tion h de�ned over subset of variables S, where X 2 S,
the functions (

P
X h) is de�ned over U = S � fXg as

follows. For every U = u, (
P

X h)(u) =
P

x h(u; x).
Given a set of functions h1; :::; hj de�ned over the subsets
S1; :::; Sj, the product function (�jhj) and

P
J hj are de-

�ned over U = [jSj . For every U = u, (�jhj)(u) =
�jhj(uSj), and (

P
j hj)(u) =

P
j hj(uSj).

3 An elimination algorithm for MEU

In [4] we presented the bucket-elimination algorithm
Elim-meu-id for processing in
uence diagrams. For com-
pleteness sake we brie
y overview the algorithm (see Fig-
ure 2).
The input to the algorithm is the set of probability

components and utility components in the in
uence di-
agram. The operations of summation and maximization
that de�ne the computation (EQ. (1)) requires compu-
tation along legal orderings only. We use the ordering
criteria provided in [6]: assuming a given ordering for
the decision variables, unobservable variables are last
in the ordering, and chance variables between Di and
Di+1 are those that become observable following deci-
sion Di. Given a legal variable ordering the bucket-
elimination algorithm places each probabilistic function
into the bucket of its latest variable. Reward compo-
nents are placed according to the special procedure in
Figure 3 (for explanation see [4]). Thus, each bucket
contains utility components �i and probability compo-
nents, �i. The algorithm process the buckets from last
to �rst. The procedure in a bucket computes a new prob-
abilistic component (�) and a new utility component (�).

The algorithm generates the �i of a bucket by multiply-
ing all its probability components and summing (if the
variable is a chance node) over Xi. For each �j 2 bucketi
we compute �ji as the average over Xi values normalized
by the bucket's compiled �. The computation is simpli-
�ed when � = 1, namely, when there is no evidence in
the bucket, nor new probabilistic functions.
For a decision variable we compute a � component by

maximization and simplify when no probabilistic com-
ponents appear in the decision bucket. We showed in[4]
that processing a decision variable, does not, in general,
allow exploiting a decomposition in the reward compo-
nents.
The e�ect of an observation on processing either a de-

cision bucket or a chance bucket is the assignment of
the value to each component and then placing each into
a lower bucket. Therefore, as usual, observed variables
simplify computation by avoiding creating new depen-
dencies among variables.
We will next demonstrate the algorithm on the wild-

catter example.

Example 2 Consider the in
uence diagram of Figure 1
where u = r(t) + r(d; op) + r(op;mi; osp) the ordering
of processing is o = T;R;D;OP;MI;OSP; S;O. The
chance variables O and S are unobservable and therefore
placed last in the ordering. The bucket`s partitioning and
the schematic computation of this decision problem is
given in Figure 4 and is explained next.
Initially, bucket(O) contains P (opjd; o); P (sjo); P (o).

Since this is a chance bucket having no reward compo-
nents we generate

�O(s; op; d) =
X

o

P (opjd; o)P (sjo)P (o)

placed in bucket(S). The bucket of S is processed next
as a chance bucket. We compute

�S (r; op; d; t) =
X

s

P (rjt; s)�O(s; op; d)

placed in bucket(OP). The bucket of the decision vari-
able OSP is processed next. It contains all the reward
components r(op;mi; osp), r(op; osp), r(t) and r(d; op).
Since the decision bucket contains no probabilistic com-
ponent, r(t) is moved to the bucket of D and r(d; op)
is moved to the bucket of OP . We then create a utility
component

�OSP (op;mi) = max
osp

[r(op;mi; osp) + r(op; osp)]

Which is the decision rule for OSP , and place it in
bucket(MI). The bucket of MI is processed next as a
chance bucket, generating a constant � = 1 and

�MI (op) =
X

mi

P (mi)�OSP (op;mi);

placed in the bucket of OP . Processing the bucket of OP
yields:

�OP (r; t; d) =
X

op

�S(r; t; op; d)

Algorithm elim-meu-id
Input: In
uence diagram (X;D;P;R), a legal or-
dering of the variables, o; observations e.
Output: Decision rules �1; :::; �k that maximizes
the expected utility.
1.Initialize: Partition components into buckets
where bucketi contains all probabilistic compo-
nents whose highest variable is Xi. Reward com-
ponents are partitioned using procedure partition-
rewards. In each bucket, �1; :::; �j, denote prob-
abilistic components and �1; :::; �l utility compo-
nents. Let S1; :::; Sj be the scopes of probability
components, and Q1; :::; Ql be the scopes of the
utility components.
2. Backward: For p n downto 1, do
Process bucketp:
for all functions �1; :::; �j; �1; :::; �l in bucketp, do

� If (observed variable) bucketp contains Xp =
xp, assign Xp = xp to each �i; �i, and put
each resulting function in appropriate bucket.

� else,

{ If Xp is a chance variable compute
�p =

P
Xp

Q
i �i and

for each �i 2 bucketp compute,

�ip =
1
�p

P
Xp

�i�
j
i=1�i;

{ If Xp is a decision variable, then
If bucket has only �'s , move each free
from Xp �, to its appropriate lower
bucket, and for the rest compute
�p = maxXp

P
j �j

else, (the general case), compute

�p = maxXp

Qj
i=1 �i

Pl
j=1 �j

{ Add �p to the bucket of the largest-index
variable in their scopes. Place �p in the
closest chance bucket of a variable in its
scope or in the closest decision bucket.

3. Return : decision rules computed in decision
buckets.

Figure 2: Algorithm elim-meu-id

Procedure
partition-rewards(P1; :::; Pn; r1; :::rj, o)
For i = n to 1
If Xi is a chance variable, put all rewards men-
tioning Xi in bucketi.
else (decision variable) put all remaining rewards
in current bucketi
end.
Return ordered buckets

Figure 3: partition into buckets

bucket(O) : P (ojop;D)P (sjo); P (o)
bucke(S) : P (rjs; t) jj �O(s; op; d)
bucket(OSP): r(t); r(op; osp); r(op;mi; osp); r(d; op)
bucket(MI): P (mi) jj �OSP (op;mi)
bucket(OP): jj �S(r; t; op; d); r(op; d); �MI(op)
bucket(D): jj �OP (r; t; d); �OP (d; r; t)r(t)
bucket(R): jj �D(r; t)
bucket(T): jj �R(t)

Figure 4: A schematic execution of elim-meu

and

�OP (r; t; d) =
1

�OP

X

op

�S(r; t; op; d)[r(op; d)+ �MI (op)]

both placed in the bucket of decision variable D. Here we
observe the case of a decision bucket that contains both
probabilistic and utility component. The bucket has two
reward components (one original r(t) and one generated
recently.) It computes a � component:

�D(r; t) = max
D

�OP (r; t; d)[r(t) + �OP (r; t; d)]

which provides the decision rule for D and is placed in
the bucket of R. The bucket of R has only a probabil-
ity component yielding: �R(t) =

P
r �D(r; t) placed in

bucket(T), and �T = maxt �R(t) is derived and provides
the decision rule for T . Also, maxt �R(t) is the optimal
expected utility.
The sequence of solution policies is given by the

argmax functions that can be created in decision buck-
ets. Once decision T is made, the value of R will be
observed, and then decision D can be made based on T
and the observed R.

In summary,

Theorem 1 [4] Algorithm elim-meu-id computes the
meu of an in
uence diagram as well as a sequence of
optimizing decision rules. 2

3.1 Complexity

As is usually the case with bucket elimination algo-
rithms, their performance can be bounded as a function
of the induced width of some graph that re
ect the al-
gorithm's execution.
An ordered graph is a pair (G; d) where G is an undi-

rected graph and d = X1; :::; Xn is an ordering of the
nodes. The width of a node in an ordered graph is the
number of the node's neighbors that precede it in the
ordering. The width of an ordering d, denoted w(d), is
the maximum width over all nodes. The induced width
of an ordered graph, w�(d), is the width of the induced
ordered graph obtained as follows: nodes are processed
from last to �rst; when node X is processed, all its pre-
ceding neighbors are connected. The induced width of
a graph, w�, is the minimal induced width over all its
orderings.
The relevant graph for elim-meu-id, is the augmented

graph obtained from the ID graph as follows. All the

parents of chance variables are connected (moralizing
the graph), all the parents of reward components are
connected, and all the arrows are dropped. Value nodes
and their incident arcs are deleted. The reader can check
that the width of the augmented graph for the oil exam-
ple along the order of processing is 3 while the induced-
width is 4.
The complexity of elim-meu-id is O(n�exp(w�)), where

w� is the induced-width of the augmented ordered graph.
(see [4] for more details.)

4 Mini-bucket for MEU

Since the complexity of elim-meu-id is exponential in
the induced-width of some graph and since the induced-
width is at least as large as that of the underlying moral
graph of the probabilistic subnetwork, frequently space
complexity will not allow executing the full bucket elimi-
nation algorithm and we need an approximation scheme.
The idea of the mini-bucket approach is to localize

the computation done in each bucket [5]. Since elim-
meu-id process chance variables and decision variables
di�erently we will derive the mini-bucket simpli�cation
for each of the two cases. We will demonstrate the idea
using the car example.

4.1 The car buyer example

Consider a car buyer that needs to buy one of two used
cars. The buyer of the car can carry out various tests
with various costs, and then, depending on the test
results, decide which car to buy. Figure 5 gives the
in
uence diagram representing the car buyer example
adapted from [9]. T denotes the choice of test to be per-
formed, T 2 ft0; t1; t2g (t0 means no test, t1 means test
car 1, and t2 means test car 2). D stands for the decision
of which car to buy, D 2 fbuy 1; buy2g. Ci represents
the quality of car i, i 2 f1; 2g and Ci 2 fq1; q2g (denot-
ing good and bad qualities. ti represents the outcome
of the test on car i, ti 2 fpass; fail; nullg. The null
option corresponds to the case when a test on car i was
not performed. The cost of testing is given as a func-
tion of T , by r(T), the reward in buying car 1 is de�ned
by r(C1; D = buy 1) and the reward for buying car 2 is
r(C2; D = buy 2). The rewards r(C2; D = buy 1) = 0,
and r(C1; D = buy 2) = 0. The total reward or utility is
given by r(T) + r(C1; D) + r(C2; D).
The task is to determine T and D that maximize the

expected utility. Namely,

E = max
T;D

X

t2;t1;C2;C1

P (t2jC2; T)P (C2)P (t1jC1; T)� (2)

P (C1)[r(T) + r(C2; D) + r(C1; D)]:

The bucket-elimination algorithm partitions the prob-
abilistic and reward components into ordered buckets
as described in the algorithm. Using the ordering o =
T; t2; t2; D;C2; C1, the initial partitioning for the car ex-
ample is given in Figure 6.
Figure 7 shows the recorded functions in the buckets

after processing in reverse order of o.

T

D

C C

t
t

r(T)

1 2

1
2

r(C2,D)r(C1 ,D)

Figure 5: In
uence diagram for car buyer example

bucket(C1): P (C1); P (t1jC1; T); r(C1; D)
bucket(C2): P (C2); P (t2jC2; T); r(C2; D)
bucket(D):
bucket(t1):
bucket(t2):
bucket(T): r(T)

Figure 6: Initial partitioning into buckets

The optimizing policies for �T is the simple decision
function computed in bucket(T), the argmax of EQ. (3):

E = max
T

�t1(T)�t2(T)[r(T) + �t2 (T)]: (3)

and �D(t1; t2; T) that is recorded in bucket(t1) or its as-
sociated maximizing decision D.
We will next apply the mini-bucket idea. From EQ.

(2) we get:

E = max
T

X

t2

X

t1

max
D

X

C2

P (t2jC2; T)P (C2)� (4)

X

C1

P (t1jC1; T)P (C1)[r(T) + r(C1; D) + r(C2; D)]

Focusing on the expression involving C1 (that corre-
sponds to processing bucket(C1)) leads to computing the
� and � as in EQ. (5) and (6):

�C1(t1; T) =
X

C1

P (t1jC1; T)P (C1) (5)

bucket(C1): P (C1); P (t1jC1; T); r(C1; D)
bucket(C2): P (C2); P (t2jC2; T); r(C2; D)
bucket(D): jj �C1 (t1; T;D); �C2(t2; T;D)
bucket(t1): jj �C1(t1; T); �D(t1; t2; T)
bucket(t2): jj �C2(t2; T); �t1(t2; T)
bucket(T): r(T)jj�t1(T); �t2(T); �t2(T).

Figure 7: Schematic bucket evaluation of car example

and

�C1(t1; T;D) =
1

�C1 (t1; T)
�
X

C1

P (t1jC1; T)P (C1)r(C1; D)

(6)
Instead, we will now derive an approximation for these
expressions.

EC1 =
X

C1

P (t1jC1; T)P (C1)[r(T)+r(C1; D)+r(C2; D)] =

=
X

C1

P (t1jC1; T)P (C1)[r(T) + r(C2; D)]+

X

C1

P (t1jC1; T)P (C1)r(C1; D):

By applying the summation over C1 in two stages, mi-
grating summation inside the product we get

EC1 � [r(T) + r(C2; D)][
X

C1

P (t1jC1; T)][
X

C1

P (C1)]+

[
X

C1

P (t1jC1; T)][
X

C1

P (C1)r(C1; D)] =

[
X

C1

P (t1jC1; T)][
X

C1

P (C1)] � [r(T) + r(C2; D)+

1P
C1

P (C1)
[
X

C1

P (C1)r(C1; D)]]

The last expression corresponds to partitioning the
bucket of C1 into two mini-buckets; one contain-
ing P (t1jC1; T) and the other containing P (C1) and
r(C1; D). Each mini-bucket is processed as a chance
bucket in elim-meu-id (see in Figure 8, the initial par-
titioning into mini-buckets). We assign indices to mini-
buckets in a buckets in the order from left to right. Pro-
cessing the �rst mini-bucket of C1 yields �1C1

(t1; T) =P
C1

P (t1jC1; T) (superscripts denote the mini-bucket
creating the function), and processing the second mini-
bucket yields both a � function �2C1

=
P

C1
P (C1) = 1,

and a � function �2C1
(D) =

P
C1

P (C1)r(C1; D), both
placed in a corresponding bucket below. Processing the
bucket of C2 is similar.
Likewise, we can derive the mini-bucket processing of

decision variable. In our example, by the time bucket(D)
is processed it contains two � functions created earlier.
Since the bucket has no probabilistic component, it is
processed as a regular full decision bucket and since it
has functions on over D only. Namely we compute �D =
maxD(�2C1

(D)+�2C2
(D)). The �nal status of the buckets

after processing is given in Figure 8.
We see that the mini-bucket partitioning yields a de-

cision D, that is independent of the testing of the cars:
D = argmaxD(�C1(D)+�C2 (D)) (superscripts are omit-
ted whenever no confusion may arise). Indeed, since the
functions �i(ti) for i = 1; 2 evaluates to the constant (1),
the decision T = t0 is selected when evaluating bucket T
(we assume negative reward functions). So the approx-
imation yields a very simple decision rule. No testing
(the decision for T) and then the appropriate maximiza-
tion of expected cost for deciding which car to buy. We
next present the general derivation.

bucket(C1): fP (t1jC1; T)g; fP (C1); r(C1; D)g
bucket(C2): fP (t2jC2; T)g; fP (C2); r(C2; D)g
bucket(D): jj �2C1

(D); �2C2
(D)

bucket(t1): jj �1C1
(t1; T)

bucket(t2): jj �
1
C2
(t2; T)

bucket(T): r(T) jj �t1(T); �t2(T); �D
T = armaxT�t1(T)�t2 (T)[r(T) + �D]

Figure 8: Initial partitioning into buckets

4.2 General derivation for chance buckets

As speci�ed by the full bucket-elimination algorithm, if
Xp is a chance bucket, the full bucket elimination algo-
rithm, computes in bucketp (that contains the compo-
nents: �1; :::; �j; �1; :::; �k) two types of functions. �p =P

Xp

Qj

i=1 �i and, for each �i 2 bucketp,

�ip = 1
�p

P
Xp

�i(
Qj

i=1 �i). Since the functions �p and

�ip may have high dimensionality we will try to approxi-
mate them with functions of lower dimension. To achieve
that, two parameters, i and m are used. Given this two
parameters, we partition the probabilistic components
and the utility components �1; :::; �j; �1; :::; �k in bucket
Xp into an (i;m)-partitioning, not allowing more than i
variables or more than m components in a mini-bucket.
Denoting the mini-buckets Q0 = fQ1; :::; Qrg. For each
Ql 2 Q0, containing �l1 ; :::; �ltl ; �l1 ; :::; �lfl we compute

�l =
X

Xp

tlY

i=1

�li ;

and, for each �lj 2 Ql we compute

�lj =
1

�l

X

Xp

�lj

tlY

i=1

�li

Each of these components is moved to a lower bucket
using the usual rule.
We next show that for any partitioning, this approxi-

mation yields an upper bound on the exact computation
in a chance bucket.
Let's denote by tp the indices of variables in the scopes

of the � functions which are currently placed in lower
buckets, namely i 2 tp if �i 2 bucketk for k < p, and by
lp the set of indices of �i functions in bucketp (namely,
those are de�ned over Xp). The function computed in
the bucket of Xp by full bucket elimination is equivalent
to:

Ep =
X

Xp

jY

i=1

�i(
X

k2tp

�k +
X

k2lp

�k)

Since �i for i 2 tp does not depend on Xp we get:

Ep =
X

k2tp

�k �
X

Xp

jY

i=1

�i +
X

k2lp

X

Xp

�k

jY

i=1

�i

Given the partitioning into mini-bucketsQ0 = Q1; :::; Qr,
and assuming that �k appears in a speci�c mini-bucket

Qlj(k) , we can upper-bound Ep by

Ep �
X

k2tp

�k �
Y

Qj2Q0

X

Xp

Y

�ji2Qj

�ji

+
X

k2lp

X

Xp

�k(
Y

�2Qlj(k)

�) � (
Y

Ql2Q0;l6=lj(k)

X

Xp

Y

�2Ql

�)

Namely, we bound
P

Xp

Qj

i=1 �i

by
Q

Ql2Q0

P
Xp

Q
�2Ql

� when exchanging summation

with multiplication. Lets denote:

gp =
Y

Ql2Q0

X

Xp

Y

�2Ql

�

We get:

Ep � gp � [
X

k2tp

�k +
X

k2lp

1Q
Ql2Q0

P
Xp

Q
�2Ql

��

�[
X

Xp

�k
Y

�2Qlj(k)

�] � (
Y

Ql2Q0;j 6=jl

X

Xp

Y

�2Ql

�)]

After canceling out multiplicands in the dominator and
denominator in the second summand we get:

= gp � [
X

k2tp

�k +
X

k2lp

1P
Xp

Q
�2Qlj(k)

�
�
X

Xp

�k
Y

�2Qlj(k)

�]

This concludes the justi�cation for processing chance
mini-buckets. It shows that for each mini-bucket of a
chance variable we simply apply the same procedure that
is associated with the processing of full chance buckets.

4.3 General derivation for decision bucket

A decision bucket may contain both probabilistic and
utility components. In that case the full bucket elimina-
tion algorithm computes a � function

�p = max
Xp

Y

i

�i(
X

k2tp[lp

�k)

Lets choose a partitioning where all utility components
are placed in one mini-bucket. Let Q0 = fQ1; :::; Qrg
be the partitioning and let Q1 be the the mini-bucket
containing all the utility components.

�p = max
Xp

[
Y

�2Q1

(�
X

k2tp[lp

�k)
Y

j=2;:::;r

Y

�i2Qj

�i]

In that case �p can be approximated, when migrating
the maximization into each mini-bucket, by

�p � max
Xp

[
Y

�i2Q1

�i
X

k

�k] �
Y

j=2;:::;r

max
Xp

Y

�i2Qj

�i (7)

This means that we compute a � component in each �-
pure mini-bucket by

�lp = max
Xp

Y

�i2Ql

�i (8)

and in the mixed bucket by

�Q1p = max
Xp

[
Y

�i2Q1

�i
X

k

�k] (9)

If the mixed mini-bucket has too many variables, it is
further partitioned as guided by the following expres-
sions. Following some algebraic manipulation we get
from EQ. (7):

�p �
Y

j=1;:::;r

max
Xp

Y

�i2Qj

�i
X

k2tp

[�k+
maxXp

Q
�i2Q1

�i
P

k2lp
�k

maxXp

Q
�i2Q1

�i
]

This suggests that, as before, the pure � buckets are
computed by EQ. (8). In the mixed mini-bucket Q1, we
�rst move all � elements not de�ned over Xp to lower
buckets and then compute a � function

�Q1
p = max

Xp

��2Q1�

and a � function by:

�1p =
maxXp

Q
�i2Q1

�i
P

k2lp
�k

maxXp

Q
�i2Q1

�i
(10)

If
P

k2lp
�k is still too high dimensional and cannot �t

into one mini-bucket, we can further partition Q1 into
mixed mini-buckets fQ11; :::Q1j; :::; Q1tg and compute
separate functions for each subset Q1j � Q1. By ex-
changing summation and multiplication we get:

�1p �

P
jmaxXp

[
P

�k2Q1j
�k
Q

�i2Q1
�i]

maxXp

Q
�i2Q1

�i
(11)

Therefore, it will allow computing for each Q1j � Q1,

the function �
1j
p by:

�1jp =
maxXp

[
P

�k2Q1j
�k]
Q

�i2Q1
�i

maxXp

Q
�i2Q1

�i
: (12)

Algorithm approx-meu-id(i,m) is described in Figure 9.

Theorem 2 Algorithm Approx-meu-id(i,m) computes
an upper bound on the maximum expected utility of a set
of policies. Its complexity is time and space exponential
in the bounding parameters i and m. 2

Example 3 Consider again the wildcatter example.
The initial partitioning into buckets is as in the full
bucket elimination case. Here we show the �nal buck-
ets assuming i=3.
The processing of each bucket is explained as follows.

Bucket(O) has two mini-buckets. Processing the �rst
yields a � component: �1O(op; d) =

P
O P (ojop; d) which

is placed in bucket(OP). Processing the second mini-
bucket yields a � component: �2O(S) =

P
O P (sjo)p(o)

placed in bucket S. Processing bucket(S) is done as a full
bucket since its number of variables is bounded by 3. We
get: �S(r; t) =

P
S P (rjs; t)�

2
O(s), placed in bucket(r).

From now on, all buckets will be processed as full buck-
ets. The bucket of the decision variable OSP is processed
next. Since the decision bucket contains no probabilistic

Algorithm approx-meu-id(i,m)
Input: In
uence diagram (X;D;P;R), a legal or-
dering , o; observations e.
Output: Decision rules �1; :::; �k approximating
the max expected utility.
1.Initialize: Partition into buckets as in elim-
meu-id. Call probability matrices �1; :::; �j
and utility matrices �1; :::; �l. Let S1; :::; Sj be
the scopes of the probability components and
Q1; :::; Ql be the scopes of the reward components.
2. Backward: For p n downto 1, do

� If (observed variable, or a predetermined de-
cision policy) bucketp contains Xp = xp, then
assignXp = xp to each �i; �i, and place result
in lower bucket.

� else, If Xp is a chance variable then gen-
erate an (i;m)-partitioning of bucketp, Q0 =
Q1; ::::; Qt.
For each mini-bucket Ql, containing
�l1 ; :::; �lj; �l1 ; :::; �ll compute:

{ �l =
P

Xp

Qt
i=1 �li

{ For each �k 2 Ql compute
�lk = 1

�l

P
Xp

�k
Q

�2Ql
�

else, If Xi is a decision variable then Place
all utility components in Q1 together with
� components whose scopes are included in
that bucket. Generate an (i,m) partitioning
to the rest of the �s, yielding mini-buckets:
Q1; :::; Qt. Call probability matrices in Ql

�l1 ; :::; �lj

{ For every pure mini-bucket Ql compute
�l =
P

Xp

Qt
i=1 �li

{ If the mixed mini-bucket Q1 �ts into one
mini-bucket of an (i,m)-partitioning com-
pute a � component using the full bucket
decision rule:
�Q1p = maxXp

��2Q1�
P

�2Q1
�

else, move all � functions not de�ned on
Xp to lower buckets, then apply an ar-
bitrary (i,m)-partitioning for the rest of
the functions called Q11; :::; Q1n.
For any mixed Q1j � Q1, compute:

�1jp =
maxXp

Q
�i2Q1

�i
P

�k2Q1j
�k

maxXp

Q
�i2Q1

�i
(13)

Add � and � to the bucket of the largest-index
in their argument list.

3. Forward: Return an upper bound on the
maximum expected utility computed in the �rst
bucket. Execute the policies recorded in the buck-
ets of the decision parents using the ordering
X1; ::::Xn.

Figure 9: Algorithm approx-elim-meu-id

bucket(O) : P (ojop;D)P (sjo); P (o)
bucke(S) : P (rjs; t) jj �O(s; op; d)
bucket(OSP): r(t); r(op; osp); r(op;mi; osp); r(d; op)
bucket(MI): P (mi) jj �OSP (op;mi)
bucket(OP): jj (�S(r; t; op; d); r(op; d); �MI(op)
bucket(D): jj �OP (r; t; d); �OP (d; r; t)r(t)
bucket(R): jj �D(r; t)
bucket(T): jj �R(t)

The mini-bucket processing results in:
bucket(O) : fP (ojop; d)gfP (sjo); P (o)g
bucke(S) : P (rjs; t) jj �2O(s)
bucket(OSP): r(t); r(op; osp); r(op;mi; osp); r(d; op)
bucket(MI): P (mi) jj �OSP (op;mi))
bucket(OP): jj �1O(op;D), r(op; d), �MI (op)
bucket(D): jj �OP (d); �OP (d); r(t)
bucket(R): jj �S (r; t)
bucket(T): jj �Mi

; �D(t); �R(t)

Figure 10: Comparing the complete algorithm and its
approximation on the oil example

component, r(t) is moved to the bucket of D and r(d; op)
is moved to the bucket of OP . We then create a utility
component

�OSP (op;mi) = max
osp

[r(op;mi; osp) + r(op; osp)]

and place it in bucket(MI), and so on. Processing
the bucket T is by: �T = maxt[�R(t) + �Mi + �D(t)]
providing the decision rule for T . Also, �T is an up-
per bound on the optimal expected utility (see Figure
10). The new recorded functions are shown to the right
of the bar. The subscript of each function indicate the
bucket originating the function. We see that the approx-
imation generates only functions on two variables while
the exact algorithm created functions on four variables
(�S(r; t; op; d)). We observe that the decision policy for
OSP is not changed by this mini-bucket execution, how-
ever decision D is recorded as a function of T only while
for the full algorithm it is a function of both T and R.

5 Discussion and Conclusion

The paper presented a bucket-elimination algorithm for
maximizing the expected utility over a set of policies and
analyze its complexity using graph parameters such as
induced width. We present a general approximation
scheme based on the mini-bucket idea for approximat-
ing the bucket-elimination algorithm for �nding optimal
policies. The scheme allow a
exible control of accuracy
and e�ciency using a parameter i that bounds the size
of the functions that can be recorded by the algorithm.
The approximation generates an upper and lower bounds
thus allowing an aposteriori knowledge of its quality.
The approach is applicable also to the more planning-
speci�c models of �nite horizon MDPs and POMDPs to
be further studied.

References
[1] C. Boutilier, T. Dean, and S. Hanks. Decision-

theoretic planning: Structural assumptions and
computational leverag. Arti�cial Intelligence Re-
searc (JAIR), 11:1{94, 1999.

[2] R. Dechter. Bucket elimination: A unifying frame-
work for probabilistic inference algorithms. In Un-
certainty in Arti�cial Intelligence (UAI'96), pages
211{219, 1996.

[3] R. Dechter. Bucket elimination: A unifying frame-
work for reasoning. Arti�cial Intelligence, pages 41{
85, 1999.

[4] R. Dechter. A new perspective on algorithms for op-
timizing policies under uncertainty. In AI-Planning,
2000 (submitted), 2000.

[5] R. Dechter and I. Rish. A scheme for approximat-
ing probabilistic inference. In Proceedings of Un-
certainty in Arti�cial Intelligence (UAI'97), pages
132{141, 1997.

[6] F.V. Jensen F. Jensen and S.L. Dittmer. From in-

uence diagrams to junction trees. In Tenth Confer-
ence on Uncertainty in Arti�cial Intelligence, pages
367{363, 1994.

[7] R. A. Howard and J. E. Matheson. In
uence dia-
grams. 1984.

[8] R. Qi N. L. Zhang and D. Poole. A computational
theory of decision networks. International Journal
of Approximate Reasoning, pages 83{158, 1994.

[9] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, 1988.

[10] R. Shachter and M. Peot. Decision making us-
ing probabilistic inference methods. In Proceedings
of Uncertainty in Arti�cial Intelligence (UAI92),
pages 276{283, 1992.

[11] R. D. Shachter. An ordered examination of in
uence
diagrams. Networks, 20:535{563, 1990.

[12] R.D. Shachter. Evaluating in
uence diagrams. Op-
erations Research, 34, 1986.

[13] R.D. Shachter. Probabilistic inference and in
uence
diagrams. Operations Research, 36, 1988.

[14] P.P. Shenoy. Valuation-based systems for bayesian
decision analysis. Operations Research, 40:463{484,
1992.

[15] J.A. Tatman and R.D. Shachter. Dynamic program-
ming and in
uence diagrams. IEEE Transactions
on Systems, Man, and Cybernetics, pages 365{379,
1990.

[16] N. L. Zhang. Probabilistic inference in in
uence
diagrams. Computational Intelligence, pages 475{
497, 1998.

