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Abstract. Variable elimination is the basic step of Adaptive Consis-
tency[4]. It transforms the problem into an equivalent one, having one
less variable. Unfortunately, there are many classes of problems for which
it is infeasible, due to its exponential space and time complexity. How-
ever, by restricting variable elimination so that only low arity constraints
are processed and recorded, it can be e�ectively combined with search,
because the elimination of variables, reduces the search tree size.
In this paper we introduce VarElimSearch(S;k), a hybrid meta-
algorithm that combines search and variable elimination. The param-
eter S names the particular search procedure and k controls the tradeo�
between the two strategies. The algorithm is space exponential in k. Re-
garding time, we show that its complexity is bounded by k and a struc-
tural parameter from the constraint graph. We also provide experimental
evidence that the hybrid algorithm can outperform state-of-the-art algo-
rithms in binary sparse problems. Experiments cover the tasks of �nding
one solution and the best solution (Max-CSP). Specially in the Max-CSP
case, the advantage of our approach can be overwhelming.

1 Introduction.

Many problems arising in a variety of domains such as scheduling, design, di-
agnosis, temporal reasoning and default reasoning, can be naturally modeled as
constraint satisfaction problems. A constraint satisfaction problem (CSP) con-
sists of a �nite set of variables, each associated with a �nite domain of values,
and a set of constraints. A solution is an assignment of a value to every variable
such that all constraints are satis�ed.

Typical tasks of interest are to determine if there exists a solution, to �nd
one or all solutions and to �nd the best solution relative to a preference criterion.
All these tasks are NP-hard. Therefore, general algorithms are likely to require
exponential time in the worst-case.

Most algorithms for constraint satisfaction belong to one of the two following
schemes: search and consistency inference. Search algorithms can be complete
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or incomplete. In this paper we are concerned with complete ones. These algo-
rithms transform a problem into a set of subproblems by selecting a variable
and considering the assignment of each of its domain values. The subproblems
are solved in sequence applying recursively the same transformation rule, often
referred to as branching or conditioning. Each time a search algorithm assigns a
value to a variable it is, in a way, making a guess about the right value for that
variable. If the guess is not correct, the algorithm will eventually backtrack to
that point and a new guess for the same variable will have to be made. Incorrect
guesses at early levels of the search tree cause the algorithm to thrash. This is
the main drawback of these kind of algorithms. On the other hand, they have
the good property of having linear space complexity.

Consistency inference algorithms transform the original problem into an
equivalent one (i.e. having the same set of solutions) by inferring constraints
that are implicit in the original problem and adding them explicitly. Each time
a new constraint is added, there is more knowledge available about the relations
among variables and the problem becomes presumably simpler. Consistency in-
ference algorithms include incomplete methods which only enforce some form of
local consistency (such as arc-consistency) as well as complete methods which
enforce global consistency. In a globally consistent problem, a solution can be
computed in a backtrack-free manner.

Adaptive Consistency (AdCons) [4] is a complete consistency inference al-
gorithm which relies on the general schema of variable elimination[5]. This al-
gorithm proceeds by selecting one variable at a time and replacing it by a new
constraint which summarizes the e�ect of the chosen variable. The main draw-
back of AdCons is that constraints (either from the original problem, or added
by the algorithm) can have large arities (i.e. scopes). These constraints are expo-
nentially hard to process and require exponential space to store. The exponential
space complexity in particular limits severely the algorithm usefulness. However,
a nice property of adaptive consistency is that it never needs to make a guess.
Once a variable is replaced by the corresponding constraint, the process never
has to be reconsidered.

In this paper we propose a general solving scheme, VarElimSearch, which
combines search and variable elimination in an attempt to exploit the best of
each. The meta-algorithmselects a variable and attempts its elimination, but this
is only done when the elimination generates a small arity constraint. Otherwise, it
switches to search. Namely, branches on the variable and transforms the problem
into a set of smaller subproblems where the process is recursively repeated.
VarElimSearch has two parameters, S and k, where S names a speci�c search
algorithm and k controls the trade-o� between variable elimination and search.

The idea of combining inference and search was presented earlier by Rish and
Dechter [12] within the satis�ability domain. They combined Directional Res-
olution, a variable elimination scheme for SAT, with the Davis-Putnam search
procedure. Di�erent hybrids were considered. One of them, DCDR(i), has a di-
rect correspondence to VarElimSearch. The contributions of this paper beyond
this earlier work are: a) in extending this approach to general constraint satis-



faction decision and optimization tasks, b) in providing a new worst-case time
bound based on re�ned graph parameters and c) in the empirical demonstration
that this can speed-up state-of-the-art algorithms.

Our approach is applicable to many search strategies and a variety of tasks.
In this paper, we report results of VarElimSearch with three search strategies:
forward checking FC [7], really full look-ahead RFLA [10] and partial forward
checking PFC [8]. We provide experimental results for the tasks of �nding one
solution and the best solution (namely, violating the least number of constraints,
known as Max-CSP) in binary problems and �xed k = 2. In all cases, we show
empirically that the hybrid algorithms improve the performance of plain search
for sparse problems and has no worsening e�ect on dense problems. Higher levels
of k should be explored in the context of non-binary solvers, and are likely to
yield a tradeo� between inference and search that will be tied to the problem's
structure, as was shown in [12]. This, however, is outside the scope of our current
investigation.

This paper is organized as follows: The next Section introduces notation
and necessary background. In Section 3 we describe the hybrid meta-algorithm
VarElimSearch. In Section 4 we discuss the algorithm complexity both in terms
of time and space. In Section 5 we provide experimental results supporting the
practical usefulness of our approach. Finally, Section 6 contains some conclusions
and directions of further research.

2 Preliminaries

A constraint satisfaction problem consists of a set of variablesX = fX1; : : : ; Xng,
domains D = fD1; : : : ; Dng and constraints C = fRS1 ; : : : ; RStg. A constraint is
a pair (R;S) where S � X is its scope and R is a relation de�ned over S. Tuples
of R denote the legal combination of values. The pair (R;S) is also denoted RS .
We denote by n and d the number of variables and the size of the largest domain,
respectively. A solution for a CSP is a complete assignment that satis�es every
constraint. If the problem is over-constrained, it may be of interest to �nd a
complete assignment that satis�es the maximum number of constraints. This
problem is denoted Max-CSP [6].

A constraint graph associates each variable with a node and connects any
two nodes whose variables appear in the same scope. The degree of a variable,
degree(Xi), is its degree in the graph. The induced graph of G relative to the
ordering o, denoted G�(o), is obtained by processing the nodes in reverse order
from last to �rst. For each node all its earlier neighbors are connected, while tak-
ing into account old and new edges created during the process. Given a graph
and an ordering of its nodes, the width of a node is the number of edges con-
necting it to nodes lower in the ordering. The induced width of a graph, denoted
w�(o), is the maximumwidth of nodes in the induced graph.

Join and projection are two operations over relations. The join of two rela-
tions RA and RB denoted RA 1 RB is the set of tuples over A [ B satisfying
the two constraints RA and RB. Projecting a relation RA over a set B (B � A),



Algorithm 1: Adaptive Consistency.

AdCons((X ;D; C); o = X1; :::;Xn)

Input: a CSP and a variable ordering.

Output: a solution, if there is any.

for i = n downto 1 do
Let f(Ri1 ; Si1 ); :::; (Riq ; Siq )g be the set of constraints in C which contain
Xi in their scope and do not contain any higher indexed variable
A 

Sq

j=1
(Sij � fXig)

RA  RA \�A(1
q
j=1 Rij )

C  C [RA

if RA = ; then
the problem does not have solution

for i = 1 to n do

assign a value toXi consistent with previous assignments and all constraints
in C whose scope is totally assigned

return the assignment to X1; : : : ;Xn

written as �B(RA) removes from RA the columns associated with variables not
included in B and eliminates duplicate rows from the resulting relation.

Adaptive consistency (AdCons) [4] is a complete algorithm for solving con-
straint satisfaction problems (Algorithm 1). Given a variable ordering o, variables
are processed (or, eliminated) one by one from last to �rst. For each variable,
the algorithm infers a new constraint that summarizes the e�ect of the variable
on the rest of the problem. The variable is then replaced by the constraint. Let
RA be the constraint generated by the elimination of variable Xi. The scope A
is the set of neighbors of Xi in the remaining set of variables. The relation R,
is the join of all constraints involving Xi in the current subproblem, projected
on A and possibly intersected with any other existing constraint on A. If this
process produces an empty constraint the problem does not have any solution.
Otherwise, after all variables have been processed, a solution is generated in a
backtrack-free manner. Variables are assigned from �rst to last. Variable Xi is
assigned a value consistent with previous assignments and with all constraints
whose scope is totally assigned. Note that the elimination of a variableXi gener-
ates a new constraint of arity degree(Xi) in the constraint graph of the remaining
variables.

The complexity of AdCons along o is time O(n dw
�(o)+1) and space

O(n dw
�(o)). Finding the ordering o with minimum w�(o) is an NP-complete

problem [2].

Example:
Consider a binary CSP with the constraint graph depicted in Figure 1.a (each
edge corresponds to a binary constraint) and the lexicographical ordering of
its variables. AdCons starts by eliminating X9 which causes the addition of a
new ternary constraint Rf1;4;5g = �f1;4;5g(Rf1;9g 1 Rf4;9g 1 Rf5;9g). Next, the
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Fig. 1.

elimination of X8 causes a new ternary constraint Rf1;2;3g = �f1;2;3g(Rf1;8g 1

Rf2;8g 1 Rf3;8g). The process continues until every variable is eliminated.
The induced graph G�(o), whose width gives a bound for the space and time

complexity of AdCons, is obtained by adding two new edges (1; 4) and (2; 4). Its
width w�(o) is 4. It indicates that AdCons computes and stores constraints of
arity up to 4.

3 Combining Search and Variable Elimination.

In this section we introduce VarElimSearch(S; k), a meta-algorithm that com-
bines search and variable elimination. Let's suppose that we have a problem
that we cannot solve with AdCons due to our limited space resources. We can
still use AdCons as an approximation algorithm and eliminate some variables.
It will transform the problem into an equivalent one having fewer variables.
Subsequently, we can solve the reduced problem with a search algorithm. The
recursive application of this idea is the basis of VarElimSearch. It is illustrated
in the following example.
Example:
Consider the binary CSP of Figure 1.a. We want to choose a variable for its
elimination. If our search algorithms are geared for binary CSPs, a natural
criterion is to choose those variables whose elimination adds unary or binary
constraints. That is, variables connected to at most two variables. In our ex-
ample, variable X7 is the only one that can be eliminated while maintaining
the problem binary. Its elimination modi�es a constraint Rf1;6g (it becomes
Rf1;6g \ �f1;6g(Rf1;7g 1 Rf6;7g)). After the elimination, X6 has its degree de-
creased to two, so it can also be eliminated. The constraint graph of the current
subproblem is depicted in Figure 1.b. At this point, every variable has degree
greater than two, so we switch to a search schema which selects a variable, say
X3, branches over its values and produces a set of subproblems, one for each
value of X3. All of them have the same constraint graph, depicted in Figure 1.c.
Now, it is possible to eliminate variable X8 and X4. After their elimination it is
possible to eliminate X2 and X9, and subsequently X5 and X1. At this point, a
solution can be computed in a back-track free manner. Only one branching has



been made. The elimination of variables has reduced the search space size from
d9 to d, where d is the size of the domains.

Observe that we have not made any assumption about the branching strategy.
The only condition is that after the assignment of a variable, the variable stops
being relevant in the corresponding subproblem. Most look-ahead algorithm sat-
isfy this condition, because they prune all future values that are inconsistent with
the assignment. Look-back search strategies may also be used but they may re-
quire some more elaborate integration. Therefore, VarElimSearch(S; k) has a
parameter S which instantiates the search strategy of choice.

In the example, we limited the arity of the new constraints to two. How-
ever, in general VarElimSearch(S; k) bounds the arity of the new constraints to
k. This parameter ranges from -1 to n � 1 and controls the tradeo� between
variable elimination and branching. Low values of k allow recording small arity
constraints which are e�ciently computed and stored. However, they may allow
substantial search. On the other hand, high values of k allow recording high arity
constraints. It leads to substantial reduction of the search space, at the cost of
processing and recording high arity constraints.

In the extreme case that k is set to -1, the algorithm never eliminates any
variable and therefore performs plain search according to S. When k is set to
0, only variables disconnected from the problem are eliminated. If k is set to its
maximum value, n�1, every variable elimination is permitted, so the algorithm
becomes AdCons.

Algorithm VES (Algorithm 2) is a recursive description of
VarElimSearch(S; k), where context restoration and domain updating is
omitted for the sake of clarity. Each recursive call receives the search algorithm
S, the control parameter k and the current subproblem. The current subproblem
is de�ned by the current assignment t, the set of future F and eliminated E

variables, and the current set of constraints C. In the initial call t = ;, F = X ,
E = ;.

If VES is called with an empty set of future variables, the problem has a
solution. It can be generated by processing variables in the opposite order in
which they were selected. Eliminated variables are assigned as they would with
AdCons, branched variables are assigned the obvious value.

If there are future variables, VES starts selecting one. This selection can be
done using any heuristic, either static or dynamic. Then, if the variable has less
than k neighbors in F , it is eliminated (VarElim). Else, the algorithm branches
on its values (VarBranch).

If VarElim receives a variable connected to zero neighbors, the scope of the
new constraint is empty, so there is no constraint to add and the variable is
just discarded. If the variable is connected to one neighbor, a unary constraint
is added which in practice means a domain pruning. Therefore, only when the
variable is connected to more than one variable there is a real addition of a
new constraint (or a tightening of a previously existing one). If the elimination
causes an empty constraint, the current subproblem does not have solution and



Algorithm 2: Recursive description of VarElimSearch(S; k).

VES(S;k; (t; F;E;C))
if (F = ;) then

compute solution from t;E and C then stop

else

Xi  SelectV ar(F )
Let f(Ri1 ; Si1 ); :::; (Riq ; Siq )g be the set of constraints in C whose scope is
in F and includes Xi

if q � k then

VarElim(S;k;Xi; t; F;E; C)

else

VarBranch(S;k;Xi; t; F;E; C)

Procedure VarElim(S;k;Xi; t; F;E;C)
A 

Sq

j=1
(Sij � fXig)

RA  RA \�A(1
q
j=1 Rij )

if RA 6= ; then
VES(S;k; P;F � fXig; E [ fXig; C [ RA)

Procedure VarBranch(S;k;Xi; t; F;E; C)
foreach a 2 Di do

LookAhead(S;Xi; a; F; C)
if (no empty domain) then

VES(S;k; t 1 (i; a); F � fXig; E;C)

the algorithm backtracks. Otherwise, the eliminated variables is shifted from F

to E, the new constraint is added to C and a recursive call to VES is made.

VarBranch iterates over the set of feasible values of the current variable.
For each value, a call to LookAhead is made. The precise e�ect of LookAhead
depends on the actual search method S. In general, it prunes future values that
are inconsistent with the current assignment. If LookAhead causes an empty
domain, the next value is attempted. Otherwise, a recursive call is made in
which the current variable is removed from F and the current assignment is
extended to (i; a).

4 Complexity Analysis.

VarElimSearch(S; k) stores constraints of arity at most k which require O(dk)
space. It only keeps constraints added in the current search path, so there are at
most n simultaneously stored constraints. Therefore, VarElimSearch(S; k) has
O(n dk) space complexity. Regarding time, the algorithm visits at most O(dn)
nodes, because in the worst-case it performs plain search on a tree of depth n

and branching factor d. The actual time complexity depends on the e�ort per
node of the search algorithm S and it is the product of the search tree size and



the computation per node. Clearly, this worst-case bound is loose since it ignores
the search space reduction caused by variable eliminations.

It is possible to obtain a more re�ned upper bound for the number of vis-
ited nodes and the time complexity, if we assumed that VarElimSearch(S; k) is
executed with a static variable ordering. The bound is based on the following
de�nition:

De�nition:
Given a constraint graph G and an ordering o of its nodes, the k-restricted
induced graph of G relative to o, denoted G�(o; k), is obtained by processing the
nodes in reverse order from last to �rst. For each node, if it has k or less earlier
neighbors (taking into account old and new edges), they are all connected, else
the node is ignored. The number of nodes in G�(o; k) with width higher than
k is denoted z(o; k). The number of nodes in G�(o; k) with width lower than
or equal to k is denoted e(o; k). Clearly, z(o; k) + e(o; k) = n. Note also that
z(o; k) < n� k because the �rst k nodes cannot have width higher than k.

In what follows, and for the sake of analysis, we assume that
VarElimSearch(S; k) is executed with a static variable ordering and that it se-
lects the variables from last to �rst. The k-restricted induced graph G�(o; k) can
be used to synthesize the search space traversed by the algorithm. The nodes
in G�(o; k) having width lower than or equal to k are exactly the variables
that VarElimSearch(S; k) eliminates. The edges added during the computation
of G�(o; k) coincide with the constraints that the algorithm adds when it per-
forms variable elimination. The nodes that are ignored during the computation
of G�(o; k) have width higher than k and thus correspond to the variables in
which VarElimSearch(S; k) branches.

Proposition:
VarElimSearch(S; k) with a static variable ordering o runs in time
O(dz(o;k) � (L(S) + e(o; k)dk+1)) where L(S) is the cost of the look-ahead in
S.

Proof:
The algorithm branches in z(o; k) variables with a branching factor of d, so the
search space size is bounded by dz(o;k). At each node, the algorithm performs
the look-ahead, with cost L(S), and at most e(o; k) variable eliminations. Elimi-
nating a variable with up to k neighbors has cost dk+1. Therefore, the total cost
is O(L(S)+ e(o; k) dk+1). Multiplying this by the total number of nodes, dz(o;k),
we obtain the total time complexity. 2

This proposition shows that VarElimSearch(S; k) is exponential in k+z(o; k).
Increasing k, is likely to decrease z(o; k), which means that less search takes place
at the cost of having more expensive (in time and space) variable elimination.
Figure 2 illustrates this fact. Given an ordered constraint graph G (Figure 2
top left), we can see how G�(o; k) changes as k varies from -1 to 4 (note that
G = G�(o;�1) because no edge can be possibly be added). The value of k
appears at the right side of each graph, along with the corresponding z(o; k).
Grey nodes are those with width lower than or equal to k and correspond to the
variables that VarElimSearch(S; k) eliminates. Dotted edges are those added
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Fig. 3. A constraint graph and a subgraph after the elimination of grey variables and
branching on two black variables.

during the computation of G�(o; k). White nodes are those with width higher
than k and correspond to branching variables. For example, when k = 1, variable
6 is branched �rst, next variable 5 is branched, then variable 4 is eliminated, and
so on. The space requirements, search space size and e�ort per node as k varies
is depicted in the following table.

k z(o; k) space search space size e�ort per node

-1 6 0 d6 L(S)
0 4 6 d0 d4 L(S) + 2 d1

1 3 6 d1 d3 L(S) + 3 d2

2 2 6 d2 d2 L(S) + 4 d3

3 1 6 d3 d1 L(S) + 5 d4

4 0 6 d4 d0 6 d5

The time complexity of the algorithm suggests a class of problems for which
VarElimSearch(S; k) is likely to be e�ective. Namely, problems having a sub-
set of the variables highly connected while the rest have low connectivity. The
highly connected part renders AdCons infeasible. Similarly, a search procedure
may branch on the low connectivity variables causing the algorithm to thrash.
VarElimSearch(S; k) with a low k may e�ciently eliminate the low-connectivity
variables and search on the dense subproblems.
Example:
Consider a problem having the constraint graphs of Figure 3.a. There is a clique
of size 5 (black nodes), which means that the complexity of AdCons is at least
O(nd4) and O(nd5) space and time, respectively. Search algorithms have, in
general, time complexity O(dnL(S)). However, VarElimSearch(S; k), with k =



2 if provided with the appropriate variable ordering eliminates all grey nodes
before any branching. Subsequently, it may branch on the two bottom nodes of
the clique. The resulting subgraph of the remaining subproblems is depicted in
Figure 3.b. At this point, the problems can be completely solved with variable
elimination. Thus, the space complexity of the process was O(n d2), the search
space size O(d2) and the time complexity O(d2� (L(S)+(n�2)d3)). So we were
able to achieve time bounds similar to AdCons with a lower O(n d2) space.

A special class of constraint problems that received substantial attention
in the past two decades are binary CSPs. Many e�cient algorithms that were
developed were geared particularly to this class of problems. Two well known
algorithms for binary problems are forward checking FC [7] and really full look-
ahead RFLA [10]. Both algorithms are worst-case exponential in n, but in prac-
tice demonstrate better performance. The following proposition provides the
time complexity of VarElimSearch(FC,2) and VarElimSearch(RFLA,2) (note
that parameter k cannot be set to values higher than 2 because it would add
non-binary constraints).

Proposition:
1.VarElimSearch(FC,2) has time complexity O(n dz(o;2)+3).
2.VarElimSearch(RFLA,2) has time complexity O(n2 dz(o;2)+3).

The proposition shows that the complexity of the algorithms depends on the
constraint graph topology. Since z(o; 2) < n � 2, both algorithms are, at most,
exponential in n.

5 Empirical Results.

In this section we provide some empirical evaluation of the potential of our
approach. We restrict the experiments to binary constraint problems and we use
search algorithms geared for binary problems with parameter k equal to two.
The main reason for this restriction is that search algorithms are well de�ned,
well understood and widely available for the binary case. Clearly, the extention
of this empirical work to the general case and the evaluation of the e�ect of
larger values of k is a necessary future work.

The experiments were performed on Sun WorkStations. Although di�erent
machines were used, competing algorithms were always executed on the same
machine. All implementations have been coded in C, and algorithms share code
and data structures whenever possible. In all the experiments VarElimSearch
algorithms select �rst variables that can be eliminated. If there are none that
qualify, the current domain size divided by the number of future constrained
variables is computed for each future variable and the variable with the lowest
ratio is selected for branching. Algorithms that do not eliminate variables, select
always the variable with the lowest ratio.
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In our experiments we have used binary random CSPs as de�ned in [11] 1 .
A binary random CSP class is characterized by hn; d; p1; p2i where n is the num-
ber of variables, d the number of values per variable, p1 the graph connectivity
de�ned as the ratio of existing constraints to maximum number of constraints,
and p2 is the constraint tightness de�ned as the ratio of forbidden value pairs.
The constrained variables and the forbidden value pairs are randomly selected.
Instances with a disconnected constraint graph are discarded. The average degree
in a random problem is dg = p1 � (n� 1).

We denote hn; d; p1 : p01; p2i the consecutive classes of problems ranging from
hn; d; p1; p2i to hn; d; p01; p2i and making the smallest possible increments (that
is, each class has problems with one more constraint than the previous class). A
similar notation is used to denote sequences of problem classes with respect n; d
and p2. In all the experiments, samples have 50 instances.

5.1 Finding one solution (CSP)

In our �rst set of experiments we consider the task of �nding one solution
(CSP). We compare FC and RFLA versus VarElimSearch(FC,2) and VarE-
limSearch(RFLA,2) (VE-FC and VE-RFLA, for short). Our implementation of
RFLA is based on AC6 [3]. Since the overhead of AC6 cannot be fairly eval-
uated in terms of consistency checks, we consider the CPU time as the main
computational e�ort measure. We also report the number of visited nodes.

In our �rst experiment we ran the four algorithms on h50; 10; 75
1225 :

200
1225; p

�
2i,

where p�2 denotes the cross-over tightness (tightness that produces 50% satis-
�able problems and 50% unsatis�able) or the closest approximation. In these
set of problems dg increases with the connectivity. It ranges from 3 to 8. Fig-
ure 4 reports the average number of visited nodes and average CPU time for
each algorithm (note the log scale). We observe that VE-FC (resp. VE-RFLA)

1 Our benchmarks are not a�ected by the result of [1] because, as we will show, problem
instances cannot be trivially solved with algorithms that enforce arc-consistency.
Therefore, they cannot have 
awed variables.
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Fig. 5. Experimental results on the classes h250; 5; 585

31125
: 650

31125
; p�2i and

h50; 20; 125; 250
400

: 300

400
i. Mean number of visited nodes and CPU time is reported.

clearly outperforms FC (resp. RFLA) both in terms of nodes and CPU time. The
maximumgain is observed in the most sparse problems where VE-FC (resp. VE-
RFLA) can be 2 or 3 times faster than FC (resp. RFLA). As a matter of fact,
in the most sparse problems variable elimination usually does most of the work
and search only takes place in a few variables. As problems become more con-
nected, the gain decreases. However, typical gains in problems with dg around
5 (i.e. 125 constraints) are still signi�cant (20% to 40%). As problems approach
dg = 8, it becomes less and less probable to �nd variables with degree lower than
or equal to 2. Therefore, the gain of VE-FC and VE-RFLA gracefully vanishes.
Interestingly, detecting that no variable elimination is possible can be done while
searching for the variable with the smallest domain, so in those problems where
no variables are eliminated, the overhead of variable elimination is negligible.

Next, we investigate how the algorithms scale up, while keeping the average
degree around 5. The four algorithms were executed in the classes h250; 5; 585

31125 :
650
31125; p

�
2i and h50; 20; 125;

250
400 :

300
400i. In the �rst set of problems, FC performed

very poorly compared to RFLA, in the second it was RFLA who performed
poorly compared to FC, so we report the results with the better algorithm for
each class only. Figure 5(top) reports the average results of executing RFLA and
VE-RFLA in the 250 variables problems. The superiority of VE-RFLA is again
apparent in this class of problems. VE-RFLA is always faster than RFLA and
the gain ratio varies from 1.2 to 3. Figure 5(bottom) reports the average results
of executing FC and VE-FC in the h50; 20; 125; 250400 : 300

400i problems. VE-FC is
also clearly faster than FC. At the complexity peak, VE-FC is 2.5 times faster
than FC.
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Fig. 6. Average search e�ort of PFC and VE-PFC on h25; 10; 37

300
; p2i and

h40; 5; 55

780
; p2i. Mean number of visited nodes and CPU time is reported.

5.2 Finding the best solution (Max-CSP)

In our second set of experiments we consider the task of �nding a solution that
violates the least number of constraints in over-constrained problem instances.
This task is known as Max-CSP [6]. We experiment with Partial Forward Check-
ing algorithms, which are the extension of forward checking to branch & bound.
Speci�cally, we consider PFC-MRDAC [8], a state-of-the-art algorithm that uses
arc-inconsistencies to improve the algorithm pruning capabilities. We compare
PFC-MRDAC with VarElimSearch(PFC-MRDAC,2) (PFC and VE-PFC, for
short).

The implementation of VE-PFC requires the adaptation of VarElimSearch
to optimization tasks. This requires to modify the search schema to branch and
bound and the variable elimination schema to Max-CSP. We interested reader
can �nd a precise description of it in a full version of this paper ([9]).

In our �rst experiment on Max-CSP we select the same class of sparse ran-
dom problems that was used in [8] to prove the superiority of PFC over other
competing algorithms. Namely, the classes h25; 10; 37

300 ; p2i and h40; 5; 55
780 ; p2i.

Figure 6 reports the average results. As can be seen, the superiority of VE-PFC
over PFC is impressive both in terms of nodes and CPU time (note the log

scale). VE-PFC is sometimes 30 times faster than PFC and can visit 100 times
fewer nodes in the 25 variable problems. In the 45 variable problems, the gain
is even greater. VE-PFC is up to 130 times faster and visits nearly 300 times
fewer nodes than PFC in the hardest instances. As a matter of fact, VE-PFC
can solve the instances with lowest tightness without any search at all.

The problem classes of the previous experiment are very sparse (the average
degree is bellow 3). So the next experiment considers denser problems. The
two algorithms are executed in the three following sequences of classes: h10 :
39; 10; 1:5n; 85

100i, h10 : 27; 10; 2n;
85
100i and h10 : 17; 10; 3n;

85
100i. In these problem
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ber of variables increases while the average degree is �xed (dg is 3, 4 and 6, respectively).
Mean number of visited nodes and CPU time is reported. Note that plot curves come
in the same top-to-bottom order than legend keys.

sets, we increase the number of variables and constraints proportionally, so the
average degree remains �xed (dg is 3, 4 and 6, respectively). Figure 7 reports
the search measures obtained in this experiment. Again, the superiority of VE-
PFC is crystal clear. However, as could be expected, the gain decreses as dg
increases. In the problems with dg = 3, VE-PFC is up to 70 times faster and
visits up to 300 fewer nodes. In the problems with dg = 4, the gain ratio of the
hybrid algorithm is of about 9 times in terms of time and 18 times in terms
of visited nodes. In the problems with dg = 6, both algorithms are very close.
PFC is slightly faster in the smallest instances and VE-PFC is 30% faster in the
largest instances. Regarding visited nodes, the gain of VE-PFC ranges from 40%
in the smallest instances, to 250% in the largest. The plots also indicate that the
advantage of VE-PFC over PFC seems to increase with the size of the problems
if the average degree remains �xed.

6 Conclusions and Future Work.

Variable elimination is the basic step of Adaptive Consistency. It transforms the
problem into an equivalent one, having one less variable. Unfortunately, there are
many classes of problems for which it is infeasible, due to its exponential space
and time complexity. However, by restricting variable elimination so that only
low arity constraints are processed and recorded, it can be e�ectively combined
with search to reduce the search tree size.

In this paper, we have extended a previous work of [12] in the satis�ability
domain. We have introduced VarElimSearch, a hybrid meta-algorithm for con-
straint satisfaction that combines variable elimination and search. The tradeo�
between the two solving strategies is controlled by a parameter.

We have introduced a worst-case bound for the algorithm's time complexity
that depends on the control parameter and on the constraint graph topology.
The bound can be used to �nd the best balance between search and variable



elimination for particular problem instances. So far, our analysis is restricted
to static variable orderings. However it can e�ectively bound also dynamic or-
derings, since those tend to always be superior. Further analysis on dynamic
ordering remains in our future research agenda.

We have provided empirical evaluation on sparse binary random problems for
a �xed value of k = 2. The results show that augmenting search with variable
elimination is very e�ective for both decision and optimization constraint satis-
faction. In fact, they demonstrate a general method for boosting the behavior of
search procedures. The gains are very impressive (sometimes up to two orders of
magnitude). This results are even more encouraging than those reported in [12],
where the hybrid approach was sometimes counter-productive. Clearly, we need
to extend our evaluation to the non-binary case, since its practical importance
is more and more recognized in the constraints community.

Finally, we want to note that the idea behind our algorithm can be applied to
a variety of constraint satisfaction and automatic reasoning tasks, because vari-
able elimination and search are widely used in a variety of domains [5]. We have
demonstrated its usefulnes in decision and optimization constraint satisfaction
tasks. An ultimate goal of our research is to understand the synergy between
these two schemes within a general framework of automated reasoning.
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