Boosting Search with Variable Elimination in Constraint
Optimization and Constraint Satisfaction Problems. *

A. Javier Larrosa (larrosa@lsi.upc.es)
Universitat Politécnica de Catalunya, Barcelona, Spain.

B. Rina Dechter (dechter@ics.uci.edu)
University of California at Irvine, USA

Abstract. There are two main solving schemas for constraint satisfaction and
optimization problems: i) search, whose basic step is branching over the values of
a variables, and i) dynamic programming, whose basic step is variable elimination.
Variable elimination is time and space exponential in a graph parameter called
induced width, which renders the approach infeasible for many problem classes.
However, by restricting variable elimination so that only low arity constraints are
processed and recorded, it can be effectively combined with search, because the
elimination of variables may reduce drastically the search tree size.

In this paper we introduce BE-BB(k), a hybrid general algorithm that combines
search and variable elimination. The parameter k controls the tradeoff between the
two strategies. The algorithm is space exponential in k. Regarding time, we show
that its complexity is bounded by k£ and a structural parameter from the constraint
graph. We provide experimental evidence that the hybrid algorithm can outperform
state-of-the-art algorithms in constraint satisfaction, Max-CSP and Weighted CSP.
Especially in optimization tasks, the advantage of our approach over plain search
can be overwhelming.

Keywords: constraint satisfaction, constraint optimization, soft constraints, bucket
elimination, branch and bound.

1. Introduction.

Many problems arising in domains such as scheduling, design, diagnosis,
temporal reasoning and default reasoning, can be naturally modeled as
constraint problems. A constraint problem consists of a finite set of
variables, each associated with a finite domain of values, and a set
of constraints. In a constraint satisfaction problem (CSP), constraints
are relations indicating permitted tuples. A solution is an assignment
of a value to every variable such that all constraints are satisfied. In a
constraint optimization problem (COP), some constraints (called soft)
are cost functions indicating preferences. The task of interest is to find
a complete assignment satisfying hard constraints and minimizing the

* Research funded by the Spanish CICYT project TAP1999-1086-C03-03, by the
NSF grant I1S-0086529 and by MURI ONR award N00014-00-1-0617.

© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

submitted.tex; 8/05/2002; 11:32; p.1

2 J. Larrosa and R. Dechter

global cost. Solving constraint problems is NP-hard. Therefore, general
algorithms are likely to require exponential time in the worst-case.

Most complete algorithms for solving constraint problems belong to
one of the two following schemas: search and dynamic programming.
Search algorithms transform a problem into a set of subproblems. This
is normally done by selecting a variable and considering the assignment
of each of its domain values. The subproblems are solved applying
recursively the same transformation rule. These algorithms generate
a tree that is normally traversed in a depth-first manner, which has the
benefit of being space linear. In constraint optimization, search follows
a branch and bound (BB) schema [21]; in constraint satisfaction, search
can be specialized to handle and propagate relations [15, 23]. In the
worst-case, search algorithms need to explore the whole search tree.
Nevertheless, in practice they typically do much better.

Dynamic programming algorithms solve a problem by a sequence
of transformations that reduce the problem size, while preserving the
value of the best cost attainable in the problem [2]. Bucket Elimination
(BE) [8] is a complete algorithm that relies on the basic step of variable
elimination. The algorithm proceeds by selecting one variable at a time
and replacing it by a new constraint which summarizes the effect of the
chosen variable. Once all variables have been eliminated, the best cost is
computed and the corresponding assignment is obtained in a backtrack-
free manner. The main drawback of BE is that new constraints may
have large arities which are exponentially hard to process and store. The
exponential space complexity limits severely the algorithm’s usefulness.
However, a nice property of BE is that its worst-case time and space
complexities can be tightly bounded by a structural parameter of the
problem called induced width.

In this paper we propose a general solving schema BE-BB(k) which
combines branch and bound search and variable elimination in an at-
tempt to exploit the best of each. The algorithm selects a variable and
attempts its elimination, but this is only done when the elimination
generates a small arity constraint. Otherwise, it switches to search.
Namely, it branches on the variable and transforms the problem into
a set of smaller subproblems where the process is recursively repeated.
Parameter k controls the trade-off between variable elimination and
search. The space complexity of BE-BB(k) is exponential in k. The
time complexity is exponential in k and a refined structural parameter
of the problem.

Our approach is applicable to many search strategies and a variety of
tasks. In this paper, we focus the presentation on constraint optimiza-
tion, although we report experimental results on both satisfaction and
optimization problems. In all cases, we show that a bounded form of

submitted.tex; 8/05/2002; 11:32; p.2

Boosting Search with Variable Elimination 3

variable elimination may boost search, while never having a worsening
effect. For optimization tasks, the advantage of our approach over plain
search can be overwhelming.

This paper is organized as follows: The next Section introduces no-
tation and necessary background. In Section 3 we describe BE-BB(k).
In Section 4 we discuss the algorithm time and space complexity. In
Section 5 we provide experimental results demonstrating the practi-
cal usefulness of our approach. Section 6 discusses related work and
Section 7 concludes.

2. Preliminaries

2.1. CONSTRAINT SATISFACTION AND OPTIMIZATION

A constraint satisfaction problem (CSP) consists of a set of variables
X = {x1,...,2n}, a set of domains D = {Dy,...,D,} and a set of
constraints C' = {Ri,..., R, }. Domain D; is a finite set of values
that can be assigned to variable x;. A constraint R is a relation over
a subset of the variables var(R) C X called the scope of R. Tuples
in R denote the legal combinations of assignments to variables in its
scope. A solution is an assignment of a value to every variable in X
such that every constraint is satisfied. Finding a solution to a CSP
is an NP-complete problem. The arity of a constraint is the size of its
scope. The arity of a problem is the maximum arity over its constraints.
In the sequel, n, d, m and r will denote the number of variables, the
largest domain size, the number of constraints and the problem arity,
respectively.

In a constraint optimization problem (COP), some constraints (called
soft constraints) are cost functions denoting preferences among tuples.
A cost function f is defined over its scope var(f) and returns for each
tuple a non-negative cost. Cost functions can be expressed intensionally
as mathematical functions or computable procedures, or extensionally
as tables of costs. Without loss of generality, we assume that all con-
straints (i.e., soft and hard) are represented as cost functions. Hard
constraints are bi-valued functions assigning cost zero to allowed tuples
and cost infinity to forbiden tuples. We consider the weighted CSP
(WCSP) model [26], where the objective function is the sum of all
constraints C = {f1,..., fm},

(X)) =% f;(X)
j=1

submitted.tex; 8/05/2002; 11:32; p.3

4 J. Larrosa and R. Dechter

Thus, the cost of a complete assignment is the sum of costs given by the
set of constraints. Observe that we use the simplified notation f;(X),
where we mean f; evaluated on X projected over var(f;).

The goal is to find a complete assignment with minimum cost (the
maximization task is analogous). Solving a WCSP is NP-hard. We
assume that evaluating f; is time O(1).

More general frameworks for COP have been presented in [5, 26]
where different semantics can be given to costs (e.g, probabilities, pos-
sibilities, fuzzy logic values, etc). The WCSP model captures the algo-
rithmic difficulty of the general case and our approach can be easily
extended.

Given a constraint problem, its constraint graph G associates each
variable with a node and connects any two nodes whose variables ap-
pear in the scope of the same (hard or soft) constraint. The induced
graph of G relative to an ordering o of its variables, denoted G*(0), is
obtained by processing the nodes in reverse order of 0. For each node
all its earlier neighbors are connected, including neighbors connected
by previously added edges. Given a graph and an ordering of its nodes,
the width of a node is the number of edges connecting it to nodes lower
in the ordering. The induced width of a graph, denoted w*(0), is the
maximum width of nodes in the induced graph. Finding the ordering o
with minimum w*(0) is an NP-complete problem [1].

2.2. BRANCH AND BOUND

Branch and Bound (BB) is a search schema for COP solving [21, 13]. It
traverses the search tree defined by the problem, where internal nodes
represent incomplete assignments and leaf nodes stand for complete
ones, which may or may not be optimal. During the traversal, which is
typically depth-first, BB keeps the cost of the best solution found so far.
Its cost is an upper bound U B on the problem’s optimum cost. At the
end of the execution, when the whole search space has been explored,
UB is the problem best solution. At each internal node, defined by
its current partial assignment ¢, the algorithm computes a lower bound
LB(t) which underestimates the best solution that can be found by
extending ¢. When UB < LB(t), the current best cost cannot be im-
proved by extending t. Consequently, the algorithm backtracks pruning
the subtree below the current node t. This lower bound function is
called the heuristic function (h') in heuristic search terminology.

The basic step of BB is branching. Namely, the algorithm selects
a variable z; and transforms the current problem into a set of sub-
problems, one for each value in D;, extending the current assignment
t (i.e., branches on the variable alternatives). In depth-first search,

submitted.tex; 8/05/2002; 11:32; p.4

Boosting Search with Variable Elimination 9

function BB(t, P, F)

1. if F =0 then

2. UB « ComputeCost(t);

3. BestTuple — t;

4. else

5. x; < SelectVariable(F);

6. while D; # () do

7. a — PopValue(D;);

8 ¢ — Append(t, (v, a);

9. LookAhead(t, P U {z;}, F — {x;});
10. if no empty domain then
11. BB(t, P U{z;}, F' — {z;});
endfunction

function LookAhead(t, P, F))

12. for each z; € F, b€ D; do

13. t' « Append(t, (z;,0));

14. if LB(t') > UB then prune(j, b);
endfunction

Figure 1. Depth-first Branch and Bound with look-ahead for COP solving. ¢ is the
current assignment, P is the set of past variables, F' is the set of future variables.

subproblems are considered sequentially and the same branching rule
is recursively applied. The constraint graph of each child is obtained
by removing node x; and its outgoing edges from the parent graph.

Figure 1 shows a generic depth-first BB which is enhanced with
a look-ahead process similar to that of forward checking [15] in con-
straint satisfaction. For the sake of simplicity, context restoration upon
backtracking is omitted. At a given node, P and F denote the sets
of past and future variables, respectively. If the set F' is empty, the
current assignment ¢ improves over the current best solution, so the
upper bound U B is updated (lines 2 and 3). Else, it selects a variable
x; (line 5) and iterates over its values. When considering a value a, the
look-ahead procedure (called in line 9) iterates over every value b of
every future variable z;. It computes t’, the extension of the current
assignment ¢ with (x;,b) (line 13), and checks its feasibility (line 14). If
the check fails, b is pruned from the current domain of x;. If the look-
ahead causes an empty domain, the next value of D; is attempted. Else,
a recursive call is made (line 11) in which the current assignment ¢ is
extended with (z;,a).

submitted.tex; 8/05/2002; 11:32; p.5

6 J. Larrosa and R. Dechter

2.2.1. Lower Bound Computation

Different lower bounds can be used within BB (in line 14). A simple
approach is to consider the best cost that can be attained from each
constraint, subject to the assignment.

LB(t) = Y min{f(tq)} 1)

fec

where C' is the set of constraints and ming{f(¢,q)} denotes the mini-
mum cost extension of ¢ to variables in var(f) not assigned in ¢.

The time complexity of computing expression (1) is O(m - d"~1),
where m is the number of constraints, d is the domain size and r is
the problem arity. This lower bound is impractical with high arity
problems. It is possible to bound the complexity by restricting the set
of considered constraints to C* = {f € C| |var(f) N F| < s}, the set
of constraints having at most s uninstantiated variables in their scope
given the current assignment. This idea, already suggested in [22], yields
the following expression,

LB(#) = 3 min{f(t.q)) @

fecs

The time complexity of computing lower bound (2) is O(m - d®). More
sophisticated lower bounds can be found in [28, 20, 25, 9, 16, 18].

The space complexity of depth-first BB is linear. The time com-
plexity is bounded by the product of the search space size d"* and the
complexity per node L, O(d"L).

2.3. BUCKET ELIMINATION

Bucket Elimination (BE) [8] is an algorithm for COP solving which
falls into the category of dynamic programming methods [2]. It is based
upon the following two operators over functions:

— The sum of two functions f and g denoted (f+g¢) is a new function
with scope var(f) Uwvar(g) which returns for each tuple the sum
of costs of f and g,

(f +9)(X) = f(X) +g(X)

— The elimination of variable x; from f, denoted elim;(f), is a new
function with scope var(f)— {z;} which returns for each tuple the
minimum cost extension to f,

(elim;(f))(X) = min{f(X, (zi,a))}

a€D;

submitted.tex; 8/05/2002; 11:32; p.6

Boosting Search with Variable Elimination 7

where f(X, (z;,a)) means f(X) with variable z; set to value a. Ob-
serve that when f is a unary function (i.e., arity one), eliminating
the only variable in its scope produces a constant.

EXAMPLE 1. Let f(x1,22) = x1 + x2 and g(x1,23) = z123. The sum
of fand g is (f+g)(x1,x2,x3) = x1+x2+2x123. If domains are integers
in the interval [1..10], the elimination of x1 from f is (elimy(f))(z2) =
1+ xo. The subsequent elimination of xo, produces constant 2.

In the previous example, resulting functions were expressed inten-
sionally for clarity reasons. Unfortunatelly, in general, the result of
summing functions or eliminating variables cannot be expressed in-
tensionally by algebraic expressions. Therefore, BE stores intermediate
results extensionally in tables, which causes its high space complexity.

Given an arbitrary variable ordering o, BE partitions the set of
constraints into buckets. There is a bucket B; for each variable x; and it
contains all constraints having z; in their scope as their highest variable
(according to the ordering o). The algorithm processes variables one by
one, from last to first. For each variable x;, the algorithm infers a new
constraint f; that summarizes the effect of the variable on the rest of the
problem. Variable z; is eliminated and f; is added to the the bucket
of the highest variable in its scope. The addition of f; compensates
the deletion of x; preserving the value of the problem optimal cost.
The constraint f; is computed by summing all constraints in B; and
subsequently eliminating z;.

fi —elimg(> f) (3)

feB;

The elimination of the last variable produces an empty-scope constraint
(i.e., a constant function) which is the optimal cost of the problem.
An assignment of variables producing the optimal cost is generated in
a backtrack-free manner as follows: Variables are assigned from first
to last according to o. The value for z; is the best extension of the
assignment to (x1,...,2;-1) with respect to the set of constraints in
B;.

Figure 2 shows a recursive description of BE. The algorithm is
typically described iteratively, but the recursive version facilitates the
integration with BB that will be introduced in the following section. At
a given point of the recursive execution, there is a set F' of unprocessed
or future variables, and a set C'C of current constraints defined over F'
which define the current subproblem (the initial call has F' = X and
CC = (C). If F is empty, CC contains a constant function with the best
cost, which is recorded (line 2). Else, BE selects a variable x; from F'

submitted.tex; 8/05/2002; 11:32; p.7

8 J. Larrosa and R. Dechter

function BE(F,CC)
if ' = () then {CC contains a constant function f}
BestCost — f
else
x; « SelectVariable(F);
B, — {f € Clx; € var(f)}
Ji— elimi(ZfeBi f);
cC—Cccu {fl} — B;;
BE(F — {1}, CC);
x; < best extension of the assignment
to (z1,...,2;—1) relative to >, p. f

© 0N DU WD

Figure 2. Recursive description of Bucket Elimination. F' is the set of future
(unprocessed) variables and C'C is the set of constraints in the current subproblem.

(line 4), which must be the last variable in F' according to the ordering
o. Next, it generates its bucket B; as the set of constraints in CC
mentioning x; (line 5). After that, the new constraint f; is computed
(line 6). Then, constraints in B; are replaced in CC by f; (line 7)
forming the new subproblem with which BE is recursively called (line
8). The optimal assignment is constructed as recursive calls terminate.
When the current call is over (i.e: line 8 is executed), the algorithm
knows the optimal assignment to variables in F' — {z;}. The algorithm
then computes the assignment to the current variable z; (line 9) and
returns to the previous call.

Observe that the elimination of a variable z; generates a new con-
straint f; whose scope is the set of neighbors of x; in the current
problem’s graph. Thus, the arity of f; is the degree of x; in the current
constraint graph, dg;. Computing f; is time O(d%:*1), storing f; is
space O(d%:). The addition of f; to the current problem changes the
current constraint graph by connecting all neighbors of x;. It can be
shown that for all 7, dg; < w*(0). Therefore, the complexity of BE along
ordering o is time O(n - d¥"(©*1) and space O(n - d** (), both expo-
nential in the induced width of the ordering [8]. The space complexity
of BE is its main drawback, since it can only be applied in practice to
problems with an identified low induced width ordering.

3. Combining Variable Branching and Variable Elimination.
In this section we introduce BE-BB(k), a hybrid schema that combines

variable elimination and branching. Let us suppose that we have a
problem that we cannot solve with BE due to its high induced width.

submitted.tex; 8/05/2002; 11:32; p.8

Boosting Search with Variable Elimination 9

a) Initial constraint graph b) After eliminating X7
";’Q (2—)
059 4P oNNCANPO
O30 =)
(4 (&)

c) After eliminating X6 d) After branching in X3

Figure 3. A constraint graph and its evolution over a sequence of variable
eliminations and branchings.

We can still use BE as a pre-process and eliminate those variables whose
elimination is not too costly. This will transform the problem into an
equivalent one having a smaller set of variables X’. Subsequently, we
can solve the reduced problem with plain BB. Once the search is over,
we have the best cost of the reduced problem (which is also the best cost
of the original problem) and the corresponding assignment to variables
in X’ which can be extended to X in a backtrack-free manner. The
recursive application of this idea is the basis of BE-BB(k).

EXAMPLE 2. Consider a COP whose constraint graph is depicted in
Figure 3.a. Suppose that we want to eliminate a variable but we do
not want to compute and store constraints with arity higher than two.
Then we can only take into consideration variables connected to at most
two wvartables. In our example, variable x7 is the only one that can
be selected. Its elimination transforms the problem into another one
whose constraint graph is depicted in Figure 3.b. Now x¢ has its degree
decreased to two, so it can also be eliminated. The new constraint graph
is depicted in Figure 3.c. At this point, every variable has degree greater
than two, so we switch to a search schema which selects a variable, say
x3, branches over its values and produces a set of d subproblems, one for

submitted.tex; 8/05/2002; 11:32; p.9

10 J. Larrosa and R. Dechter

each value in its domain. All of them have the same constraint graph,
depicted in Figure 3.d. For each subproblem, it is possible to eliminate
variable xg and x4. After their elimination it is possible to eliminate xo
and xg, and subsequently s and x1. Eliminations after branching have
to be done at every subproblem since the new constraints with which the
eliminated variables are replaced differ from one subproblem to another.
After processing all the variables (rs assigned, the rest eliminated), it
is possible to compute at each subproblem its best cost subject to its
assignment to x3. If this cost improves the current upper bound, it is
updated. The complete assignment responsible for this currently opti-
mal cost can be computed as follows: variables are considered reversing
the order in which they were either assigned or eliminated, that is,
T1,Ts5, Ty, T2, T4, TS, T3, Te, T7. Eliminated variables are assigned as in
BE and assigned variables take the value assigned in the subproblem
path. In the example, only one branching has been made. Therefore,
the elimination of variables has reduced the search space size from d°
to d, where d is the size of the domains.

In the example, we bounded the arity of the new constraints to two.
However, in general our algorithm has a parameter k that bounds the
arity of the new constraints. This parameter ranges from —1 to n—1 and
controls the tradeoff between variable elimination and branching. Low
values of k only allow the recording of small arity constraints which are
efficiently computed and stored. However, they may allow substantial
search. On the other hand, high values of k allow recording high arity
constraints. It leads to substantial reduction of the search space, at the
cost of processing and recording high arity constraints.

In the extreme case that k is set to —1, the algorithm never elim-
inates any variable and therefore performs plain BB. When £ is set
to 0, only disconnected variables are eliminated (they are replaced by
constant functions). If k is set to a sufficiently high value, every variable
elimination is permitted, so the algorithm becomes BE.

Figure 4 describes BE-BB(k). At an arbitrary call, the set of vari-
ables X is partitioned into three sets: assigned P, future F' and elimi-
nated E variables. Each recursive call receives the current subproblem
defined by the current assignment ¢, the current sets P, ' and F, and
the current set of constraints CC (as in BE, the set of constraints
changes during the execution). Constraints in CC' are defined over
PUF. In the initial call t =0, F = X, E =P =(and CC = C.

If BE-BB(k) is called with an empty set of future variables, the
current branch of search improves over the current best solution. There-
fore, UB is updated with the cost of ¢ and the current best assignment
is generated by processing variables in the opposite order in which they

submitted.tex; 8/05/2002; 11:32; p.10

Boosting Search with Variable Elimination 11

function BE-BB(t, P, E, F, CC)
if F =0 then
UB « ComputeCost(t);
BestTuple < extend t to variables in E;
else
x; « SelectVariable(F);
B, — {f eCC| x; evar(f)};
dg; — |Ugep, (var(f) N F)l;
if dg; < k then VarElim(t, P, E, F,CC, z;)
else VarBranch(t, P, E, F,CC, x;)
endfunction
function VarElim(¢, P, E, F,CC, z;)
10. fz — ehmz(zfeBl f),
11. CC «~CCuU {fz} — B;;
12. if LB(t,CC) < UB then BE-BB(t, P, E U {z;}, F — {x;},CC);
endfunction
function VarBranch(t, P, E, F,CC, x;)
13. while D; # () do
14. a — PopValue(D;);
15. t «— Append(t, (x;,a));
16. LookAhead(t, P U {x;}, F — {x;},CC);

© 0 ND IR WD

17. if no empty domain then
18. BE-BB(¢, P U {x;}, E, F — {z;},CC);
endfunction

Figure 4. Algorithm BE-BB. t is the current assignment, P is the set of past (as-
signed) variables, E is the set of eliminated variables, F' is the set of future variables,
CC is the set of constraints relevant to the current subproblem.

were selected (lines 2 and 3). Values for eliminated variables E have
to be computed, which requires the algorithm to access the buckets
processed along the current branch of search. This process is omitted
in Figure 4 for clarity reasons.

If there are future variables, BE-BB selects the current variable x;
from F' (line 5). This selection can be done using any heuristic criterion,
either static or dynamic. Then, the current bucket B; is computed as
the set of constraints in C'C’' mentioning x; in their scope (line 6). Note
that these constraints may have past and future variables in their scope,
due to the assignments previously made by BB. Next, the algorithm
computes dg;, the number of neighbors of x; in the current problem, as
the number of future variables in the scopes of constraints in B; (line
7). If dg; is not larger than the control parameter k, x; is eliminated
(VarElim is called). Procedure VarElim transforms the current sub

submitted.tex; 8/05/2002; 11:32; p.11

12 J. Larrosa and R. Dechter

problem into an equivalent problem (the value of the optimal cost is
preserved) where the current variable is missing. Else, the algorithm
branches on its values (VarBranch is called). Procedure VarBranch
transforms the current subproblem into a sequence of problems and
attempts to improve U B with each of them. Either way, x; is removed
from the set of future variables and BE-BB is recursively called.

The elimination of x; in VarElim is slightly different from the one in
BE (Figure 2), because constraints in B; may have past assigned vari-
ables in their scope. The difference is that past variables are replaced
by their assigned value when computing the new constraint.

EXAMPLE 3. Let f(x1,x9,23) = 21 +x2+x3 and g(x1,x3) = x123 be
the current set of constraints. Suppose all domains are integers in the
interval [1..10] and 1 is a past variable with value 5. The elimination
of x3 introduces the following constraint:

elims(f+g)(x2) = H%isn{5+x2+x3+5m3} =5+mxo+14+(5-1) =11+mo

Observe that the elimination of a variable modifies the current set
of constraints (line 11). As a consequence, the current lower bound
used by the branch and bound algorithm may be increased. That is the
reason for the feasibility test previous to the recursive call (line 12).

4. Complexity Analysis.

BE-BB(k) stores constraints of arity at most k which require O(d¥)
space. It only keeps constraints added in the current search path, so
there are at most n simultaneously stored constraints. Therefore, BE-
BB(k) has O(n - d*) space complexity. Regarding time, the algorithm
visits at most d" nodes, because in the worst-case it performs plain
search on a tree of depth n and branching factor d. Clearly, this worst-
case bound for the search space size is loose since it ignores the search
space reduction caused by variable eliminations. It is possible to obtain
a more refined upper bound for the number of visited nodes, if we
assumed that BE-BB(k) is executed with a static variable ordering o.
The bound is based on the following definition:

DEFINITION 1. Given a constraint graph G and an ordering o of
its nodes, the k-restricted induced graph of G relative to o, denoted
G*(0,k), is obtained by processing the nodes in reverse order from last
to first. For each node, if it has k or fewer earlier neighbors (taking
into account old and new edges), they are all connected, else the node
is ignored. The number of nodes in G*(o, k) with width greater than k

submitted.tex; 8/05/2002; 11:32; p.12

Boosting Search with Variable Elimination 13

G*(0,k) k z(0,k) G*(0,k) k z(ok)

TR I e TOWODD: -
seU T - Fev e !
oL OTY: : FeveR e

Figure 5. An ordered constraint graph G and its k-restricted induced graphs G* (o, k)
for —1 < k < 4. Note that G = G* (0, —1). Ordering o is lexicographic.

is denoted z(o0, k). The number of nodes in G*(o, k) with width less than
or equal to k is denoted e(o, k).

In what follows we assume that BE-BB(k) is executed with a static
variable ordering o and that it selects the variables from last to first.
The k-restricted induced graph G*(o,k) can be used to synthesize the
search space traversed by the algorithm. The nodes in G*(0, k) having
width less than or equal to k are exactly the variables that BE-BB(k)
eliminates. The edges added during the computation of G*(o, k) reflect
the scopes of constraints that the algorithm adds when it performs
variable elimination. The nodes that are ignored during the computa-
tion of G*(o0, k) have width greater than k and thus correspond to the
branching variables.

PROPOSITION 1. BE-BB(k) with a static variable ordering o, runs
in time O(d*©F) x (L + e(o, k)d*+1)) where L is the cost per node of
the branch and bound algorithm used.

Proof. The algorithm branches in z(o, k) variables with a branching
factor of d, so the search space size is bounded by d#(®F), Processing
each visited node takes cost L, and at most e(o, k) variable eliminations.
Eliminating a variable with up to k neighbors takes O(d**1). Therefore,
the total cost per node is O(L + e(o, k) d*+1). Multiplying this by the
total number of nodes, d*(>*), we obtain the total time complexity. O

Proposition 1 shows that BE-BB(k) is exponential in k + z(o, k).
Increasing k is likely to decrease z(o, k), which means that less search
takes place at the cost of having more expensive (in time and space)
variable elimination. Figure 5 illustrates this fact. Given an ordered
constraint graph G (Figure 5 top left), we can see how G*(o, k) changes
as k varies from -1 to 4 (note that G = G*(0,—1) because no edge can
be possibly be added). The value of k appears at the right-hand side of
each graph, along with the corresponding z(o, k). Grey nodes are those

submitted.tex; 8/05/2002; 11:32; p.13

14 J. Larrosa and R. Dechter

Figure 6. A constraint graph and a subgraph after the elimination of grey variables
and branching on two black variables.

with width less than or equal to k and correspond to the variables
that BE-BB(k) eliminates. Dotted edges are those added during the
computation of G*(0, k). White nodes are those with width greater than
k and correspond to branching variables. For example, when k = 1,
variable 6 is branched first, next variable 5 is branched, then variable
4 is eliminated, and so on. The space requirements, search space size
and effort per node as k varies is depicted in the following table.

k ‘ z(0, k) ‘ space ‘ search space size | effort per node

-1 6 0 d® L
0 4 6 d° d* L+2d
1 3 6 d* a3 L+3d?
2 2 6 d? d? L+4d
3 1 6 d3 d? L+5d
4 0 6 d* d° 6 d°

The time complexity of the algorithm suggests a class of problems
for which it is likely to be effective. Namely, problems having a subset of
the variables highly connected while the rest have low connectivity. The
highly connected part renders BE infeasible. Similarly, a search proce-
dure will branch on the low connectivity variables generating a huge
search space. BE-BB(k) with a low k will eliminate the low-connectivity
variables and only search on the dense subproblems.

EXAMPLE 4. Consider a problem having the constraint graphs of Fig-
ure 6.a. There is a clique of size 5 (black nodes), which means that the
complezity of BE is at least O(nd*) and O(nd®) space and time, respec-
tively. On the other hand, BB has time complexity O(d"L). Algorithm
BE-BB(k) with k = 2, if provided with the appropriate variable ordering
eliminates all grey nodes before any branching. Subsequently, it may
branch on the two bottom nodes of the clique producing d* subproblems.
The subgraph of the subproblems is depicted in Figure 6.b. At this point,
the problems can be completely solved with variable elimination. Thus,
the space complezity of the process is O(n d?), the search space size is

submitted.tex; 8/05/2002; 11:32; p.14

Boosting Search with Variable Elimination 15

O(d?) and the time complexity is O(d? x (L + (n — 2)d®)). So we are
able to achieve time bounds close to BE with a lower O(n d?) space.

5. Empirical Results.

5.1. RANDOM PROBLEMS

In this section we show the potential of our approach on randomly
generated problems. We consider three different tasks: CSP, Max-CSP
(i.e., WCSP with 0/1 costs) and non-binary WCSP.

We use a random problem model which extends the well-known four-
parameters model [27, 14] to non-binary soft constraints. A random
WCSP class is characterized by 6 parameters: (n,d,r,v, m,t) where n
is the number of variables, d the number of values per variable, r is the
arity of all constraints, v is the number of different non-zero costs, m
the number of constraints (problem density or connectivity) and t is
the number of tuples in the constraint with non-zero cost (problem
tightness). The scope of every constraint is randomly selected. For
each constraint, ¢ tuples with non-zero cost are randomly selected and
their cost is randomly assigned within the interval [1..v]. Problems with
different constraints having the same scope, as well as problems with a
disconnected constraint graph, are discarded. When r = 2 and v = 1,
our model is equivalent to the well-known random CSP model [27, 14].
In binary problems (i.e., r = 2), we can characterize the average degree
of variables in a class as dg = 2m,/n.

When we write an interval [k..k] instead of a fixed parameter, we de-
note a sequence of random problem classes. For instance, (n,d, r, v, m, [t..t'])
denotes the sequence of classes from (n,d,r,v,m,t) to (n,d,r,v,m,t'),
where the five first parameters are fixed and the tightness varies from
t tot.

In all the experiments, the following dynamic variable ordering heuris-
tic is used: Find the variable x; with the lowest degree. If its degree is
less than or equal to k, variable x; is selected (it will be eliminated).
Else, compute for each variable the ratio domain size divided by degree.
The variable with the lowest ratio is selected (it will be branched) [4].
In the first two sets of experiments (CSP and Max-CSP), samples have
50 instances. In the third set of experiments (WCSP), samples have 25
instances.

submitted.tex; 8/05/2002; 11:32; p.15

16 J. Larrosa and R. Dechter

100000 T T T T T 10
10000
3 - 1H
© o
= Q
c 2
o
2 1000 2
2 =
> =
5 o
< : A gt © 01
00 Y
10 L 0.01
80 100 120 140 160 180 200 80 100 120 140 160 180 200
m (n. of constraints) m (n. of constraints)

Figure 7. Average search effort of four algorithms on the classes
(50,10,2,1,[75..200],t*). Mean number of visited nodes and CPU time is
reported. Note that plot curves come in the same top-to-bottom order than legend
keys.

n=250, d=5 n=250, d=5
7000 T T 14 T T
6000 12 +
AdC-RF
0 5000 10
@ ford
<1 S
2 4000 G 8
K "
% £
< 3000 =
5 a
°© 3]
< 2000
1000
0 0
590 600 610 620 630 640 650 590 600 610 620 630 640 650
m (n. of constraints) m (n. of constraints)
n=50, d=20 n=50, d=20
160000 T T T 25 T T T
140000
20 -
120000
@
5 n
o000)/ V| FC— 8 s
3 o
£ 80000 £
@ £
> L
5 60000 z
H [8)
<
40000
5l
20000
250 255 260 265 270 275 280 285 290 295 300 250 255 260 265 270 275 280 285 290 295 300
c (tightness) c (tightness)

Figure 8. Experimental results on the classes (250,5,2,1,[585..650],¢t") and
(50, 20,2, 1,125, [250..300]). Mean number of visited nodes and CPU time is
reported.

5.1.1. Binary Constraint Satisfaction (CSP)

Our first set of experiments considers binary CSP. In constraint sat-
isfaction, it is possible to specialize BB and BE to handle hard con-
straints in a more efficient way. Therefore, we consider forward check-
ing (FC) [15] and really full look ahead (RF) [23] as our reference
search algorithms and adaptive consistency (AdC) [10] as the variable
elimination algorithm. Thus, our approach leads to two parameter-
ized algorithms: AdC-FC(k) and AdC-RF (k) (see [17] for details). In
this experiment, we compare the performance of the algorithms with

submitted.tex; 8/05/2002; 11:32; p.16

Boosting Search with Variable Elimination 17

k = —1 and k = 2. When k£ = —1 the algorithms are FC and RF,
respectively. When k& = 2 the algorithms eliminate variables with up to
two neighbors (we refer to them as AdC-FC and AdC-RF).

Our implementation of RF is based on AC6 [3]. Since the overhead
of AC6 cannot be fairly evaluated in terms of consistency checks, we
consider the CPU time as the main computational effort measure.
However, we also report the implementation independent measure of
number of visited nodes.

In our first experiment we ran the four algorithms on the classes
(50,10,2,1,[75..200], t*), where t* denotes the cross-over tightness (tight-
ness that produces 50% satisfiable problems and 50% unsatisfiable) or
the closest approximation. In this set of problems dg increases with the
varying parameter, ranging from 3 to 8. Figure 7 reports the average
number of visited nodes and average CPU time for each algorithm
(note the log scale). We observe that AdC-FC (resp. AAC-RF) clearly
outperforms FC (resp. RF) both in terms of nodes and CPU time. The
maximum gain is observed in the most sparse problems where AdC-
FC (resp. AAC-RF) can be 2 or 3 times faster than FC (resp. RF).
As a matter of fact, in the most sparse problems variable elimination
usually does most of the work and only a few variables are branched. As
problems become more connected, the gain decreases. However, typical
gains in problems with dg around 5 (i.e., 125 constraints) are still
significant (20% to 40%). As problems approach dg = 8, it becomes
less and less probable to find variables with degree less than or equal
to 2. Therefore, the gain of AdC-FC and AdC-RF gracefully vanishes.

Next, we investigate how the algorithms scale up, while keeping
the average degree around 5. The four algorithms were executed in
the classes: (250,5,2,1,[585..650],¢*) and (50, 20,2, 1,125, [250..300]).
In the first set of problems, FC performed very poorly compared to
RF, in the second it was RF which performed poorly compared to
FC, so we report the results with the best algorithm for each class,
only. Figure 8(top) reports the average results of executing RF and
AdC-RF in the 250 variables problems. The superiority of AdC-RF is
again apparent in this class of problems. AdC-RF is always faster than
RF and the gain ratio varies from 1.2 to 3. Figure 8(bottom) reports
the average results of executing FC and AdC-FC in the 50 variable
problems. AdC-FC is also clearly faster than FC. At the complexity
peak, AdC-FC is 2.5 times faster than FC.

5.1.2. Binary Mazimal Constraint Satisfaction (Mazx-CSP)

In our second set of experiments we consider a simple optimization task:
finding the assignment that violates the least number of constraints in
over-constrained binary CSP. This task is known as Max-CSP [13].

submitted.tex; 8/05/2002; 11:32; p.17

18 J. Larrosa and R. Dechter

n=25, d=10
100000 100 T T T
10000
@
] -
° s
3 b
c 2
B o
2 1000
T £
> =
5 o
P S, ©
100
10 0.01
50 55 60 65 70 75 80 85 90 95 100 50 55 60 65 70 75 80 85 90 95 100
c (tightness) c (tightness)
n=40, d=5 n=40, d=5
100000 T 100 T
10000 .
«
o -~
kst s
S 1000 8
2]
2
z £
2 100 >
17 o a
c @]
wofr T
1 i L L L 0.01 L L L
5 10 15 20 25 5 10 15 20 25
c (tightness) tightness x 25

Figure 9. Average search effort of PFC and BE-PFC(2) on (25,10, 2, 1, 37, [50..100])
and (40, 5, 55, [5..25]). Mean number of visited nodes and CPU time is reported.

n=40, d=5 n=40, d=5
10 |
10000
2 for)
< f k22 1
g w000 - >
@ £
2 > PFC(dg=6)
S PFC(dg=6) — o 6
e BE chEdezﬁ rrrrrrr S g1 BE-PFC(dg=6)
100 PFC(dg=4) PFC(dg=4)
BE-PFC(dg=4) - BE-PFC(dg=4)
PFC(dg=3) ---- 1~ e
BE-PFC(dg=3) ---- -PFC(dg=3)
10 B4 0.01
10 15 20 25 30 35 40 10 15 20 25 30 35 40
n (n. of variables) n (n. of variables)

Figure 10. Average search effort of PFC and BE-PFC(2) on three classes
([10..39],10,2,1,1.5n,85), ([10..27],10,2,1,2n,85) and ([10..17],10,2,1,3n, 85).
Mean number of visited nodes and CPU time is reported. Note that plot curves
come in the same top-to-bottom order than legend keys.

There are a number of specialized BB algorithms for binary instances
of this problem that perform orders of magnitude better than the BB
presented in Subsection 2.2. We consider PFC-MRDAC [19], a branch
and bound algorithm that uses arc-inconsistencies to improve the algo-
rithm’s pruning capabilities. We compare plain search PFC-MRDAC
with the hybrid BE-PFC-MRDAC (PFC and BE-PFC, for short).

In our first experiment on Max-CSP we select the same class of
sparse random problems that was used in [19] to prove the superi-
ority of PFC over other competing algorithms. Namely, the classes

submitted.tex; 8/05/2002; 11:32; p.18

Boosting Search with Variable Elimination 19

(25,10,2,1,37,¢) and (40,5,2,1,55,¢). Figure 9 reports the average
results. As can be seen, the superiority of BE-PFC over PFC is impres-
sive both in terms of nodes and CPU time (note the log scale). BE-PFC
is sometimes 30 times faster than PFC and can visit 100 times fewer
nodes in the 25 variable problems. In the 40 variable problems, the gain
is even greater. BE-PFC is up to 130 times faster and visits nearly 300
times fewer nodes than PFC in the hardest instances. As a matter of
fact, BE-PFC can solve the instances with lowest tightness without any
search at all.

The problem classes of the previous experiment are very sparse (the
average degree is below 3), which favors our approach. So the next
experiment considers denser problems. The two algorithms are executed
in the three following sequences of classes: ([10..39],10,2,1,1.5n, 85),
([10..27],10,2, 1, 2n,85) and ([10..17],10, 2,1, 3n,85). In these problem
sets, we increase the number of variables and constraints proportionally,
so the average degree remains fixed (dg is 3, 4 and 6, respectively).
Tightness 85 guarantees that all classes are overconstrained. Figure 10
reports the search measures obtained in this experiment. Again, the
superiority of BE-PFC is crystal clear. However, as could be expected,
the gain decreases as dg increases. In the problems with dg = 3, BE-
PFC is up to 70 times faster and visits up to 300 fewer nodes. In the
problems with dg = 4, the gain ratio of the hybrid algorithm is 9 in
terms of time and 18 in terms of visited nodes. In the problems with
dg = 6, both algorithms are very close. PFC is slightly faster in the
smallest instances and BE-PFC is 30% faster in the largest instances.
Regarding visited nodes, the gain of BE-PFC ranges from 40% in the
smallest instances, to 250% in the largest. The plots also indicate that
the advantage of BE-PFC over PFC seems to increase with the size of
the problems if the average degree remains fixed.

5.1.3. Non-binary WCSP

In our third experiment, we consider non-binary WCSP. We take BE-
BB(k) as described in Section 3 and analyze the effect of varying k.
Regarding the lower bound, we use the parameterized LB (2) described
in Subsection 2.2 which only takes into account constraints with at most
s uninstantiated variables. Thus, we have a two parameters algorithm
BE-BB(k, s). Note that BE-BB(—1,s) yields BB(s) as described in
subsection 2.2 and BE-BB(w*(0),s) is plain BE (where o is a min-
degree ordering [16]) as described in 2.3 . We ran experiments on four
problem classes:

(30,5,5,100, 10, .995 - 5°),
20,5,5, 1

{

(35,5,5,100,12,.995 - 55),
0,5,2

1. 2. (3
3. (20,5,5,100,10,.995 - 55), 4. (40,5,2,100, 80, 14).

submitted.tex; 8/05/2002; 11:32; p.19

J. Larrosa and R. Dechter

(30,5,5,100, 10,.995 - 5°),

w*(o) =9, @:6

s=1 s§=2 s=3
k z(o,k) solved nodes CPU solved nodes CPU solved nodes CPU
-1 30 11 530.9 89.7 21 323.2 49.0 21 228.2 54.7
0 21 19 1758 574 25 7.1 6.1 25 3.0 17.7
1 14 19 162.6 54.6 25 2.6 2.5 25 .7 8.0
2 8 24 11.6 11.2 25 1.9 1.6 25 4 4.9
3 4 25 3 2.5 25 .2 9 25 .1 1.3
4 1 25 .0 1.9 25 .0 .5 25 .0 .6
) 0 25 .0 2.7 25 .0 2.6 25 .0 1.0
6 0 25 0 3.3 25 .0 3.2 25 .0 2.5
(35,5,5,100,12,.995 - 5°), w*(0) =7, dg=6

k z(o,k) s=1 §=2 s =
-1 35 3 646.5 113.2 4 684.6 107.5 4 493.3 108.1
0 24 9 259.5 96.1 24 24.6 27.5 19 9.5 684
1 16 9 253.5 95.6 25 8.3 11.2 23 3.2 39.2
2 10 25 12.6 12.7 25 4.1 4.3 25 1.5 221
3 5 25 1.6 5.7 25 9 3.7 25 .7 5.9
4 2 25 A 5.5 25 Ad 2.1 25 1 2.3
) 1 25 .0 8.3 25 .0 6.2 25 .0 2.7
6 1 25 .0 10.1 25 .0 9.6 25 .0 7.7

(20,5,5,100,10,.995 - 55), w*(0) =8, dg=17

k z(o,k) s=1 s= s =
-1 20 25 109.6 30.4 21 40.8 45.3 17 28.0 72.2
0 14 25 69.4 21.6 22 23.2 388 17 14.8 66.9
1 10 25 51.0 16.9 24 15.6 31.1 20 10.1 99.3
2 7 25 175 10.8 25 83 159 21 6.5 46.5
3 5 25 4.9 11.9 25 2.7 8.8 25 2.5 18.7
4 4 25 1.7 43.2 25 1.2 11.5 25 1.0 15.3
5) 3 25 4 66.0 25 b 46.3 25 4 246
6 2 25 1 105.8 25 1 89.8 25 1 7.2

(40,5,2,100,80,14), w*(0) =9, dg=4

k z(o,k) s=1 s = s=
-1 40 9 1629 84.9 9 162.1 84.9 9 162.1 84.9
0 22 14 44.2 63.2 14 442 63.2 14 442 63.2
1 9 24 13.9 26.5 24 13.9 26.5 24 13.9 26.5
2 7 25 3.2 6.8 25 3.2 6.8 25 3.2 6.8
3 6 25 1.7 6.0 25 1.3 6.0 25 1.3 6.0
4 5 25 1.0 14.8 25 .6 8.7 25) 9.0
) 4 23 .0 45.4 24 4 29.6 25 3 20.5
6 3 24 1 1494 24 1 1312 24 1 87.9

Figure 11. Experimental results on four classes of WCSP and different k£ and s. For
each combinations of k£ and s we report three measures. From left to right: number
of solved instances (out of 25), mean number of visited nodes (in thousands) and
mean CPU time (in seconds). We use bold face to indicate the best CPU times for
each experiment.

submitted.tex; 8/05/2002; 11:32; p.20

Boosting Search with Variable Elimination 21

For each class, we generated 25 instances. The mean induced width
w*(0) of the samples along a min-degree ordering o was 5, 7, 8 and 9, re-
spectively. The mean average degree dg of the constraint graphs was 6,
6, 7 and 4, respectively. Each instance was solved with all combinations
of parameters ranging in the intervals —1 < k < 6 and 1 < s < 3. Thus,
each problem was solved 24 times. Some combinations of parameters
were clearly inefficient, and could not solve many instances within a
reasonable time. Therefore, the algorithm periodically checked the time
spent so far and stopped searching when it surpassed 120 seconds. Fig-
ure 11 reports the results of this experiment (mean values). It consists
of four tables, one per problem class. The first column of each table
indicates the value of k. The second column indicates the mean value of
z(0, k) for a static min-degree variable ordering o computed as follows:
Let x; and x; be the variables with the lowest and highest degree in
the constraint graph, respectively. If the degree of x; is less than or
equal to k, x; is selected to be the last in the ordering, it is removed
from the graph, and all its neighbors are connected. Else, x; is selected
to be last in the ordering and removed from the graph. The process is
recursively repeated until all nodes have been selected. This ordering
0, is a static version of the dynamic variable ordering heuristic used by
our algorithms (static because it disregards domain size). Thus, d*(©*)
can be taken as an estimated bound of the search space size traversed
by BE-BB(z,s). As it can be observed in the tables, z(o, k) rapidly
decreases as k is increased, which indicates the impressive decrement
of the search space that variable elimination causes when combined
with search.

The following columns report the results obtained for the three dif-
ferent values of s. For each value, we provide three measures. From left
to right: the number of instances solved by the algorithm within the
time limit (out of 25), the mean number of visited nodes in thousands
and the mean CPU time in seconds.

Regarding the number of visited nodes (middle column for each s
value), our results confirm an expected behaviour. Namely, the algo-
rithm visits fewer nodes as we increase either k (the search space size
decreases) or s (more pruning is performed). Obviously, this decrement
in the number of nodes requires a more expensive variable elimination
and a more expensive lower bound computation. In the following, we
discuss under which conditions the overhead pays off.

In all the problem classes and for all values of s, we observe a
similar performance pattern as we vary k. With low values of k the
algorithm performs badly because a large number of nodes have to
be visited. Often times, many instances cannot be solved within the
time limit. In addition, solved instances require large amounts of CPU

submitted.tex; 8/05/2002; 11:32; p.21

22 J. Larrosa and R. Dechter

Figure 12. Subinstance 1 of CELARG.

time on the average. As we increase k, the performance improves.
Increasing k from —1 to 0 produces significant gains, which means
that BB generates subproblems with variables disconnected from the
rest. The variable selection heuristic delays their selection to the last
moment (their heuristic selection value is infinity) and the algorithm
is unable to extract their contribution to the lower bound. When k
is in the range 2..4, all instances can be solved. Minimum CPU times
are obtained with k& = 2, 3,4. Gains with respect to £ = —1 typically
range from 1 to 2 orders of magnitude in terms of CPU time (observe
that when not all instances are solved, the CPU time reported is an
underestimation of the real time). Higher values of k (k > 4) allow
to solve the problems with very little search (often times visiting less
than one hundred nodes) but with expensive variable elimination, which
causes higher CPU times.

Regarding parameter s, we observe that it is not clear what is its best
value, since it depends on the value of k (additional experiments not
reported in the paper showed that s = 0 and s > 3 produce in general
very bad performances). Regarding parameters k and s simultaneously,
the best results are obtained with s = 2 and k = 3,4.

5.2. FREQUENCY ASSIGNMENT PROBLEMS

In this subsection we analyze the behavior of our approach on the
radio link frequency assignment problem (RLFAP) domain. This is a
communication problem where the goal is to assign frequencies to a set
of radio links in such a way that all the links may operate together
without noticeable interference.

Some RLFAP instances can be naturally cast as WCSP. In partic-
ular, we experiment on subinstance 1 of the CELARG6 problem [6]. It

submitted.tex; 8/05/2002; 11:32; p.22

Boosting Search with Variable Elimination 23

s=0 s=1 §=2 s=3
k z(o,k) nodes CPU nodes CPU nodes CPU nodes CPU
. 14 3 3 3 3 3 3 * %
12 * * * * * * * *
10 * * * * * * * *

8§ 8554 30 7430 34 7430 34 7430 34

ST W~ O -

6 448 33 348 27 348 27 348 27
) 46 49 49 40 49 40 49 40
4 6 86) 89 5) 89 5 89
3 * * * * * * * *

Figure 13. Experimental results on a frequency assignment problem and different
k and s. For each combinations of k and s we report the mean number of visited
nodes (in thousands) and the mean CPU time (in thousands of seconds).

has 14 variables, 74 binary constraints and all domains have 44 val-
ues. Figure 12 shows its constraint graph. This problem can be solved
in about one hour with branch and bound with a sofisticated lower
bound [20]. However, it is too difficult for our basic non-binary solver
BE-BB(k, s) which uses a very simple lower bound. For that reason, in
this experiment we reduce the problem size by reducing each domain to
its ten first values. The optimal cost of the resulting problem is 24749.
We considered the task of proving optimality.

Figure 13 shows the cost of solving this problem with BE-BB(k, s)
as described in the previous subsection under different combinations
of parameters. For each execution, we report the number of visited
nodes (in thousands) and the CPU time (in thousands of seconds).
An asterisc indicates that the algorithm did not finish in 24 hours.
For each value of k, we also report in the second column the z(o, k)
value along the min-degree variable ordering described in the previous
section. As can be observed, a plain search strategy (k = —1) cannot
solve the problem. More than that, a very limited amount of variable
elimination (k = 0, 1) is not enough to boost search in this problem. On
the other hand, the allowance of expensive variable elimination (k > 5)
causes a prohibitive overhead. Best results are obtained with 2 < k < 4,
which is in accordance with the results obtained for random WCSP.

Regarding parameter s, we observe that increasing it above 1 does
not have any effect. A careful examination of the behavior of BE-
BB(k,s) on this problem provides the explanation of this fact. We
observed that the algorithm never interleaves search and variable elim-
ination in the same search path: it branches until a point in which all

submitted.tex; 8/05/2002; 11:32; p.23

24 J. Larrosa and R. Dechter

Figure 14. Subinstance 1 of CELARG.

remaining variable can be eliminated. Consequently, since the problem
is originally binary, all search is carried out with binary constraints,
which makes s > 1 useless. We illustrate this fact for the £ = 3
case. Observe that variables 0,1,4,9,12 and 13 are totally connected in
the original constraint graph (Figure 12). They are typically assigned
first (their high degree favors their selection for branching). After this
assignments, the current subproblem has the constraint graph depicted
in Figure 14. All variables have degree 3, which allows the elimination
of the remaining variables. We have observed a similar behavior for
k=2,4,5.

6. Related Work

The idea of using a restricted form of variable elimination to overcome
its high space and time complexity is not new. Some forms of local
consistency in constraint satisfaction are achieved with limited forms of
variable elimination. The clearest example is relational consistency [12]
in the CSP context, where the size of buckets and the arity of the
new constraints is bounded (rendering the algorithm incomplete). Pro-
cessed variables are not eliminated in order to preserve the soundness of
subsequent search. Enforcing relational consistency makes explicit con-
straints that were implicit in the original problem making it presumably
simpler.

Similar ideas have been explored in constraint optimization prob-
lems. Mini-bucket elimination [11] is another BE-based algorithm which
also bounds the size of the buckets and the arity of the new constraints
(which also renders the algorithm incomplete). It can be used as an
approximation algorithm providing an upper and a lower bound on the

submitted.tex; 8/05/2002; 11:32; p.24

Boosting Search with Variable Elimination 25

best cost attainable. It was shown in [16] that lower bounds obtained
by mini-buckets can be used during branch and bound, increasing its
pruning capabilities [16].

The idea of combining variable elimination and search has also been
explored in the past. The cycle-cutset method [7] was proposed for
constraint satisfaction. It consists of assigning variables until a tree-
structured subproblem is obtained. The subproblem is trivially solved
with a dynamic programming procedure. This is essentially the same
as a BE-BB(1) specialization to constraint satisfaction. Much closer
to BE-BB(k) is the work of Rish and Dechter [24] in the satisfiability
domain. They explored different hybrids of Directional Resolution, a
variable elimination schema, and the Davis-Putnam search procedure.
One of them, DCDR(k), is a specialization of BE-BB(k) to satisfiability.
The contributions of this paper beyond this earlier work are: a) in
generalizing the idea to constraint satisfaction and optimization, b) in
providing a new worst-case time bound and c¢) in the empirical demon-
stration that this approach can speed-up state-of-the-art algorithms in
a number of domains.

7. Conclusions

Variable elimination is the basic step of Bucket Elimination. It trans-
forms the problem into an equivalent one, having one less variable.
Unfortunately, there are many classes of problems for which it is infea-
sible, due to its exponential space and time complexity. However, by
restricting variable elimination so that only low arity constraints are
processed and recorded, it can be effectively combined with search to
reduce the search tree size.

In this paper, we have extended a previous work of [24] in the
satisfiability domain. We have introduced BE-BB(k), a new general
algorithm for constraint problems that combines variable elimination
and search. The tradeoff between the two solving strategies is controlled
by parameter k.

We have introduced a worst-case bound for the algorithm’s time
complexity that depends on k and the constraint graph topology. The
bound can be used to find the best balance between search and variable
elimination for particular problem instances. So far, our analysis is
restricted to static variable orderings. However it may effectively bound
also dynamic orderings, since those tend to always be superior. Further
analysis on dynamic ordering remains in our future research agenda.

We have provided empirical evaluation on three different domains.
The results show that augmenting search with variable elimination is

submitted.tex; 8/05/2002; 11:32; p.25

26 J. Larrosa and R. Dechter

a very effective approach for both decision and optimization constraint
problems. In fact, they demonstrate a general method for boosting
the behavior of any search procedure. The gains on sparse random
problems are impressive (sometimes up to two orders of magnitude).
These results are substantially more encouraging than those reported
in [24], where the hybrid approach was sometimes counter-productive.

Finally, we want to note that the idea behind our algorithm can
be applied to a variety of automatic reasoning tasks (i.e., probabilis-
tic reasoning, fuzzy-logic reasoning,...), because dynamic programming
and search are widely used in a variety of domains [8]. An ultimate
goal of our research is to understand the synergy between these two
schemas in general.

References

1. Arnborg, S.: 1985, ‘Efficient algorithms for combinatorial problems on graphs
with bounded decomposability - A survey’. BIT 25, 2-23.

2. Bertele, U. and F. Brioschi: 1972, Nonserial Dynamic Programming. Academic
Press.

3. Bessiére, C.: 1994, ‘Arc-consistency and Arc-Consistency Again’. Artificial
Intelligence 65(1), 179-190.

4. Bessiere, C. and J.-C. Regin: 1996, ‘MAC and Combined Heuristics: Two Rea-
sons to Forsake FC (and CBJ?) on Hard Problems’. In: Proc. of the 2™ CP.
Alexandria, USA, pp. 61-75.

5. Bistarelli, S., U. Montanari, and F. Rossi: 1997, ‘Semiring-Based Constraint
Satisfaction and Optimization’. Journal of the ACM 44(2), 201-236.

6. Cabon, B., S. de Givry, L. Lobjois, T. Schiex, and J. Warners: 1999, ‘Radio
Link Frequency Assignment’. Constraints 4, 79-89.

7. Dechter, R.: 1990, ‘Enhancement Schemes for Constraint Processing: Back-
jumping, Learning, and Cutset Decomposition’. Artificial Intelligence 41,
273-312.

8. Dechter, R.: 1999, ‘Bucket elimination: A unifying framework for reasoning’.
Artificial Intelligence 113, 41-85.

9. Dechter, R., K. Kask, and J. Larrosa: 2001, ‘A General Scheme for Multiple
Lower Bound Computation in Constraint Optimization’. In: Proc. of the 7"
CP. pp. 346-360.

10. Dechter, R. and J. Pearl: 1989, ‘Tree Clustering for Constraint Networks’.
Artificial Intelligence 38, 353—366.

11. Dechter, R. and I. Rish: 1997, ‘A Scheme for Approximating Probabilistic
Inference’. In: Proceedings of the 18th UAI-97. San Francisco, pp. 132—141.

12. Dechter, R. and P. van Beek: 1997, ‘Local and global relational consistency’.
Theoretical Computer Science 173(1), 283-308.

13. Freuder, E. and R. Wallace: 1992, ‘Partial Constraint Satisfaction’. Artificial
Intelligence 58, 21-70.

14. Frost, D. and R. Dechter: 1994, ‘In Search of the Best Constraint Satisfaction
Search’. In: Proceedings of the 12th AAAI pp. 301-306.

submitted.tex; 8/05/2002; 11:32; p.26

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Boosting Search with Variable Elimination 27

Haralick, R. M. and G. L. Elliott: 1980, ‘Increasing tree seach efficiency for
constraint satisfaction problems’. Artificial Intelligence 14, 263—-313.

Kask, K. and R. Dechter: 2001, ‘A general scheme for automatic generation of
search heuristics from specification dependencies’. Artificial Intelligence 129,
91-131.

Larrosa, J.: 2000, ‘Boosting Search with Variable Elimination’. In: Proc. of the
6" CP. Singapore, pp. 291-305.

Larrosa, J.: 2002, ‘Node and Arc Consistency in Weighted CSP’. In: Proceedings
of the 18th AAAL

Larrosa, J. and P. Meseguer: 1998, ‘Partial Lazy Forward Checking for MAX-
CSP’. In: Proc. of the 18" ECAI Brighton, United Kingdom, pp. 229-233.
Larrosa, J., P. Meseguer, and T. Schiex: 1999, ‘Maintaining Reversible DAC
for Max-CSP’. Artificial Intelligence 107(1), 149-163.

Lawler, E. L. and D. E. Wood: 1966, ‘Branch-and-bound methods: A survey’.
Operations Research 14(4), 699-719.

Meseguer, P., J. Larrosa, and M. Sanchez: 2001, ‘Lower Bounds for Non-binary
Constraint Optimization Problems’. In: Proc. of the 7" CP. pp. 317-331.
Nudel, B.: 1988, ‘Tree search and arc consistency in constraint satisfaction
algorithms’. Search in Artificial Intelligence 999, 287-342.

Rish, I. and R. Dechter: 2000, ‘Resolution vs. SAT: two approaches to SAT’.
Journal of Automated Reasoning 24(1), 225-275.

Schiex, T.: 2000, ‘Arc Consistency for Soft Constraints’. In: Proc. of the 6™
CP. Singapore, pp. 411-424.

Schiex, T., H. Fargier, and G. Verfaillie: 1995, ‘Valued Constraint Satisfaction
Problems: hard and easy problems’. In: IJCAI-95. Montréal, Canada, pp.
631-637.

Smith, B.: 1994, ‘Phase transition and the mushy region in constraint
satisfaction’. In: Proceedings of the 11th ECAI pp. 100-104.

Verfaillie, G., M. Lemaitre, and T. Schiex: 1996, ‘Russian Doll Search’. In:
AAAI-96. Portland, OR, pp. 181-187.

submitted.tex; 8/05/2002; 11:32; p.27

submitted.tex; 8/05/2002; 11:32; p.28

