Up and Down Mini-Buckets: A Scheme for Approximating Combinatorial
Optimization Tasks

Kalev Kask, Javier Larrosa and Rina Dechter
Information and Computer Science
University of California at Irvine, USA

Abstract elimination twice, up and down, alonghaucket-treeorder-
} ing, we may get a linear speed up over a brute-force approxi-
The paper addresses the problem of computing mation method. Such performance improvements are crucial

lower bounds on the optimal costs associated with if we are to apply the scheme at every node in search algo-
each unary assignment of a value to a variable in rithms.

combinatorial optimization problems. This task The structure of the paper is as follows: Section 2 intro-
is instrumental in probabilistic reasoning and is duces basic notation; Section 3 overviews BTE; Section 4
also important for the development of admissible introduces algorithm UD-MB, the main contribution of this
heuristic functions that can guide search algorithms paper; Section 5 reports empirical results demonstrating the
for optimal solutions. The paper presents UD-MB, effectiveness of our scheme in Max-CSP and probabilistic de-
a new algorithm that app|ies the mini-bucket elim- Coding prob'ems; and Section 6 concludes.

ination idea [Dechter and Rish, 19970 accom-
plish this task. We show empirically that UD-MB

may achieve a substantial speed up over a brute- 2 Preliminaries

force approximation method via mini-buckets. A combinatorial optimization problerCOP) is defined by
atupleP =< X,D,F, ®,|> where: X = {1,2,... n}
] is a set of variablesD = {D,..., D,} is a collection of
1 Introduction finite domains ; is the set of possible values for variable

A Combinatorial optimization problerfCOP) is defined by). F ={f1,..., f+} is a set ofcost functionswith scopes

a finite set ofvariables a set of finitedomainsand a set of gll'.heé, d%%i?\eg?ﬁs:thé%aﬁé’s%n} (r% d%ct)f) ’f 1h§ ofo%a:%s of
cost functions A solutionis theoptimal costover the set of ! P

X . . variables inS;. r mbines functions (for exampl
complete assignments of values to variables. Itis well known) & ables int;;. Operators combines functions (for example,

that Solving COP is Nard COP arise in a large variety -Umor Preductof functions). Operatof projects function
of domains includingrtificial intelligence chemistry biol- pe {typically, 9 y

X , . L3 . minimizationor maximization
ogy and in numerous industrial applications. Solving tech-"" _. . Lo .
nigues have been developed in fields sucloperations re- Given a set of variable¥ C X, the optimization task is

search[Nemhauser and Wolsey, 198&onstraint satisfac- Opty =Uy (2'_. f:
tion [Freuder and Wallacel992; Larrosaet al, 1999 and phy =y (©j=1fj)
probabilistic reasoningPearl, 1988 Typically, Opty is the problem solution For the sake of

In this paper we address the problem of approximating thelarity and for its wide applicability, this paper will focus
singleton-optimality problendefined as the optimal cost as- onadditive minimization problemshere variables are elim-
sociated to each unary assignment of a value to a variablénated by minimization (i.e.ly f = ming_v{f}, S is
This task is instrumental in probabilistic reason[iechter the scope off) and functions are combined by addition (i.e.,
and Rish, 199F7and is also important for the development @ = +). However, our results can be directly extended to
of admissible heuristic functions that can guide search algogeneral COP. We focus on tlsengleton-optimalityask, de-
rithms for optimal solutions. In particular, such lower boundsfined as,
can be used in look-ahead methods for dynamic variable and L .
value selections strategies that detect and prune infeasible Opt; = S (Z fi), vieX
valueg[Larrosaet al, 1994. =

The paper presents a new algorithm, UD-MB, that applies)¢; is a unary function ovei which returns for each value
the mini-bucket elimination idea{DeChter and Rish, 1997 a € D; the Optimum cost restricted to the assignrnfgﬂ.t a.
It is built upon BTE, an exact algorithm for the singleton-
optimality problem which is presented in a companion pa- !In the constraint satisfactiorcommunity cost functions are
per [Anon., 200]. We show that by applying mini-bucket calledsoft constraints

oot a8 Definition 3.1 [Anon., 200} (bucket-tree, eliminator)
Let G* (o) be the induced graph of a COP along ordering
o. Thebucket-treas a triplet< 7, x, ¥ >:

R 9 oy e 7 = (V, E)is atree whose nodes are the problem vari-
ables. The parent of is the latest earlier neighbor of
i in G* (o) (namely, the closest earlier neighbor in

() MG ‘
b G (o))
e x is alabelling function for each node.(¢) is the set of
o) 1 variables containing and every earlier neighbor afin
G*(0).
@ ©
¢ ¢ is alabelling function for each node:(?) is the set of
Figure 1:a) Primal graph of a COP instanck; Its induced cost functions which contains every function haviag
graph with respect the lexicographical orderieiits bucket- the highest variable in its scope.
tree. Let: andj be two adjacent nodes if. Theeliminatorof :

with respectj is defined asim(i, j) = x(7) — x(J),

Example 2.1 Maximal Constraint Satisfaction (Max-CSP) Example 3.1 Figure 1c depicts the bucket-tree of the in-
is the problem of finding the minimum number of violatedduced graph in Figure k. The parent of; is 2, ¥(5) is
constraints of a total assignment in an overconstrained{f3(5,2)}, x(5) is {1,2,5}, the eliminator of5 respect to
CSP[Freuder and Wallace, 1992 Clearly, Max-CSP can 2 iselm(5,2) = {5} and the eliminator o respect td is
be expressed as an additive minimization problem with cone/m(1,2) = 0.

straints represented as 0/1 cost functions, where O denotes e that visiting the nodes of from last to first along

satisfaction and 1 denotes violation. In this contéht; o deringo produces a traversal from the leaves to the root of

evaluated over € D; is the minimum number of constraint 7. In BE messageare computed in the nodes of the bucket-
violations attainable ifi < a is extended to a complete as- (o using functions contained in théisckets

signment.

X L i) Definition 3.2 (bucket, message) A messagg ;) is a func-
Definition 2.1 [Dechter! 199]Xpr|'mal and induced graph, jgn computed in nodéand sent to an adjacent node For
induced width) A COP instance is associated with an undixach node we define itducketas the set of all functions in
rected graphG called theprimal graphsuch that problem _#(i) and all messages received hynamely,
variables are the graph nodes and two nodes are adjacent i
they are included in the same scope of some cost function. Bek(i) = ¥(1) Ugen() Mk,

Given a graph7 and an arbitrary ordering of its nodes its] . .

induced graph* (o) is obtained by processing the nodes in WhereN (i) denotes the neighbors 6fn 7. Messagen; ;)
reverse order. For each node allits earlier neighbors are con-iS computed when has received the message; ;) from
nected, taking into account old and new edges created duringach of its neighbors other thgn The computation ofu; ;)
the process. The induced widiti (o) is the maximum num- consist of summing up all the functionsfizk (i) excluding

ber of earlier neighbors over the nodes@f (o). m(; ;y and subsequently eliminating the variables in the elim-
inator of i andy,

Example 2.2 Figure 1« depicts the primal graph of a COP _ .

instance defined over six variablés, 2, ..., 6} and six cost DT i) Z ¥

functions{fi,..., fe} with scopes: S; = {5,6}, S3 = {J€Bek(i),f#m;i}

(1,6}, 55 = {2,5}, 54 = {1,4}, 5 = {2,3} and 55 = Algorithm BE receives a bucket-tree 7, v, > as input

{1, 2}, respectively. Figure &.depicts the induced graph . . .

. . : s . .and it processes nodes from last to first (the bucket-tree is tra-
Wllth' respect to the lexicographical order. Solid I|ne§ deplctverseol in a top-down manner). Processing nodensists of
original edges in the problem graph and the broken-line edge omputing messagex; ;,, where; is the parent of. Pro-
was added during the computation of the induced graph. Th essing the root nodeyyields an empty-scope function which

induced width along the ordering is 2. is the problem solution. In general, the complexity of BE is
exponential in the problem induced width. It was shown that,

3 BucketTree Elimination (BTE) Theorem 3.1 [Dechter, 1999 Once BE terminates, the sum
Bucket Eliminatior(BE) [Dechter, 199Dis a unifying algo- of all the functions in the first bucket yields functiopt; .
rithmic framework that generalizes dynamic programming toNamely,

accommodate probdlstic and deterministic reasoning tasks, Opty = Z f

as well as COP. It can be viewed as a one phase message-
passing process along the so-calleacket-treedefined in {7eBek(1)}

terms of the induced graph as follows (details are given From Theorem 3.1 it is clear that the singleton-optimal
in [Anon., 2007). functions can be derived by running BEtimes, each one

] up phase. For instancep sy = ming{fi + f2} and
tioal mse) = mina{f3 + mz 5} are computed in the top-
] down and bottom-up phases, respectively. Funafiph; =
mings 53{f3 + m(s 5) + m(2,5)} is the desired singleton op-
miao(1.9) < w29+ mas1.2) 1] 5 timality function for variablée.

meg)(1,5) := ming{f1(5,6) + f2(1,6)}

s (1.2) 1= ming{£2(2.5) 4 mie(1,5) | Algorithm 1: BTE. < 7,x,t% > is the bucket-tree for
ra(2) = mina{f5(23)} the orderinge = 1,2,...,n. The first loop performs the
/7 mian(@) = mim 1,2) % s (1.2) + (1)} top-down pass, the second loop performs the bottom-up
4 pass and the third loop generates the singleton-optimality
® functions.
om0} Procedure BTE(< 7, x, ¢ >)
11fori=ntoldo
O ma0) = s j :=parentofiin T ;
me j) = mmelm(i,j){Z{feBck(i)—m(j),)} I
end
Figure 2: Execution of BTE with the problem of Figure 1. 12 for i = 1ton do
j:=parentofiin7;
m i) = mlﬂelm(j,z’){E{fegck(j)_m(m)} It

ms)(1,2) = fo(1,2) + m2)(2) +mz(1)

1,

{/e}

(1) = ming{ fo(1,2) + ms (1, 2) + miz2(2)} l

m) (1) = m (1)

with a different variable initiating the ordering. Each execu-
. ;) : : end
tion computes the singleton-optimality function for a differ- .
. . . 13 fori=1ton do
ent variable. However, in a companion pap&non., 2001 Opti == min, iy {3 s
we introduce algorithrBucket Tree Eliminatio(BTE) which g Pri = M (@) —{i}12{ feBek(i)} /I
accomplishes the task more efficiently. It extends BE by ©" Onil1 < i
adding a second message-passing phase along the bucket!®Um {Opti|1 < ¢ < n}
tree. At termination, each bucket can compute the singleton-
optimality function for its variable. In [Anon., 2001, we showed that BTE can provide up to
In the second phase, nodes are processed from first to ld@tear speed-up over the alternative of running/B&Emes.
(the tree is traversed in a bottom-up manner). Processing
node: consist of computing message; ;) fromi to every 4 Up and Down Mini-Bucket Elimination
child of 4, j.
Algorithm BTE also generalizes probabilisticreasoning al-4.1 UD-MB

gorithms over polytreefPearl, 1988 In that domain, top- The time and especially the space complexity of BTE ren-
down and bottom-up messages are callednd, respec- ders the algorithm infeasible for problems with high induced
tively. This distinction is convenient because the directionyidth. In this section we introduce a new algorithm called
ality pf a message carries different semantics and it is theJp and Down Mini-Bucket EliminatiogUD-MB) that ap-
notation used irfAnon., 2001. Here, we use common no- proximates the singleton-optimality functions by providing
tationm; ;) for both up and down messages, whetg ;) is |ower bounds. UD-MB computes a set of unary functions
the message fromto j. This notation emphasizes that there 1, B; such thatLB; < Opt; for all i € X (we say that
is no algorithmic difference between messages going up ang < ¢ iff f andg have the same scope and for every tuple
messages going down along the tree. f(t) < g(t)). These approximation functions are computed
“Algorithm 1 describes BTE. In the top-down phase ysingmini-bucketdDechter and Rish, 1997 The algorithm
(line 1.1) eacmode: computes the message,; ;, toits par- js parameterized by which allows to trade time and space
entj. In the bottom-up phase (line 1.2) the parg¢mtf each for accuracy. Increasing, the algorithm provides more ac-
nodei computes the message; ;). After the second phase, curate approximations, at the cost of higher time and space
every node haseceived the messages from all itsgtéhors complexity.
(children and parent). Then BTE comput@st;, for every The idea is to approximate the computations by partition-
node: (line 1.3), by summing all the functionsifick (i) and ing buckets into mini-buckets and by eliminating the appro-
subsequently eliminating every variableji) other thani. priate variables in each mini-bucket, independently.

Formally, Consider an edgéi, j) of 7. The exact computation of
Opt; = min (Z f) m; ;) was defined in the previous section as,
MO o) .
. . m(i,g) = min (> /)
Example 3.2 Figure 2 shows the trace of running BTE for etm(i,g) {FEBek(i), f#m (0}

the problem in Figure 1. It depicts the bucket-tree and the

flow of messages. Next to each edgg) where; is the Its approximation); ;), is based on a partition d#ck (i) —
parent ofi, there are the two messagesy(; ;) computed {my; ;)} into mini-bucketsmb(1), ..., mb(p)} such that the
in the top-down phase anak; ;) computed in the bottom- number of variables mentioned in eachbsunded by:. In

each mini-bucket we compute,

m@»yj): min { Z I}

Amld) b (i)

The sum of functionsinthe sét; ;) = {m; ;,, ..., m{;)}
is the basis of a lower bound fai; ;). Namely,

p
(Z ml(ci,j)) < M)

k=1

In summary, a message in UD-MB is the set of functions
Mi; ;) whose sum is a lower bound function fax; ;. The
lower bound ofOpt;, denoted. B;, is obtained by applying
the same idea,

q

LB;=3) ((min { [}
= X Figure 3: Execution of UD-MB withr = 2 with the problem
in Figure 1.

Algorithm 2 describes UD-MB. Its structure is identical to
BTE. The only difference is that in UD-MB computations are
approximated via mini-buckets. The algorithm uses proce-
dureApMB(G, V/,) , which approximates the sum of a set of 42 Example
functionsG and the subsequent elimination of a set of vari-Figure 3 shows the trace of running UD-MB with = 2
ablesV’, subject to accuracy parameter First, functionsin on the problem in Figure 1. The top-down phase starts
G mentioning variables iy are collected in a set (line 2.4) computing}/ s 5, by calling procedurédpMB(G, V, 2) with
and partitioned into mini-buckets (line 2.5). Next, variables ; _ {f1(5,63,f2(1,6)} andV = {6}. Each function
in 1" are eliminated from each mini-bucket (line 2.6). The from 'is put into one mini-bucket (their combined arity
procedure returns the result of processing each mini-buckey,rpasses the value of and variables is eliminated from
and all the unprocessed functions. each mini-bucket, generating two functionsif; . (5) =

ming{f1(5,6)} andm?; (1) = mins{f>(1,6)}. Message

Algorithm 2: UD-MB. < 7T, x, ¥ > is the bucket-tree for

the ordering = 1,2, ..., nand: is the accuracy parameter. ~ M(s;5) = {m(g 5)(5),m{5 5)(1)} is then sent to node.

Next, M5 oy is computed by procedupMB(G, V, z) with

Procedure UD-MB(< 7, x, ¥ >,) G = {fs(2,5), m 5,(5), m{s (1)} andV = {5}. Only
21 fori=ntoldo f3 andm(, ;, mention variablé. They can be placed in the

j:=parentofiin7 ;

. . same mini-bucket and variablesliminated, producing a new
M jy :=ApMB(Bck(i) — M), elm(i, j),z); P 9

functionm; , (2) = mins{fs(2,5) + m(; 5,(5)}. Func-

22 ?onrdi — 1ton do tion mf; (1), not processed in nodg is passed down as
j = parentofiinT; ms (1) = mf; 5)(1). The process continues until all top-
M iy ==APMB(Bck(j) — M j), elm(j,7), 2) ; down messages are computed.
end o The bottom-up phase starts computivfg,), which is ob-
23 fori = 1tondo LB; :=ApMB(Bck(j), x (1) —{i}, 2) ; tained by procedurpMB(G, V, z) with G = {m!, (1)}
return {LB;|1<i< n} Y procedurap U) (1)
== andV = 0. Since there is no variable to eliminate, the
Procedure ApMB(G, V/, =) function is not processedr((; , (1) = m(, ,,(1)). Mes-
24 A :=functions inG that mention variables ifr’; sage M1 2y = {m(llyz)(l)} is sent to node2. Next,
25 (z)mini-buckets from4, {mb(1), ..., mb(p)}; M3y is computed by procedurdpMB(G,V,z) with
26 for k := 1top do gy := minv {3 c,p) f13 G = {fs(1,2),m5 5)(2),mfs 5 (1),my (1) and V' =
retum (G —AU{g1,...,9}) {1}. All functions mentioning variablé can be placed in

onle mini-bucket where the \/2ariable is ?Iiminated, yielding
o . iy 5(2) = ming{ fe (1, 2)F+mi 5 (1) 4+myy 5 (1)} Func-
The top-down phase of UD-MB coincides with the original .; 1 ; 9 S
MB algorﬁ)thm[DeF::hter and Rish, 1997although its descfci]p- tion m(?’ﬂ)@) Is not proc'essedqi'(w)(Q) = M55 (2)), be-
tion looks somewhat different. The only difference, however,c2US€ it does not mention variable MessagelM(»s) =

is that in our description mini-bucket functions do flanp {™M(23)(2), m(, 3)(2)} is sent to node.

to their destination bucket according to thighest variable After the bottom-up phase, lower bounds
in the scopeule. Instead, thetravel downthe bucket-tree. can be computed. For instancel. B, is com-

puted by procedure ApMB(G,V,z) with G = 5 Empirical Results

{6(1,2),mi5 5)(2), ms (1), mi5 5)(2),m{y (1)} @d e have run a number of experiments in order to inves-
V. = {l1}. All functions mentioning variable can be tigate the average speedup of UD-MB over the alterna-
placed in one mini-bucket where the variable is eliminatedtive of nMB. We will be comparing two algorithms: UD-
9(2) = mini{fs(1,2) + mf; (1) + m(, (1)} The MB(z) and nMB(z). For every problem instance, we run
lower bound function is obtained summigg2) with the both UD-MB(z) and nMB(z), and record their running
unprocessed functions B, = g(?)—|—m(1572)(2)—|—m(1372)(2)_ timestyp_arB(-) andt,arp(z). The speedup is defined as
thmB(:)/tuD-MB(=)-
4.3 Correcness and Complexity Given a problem instance, we first creatmgn-degreeor-
dering of the variablésthat is used to create the bucket-tree
for the UD-MB algorithm.nMB requiresn different order-
ing. The ordering initiated by variablds obtained by swap-
ﬁ'lng the first variable with in the min-degree ordering. We
have tested the performance of UD-MB andB on two dif-

Lemma4.1 [Dechter and Rish, 1997.et H be the output ferent domains: random binary Max-CSP problems and ran-

The following two Lemmas are useful to prove the correct-
ness of UD-MB. The first one proves thapMBis a correct
way to obtain lower bounds. The second one proves that me
sages in UD-MB are lower bounds of messages in BTE.

of ADMB(G, V, z) . Then, dom probabilistic decoding problems.
Z h < min{Zg} 5.1 Max-CSP
heH v geG Max-CSP is an optimization version of Constraint Satisfac-

tion and was described in Example 2.1. We used the well
Lemma4.2 Let< 7,x,v > be a bucket-tree. For every known four parameters random model, N, K,C, T >,

edge(i, j) of 7, where N is the number of variablesy is the domain size,
, C'is the number of constraints, afitis the tightness of each
(Z)< mg s constraint (seéLarrosaet al, 1999 for details).
Mig) (0.3 In Tables 1 and 2 we have the results of experiments with
=1 two sets of Max-CSP problemsy = 100, K = 3, 200 <
wheremy; ;, is the message computed by BTE drfid ;; = ¢ < 400 andN = 50, K = 5,75 < (' < 135. In these
{ml. ..,mP . }isthe message computed by UD-MB. €Xperiments the value df is irrelevant since the complexity
(G377) of the algorithms do not depend on it. Each row in the table
From Lemmad4.2 it follows that, corresponds to problems with a fixed number of constraints
. (column 1). In column 2 we have the average induced width
Theorem 4.1 UD-MB is correct. Namely, along the min-degree ordering. In columns 3 through 8 we
LB; < Opti, Ya; € X report the average speed-up for different values.af our

experiments, the average CPU time per problemufdB(z)

The following Theorem establishes the complexity of UD- fanges from a fraction of a second £ 2) to as much a 5

MB. minutes ¢ = 7).
]) We observe that the speedup is sometimes as large as an or-

Theorem 4.2 The complexity of UD-MB isD(n x r x der of magnitude. We also see that the speedup is correlated
exp(z)), wheren is the number of variables; is the num- with the induced widthu* - the larger the induced width the
ber of cost functions andis the accuracy parameter. smaller the speedup. This observation coincides with the the-

It was shown in[Dechter and Rish, 1997; Larrosa, 2000 Oretical result obtain for classes of problems (see proof of
that the complexity of MB isD(r x exp(z)) and it is easy Theorem4.3) where the speed up was inversely proportional
to see that the brute force solving approach for the singletof? the induced witdth of the problem. ~Another interesting
optimality problem of running MB: times (to which we will ~ observation from Table 1 is that, when the constraint graph
refer asnMB) has complexityO(n x r x exp(z)). Conse- IS sparse’ = 200), the speedup decreases:amcreases,
quently, the speed up of UD-MB oveMB is not captured by ~ While for dense graphg{= 400) the speedup increases with
this worst-case bounds. However, the following result shows -
that UD-MB is never worse thaaMB and the speed-up for 52 Probabilistic Decoding

particular instances ranges fromo 1. o .

. Channel codings a systematic way to add redundancy to a
Theorem 4.3 Letiy g, typ—m @andiny g be thetime cost source of binary information to be transmitted through a noisy
of executing MB, UD-MB andMB with the same value. channel. Redundancy is used to correctly retrieve the infor-

Then, for all problem instance, mation at destinationProbabilistic decodings the task of
finding the most probable source of information, given the
tMp <tuvp-mB <lnMB received information and thedandancy pattern.

and the previous bound is tight. Namely, there are problem 2The variable with the smallest degree is placed at the end of the

instances for which UD-MB is times faster thamMB as rgering, all its neighbors are connected and it is removed from the
well as instances where there is no speed-up. graph. The process s repeated until every variable has been selected.

I Cl w" [2=2]2=3]2=4]2=5]2=6]=2=7] ations Research, Constraint satisfaction, heuristic search and

I N = 100, K = 3. 50 instances. | probabilistic reasoninf; Pearl, 1988; de Givrgt al,, 1997;
200 | 21.2| 10.8] 10.1| 9.20| 8.36| 7.77 | 7.82 Schiex, 200D
250 | 27.9| 6.87 | 6.86 | 6.60 | 6.29 | 6.10 | 6.16 The bucket-elimination scheniBechter, 199Pprovides a
300| 33.7| 449 | 497| 504 | 5.06 | 5.14 5.28 unifying framework that facilitates the development of gen-
350 | 389|342 4.02| 422|435 450 4.73 eral methods for combinatorial optimization problems. It
400] 430 2.65| 3.36 | 3.68] 3.88 | 407 | 4.34 also helps to the cross-fertilization of ideas across different

fields. Mini-bucket eliminatiodDechter and Rish, 19%7s

Table 1: Speedup of UD-MB{ overnMB(z). Max-CSP. an approximation scheme based on bucket elimination. In
this paper we have introduced UD-MB, a new algorithm that
[Cl w” [2=2]25=8]2=4]235] 276 [=7 | uses mini-buckets to compute lower bounds for the singleton-
I N =50, K = 5. 50 instances. I optimality problem. Approximating methods for this prob-
75]17.10] 763] 6.63] 6.36[6.49] 7.11] 8.93 lem are useful in probabilistic reasoning. They are also use-
90 | 9.48 | 5.98 | 4.64 | 459 | 476 | 5.11| 5.44 ful as generic look-ahead procedures to be used within al-
105| 11.1| 449 | 3.68 | 3.64 | 3.79| 3.97 | 4.34 gorithms that search the optimum, where the lower bounds
1201 13.9| 372 317 | 3.12| 3.32| 344 3.70 are used to detect and prune infeasible values as well as to
135] 163|329 2.73| 267 | 2.81] 302 3.2 guide the next step of sear¢Rreuder and Wallace1992;

Larrosaet al, 1999.
Table 2: Speedup of UD-MB] overnMB(z). Max-CSP. We showed that UD-MB provides a linear speed-up over a
brute-force application of mini-buckets for classes of prob-
lems. Our experiments on two different domains demon-

: ; . : . _ strated the practical effectiveness of our approach. The in-
formation bits, we addv additional redundant bits using ran tegration of UD-MB with search methods remains as future

dom linear block codes (eachdwndant bit is the XOR of
randomly chosen source bits). Finally, we simulate the transOrk-
mission by adding white Gaussian noise (this experimental

setting has already been useditask and Dechter, 199p References

The general task is to retrieve the source bits from the bits gDechter and Rish, 1997R. Dechter and I. Rish. A Scheme
destination. The problem can be formulated as a COP where For Approximating Probabilistic Inference. Proceed-
the NV source bits are the problem variables (with binary do- ings of UAI'97.

mains). There aré&/ x P cost functions of arity?, each one T .
! R : ! ; Dechter, 199D R. Dechter. Bucket elimination: A unifying
defined by a probability distribution. Functions are combmeoI ’ : iy . ol
by multiplication (i.e.,® = x) and variables are eliminated ggnlegv;grk for reasoningArtificial Intelligence 113:41

by maximization (i.e.|}y f = maxs_vy f)
We consider the task of computing theost probable ex- [Freuder and Wallacd,993 E.C. Freuder and R.J. Wallace.
planation valugMPE) for each variable-value pair, whichis ~ Partial Constraint Satisfaction Artificial Intelligence

In our experiments we generate random vectors/ah-

equivalent to the singleton optimallity problem. 58:21-70, 1992.
In Table 3 we have the results of experiments with a sefde Givryetal, 1997 S. de Givry, G. Verfaillie and T.
of random coding problems wittV. = 100 variables and Schiex. Bounding the optimum of Constraint Optimiza-

3 < P < 7. The results are similar to the case of Max-CSP. tion Problems. IfProceeding of CP'97

Again we observe that the speed-up is sometimes as large
- - ask and Dechter, 199K. Kask and R. Dechter Branch
an order of magnitude. We also see that the speedup is corr@% and Bound with mini-bucket heuristi®roc. of ICAI'99

lated with the induced widthy* - the larger the induced width

the smaller the speedup. [Anon., 2001 Anonymous. Unifying Tree-Decomposition
Schemes for Automated Reasoning. SubJ@AI'’2001
6 Conclusions and Future Work [Larrosaet al, 1999 J. Larrosa, P. Meseguer and T. Schiex.

Maintaining Reversible DAC for Max-CSHPArtificial In-
telligence 107:149-163, 1998.

[Larrosa, 200D J. Larrosa. On the Time Complexity of
Bucket Elimination AlgorithmsUCI Tech. Rep.2000.

Efficient techniques for bounding the optimum of combinato-
rial optimization problems have been widely studied in Oper-

[P] w" [272] 2=4] 2=6 | 2=8 | 2=10]

[N=100. 50 instances. I [Nemhauser and Wolsey, 198$.L. Nemhauser and L.A.
317311 131] 1581 1361 126 186 Wolsey. Integer and Combinatorial OptimizationJohn
4120|664 812| 7.00 | 6.90 | 6.65 Wiley and Sons, 1988.
5| 1511529639548 6.21| 5.83 [Pearl, 1988 J. Pearl.Probabilistic Reasoning in Intelligent
6|17.716.39)536| 461)4.66| 481 SystemsMorgan Kaufmann. 1988.

7196 | 6.70| 8.64| 9.20| 9.75| 8.78

[Schiex, 200D T. Schiex. Soft Arc Consistency. Proceed-
Table 3: Speedup of UD-MB] overnMB(z). Decoding. ing of CP"2000

