
Up and Down Mini-Buckets: A Scheme for Approximating Combinatorial
Optimization Tasks

Kalev Kask, Javier Larrosa and Rina Dechter
Information and Computer Science

University of California at Irvine, USA

Abstract

The paper addresses the problem of computing
lower bounds on the optimal costs associated with
each unary assignment of a value to a variable in
combinatorial optimization problems. This task
is instrumental in probabilistic reasoning and is
also important for the development of admissible
heuristic functions that can guide search algorithms
for optimal solutions. The paper presents UD-MB,
a new algorithm that applies the mini-bucket elim-
ination idea [Dechter and Rish, 1997] to accom-
plish this task. We show empirically that UD-MB
may achieve a substantial speed up over a brute-
force approximation method via mini-buckets.

1 Introduction
A Combinatorial optimization problem(COP) is defined by
a finite set ofvariables, a set of finitedomainsand a set of
cost functions. A solutionis theoptimal costover the set of
complete assignments of values to variables. It is well known
that solving COP is NP-hard. COP arise in a large variety
of domains includingartificial intelligence, chemistry, biol-
ogy and in numerous industrial applications. Solving tech-
niques have been developed in fields such asoperations re-
search[Nemhauser and Wolsey, 1988], constraint satisfac-
tion [Freuder and Wallace,1992; Larrosaet al., 1998] and
probabilistic reasoning[Pearl, 1988].

In this paper we address the problem of approximating the
singleton-optimality problem, defined as the optimal cost as-
sociated to each unary assignment of a value to a variable.
This task is instrumental in probabilistic reasoning[Dechter
and Rish, 1997] and is also important for the development
of admissible heuristic functions that can guide search algo-
rithms for optimal solutions. In particular, such lower bounds
can be used in look-ahead methods for dynamic variable and
value selections strategies that detect and prune infeasible
values[Larrosaet al., 1998].

The paper presents a new algorithm, UD-MB, that applies
the mini-bucket elimination idea[Dechter and Rish, 1997].
It is built upon BTE, an exact algorithm for the singleton-
optimality problem which is presented in a companion pa-
per [Anon., 2001]. We show that by applying mini-bucket

elimination twice, up and down, along abucket-treeorder-
ing, we may get a linear speed up over a brute-force approxi-
mation method. Such performance improvements are crucial
if we are to apply the scheme at every node in search algo-
rithms.

The structure of the paper is as follows: Section 2 intro-
duces basic notation; Section 3 overviews BTE; Section 4
introduces algorithm UD-MB, the main contribution of this
paper; Section 5 reports empirical results demonstrating the
effectiveness of our scheme in Max-CSP and probabilisticde-
coding problems; and Section 6 concludes.

2 Preliminaries
A combinatorial optimization problem(COP) is defined by
a tupleP =< X;D;F;
;+> where: X = f1; 2; : : : ; ng
is a set of variables.D = fD1; : : : ; Dng is a collection of
finite domains (Di is the set of possible values for variable
i). F = ff1; : : : ; frg is a set ofcost functions1 with scopes
(i.e., arguments)S = fS1; : : : ; Srg (Si � X, 1 � i � r).
The domain offi is the Cartesian product of the domains of
variables inSi. Operator
 combines functions (for example,
sumor productof functions). Operator+ projects a function
over a subset of its scope (typically, eliminating variables by
minimizationor maximization)

Given a set of variablesY � X, the optimization task is

OptY =+Y (
rj=1fj)

Typically, Opt; is theproblem solution. For the sake of
clarity and for its wide applicability, this paper will focus
onadditive minimization problemswhere variables are elim-
inated by minimization (i.e.,+Y f = minS�Y ffg, S is
the scope off) and functions are combined by addition (i.e.,

 = +). However, our results can be directly extended to
general COP. We focus on thesingleton-optimalitytask, de-
fined as,

Opti = min
X�fig

(
rX

j=1

fj); 8i 2 X

Opti is a unary function overi which returns for each value
a 2 Di the optimum cost restricted to the assignmenti a.

1In the constraint satisfactioncommunity cost functions are
calledsoft constraints.

6 5 2 3

41

6

5

4

3

2

1

(b)(a)

6

4

3

2

5

1

(c)

 (6) = ff1(5; 6); f2(1; 6)g

�(6) = f1; 5; 6g

 (5) = ff3(2; 5)g

�(5) = f1; 2; 5g

 (2) = ff6(1; 2)g
�(2) = f1; 2g

 (1) = ;
�(1) = f1g

 (4) = ff4(1; 4)g
�(4) = f1; 4g

 (3) = ff5(2; 3)g
�(3) = f2; 3g

Figure 1:a) Primal graph of a COP instance;b) Its induced
graph with respect the lexicographical ordering;c) Its bucket-
tree.

Example 2.1 Maximal Constraint Satisfaction (Max-CSP)
is the problem of finding the minimum number of violated
constraints of a total assignment in an overconstrained
CSP[Freuder and Wallace, 1992]. Clearly, Max-CSP can
be expressed as an additive minimization problem with con-
straints represented as 0/1 cost functions, where 0 denotes
satisfaction and 1 denotes violation. In this context,Opti
evaluated overa 2 Di is the minimum number of constraint
violations attainable ifi a is extended to a complete as-
signment.

Definition 2.1 [Dechter, 1999](primal and induced graph,
induced width) A COP instance is associated with an undi-
rected graphG called theprimal graphsuch that problem
variables are the graph nodes and two nodes are adjacent iff
they are included in the same scope of some cost function.
Given a graphG and an arbitrary ordering of its nodeso, its
induced graphG�(o) is obtained by processing the nodes in
reverse order. For each node all its earlier neighbors are con-
nected, taking into account old and new edges created during
the process. The induced widthw�(o) is the maximum num-
ber of earlier neighbors over the nodes ofG�(o).

Example 2.2 Figure 1.a depicts the primal graph of a COP
instance defined over six variablesf1; 2; : : :; 6g and six cost
functionsff1; : : : ; f6g with scopes: S1 = f5; 6g, S2 =
f1; 6g, S3 = f2; 5g, S4 = f1; 4g, S5 = f2; 3g andS6 =
f1; 2g, respectively. Figure 1.b depicts the induced graph
with respect to the lexicographical order. Solid lines depict
original edges in the problem graph and the broken-line edge
was added during the computation of the induced graph. The
induced width along the ordering is 2.

3 Bucket Tree Elimination (BTE)
Bucket Elimination(BE) [Dechter, 1999] is a unifying algo-
rithmic framework that generalizes dynamic programming to
accommodate probabilisticand deterministic reasoning tasks,
as well as COP. It can be viewed as a one phase message-
passing process along the so-calledbucket-treedefined in
terms of the induced graph as follows (details are given
in [Anon., 2001]).

Definition 3.1 [Anon., 2001] (bucket-tree, eliminator)
LetG�(o) be the induced graph of a COP along ordering

o. Thebucket-treeis a triplet< T ; �; >:

� T = (V;E) is a tree whose nodes are the problem vari-
ables. The parent ofi is the latest earlier neighbor of
i in G�(o) (namely, the closest earlier neighbor ofi in
G�(o)).

� � is a labelling function for each node.�(i) is the set of
variables containingi and every earlier neighbor ofi in
G�(o).

� is a labelling function for each node. (i) is the set of
cost functions which contains every function havingi as
the highest variable in its scope.

Let i and j be two adjacent nodes inT . Theeliminatorof i
with respectj is defined aselm(i; j) = �(i) � �(j),

Example 3.1 Figure 1.c depicts the bucket-tree of the in-
duced graph in Figure 1.b. The parent of5 is 2, (5) is
ff3(5; 2)g, �(5) is f1; 2; 5g, the eliminator of5 respect to
2 is elm(5; 2) = f5g and the eliminator of2 respect to5 is
elm(1; 2) = ;.

Note that visiting the nodes ofT from last to first along
orderingo produces a traversal from the leaves to the root of
T . In BE messagesare computed in the nodes of the bucket-
tree using functions contained in theirbuckets.

Definition 3.2 (bucket, message) A messagem(i;j) is a func-
tion computed in nodei and sent to an adjacent nodej. For
each nodei we define itsbucketas the set of all functions in
 (i) and all messages received byi, namely,

Bck(i) = (i) [k2N(i)m(k;i)

whereN (i) denotes the neighbors ofi in T . Messagem(i;j)

is computed wheni has received the messagem(k;i) from
each of its neighbors other thanj. The computation ofm(i;j)

consist of summing up all the functions inBck(i) excluding
m(j;i) and subsequently eliminating the variables in the elim-
inator of i andj,

m(i;j) = min
elm(i;j)

f
X

ff2Bck(i);f 6=m(j;i)g

fg

Algorithm BE receives a bucket-tree< T ; �; > as input
and it processes nodes from last to first (the bucket-tree is tra-
versed in a top-down manner). Processing nodei consists of
computing messagem(i;j), wherej is the parent ofi. Pro-
cessing the root node yields an empty-scope function which
is the problem solution. In general, the complexity of BE is
exponential in the problem induced width. It was shown that,

Theorem 3.1 [Dechter, 1999] Once BE terminates, the sum
of all the functions in the first bucket yields functionOpt1.
Namely,

Opt1 =
X

ff2Bck(1)g

f

From Theorem 3.1 it is clear that the singleton-optimal
functions can be derived by running BEn times, each one

5

2

1

6

3

4

m(5;6)(1; 5) := min2ff3(2; 5) +m(2;5)(1; 2)g

m(6;5)(1; 5) := min6ff1(5; 6) + f2(1; 6)g

ff3g

f1; 2; 5g

f1; 2g

ff6g

f1g

m(1;2)(1) := m(4;1)(1)

m(2;1)(1) := min2ff6(1; 2) +m(5;2)(1; 2) +m(3;2)(2)g

m(2;5)(1; 2) := f6(1; 2) +m(3;2)(2) +m(1;2)(1)

m(5;2)(1; 2) := min5ff3(2; 5) +m(6;5)(1; 5)g

f1; 4g

ff5g
f2; 3g

m(3;2)(2) := min3ff5(2; 3)g

m(2;3)(2) := min1ff6(1; 2) +m(5;2)(1; 2) +m(1;2)(1)g

m(1;4)(1) := m(2;1)(1)

m(4;1)(1) := min4ff4(1; 4)g

ff4g

ff1; f2g
f1; 5; 6g

Figure 2: Execution of BTE with the problem of Figure 1.

with a different variable initiating the ordering. Each execu-
tion computes the singleton-optimality function for a differ-
ent variable. However, in a companion paper[Anon., 2001]
we introduce algorithmBucket Tree Elimination(BTE) which
accomplishes the task more efficiently. It extends BE by
adding a second message-passing phase along the bucket-
tree. At termination, each bucket can compute the singleton-
optimality function for its variable.

In the second phase, nodes are processed from first to last
(the tree is traversed in a bottom-up manner). Processing
nodei consist of computing messagem(i;j) from i to every
child of i, j.

AlgorithmBTE also generalizes probabilistic reasoning al-
gorithms over polytrees[Pearl, 1988]. In that domain, top-
down and bottom-up messages are called� and�, respec-
tively. This distinction is convenient because the direction-
ality of a message carries different semantics and it is the
notation used in[Anon., 2001]. Here, we use common no-
tationm(i;j) for both up and down messages, wherem(i;j) is
the message fromi to j. This notation emphasizes that there
is no algorithmic difference between messages going up and
messages going down along the tree.

Algorithm 1 describes BTE. In the top-down phase
(line 1.1) eachnodei computes the messagem(i;j) to its par-
ent j. In the bottom-up phase (line 1.2) the parentj of each
nodei computes the messagem(j;i). After the second phase,
every node has received the messages from all its neighbors
(children and parent). Then BTE computesOpti, for every
nodei (line 1.3), by summing all the functions inBck(i) and
subsequently eliminating every variable in�(i) other thani.
Formally,

Opti = min
�(i)�fig

(
X

ff2Bck(i)g

f)

Example 3.2 Figure 2 shows the trace of running BTE for
the problem in Figure 1. It depicts the bucket-tree and the
flow of messages. Next to each edge(i; j) wherej is the
parent of i, there are the two messages:m(i;j) computed
in the top-down phase andm(j;i) computed in the bottom-

up phase. For instance,m(6;5) = min6ff1 + f2g and
m(5;6) = min2ff3 + m(2;5)g are computed in the top-
down and bottom-up phases, respectively. FunctionOpt5 =
minf2;5gff3 + m(6;5) + m(2;5)g is the desired singleton op-
timality function for variable5.

Algorithm 1: BTE. < T ; �; > is the bucket-tree for
the orderingo = 1; 2; :::; n. The first loop performs the
top-down pass, the second loop performs the bottom-up
pass and the third loop generates the singleton-optimality
functions.

ProcedureBTE(< T ; �; >)
1.1 for i = n to 1 do

j := parent ofi in T ;
m(i;j) := minelm(i;j)f

P
ff2Bck(i)�m(j;i)g

fg;
end

1.2 for i = 1 to n do
j := parent ofi in T ;
m(j;i) := minelm(j;i)f

P
ff2Bck(j)�m(i;j)g

fg;
end

1.3 for i = 1 to n do
Opti := min�(i)�figf

P
ff2Bck(i)g fg;

end
return fOptij 1 � i � ng

In [Anon., 2001], we showed that BTE can provide up to
linear speed-up over the alternative of running BEn times.

4 Up and Down Mini-Bucket Elimination
4.1 UD-MB
The time and especially the space complexity of BTE ren-
ders the algorithm infeasible for problems with high induced
width. In this section we introduce a new algorithm called
Up and Down Mini-Bucket Elimination(UD-MB) that ap-
proximates the singleton-optimality functions by providing
lower bounds. UD-MB computes a set of unary functions
LBi such thatLBi � Opti for all i 2 X (we say that
f � g iff f andg have the same scope and for every tuplet,
f(t) � g(t)). These approximation functions are computed
usingmini-buckets[Dechter and Rish, 1997]. The algorithm
is parameterized byz which allows to trade time and space
for accuracy. Increasingz, the algorithm provides more ac-
curate approximations, at the cost of higher time and space
complexity.

The idea is to approximate the computations by partition-
ing buckets into mini-buckets and by eliminating the appro-
priate variables in each mini-bucket, independently.

Consider an edge(i; j) of T . The exact computation of
m(i;j) was defined in the previous section as,

m(i;j) = min
elm(i;j)

(
X

ff2Bck(i);f 6=m(j;i)g

f)

Its approximation,M(i;j), is based on a partition ofBck(i)�
fm(j;i)g into mini-bucketsfmb(1); : : : ;mb(p)g such that the
number of variables mentioned in each isbounded byz. In

each mini-bucket we compute,

mk
(i;j) = min

elm(i;j)
f
X

f2mb(k)

fg

The sum of functions in the setM(i;j) = fm
1
(i;j); : : : ;m

p

(i;j)
g

is the basis of a lower bound form(i;j). Namely,

(

pX

k=1

mk
(i;j)) � m(i;j)

In summary, a message in UD-MB is the set of functions
M(i;j) whose sum is a lower bound function form(i;j). The
lower bound ofOpti, denotedLBi, is obtained by applying
the same idea,

LBi =

qX

k=1

(min
�(i)�fig

f
X

ff2mb(k)g

fg)

Algorithm 2 describes UD-MB. Its structure is identical to
BTE. The only difference is that in UD-MB computations are
approximated via mini-buckets. The algorithm uses proce-
dureApMB(G; V; z) , which approximates the sum of a set of
functionsG and the subsequent elimination of a set of vari-
ablesV , subject to accuracy parameterz. First, functions in
Gmentioning variables inV are collected in a setA (line 2.4)
and partitioned into mini-buckets (line 2.5). Next, variables
in V are eliminated from each mini-bucket (line 2.6). The
procedure returns the result of processing each mini-bucket
and all the unprocessed functions.

Algorithm 2: UD-MB. < T ; �; > is the bucket-tree for
the orderingo = 1; 2; :::; nandz is the accuracy parameter.

ProcedureUD-MB(< T ; �; >; z)
2.1 for i = n to 1 do

j := parent ofi in T ;
M(i;j) :=ApMB(Bck(i)�M(j;i); elm(i; j); z) ;

end
2.2 for i = 1 ton do

j := parent ofi in T ;
M(j;i) :=ApMB(Bck(j) �M(i;j); elm(j; i); z) ;

end
2.3 for i = 1 ton doLBi :=ApMB(Bck(j); �(i)�fig; z) ;

return fLBij 1 � i � ng

ProcedureApMB(G; V; z)
2.4 A :=functions inG that mention variables inV ;
2.5 (z)mini-buckets fromA, fmb(1); : : : ;mb(p)g;
2.6 for k := 1 to p do gk := minV f

P
f2mb(k) fg;

return (G�A [fg1; : : : ; gpg)

The top-down phase of UD-MB coincides with the original
MB algorithm[Dechter and Rish, 1997], although its descrip-
tion looks somewhat different. The only difference, however,
is that in our description mini-bucket functions do notjump
to their destination bucket according to thehighest variable
in the scoperule. Instead, theytravel downthe bucket-tree.

6

3

1

2

5

4

m1
(2;3)(2) := min1ff6(1; 2) +m2

(5;2)(1) +m1
(1;2)(1)g

m2
(2;3)(2) := m1

(5;2)(2)
M(2;3)

m1
(3;2)(2) := min3ff5(2; 3)gM(3;2)

m1
(4;1)(1) := min4ff4(1; 4)gM(4;1)

m1
(1;4)(1) := m1

(2;1)(1) +m2
(2;1)(1)M(1;4)

ff3g

f1; 2; 5g

f1; 2g

ff6g

f1g

f1; 4g

ff5g
f2; 3g

ff4g

ff1; f2g
f1; 5; 6g

m1
(5;6)(1) := m3

(2;5)(1)

m3
(5;6)(1; 5) := min2ff3(2; 5)g

m2
(5;6)(1; 5) := min2fm

1
(2;5)(1; 2) +m2

(2;5)(2)gM(5;6)

m1
(5;2)(1; 2) := min5ff3(2; 5) +m1

(6;5)(5)g

m1
(2;5)(1; 2) := f6(1; 2)

m2
(2;5)(1; 2) := m1

(3;2)(2)

m3
(2;5)(1; 2) := m1

(1;2)(1)

m2
(5;2)(1; 2) := m2

(6;5)(1)

m1
(1;2)(1) := m1

(4;1)(1)

m1
(2;1)(1) := min2ff6(1; 2) +m1

(5;2)(2) +m1
(3;2)(2)g

m2
(2;1)(1) := m2

(5;2)(1)

m1
(6;5)(5) := min6ff1(5; 6)g

m2
(6;5)(1) := min6ff2(1; 6)g

M(6;5)

M(5;2)

M(2;5)

M(2;1)

M(1;2)

Figure 3: Execution of UD-MB withz = 2 with the problem
in Figure 1.

4.2 Example

Figure 3 shows the trace of running UD-MB withz = 2
on the problem in Figure 1. The top-down phase starts
computingM(6;5) by calling procedureApMB(G; V; z) with
G = ff1(5; 6); f2(1; 6)g and V = f6g. Each function
from G is put into one mini-bucket (their combined arity
surpasses the value ofz) and variable6 is eliminated from
each mini-bucket, generating two functions:m1

(6;5)(5) =

min6ff1(5; 6)g andm2
(6;5)(1) = min6ff2(1; 6)g. Message

M(6;5) = fm1
(6;5)(5);m

2
(6;5)(1)g is then sent to node5.

Next,M(5;2) is computed by procedureApMB(G; V; z) with
G = ff3(2; 5);m1

(6;5)(5);m
2
(6;5)(1)g andV = f5g. Only

f3 andm1
(6;5) mention variable5. They can be placed in the

same mini-bucket and variable5 eliminated, producing a new
functionm1

(5;2)(2) = min5ff3(2; 5) + m1
(6;5)(5)g. Func-

tion m2
(6;5)(1), not processed in node5, is passed down as

m2
(5;2)(1) = m2

(6;5)(1). The process continues until all top-
down messages are computed.

The bottom-up phase starts computingM(1;2), which is ob-
tained by procedureApMB(G; V; z) with G = fm1

(4;1)(1)g

and V = ;. Since there is no variable to eliminate, the
function is not processed (m1

(1;2)(1) = m1
(4;1)(1)). Mes-

sageM(1;2) = fm1
(1;2)(1)g is sent to node2. Next,

M(2;3) is computed by procedureApMB(G; V; z) with
G = ff6(1; 2);m1

(5;2)(2);m
2
(5;2)(1);m

1
(1;2)(1) and V =

f1g. All functions mentioning variable1 can be placed in
one mini-bucket where the variable is eliminated, yielding
m1

(2;3)(2) = min1ff6(1; 2)+m2
(5;2)(1)+m

1
(1;2)(1)gg. Func-

tionm1
(5;2)(2) is not processed (m2

(2;3)(2) = m1
(5;2)(2)), be-

cause it does not mention variable1. MessageM(2;3) =

fm1
(2;3)(2);m

1
(2;3)(2)g is sent to node3.

After the bottom-up phase, lower bounds
can be computed. For instance,LB2 is com-

puted by procedure ApMB(G; V; z) with G =
ff6(1; 2);m

1
(5;2)(2);m

2
(5;2)(1);m

1
(3;2)(2);m

1
(1;2)(1)g and

V = f1g. All functions mentioning variable1 can be
placed in one mini-bucket where the variable is eliminated,
g(2) = min1ff6(1; 2) + m2

(5;2)(1) + m1
(1;2)(1)g. The

lower bound function is obtained summingg(2) with the
unprocessed functions,LB2 = g(2)+m1

(5;2)(2)+m
1
(3;2)(2).

4.3 Correcness and Complexity

The following two Lemmas are useful to prove the correct-
ness of UD-MB. The first one proves thatApMBis a correct
way to obtain lower bounds. The second one proves that mes-
sages in UD-MB are lower bounds of messages in BTE.

Lemma 4.1 [Dechter and Rish, 1997] LetH be the output
of ApMB(G; V; z) . Then,

X

h2H

h � min
V
f
X

g2G

gg

Lemma 4.2 Let < T ; �; > be a bucket-tree. For every
edge(i; j) of T ,

(

pX

k=1

mk
(i;j)) � m(i;j)

wherem(i;j) is the message computed by BTE andM(i;j) =
fm1

(i;j); : : : ;m
p

(i;j)g is the message computed by UD-MB.

From Lemma4.2 it follows that,

Theorem 4.1 UD-MB is correct. Namely,

LBi � Opti; 8xi 2 X

The following Theorem establishes the complexity of UD-
MB.

Theorem 4.2 The complexity of UD-MB isO(n � r �
exp(z)), wheren is the number of variables,r is the num-
ber of cost functions andz is the accuracy parameter.

It was shown in[Dechter and Rish, 1997; Larrosa, 2000]
that the complexity of MB isO(r � exp(z)) and it is easy
to see that the brute force solving approach for the singleton
optimality problem of running MBn times (to which we will
refer asnMB) has complexityO(n � r � exp(z)). Conse-
quently, the speed up of UD-MB overnMB is not captured by
this worst-case bounds. However, the following result shows
that UD-MB is never worse thannMB and the speed-up for
particular instances ranges fromn to 1.

Theorem 4.3 Let tMB, tUD�MB andtnMB be the time cost
of executing MB, UD-MB andnMB with the samez value.
Then, for all problem instance,

tMB � tUD�MB � tnMB

and the previous bound is tight. Namely, there are problem
instances for which UD-MB isn times faster thannMB as
well as instances where there is no speed-up.

5 Empirical Results
We have run a number of experiments in order to inves-
tigate the average speedup of UD-MB over the alterna-
tive of nMB. We will be comparing two algorithms: UD-
MB(z) and nMB(z). For every problem instance, we run
both UD-MB(z) and nMB(z), and record their running
times tUD�MB(z) and tnMB(z). The speedup is defined as
tnMB(z)=tUD�MB(z).

Given a problem instance, we first create amin-degreeor-
dering of the variables2 that is used to create the bucket-tree
for the UD-MB algorithm.nMB requiresn different order-
ing. The ordering initiated by variablei is obtained by swap-
ping the first variable withi in the min-degree ordering. We
have tested the performance of UD-MB andnMB on two dif-
ferent domains: random binary Max-CSP problems and ran-
dom probabilistic decoding problems.

5.1 Max-CSP
Max-CSP is an optimization version of Constraint Satisfac-
tion and was described in Example 2.1. We used the well
known four parameters random model,< N;K;C; T >,
whereN is the number of variables,K is the domain size,
C is the number of constraints, andT is the tightness of each
constraint (see[Larrosaet al., 1998] for details).

In Tables 1 and 2 we have the results of experiments with
two sets of Max-CSP problems:N = 100, K = 3, 200 �
C � 400 andN = 50, K = 5, 75 � C � 135. In these
experiments the value ofT is irrelevant since the complexity
of the algorithms do not depend on it. Each row in the table
corresponds to problems with a fixed number of constraints
(column 1). In column 2 we have the average induced width
along the min-degree ordering. In columns 3 through 8 we
report the average speed-up for different values ofz. In our
experiments, the average CPU time per problem fornMB(z)
ranges from a fraction of a second (z = 2) to as much a 5
minutes (z = 7).

We observe that the speedup is sometimes as large as an or-
der of magnitude. We also see that the speedup is correlated
with the induced widthw� - the larger the induced width the
smaller the speedup. This observation coincides with the the-
oretical result obtain for classes of problems (see proof of
Theorem4.3) where the speed up was inversely proportional
to the induced witdth of the problem. Another interesting
observation from Table 1 is that, when the constraint graph
is sparse (C = 200), the speedup decreases asz increases,
while for dense graphs (C = 400) the speedup increases with
z.

5.2 Probabilistic Decoding
Channel codingis a systematic way to add redundancy to a
source of binary information to be transmitted through a noisy
channel. Redundancy is used to correctly retrieve the infor-
mation at destination.Probabilistic decodingis the task of
finding the most probable source of information, given the
received information and the redundancy pattern.

2The variable with the smallest degree is placed at the end of the
ordering, all its neighbors are connected and it is removed from the
graph. The process is repeated until every variable has been selected.

C w
�

z=2 z=3 z=4 z=5 z=6 z=7
N = 100,K = 3. 50 instances.

200 21.2 10.8 10.1 9.20 8.36 7.77 7.82
250 27.9 6.87 6.86 6.60 6.29 6.10 6.16
300 33.7 4.49 4.97 5.04 5.06 5.14 5.28
350 38.9 3.42 4.02 4.22 4.35 4.50 4.73
400 43.0 2.65 3.36 3.68 3.88 4.07 4.34

Table 1: Speedup of UD-MB(z) overnMB(z). Max-CSP.

C w
�

z=2 z=3 z=4 z=5 z=6 z=7
N = 50,K = 5. 50 instances.

75 7.10 7.63 6.63 6.36 6.49 7.11 8.93
90 9.48 5.98 4.64 4.59 4.76 5.11 5.44

105 11.1 4.49 3.68 3.64 3.79 3.97 4.34
120 13.9 3.72 3.17 3.12 3.32 3.44 3.70
135 16.3 3.29 2.73 2.67 2.81 3.02 3.21

Table 2: Speedup of UD-MB(z) overnMB(z). Max-CSP.

In our experiments we generate random vectors ofN in-
formation bits, we addN additional redundant bits using ran-
dom linear block codes (each redundant bit is the XOR ofP
randomly chosen source bits). Finally, we simulate the trans-
mission by adding white Gaussian noise (this experimental
setting has already been used in[Kask and Dechter, 1999]).
The general task is to retrieve the source bits from the bits at
destination. The problem can be formulated as a COP where
theN source bits are the problem variables (with binary do-
mains). There areN � P cost functions of arityP , each one
defined by a probability distribution. Functions are combined
by multiplication (i.e.,
 = �) and variables are eliminated
by maximization (i.e.,+Y f = maxS�Y f)

We consider the task of computing themost probable ex-
planation value(MPE) for each variable-value pair, which is
equivalent to the singleton optimallity problem.

In Table 3 we have the results of experiments with a set
of random coding problems withN = 100 variables and
3 � P � 7. The results are similar to the case of Max-CSP.
Again we observe that the speed-up is sometimes as large as
an order of magnitude. We also see that the speedup is corre-
lated with the induced widthw� - the larger the induced width
the smaller the speedup.

6 Conclusions and Future Work
Efficient techniques for bounding the optimum of combinato-
rial optimization problems have been widely studied in Oper-

P w
�

z=2 z=4 z=6 z=8 z=10
N=100. 50 instances.

3 7.31 13.1 15.8 13.6 12.6 18.6
4 12.0 6.64 8.12 7.00 6.90 6.65
5 15.1 5.29 6.39 5.48 6.21 5.83
6 17.7 6.39 5.36 4.61 4.66 4.81
7 19.6 6.70 8.64 9.20 9.75 8.78

Table 3: Speedup of UD-MB(z) overnMB(z). Decoding.

ations Research, Constraint satisfaction, heuristic search and
probabilistic reasoning[?; Pearl, 1988; de Givryet al., 1997;
Schiex, 2000].

The bucket-elimination scheme[Dechter, 1999] provides a
unifying framework that facilitates the development of gen-
eral methods for combinatorial optimization problems. It
also helps to the cross-fertilization of ideas across different
fields. Mini-bucket elimination[Dechter and Rish, 1997] is
an approximation scheme based on bucket elimination. In
this paper we have introduced UD-MB, a new algorithm that
uses mini-buckets to compute lower bounds for the singleton-
optimality problem. Approximating methods for this prob-
lem are useful in probabilistic reasoning. They are also use-
ful as generic look-ahead procedures to be used within al-
gorithms that search the optimum, where the lower bounds
are used to detect and prune infeasible values as well as to
guide the next step of search[Freuder and Wallace,1992;
Larrosaet al., 1998].

We showed that UD-MB provides a linear speed-up over a
brute-force application of mini-buckets for classes of prob-
lems. Our experiments on two different domains demon-
strated the practical effectiveness of our approach. The in-
tegration of UD-MB with search methods remains as future
work.

References
[Dechter and Rish, 1997] R. Dechter and I. Rish. A Scheme

For Approximating Probabilistic Inference. InProceed-
ings of UAI’97.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying
framework for reasoning.Artificial Intelligence, 113:41–
85, 1999.

[Freuder and Wallace,1992] E.C. Freuder and R.J. Wallace.
Partial Constraint Satisfaction Artificial Intelligence,
58:21–70, 1992.

[de Givryet al., 1997] S. de Givry, G. Verfaillie and T.
Schiex. Bounding the optimum of Constraint Optimiza-
tion Problems. InProceeding of CP’97.

[Kask and Dechter, 1999] K. Kask and R. Dechter Branch
and Bound with mini-bucket heuristics.Proc. of IJCAI’99.

[Anon., 2001] Anonymous. Unifying Tree-Decomposition
Schemes for Automated Reasoning. Sub. toIJCAI’2001.

[Larrosaet al., 1998] J. Larrosa, P. Meseguer and T. Schiex.
Maintaining Reversible DAC for Max-CSP.Artificial In-
telligence, 107:149–163, 1998.

[Larrosa, 2000] J. Larrosa. On the Time Complexity of
Bucket Elimination Algorithms.UCI Tech. Rep., 2000.

[Nemhauser and Wolsey, 1988] G.L. Nemhauser and L.A.
Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, 1988.

[Pearl, 1988] J. Pearl.Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann. 1988.

[Schiex, 2000] T. Schiex. Soft Arc Consistency. InProceed-
ing of CP’2000

