
Bucket-Tree Elimination for Automated Reasoning

Kalev Kask, Rina Dechter, Javier Larrosa and Fabio Cozman
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

Abstract

The paper extends several variable elimina-

tion schemes into a two-phase message pass-

ing algorithm along a bucket-tree. Our anal-

ysis shows that the new algorithm, called

Bucket-Tree Elimination (BTE), may pro-

vide a substantial speed-up over standard

variable-elimination for important proba-

bilistic reasoning tasks. The algorithm is de-

veloped and analyzed within a unifying view

of tree-clustering methods, making crisp the

relationship between the two approaches, and

allowing enhancement schemes to be trans-

ferred. In particular we show how time-space

tradeo�s of BTE are cast within the tree-

decomposition framework.

1 Introduction

The paper introduces a new algorithm, called bucket-
tree elimination (BTE), that extends the Bucket

Elimination algorithm [Dechter, 1999] into a message-

passing algorithm along a bucket-tree. Furthermore, it

shows that BTE can be viewed as an instance of tree-

decomposition algorithms appearing in a wide range

of automated reasoning tasks.

Bucket-elimination (BE) is a unifying algorithmic

framework for dynamic-programming algorithms ap-

plicable to a wide variety of probabilistic and

deterministic reasoning [Bertele and Brioschi, 1972,

Dechter, 1999] such as belief updating, �nding the

most probable explanation (MPE), �nding the max-

imum aposteriori hypothesis (MAP) and �nding a col-

lection of decisions that maximize the expected utility

in in
uence diagrams. As well, the scheme is applica-

ble to constraint satisfaction and combinatorial opti-

mization. All bucket-elimination algorithms are close

enough, to posses similar performance guarantees, and

any single improvement to a single algorithm is imme-

diately applicable to all other algorithms. In particu-

lar, an approximation scheme such as the mini-bucket

approximation and a variety of time-space tradeo�s

are applicable to all algorithms in this framework.

Some important tasks, however are not solved by a

single execution of BE, and rather require repeated run

of the BE algorithm. One example is belief updating,

when a belief for every variable in a Bayesian network

is required. Another example is computing the optimal

cost associated with each value of each variable, to

serve as heuristic guidance of search algorithms. In

order to compute such functions for every variable,

BE would have to be executed n times, once for each

variable.

The bucket-tree elimination algorithmwe propose here

attempts to overcome this shortcoming. It can some-

times compute the desired unary functions with only

twice the time of a single run of BE, thus providing a

potential speed-up proportional to the number of vari-

ables. The algorithm extends bucket-elimination into

a Bucket-Tree Elimination scheme, called BTE.

Since BE can be viewed as a one pass message-passing

from leaves to root along a tree [Dechter, 1999], an ex-

tension to a second pass along the tree, as is typical

in tree-clustering algorithms, seems to be warranted.

Indeed, such generalized elimination scheme was re-

cently developed by Cozman [Cozman, 2000] for belief

updating. The current paper extends Cozman's work,

in that it is derived and analyzed in a more general

and abstract setting. Speci�cally, the main contribu-

tion of this paper is 1. in extending Bucket-elimination

into a bucket-tree elimination scheme for a variety of

reasoning tasks and 2. in explicating its relations to

tree-decomposition schemes.

To accommodate both aims, the paper presents a uni-

fying, tree-decomposition framework for automated

reasoning tasks which captures many existing de-

composition schemes, such as join-tree clustering,

junction-tree decompositions, and hyper-tree decom-

position. We then show that a bucket-tree is a special

case of a tree-decomposition yielding the BTE algo-

rithm as a special case of tree-clustering. Correctness

and complexity follow therefore from the correctness

and complexity of general tree-clustering methods.

Section 2 de�nes the automated reasoning task and

related background concepts. Section 3 presents the

tree-decomposition framework and its associated tree-

clustering algorithm. Section 4 introduces and ana-

lyzes the bucket-tree elimination algorithm, Section

5 relates existing decomposition methods within the

context of tree-decomposition. Section 7 discusses

time-space tradeo�s and Section 8 concludes.

2 Automated reasoning tasks

Definition 2.1 An automated reasoning task P is a
sixtuple P =< X;D;F;

N
;+; fZ1; :::; Ztg > de�ned as

follows:

1. X = f1; :::; ng is a set of variables.

2. D = fD1; :::; Dng is a set of �nite domains. Di
is the set of values that can be assigned to Xi.

3. F = ff1; :::; frg is a set of functions or relations.
Each fi is de�ned over a subset of variables Si �
X and its domain DSi is the Cartesian products
of the domain of variables in Si. The scope of
function fi, denoted scope(fi) � X, is its set of
arguments, Si.

4.
N

i fi 2 f
Q
i fi;
P
i fi; ./i fig is a combination op-

erator. The scope of
N

i fi is [iSi.

5. +Y f 2 f max
S�Y

f; min
S�Y

f; �
S�Y

f;

P
S�Y

fg, where S is
the scope of function f and Y � X is a marginal-
ization operator. The scope of +Y fi is Y .

6. The problem is to compute, 8 Zi
+Z1

Nr

i=1 fi; :::;+Zt

Nr

i=1 fi

Explanation. We assume that functions are ex-

pressed in a tabular form, having an entry for every

combination of values from the domains of its vari-

ables. Therefore, the speci�cation of such functions is

exponential in their scope (the base of the exponent is

the maximum domain size). Relations, or clauses can

be expressed as functions as well, associating a value

of "0" or "1" for each tuple, depending on weather or

not the tuple is in the relation (or satis�es a clause).

The combination operator takes a set of functions and

generates a new function. Note that
Q
i
stands for a

product when it is a combination operator and �i for a

projection when it is a marginalization operator. The

operators are de�ned by a list of possible speci�c oper-

ators. However they they can be de�ned axiomatically,

as we will elaborate later.

Definition 2.2 The primal graph of a problem P has
the variables as its nodes, and two nodes are connected
if they appear in a scope of a function in F . The hyper-
graph of a problem P has the variables as its nodes and
the scopes of functions as its hyperedges.

Definition 2.3 (graph concepts) An ordered

graph is a pair (G; d) (also denoted Gd), where G is
an undirected graph and d = X1; :::; Xn is an ordering
of the nodes. The width of a node in an ordered graph
is the number of its earlier neighbors, while the width
of an ordering d, w(d), is the maximum width over all
nodes. In an ordered graph, the induced width, w�(d),
is the width of the induced ordered graph obtained by
processing the nodes from last to �rst. When node X
is processed, all its earlier neighbors are connected.

2.1 Examples of reasoning tasks

Probabilistic Inference Queries over Bayesian net-

works [Pearl, 1988] can be formulated as automated

reasoning tasks where the functions in F denote con-

ditional probability table and the scopes of these func-

tions is determined by a directed acyclic graph (DAG):

Each function fi ranges over variable i and its parents

in the dag. The primal graph of a Bayesian network

is its moral graph.

� Belief-updating is the task of computing belief

in variable y in Bayesian networks. For this task,

the combination operator is
N

j =
Q
j and the

marginalization operator is +y=
P
X�y

.

� Most probable explanation requires comput-

ing the most probable tuple in a given Bayesian

network. Here the combination operator is
N

j =Q
j and marginalization operator is maximization

over all full tuples, +;= maxX .

Constraint Satisfaction and Optimization

For CSPs, the functions in F are deterministic rela-

tions over subsets of variables. In constraint optimiza-

tion, the functions in F are real-valued cost functions.

The primal graph is the constraint graph.

� Deciding consistency of a CSP requires de-

termining if a constraint satisfaction problem has

a solution and, if so, to �nd all its solutions. Here

the combination operator is
N

j = ./

j
and the

marginalization operator is projection: +;= �X .

� Max-

CSP, Combinatorial optimization Max-CSP

problems seek to �nd a solution that minimizes

the number of constraints violated. Combinato-

rial optimization assumes real cost functions in F .

Both tasks can be formalized using the combina-

tion operator
N

j =
P
j and the marginalization

operator is +;= minX (the constraints can be ex-

pressed as cost functions of cost 0, or 1).

3 Tree-Decomposition schemes

Tree clustering schemes are popular both for

constraint processing and probabilistic reasoning.

The most popular variants are join-tree cluster-

ing algorithms, also called junction-trees. The

schemes vary somewhat in their graph de�ni-

tion as well as in the way tree-decompositions

are processed [Maier, 1983, Dechter and Pearl, 1989,

Lauritzen and Spiegelhalter, 1988,

Jensen et al., 1990, Georg Gottlob and Scarello, 1999,

Shenoy, 1996, Schmidt and Shenoy, 1998]. They all

involve a decomposition of a hypergraph into a hy-

pertree.

To allow a coherent discussion and extension of

these methods we �nd it necessary to introduce

a unifying perspective. We present a unifying

tree-decomposition framework that borrows its no-

tation from the recent hypertree decomposition

proposal for constraint satisfaction presented in

[Georg Gottlob and Scarello, 1999]. The exposition is

declarative, separating the desired target output from

its generative process.

Definition 3.1 Let P =< X;D;F;
N
;+; fZig >

be an automated reasoning problem. A tree-

decomposition for P is a triple < T; �; >, where
T = (V;E) is a tree, and � and are labeling func-
tions which associate with each vertex v 2 V two sets,
�(v) � X and (v) � F , that satisfy the following

conditions:

1. For each function fi 2 F , there is exactly one
vertex v 2 V such that fi 2 (v), and scope(fi) �
�(v).

2. For each variable x 2 X, the set fv 2 V jx 2 �(v)g
induces a connected subtree of T . This is also
called the running intersection or connectedness
property.

3. 8 i Zi � �(v) for some v 2 T .

When the combination operator is join, as in con-

straint satisfaction, condition 1 can be relaxed to re-

quire that each function will be in at least one node,
thus allowing multiple appearances of a function in

Algorithm cluster tree-elimination (CTE)

Input: A tree decomposition < T; �; > for a prob-

lem P =< X;D;F;
N
;+; fZ1; :::Ztg >.

Output: An augmented tree de�ned by clusters con-

taining the original functions as well as the received

messages. A solution computed from the augmented

clusters.

Compute messages:

Let m(i;u) denote the message sent by vertex i to ver-

tex u.

For every node u in the cluster tree, do

� If u has received messages from all adjacent ver-

tices other than v, then compute the message to

node v:

m(u;v) =+sep(u;v) (
O

f2 (u)[fm(i;u)j(i;u)2T; i6=vg

f)

Compute solution: For every v 2 T and every

Zi � �(v), compute +Zi

N
f2cluster(v) f

where cluster(u) = (u) [fm(v;u)j(v; u) 2 Tg

Figure 1: Algorithm cluster-tree elimination (CTE)

nodes. We will often use the term cluster referring to

a node with its set of functions, We will use the terms

tree-decomposition and a cluster-tree interchangeably.

Definition 3.2 (tree-width, separator) The
width (also called tree-width) of a tree-decomposition
< T; �; > is max

v2V
j�(v)j. Given two adjacent vertices

u and v of a tree-decomposition, a separator of u and
v is de�ned as sep(u; v) = �(u) \ �(v).

Example 3.1 Consider a problem P over variables
A;B;C;D; F;G with functions over scopes of size 2 or

3: F = ff(A;B); f(A;C), f(B;C); f(B;F); f(C;F),
f(A;B;D) f(F;G)g. Figure 3b gives its primal graph.
Any of the trees in Figure 7 is a tree-decomposition
for the problem. The � labelings of each node in the
tree are explicitly displayed. The labeling that will
satis�es condition 1 of a tree-decomposition can be ob-
tained by any partitioning of the functions into nodes
whose � label contain their arguments.

A tree-decomposition facilitates a solution to an auto-

mated reasoning task. Many variations for process-

ing tree-decompositions exist. The variant we pro-

pose, called Cluster-Tree Elimination (CTE), is typ-

ical, aiming into minimizing the space complexity of

the algorithm. Algorithm CTE for processing a tree-

decomposition is given in Figure 1. It works by having

each vertex of the tree send a function to each of its

neighbors. If the tree contains m edges, then a total of

2mmessages will be sent. Node u takes all its functions

and all messages received by u from all adjacent nodes

other than v, combine them and marginalize onto the

separator of u and v. The resulting function is then

sent to v.

Node activation can be asynchronous. Convergence is

guaranteed, but it may take as long as the diameter of

the tree in the worst case. If processing is performed

from leaves to root and back, convergence is guaran-

teed after two passes, where only one message is sent

on each edge in each direction.

Once all nodes have received messages from all neigh-

bors, a solution to the problem can be generated us-

ing the output augmented tree (as described in the

algorithm), in output linear time. For some tasks the

whole output tree is used to compute the solution (e.g.,

computing optimal tuple).

The correctness of CTE was proved for the respec-

tive tasks in constraint satisfaction and probabilistic

reasoning. The extension to the uni�ed framework

is immediate. A more general, axiomatic treatment

of this subject, applicable for CTE as well can be

found in the work of Shenoy [Shafer and Shenoy, 1990,

Shenoy, 1992, Schmidt and Shenoy, 1998]. For clarity

and completeness we can show explicitly

Theorem 3.2 (Correctness and completeness)

Assume that the combination operator
N

i and
marginalization operator +Y satisfy the following prop-
erties:

1. Associativity: f
N
g = g

N
f

2. Commutativity: f
N
(g
N
h) = (f

N
g)
N
h

3. Restricted distributivity: +X�fzg [f(X � fzg)
N

g(X)] = f(X � fzg)
N
+X�fzg g(X)

Algorithm CTE is sound and complete for any auto-
mated reasoning problem whose operators satisfy as-
sociativity, commutativity and restricted distributivity.
2

Theorem 3.3 (Complexity) Let N be the number
of nodes in the tree decomposition, w be its tree-width,
sep be its maximum separator size, r be the number of
input functions in F , and deg be the maximum degree
in T . The time complexity of CTE is O((r+N) �deg �

exp(w)) and its space complexity is O(N � exp(sep)).

Proof. The complexity of processing a node u is degu �

(j (u)j+degu�1)�exp(j�(u)j), where degu is the degree

of u. By bounding degu by deg and �(u) by w, and

summing over all nodes, we can bound the entire time

complexity by O(deg � (r + N) � exp(w)).

For each edge CTE will record two functions. Since

the number of edges is bounded by N and the size of

each function we record is bounded by exp(sep), the

space complexity is bounded by O(N � exp(sep)).

2

4 Bucket-Tree Elimination

In this section we extend the bucket-elimination (BE)

scheme into a message passing algorithm along a

bucket-tree. We then show that a bucket-tree is an

instance of tree-decomposition and that the extended

algorithm can be seen as an instance of CTE.

The input to a BE algorithm consists of a collection of

functions or relations (e.g., clauses for propositional

satis�ability, constraints, or conditional probability

matrices for belief networks). Given a variable order-

ing, the algorithm partitions functions into buckets,

each associated with a single variable. A function is

placed in the bucket of its latest argument in the order-

ing. The algorithm processes each bucket, top-down,

from the last variable to the �rst, by a variable elimi-

nation procedure that computes a new function using

combination and marginalization operators. The new

function is placed in the highest lower bucket whose

variable appears in the new function's scope.

When the solution of the problem requires a complete

assignment (e.g., solving the most probable explana-

tion (MPE) problem in Bayesian networks), a sec-

ond, bottom-up phase, assigns a value to each variable

along the ordering, consulting the functions created

during the top-down phase. For completeness sake we

present the BE algorithm for a general reasoning tasks

in Figure 2 [Dechter, 1999]. It is well known that the

complexity of BE is exponential in the induced-width

or the problems graph along the processed ordering.

Definition 4.1 (buckets) Let P =< X;D;F;
N
;+

Z1; :::; Zt > be an automated reasoning problem and
d an ordering of its variables d = (x1; :::; xn). Let
Bx1 ; :::; Bxn be a set of buckets, one for each variable.
Each bucket Bxi contains those functions in F whose
latest variable in d is xi.

We will next create a tree structure between the buck-

ets and associate each bucket with a set of variables.

A bucket-tree of P along an ordering d, has buckets as

its nodes, and bucket Bx is connected to bucket By if

the function generated in bucket Bx by BE is placed

in By. The variables of Bxi are those appearing in the

scopes of any function in the bucket once BE termi-

nated. Formally, the tree and the bucket's variables

can be characterized using the induced-width.

Algorithm bucket-elimination (BE)

Input: An automated reasoning task P =<

X;D;F;
N
;+; fx1; :::; xng >, an ordering of the

variables, d = X1; :::; Xn.

Output: A new compiled set of functions

from which +Y

n
i=1fi can be derived in linear

time.

1. Initialize: Generate an ordered partition

of the functions into bucket1; :::; bucketn, where

bucketi contains all the functions whose highest

variable in their scope is Xi. Let S1; :::; Sj be

the subset of variables in the processed bucket on

which functions (new or old) are de�ned.

2. Backward: For p n downto 1, do

for all the functions �1; �2; :::; �j in bucketp, do

� Up
Sj
i=1 Si � fXpg. Generate �p =+Up

j

i=1�i and add �p to the largest-index vari-

able in Up.

3. Return: all the functions in each bucket, and

for x1, +x1
�2bucketi�

Figure 2: Algorithm bucket-elimination

Definition 4.2 (bucket tree) Let G�

d be the in-

duced graph along d of a reasoning problem P whose
primal graph is G. The variables of Bx are x and its
earlier neighbors in the induced-graph G�

d. The nodes
of the bucket-tree are the n buckets. Each node Bx
points to By (or, By is the parent of Bx) if y is the
latest earlier neighbor of x in Gd. If By is the parent
of Bx in the bucket-tree, then the separator of x and
y, is the set of variables appearing in Bx \By .

Example 4.1 Consider the Bayesian network de�ned
over the DAG in Figure 3a. Figure 5 left shows the
initial buckets along the ordering d = A;B;C;D; F;G,

and the � messages that will be passed by BE from top
to bottom. On its right, the �gure displays the bucket-
tree along the ordering.

Theorem 4.2 A bucket tree of a problem P is a tree-
decomposition of P .

Proof. We need to provide mappings � and and

show that tree-decomposition properties hold for a

bucket tree :

1. �(Bx) contains x and its earlier neighbors in the

induced graph Gd along ordering d.

2. (Bx) contains all functions whose highest-

ordered argument is x.

A

B C

F

D

G

A

B C

F

D

G

(a) (b)

Season

Rain

Wet

Slipperywatering
Manual

Automated
sprinkler

Figure 3: belief network P (g; f; d; c; b; a)

= P (gjf)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

By construction, the tree-decomposition properties

other than the connectedness property hold. In or-

der to prove connectedness, let's assume the following:

There are two buckets Bx and By, both containing

variable z. Also, on the path between Bx and By in

the bucket-tree, there is a Bu that does not contain z.

Let Bi (Bj) be the �rst bucket on the path from Bx
(By) to Bu containing z, but its parent does not con-

tain z. Because Bu is on the path between Bi and Bj ,

it must be that i 6= j. Since the parents of Bi and Bj
do not contain z, it must be that variable z was elimi-

nated at nodes Bi and Bj during the top-down phase

of bucket-tree elimination. However, this is impossi-

ble, because during the top-down phase, each variable

gets eliminated exactly once. Therefore, Bu cannot

exist. 2

Since the bucket-tree is a tree-decomposition, the

cluster-tree elimination algorithm CTE is applicable.

Indeed, as we show, the correctness of the extension of

BE to BTE that adds a bottom-up message passing

is established by showing equivalence with CTE when

applied to the problem's bucket-tree. To present the

BTE algorithm, we will use two types of messages, �'s

and �'s as common in the exposition of probabilistic

inference.

Algorithm bucket-tree elimination (BTE) is given in

Figure 4. In the top-down phase, each bucket receives

� messages from its children and sends a � message to

its parent. This portion is equivalent to BE. In the

bottom-up phase, each bucket receives a � message

from its parent and sends � messages to each child.

Example 4.3 Figure 6 shows the complete execution
of BTE along the linear order of buckets and along
the bucket-tree. The � and � messages are viewed as
messages placed on the outgoing arcs.

Theorem 4.4 Algorithm BTE is sound and complete

Algorithm bucket-tree elimination (BTE)

Input: A problem P =< X;D;F;
N
;+,

fx1; :::; xng >, ordering d. Gd the induced graph

along d.

Output: Augmented buckets de�ned by the origi-

nal functions and all the � and � functions received

from neighbors in the bucket-tree. A solution to

P computed from augmented buckets.

0. Pre-processing: Place each function in its

latest bucket along d, that mentions a variable in

its scope. Connect two buckets Bx and By if vari-

able y is the latest earlier neighbor of x in the

induced graph G�

d.

1. Top-down phase: � messages (BE)

For i = n to 1, process bucket Bxi :

Let �1; :::�j be all the functions in Bxi at the time

Bxi is processed, including original functions of P .

The message �yxi sent from xi to its parent y, is

computed by

�yxi(sep(xi; y)) =+sep(xi;y)

jO

i=1

�i

where sep(xi; y) is the separator of xi and y.

2. Bottom-up phase: sending � messages

For i = 1 to n, process bucket Bxi :

Let �1; :::�j be all the functions in Bxi at the time

Bxi is processed, including the original functions

of P . Bxi takes the � message received from its

parent y, �xiy , and computes a message �
zj
xi for each

child bucket zj by

�zjxi (sep(xi; zj)) =+sep(xi;zj) �
xi
y

O
(
O

�i 6=�
xi
zj

�i)

3. Compute solution: In each augmented

bucket compute: +xi
N

f2Bxi
f ,

Figure 4: Algorithm Bucket-Tree Elimination

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ),(BAB

Cλ

)(AA
Bλ

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ

),(BAB
Cλ

)(AA
Bλ

Figure 5: Execution of BE along the bucket-tree

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ),(BAB

Cλ

)(AA
Bλ

)(FG
FΠ

),(CBF
CΠ

),(BAD
BΠ

),(BAC
BΠ

)(AB
AΠ

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF
Gλ

),(CBC
Fλ

),(BAB
Dλ

),(BAB
Cλ

)(AA
Bλ

)(FG
FΠ

),(CBF
CΠ

),(BAD
BΠ

),(BAC
BΠ

)(AB
AΠ

Figure 6: Propagation of �s and �s along the bucket-

tree

Proof: Since a bucket-tree is a tree-decomposition

and since it can be shown that CTE applied to a

bucket-tree is equivalent to BTE, the soundness and

correctness of BTE follows from the soundness and

correctness of CTE. 2

4.1 Complexity

Clearly, the induced-width w� along d is identical to

the tree-width of the bucket-tree when viewed as a

tree-decomposition. We next provide a re�ned com-

plexity analysis of BE followed by complexity analysis

of BTE.

Theorem 4.5 (Complexity of BE) Let w� be the
induced width of G along ordering d and sep its max-
imum separator. The time complexity of BE is O(r �
exp(w�+1)) and its space complexity is O(n�exp(sep)).

Proof. During BE, each bucket sends a � message to

its parent and since it computes a function de�ned on

all the variables in the bucket, the number of which

is bounded by w�, the computed function has domain

which is exponential in w�. Since the number of func-

tions that need to be consulted for each tuple in the

generated function is bounded by the number of orig-

inal functions in the bucket, rxi plus the messages re-

ceived from its children, which is bounden by degi,

the overall computation, summing over all buckets, is

bounded by

X

xi

(rxi + degi � 1) � exp(w� + 1)

The total complexity can be bounded by O((r +

n) � exp(w� + 1)). Assuming r � n, this becomes

O(r � exp(w� + 1)). The size of each � message is

O(exp(w�)). Since the total number of � messages

is n� 1, the total space complexity is O(n � exp(w�)).

2

Theorem 4.6 (Complexity of BTE) Let w�

be the induced width of G along ordering d and sep

its maximum separator (sep � w�). The time com-
plexity of BTE is O(r � deg � exp(w� + 1)), where deg
is the maximum degree in the bucket-tree. The space
complexity of BTE is O(n � exp(sep)).

Proof: Since the number of buckets is n, from the

analysis of CTE we can derive the time complexity of

BTE to be O((r + n) � deg � exp(w�)). Assuming that

r � n we get the desired bound for time complexity.

Since the size of each message is exp(sep) we get space

complexity of O(n � exp(sep)). 2.

The speedup expected from running BTE vs run-

ning BE n times (called, n-BE) is at most n. This

may seem insigni�cant compared with the exponen-

tial complexity in w�, however in practice it can be

very signi�cant. In particular, when these computa-

tions are used as a procedure within more extensive

search algorithms [Kask and Dechter, 1999]. The ac-

tual speedup of BTE relative to n-BE may be smaller

than n, however. We know that the complexity of n-

BE is O(n � r � exp(w� + 1)), whereas the complexity

of running BTE is O(deg � r � exp(w� + 1)). These

two bounds cannot be directly compared because we

do not know how tight the n-BE bound is. We can

hypothesize as follows: If the complexity of n-BE

was �(n � r � exp(w� + 1)), then the speedup of BTE

over n-BE would be
(n=deg). In a companion pa-

per [Larrosa et al., 2001] we evaluate empirically the

speed-up of an approximation scheme based on BTE

that show substantial gains. Clearly, for some prob-

lems (e.g., chains) the speedup of BTE over n-BE is

proportional to n.

Figure 7: From a bucket-tree (left) to join-tree (mid-

dle) to a super-bucket-tree (right)

5 Space-Time Tradeo� : Superbuckets

The main drawback of CTE is its memory needs.

The space complexity of CTE is exponential in the

largest separator size. In practice this may be too

prohibitive and therefore time-space tradeo�s were in-

troduced [Dechter, 1996]. The idea is to trade space

for time by combining adjacent nodes, thus reducing

separator sizes, while increasing their width and the

hyper-width.

Proposition 1 If T is a tree-decomposition, then any
tree obtained by merging adjacent nodes in T , is a tree-
decomposition. 2

Since a bucket tree is a tree-decomposition, by merging

adjacent buckets, we get what we call a super-bucket-
tree (SBT). This means that in the top-down phase

of processing SBT , several variables are eliminated at

once. Note that one can always generate a join-tree

from a bucket-tree by merging adjacent nodes. For

illustration see Figure 7.

6 Conclusions

By its nature the work here is related to all the work in

the past two decades on tree-decompositions for spe-

ci�c tasks, to which we referred sporadically through-

out the paper. Unifying framework were presented

[Shenoy, 1992, Shenoy, 1996, Bistarelli et al., 1997].
The work here put some of these schemes and for-

malisms together.

The main novelty of the paper is in extending the gen-

eral variable-elimination algorithm called bucket elim-

ination, into a two phase algorithm along a bucket-

tree making explicit the connection between these type

of algorithms and tree-decompositions. The exten-

sion was carried out in a general setting explicating

the relationship of the proposed algorithm with tree-

decomposition schemes. The extension is important

for a variety of reasoning tasks. The correctness and

complexity of the involving algorithms is analyzed.

References

[Bertele and Brioschi, 1972] U. Bertele

and F. Brioschi. Nonserial Dynamic Programming.
Academic Press, 1972.

[Bistarelli et al., 1997] S. Bistarelli, U. Montanari,

and F. Rossi. Semiring-based constraint satisfac-

tion and optimization. Journal of the Association
of Computing Machinery, 44, No. 2:165{201, 1997.

[Cozman, 2000] F. G. Cozman. Generalizing variable-

elimination in bayesian networks. In Workshop
on Probabilistic reasoning in Bayesian networks at
SBIA/Iberamia 2000, pages 21{26, 2000.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl.

Tree clustering for constraint networks. Arti�cial
Intelligence, pages 353{366, 1989.

[Dechter, 1996] R. Dechter. Topological parameters

for time-space tradeo�s. In Uncertainty in Arti�cial
Intelligence (UAI'96), pages 220{227, 1996.

[Dechter, 1999] R. Dechter. Bucket elimination: A

unifying framework for reasoning. Arti�cial Intel-
ligence, 113:41{85, 1999.

[Georg Gottlob and Scarello, 1999]

Nicola Leone Georg Gottlob and Francesco Scarello.

A comparison of structural csp decomposition meth-

ods. Ijcai-99, 1999.

[Jensen et al., 1990] F.V. Jensen, S.L Lauritzen, and

K.G. Olesen. Bayesian updating in causal proba-

bilistic networks by local computation. Computa-
tional Statistics Quarterly, 4:269{282, 1990.

[Kask and Dechter, 1999] K. Kask and R. Dechter.

Branch and bound with mini-bucket heuristics.

Proc. IJCAI-99, 1999.

[Larrosa et al., 2001] J Larrosa, K. Kask, and

R. Dechter. Up and down mini-bucket: a scheme

for approximating combinatorial optimization tasks.

Submitted, 2001.

[Lauritzen and Spiegelhalter, 1988] S.L. Lau-

ritzen and D.J. Spiegelhalter. Local computation

with probabilities on graphical structures and their

application to expert systems. Journal of the Royal
Statistical Society, Series B, 50(2):157{224, 1988.

[Maier, 1983] D. Maier. The theory of relational

databases. In Computer Science Press, Rockville,
MD, 1983.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in In-
telligent Systems. Morgan Kaufmann, 1988.

[Schmidt and Shenoy, 1998] T. Schmidt and P.P.

Shenoy. Some improvements to the shenoy-shafer

and hugin architecture for computingmarginals.Ar-
ti�cial Intelligence, 102:323{333, 1998.

[Shafer and Shenoy, 1990] G. R. Shafer and P.P.

Shenoy. Axioms for probability and belief-function

propagation. volume 4, 1990.

[Shenoy, 1992] P.P. Shenoy. Valuation-based systems

for bayesian decision analysis. Operations Research,
40:463{484, 1992.

[Shenoy, 1996] P.P. Shenoy. Binary join trees. pages

492{499, 1996.

