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URL Frontier Implementation - Mercator 

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO
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http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf
http://research.microsoft.com/~najork/mercator.pdf


• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline



Indices

The index



Indices

• Why does the crawling architecture exists?

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector 

space model)

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector 

space model)

• Links

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector 

space model)

• Links

• Where does a document link to?

The index



Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector 

space model)

• Links

• Where does a document link to?
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Indices

The index has a list of vector space models
      1 1998
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Indices

Our index is a 2-D array or Matrix
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Indices

“Term-Document Matrix” Capture Keywords
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Indices

• Is really big at a web scale

• It must be split up into pieces

• An effect way to split it up is to split up the same way as the 

crawling

• Equivalent to taking vertical slices of the T-D Matrix

• Helps with cache hits during crawl

• Later we will see that it needs to be rejoined for calculations 

across all documents

The Term-Document Matrix



Indices - Connectivity Server

• Other part of reason for crawling

• Supports fast queries on the web graph

• Which URLS point to a given URL (in-links)?

• Which URLS does a given URL point to (out-links)?

• Applications

• Crawl control

• Web Graph Analysis 

• Link Analysis (aka PageRank)

• Provides input to “quality” for URL frontier

Connectivity Server



Indices - Connectivity Server

Adjacency Matrix - Conceptual Idea
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Indices - Connectivity Server

• What about Adjacency Lists instead?

• Set of neighbors of a node

• Assume each URL represented by an integer

• i.e. 4 billion web pages need 32 bits per URL

• Naive implementation requires 64 bits per link

• 32 bits to 32 bits

Connectivity Server in practice



Indices - Connectivity Server

• What about Adjacency Lists instead?

• Non-naive approach is to exploit compression

• Similarity between lists of links

• Locality (many links go to “nearby” links)

• Use gap encodings in sorted lists

• Leverage the distribution of gap values

Connectivity Server in practice



Indices - Connectivity Server

• Current state of the art is Boldi and Vigna

• http://www2004.org/proceedings/docs/1p595.pdf

• They are able to reduce a URL to URL edge

• From 64 bits to an average of 3 bits

• For a 118 million node web graph

• How?

Connectivity Server in practice
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Indices - Connectivity Server

• Consider a lexicographically ordered list of all URLS, e.g:

• http://www.ics.uci.edu/computerscience/index.php

• http://www.ics.uci.edu/dept/index.php

• http://www.ics.uci.edu/index.php

• http://www.ics.uci.edu/informatics/index.php

• http://www.ics.uci.edu/statistics/index.php

Connectivity Server in practice
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http://www.ics.uci.edu/dept/index.php
http://www.ics.uci.edu/dept/index.php
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Indices - Connectivity Server

• Each of these URLs has an adjacency list

• Main idea: because of templates, the adjacency list of a node 

is similar to one of the 7 preceding URLs in the lexicographic 

ordering.

• So, express adjacency list in terms of a template

Connectivity Server in practice



Indices - Connectivity Server

• Consider these adjacency lists

• 1, 2, 4, 8, 16, 32, 64

• 1, 4, 9, 16, 25, 36, 49, 64

• 1, 2, 3, 5, 6, 13, 21, 34, 55, 89, 144

• 1, 4, 8, 16, 25, 36, 49, 64

• Encode this as row(-2), -URL(9), +URL(8)

• Very similar to tricks done in assembly code

Connectivity Server in practice



Indices - Connectivity Server

• The web is enormous

• A naive adjacency matrix would be several billion URLS on a 

side

• Overall goal is to keep the adjacency matrix in memory 

• Webgraph is a set of algorithms and a java implementation 

for examining the web graph

• It exploits the power law distribution to compress the 

adjacency matrix very tightly

• http://webgraph.dsi.unimi.it/

Connectivity Server in practice summary

http://webgraph.dsi.unimi.it
http://webgraph.dsi.unimi.it



