
Web Crawling
Introduction to Information Retrieval
INF 141
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate
Elimination

URL
Index

URL Frontier Queue

Host
Splitter

To Other Nodes

From Other
Nodes

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

URL Frontier Implementation - Mercator

• URLs flow from top to bottom

• Front queues manage priority

• Back queue manage politeness

• Each queue is FIFO

Prioritizer

F "Front"
Queues

1 2 F

B "Back"
Queues

Front Queue Selector

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf
http://research.microsoft.com/~najork/mercator.pdf

• Introduction

• URL Frontier

• Robust Crawling

• DNS

• Various parts of architecture

• URL Frontier

• Index

• Distributed Indices

• Connectivity Servers

Overview

Web Crawling Outline

Indices

The index

Indices

• Why does the crawling architecture exists?

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

• Links

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

• Links

• Where does a document link to?

The index

Indices

• Why does the crawling architecture exists?

• To gather information from web pages (aka documents).

• What information are we collecting?

• Keywords

• Mapping documents to a “bags of words” (aka vector

space model)

• Links

• Where does a document link to?

• Who links to a document?

The index

Indices

The index has a list of vector space models
 1 1998

 1 Every

 1 Her

 1 I

 1 I'm

 1 Jensen's

 2 Julie

 1 Letter

 1 Most

 1 all

 1 allegedly

 1 back

 1 before

 1 brings

 2 brothers

 1 could

 1 days

 1 dead

 1 death

 1 everything

 1 for

 1 from

 1 full

 1 happens

 1 haunts

 1 have

 1 hear

 3 her

 1 husband

 1 if

 1 it

 1 killing

 1 letter

 1 nothing

 1 now

 1 of

 1 pray

 1 read,

 1 saved

 1 sister

 1 stands

 1 story

 1 the

 2 they

 1 time

 1 trial

 1 wonder

 1 wrong

 1 wrote

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

Indices

Our index is a 2-D array or Matrix

1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 3

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 1

A Column for Each Web Page (or “Document”)
A

 R
o

w
 F

o
r

E
a

c
h

 W
o

rd
 (

o
r

“
Te

rm
”
)

...........

1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 3
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 2

0
 0

 0
 1

 1
 4

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 2

Indices

“Term-Document Matrix” Capture Keywords

1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 3

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 1

A Column for Each Web Page (or “Document”)
A

 R
o

w
 F

o
r

E
a

c
h

 W
o

rd
 (

o
r

“
Te

rm
”
)

...........

1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 3
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 2

0
 0

 0
 1

 1
 4

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 2

Indices

• Is really big at a web scale

• It must be split up into pieces

• An effect way to split it up is to split up the same way as the

crawling

• Equivalent to taking vertical slices of the T-D Matrix

• Helps with cache hits during crawl

• Later we will see that it needs to be rejoined for calculations

across all documents

The Term-Document Matrix

Indices - Connectivity Server

• Other part of reason for crawling

• Supports fast queries on the web graph

• Which URLS point to a given URL (in-links)?

• Which URLS does a given URL point to (out-links)?

• Applications

• Crawl control

• Web Graph Analysis

• Link Analysis (aka PageRank)

• Provides input to “quality” for URL frontier

Connectivity Server

Indices - Connectivity Server

Adjacency Matrix - Conceptual Idea
A B

C

A

B

C

A B C

0 1 1

0 0 0

0 0 1

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Set of neighbors of a node

• Assume each URL represented by an integer

• i.e. 4 billion web pages need 32 bits per URL

• Naive implementation requires 64 bits per link

• 32 bits to 32 bits

Connectivity Server in practice

Indices - Connectivity Server

• What about Adjacency Lists instead?

• Non-naive approach is to exploit compression

• Similarity between lists of links

• Locality (many links go to “nearby” links)

• Use gap encodings in sorted lists

• Leverage the distribution of gap values

Connectivity Server in practice

Indices - Connectivity Server

• Current state of the art is Boldi and Vigna

• http://www2004.org/proceedings/docs/1p595.pdf

• They are able to reduce a URL to URL edge

• From 64 bits to an average of 3 bits

• For a 118 million node web graph

• How?

Connectivity Server in practice

http://www2004.org/proceedings/docs/1p595.pdf
http://www2004.org/proceedings/docs/1p595.pdf

Indices - Connectivity Server

• Consider a lexicographically ordered list of all URLS, e.g:

• http://www.ics.uci.edu/computerscience/index.php

• http://www.ics.uci.edu/dept/index.php

• http://www.ics.uci.edu/index.php

• http://www.ics.uci.edu/informatics/index.php

• http://www.ics.uci.edu/statistics/index.php

Connectivity Server in practice

http://www.ics.uci.edu/computerscience/index.php
http://www.ics.uci.edu/computerscience/index.php
http://www.ics.uci.edu/dept/index.php
http://www.ics.uci.edu/dept/index.php
http://www.ics.uci.edu/index.php
http://www.ics.uci.edu/index.php
http://www.ics.uci.edu/informatics/index.php
http://www.ics.uci.edu/informatics/index.php
http://www.ics.uci.edu/statistics/index.php
http://www.ics.uci.edu/statistics/index.php

Indices - Connectivity Server

• Each of these URLs has an adjacency list

• Main idea: because of templates, the adjacency list of a node

is similar to one of the 7 preceding URLs in the lexicographic

ordering.

• So, express adjacency list in terms of a template

Connectivity Server in practice

Indices - Connectivity Server

• Consider these adjacency lists

• 1, 2, 4, 8, 16, 32, 64

• 1, 4, 9, 16, 25, 36, 49, 64

• 1, 2, 3, 5, 6, 13, 21, 34, 55, 89, 144

• 1, 4, 8, 16, 25, 36, 49, 64

• Encode this as row(-2), -URL(9), +URL(8)

• Very similar to tricks done in assembly code

Connectivity Server in practice

Indices - Connectivity Server

• The web is enormous

• A naive adjacency matrix would be several billion URLS on a

side

• Overall goal is to keep the adjacency matrix in memory

• Webgraph is a set of algorithms and a java implementation

for examining the web graph

• It exploits the power law distribution to compress the

adjacency matrix very tightly

• http://webgraph.dsi.unimi.it/

Connectivity Server in practice summary

http://webgraph.dsi.unimi.it
http://webgraph.dsi.unimi.it

