Introduction to Information Retrieval INF 141 Donald J. Patterson

Content adapted from Hinrich Schütze <a href="http://www.informationretrieval.org">http://www.informationretrieval.org</a>



# **Corpus-wide statistics**

- Collection Frequency, cf
  - Define: The total number of occurences of the term in

the entire corpus

- Collection Frequency, cf
  - Define: The total number of occurences of the term in the entire corpus
- Document Frequency, df
  - Define: The total number of documents which contain the term in the corpus

### Corpus-wide statistics

| Word      | Collection Frequency | Document Frequency |
|-----------|----------------------|--------------------|
| insurance | 10440                | 3997               |
| try       | 10422                | 8760               |

Elise F

### **Corpus-wide statistics**

| Word      | Collection Frequency | Document Frequency |
|-----------|----------------------|--------------------|
| insurance | 10440                | 3997               |
| try       | 10422                | 8760               |

This suggests that df is better at discriminating between documents

Eliza II

### **Corpus-wide statistics**

| Word      | Collection Frequency | Document Frequency |
|-----------|----------------------|--------------------|
| insurance | 10440                | 3997               |
| try       | 10422                | 8760               |

This suggests that df is better at discriminating between documents

E lister Fr

• How do we use df?



### **Corpus-wide statistics**

Term-Frequency, Inverse Document Frequency Weights



- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"



### **Corpus-wide statistics**

• Term-Frequency, Inverse Document Frequency Weights

Eliza El

- "tf-idf"
- tf = term frequency

### **Corpus-wide statistics**

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document

Eline in

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency
    - a measure of the informativeness of a term

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency
    - a measure of the informativeness of a term
    - it's rarity across the corpus

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency
    - a measure of the informativeness of a term
    - it's rarity across the corpus
    - could be just a count of documents with the term

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency
    - a measure of the informativeness of a term
    - it's rarity across the corpus
    - could be just a count of documents with the term
    - more commonly it is:

### **Corpus-wide statistics**

- Term-Frequency, Inverse Document Frequency Weights
  - "tf-idf"
  - tf = term frequency
    - some measure of term density in a document
  - idf = inverse document frequency
    - a measure of the informativeness of a term
    - it's rarity across the corpus
    - could be just a count of documents with the term  $idf = loc \left( |corpus| \right)$

 $idf_t = log$ 

• more commonly it is:

|                | TF-IDF Example                                | es                            |               |                                  |                       |                             |  |
|----------------|-----------------------------------------------|-------------------------------|---------------|----------------------------------|-----------------------|-----------------------------|--|
|                | $idf_t = log\left(\frac{ corp }{df_t}\right)$ | $\left(\frac{ us }{t}\right)$ | $idf_t = log$ | $g_{10}\left(\frac{1}{2}\right)$ | $\frac{000,00}{df_t}$ | $\left(\frac{00}{0}\right)$ |  |
|                | term                                          | $df_t$                        | $idf_t$       |                                  |                       |                             |  |
|                | cal purnia                                    | 1                             | 6             |                                  |                       |                             |  |
|                | animal                                        | 10                            | 4             |                                  |                       |                             |  |
|                | sunday                                        | 1000                          | 3             |                                  |                       |                             |  |
|                | fly                                           | 10,000                        | 2             |                                  |                       |                             |  |
|                | under                                         | 100,000                       | I             |                                  |                       |                             |  |
|                | the                                           | 1,000,000                     | ) 0           |                                  |                       |                             |  |
|                |                                               |                               | Eline P       |                                  |                       | ŧ                           |  |
| mar and a star |                                               |                               |               |                                  |                       |                             |  |

# **TF-IDF Summary**

- Assign tf-idf weight for each term t in a document d:  $tfidf(t,d) = (1 + log(tf_{t,d})) * log\left(\frac{|corpus|}{df_{t,d}}\right)$ 
  - Increases with number of occurrences of term in a doc.
  - Increases with rarity of term across entire corpus
  - Three different metrics
    - term frequency
    - document frequency

ollection/corpus frequency

# Now, real-valued term-document matrices

- Bag of words model
- Each element of matrix is tf-idf value

|           | Antony and | Julius | The Tempest | Hamlet | Othello | Macbeth |
|-----------|------------|--------|-------------|--------|---------|---------|
|           | Cleopatra  | Caesar |             |        |         |         |
| Antony    | 13.1       | 11.4   | 0.0         | 0.0    | 0.0     | 0.0     |
| Brutus    | 3.0        | 8.3    | 0.0         | 1.0    | 0.0     | 0.0     |
| Caesar    | 2.3        | 2.3    | 0.0         | 0.5    | 0.3     | 0.3     |
| Calpurnia | 0.0        | 11.2   | 0.0         | 0.0    | 0.0     | 0.0     |
| Cleopatra | 17.7       | 0.0    | 0.0         | 0.0    | 0.0     | 0.0     |
| mercy     | 0.5        | 0.0    | 0.7         | 0.9    | 0.9     | 0.3     |
| worser    | 1.2        | 0.0    | 0.6         | 0.6    | 0.6     | 0.0     |



# Vector Space Scoring

- That is a nice matrix, but
  - How does it relate to scoring?
  - Next, vector space scoring

# Vector Space Model

- Define: Vector Space Model
  - Representing a set of documents as vectors in a common vector space.
  - It is fundamental to many operations
    - (query,document) pair scoring
    - document classification
    - document clustering
  - Queries are represented as a document

A short one, but mathematically equivalent

# Vector Space Model

- Define: Vector Space Model
  - A document, d, is defined as a vector:  $\dot{V}(d)$ 
    - One component for each term in the dictionary
    - Assume the term is the tf-idf score

$$\vec{V}(d)_t = (1 + log(tf_{t,d})) * log\left(\frac{|corpus|}{df_{t,d}}\right)$$

- A corpus is many vectors together.
- A document can be thought of as a point in a multi-

dimensional space, with axes related to terms.

# Vector Space Model

• Recall our Shakespeare Example:

|           | Antony and | Julius | The Tempest | Hamlet | Othello | Macbeth |
|-----------|------------|--------|-------------|--------|---------|---------|
|           | Cleopatra  | Caesar |             |        |         |         |
| Antony    | 13.1       | 11.4   | 0.0         | 0.0    | 0.0     | 0.0     |
| Brutus    | 3.0        | 8.3    | 0.0         | 1.0    | 0.0     | 0.0     |
| Caesar    | 2.3        | 2.3    | 0.0         | 0.5    | 0.3     | 0.3     |
| Calpurnia | 0.0        | 11.2   | 0.0         | 0.0    | 0.0     | 0.0     |
| Cleopatra | 17.7       | 0.0    | 0.0         | 0.0    | 0.0     | 0.0     |
| mercy     | 0.5        | 0.0    | 0.7         | 0.9    | 0.9     | 0.3     |
| worser    | 1.2        | 0.0    | 0.6         | 0.6    | 0.6     | 0.0     |

# Vector Space Model

• Recall our Shakespeare Example:

|           | $ec{V}(d_1)$ |        |             |        |         |         |
|-----------|--------------|--------|-------------|--------|---------|---------|
|           | Antony and   | Julius | The Tempest | Hamlet | Othello | Macbeth |
|           | Cleopatra    | Caesar |             |        |         |         |
| Antony    | 13.1         | 11.4   | 0.0         | 0.0    | 0.0     | 0.0     |
| Brutus    | 3.0          | 8.3    | 0.0         | 1.0    | 0.0     | 0.0     |
| Caesar    | 2.3          | 2.3    | 0.0         | 0.5    | 0.3     | 0.3     |
| Calpurnia | 0.0          | 11.2   | 0.0         | 0.0    | 0.0     | 0.0     |
| Cleopatra | 17.7         | 0.0    | 0.0         | 0.0    | 0.0     | 0.0     |
| mercy     | 0.5          | 0.0    | 0.7         | 0.9    | 0.9     | 0.3     |
| worser    | 1.2          | 0.0    | 0.6         | 0.6    | 0.6     | 0.0     |



# Vector Space Model

• Recall our Shakespeare Example:

|           | $ec{V}(d_1)$ | $\vec{V}(d_2)$ |             |        |         | $\vec{V}(d_6)$ |
|-----------|--------------|----------------|-------------|--------|---------|----------------|
|           | Antony and   | Julius         | The Tempest | Hamlet | Othello | Macbeth        |
|           | Cleopatra    | Caesar         |             |        |         |                |
| Antony    | 13.1         | 11.4           | 0.0         | 0.0    | 0.0     | 0.0            |
| Brutus    | 3.0          | 8.3            | 0.0         | 1.0    | 0.0     | 0.0            |
| Caesar    | 2.3          | 2.3            | 0.0         | 0.5    | 0.3     | 0.3            |
| Calpurnia | 0.0          | 11.2           | 0.0         | 0.0    | 0.0     | 0.0            |
| Cleopatra | 17.7         | 0.0            | 0.0         | 0.0    | 0.0     | 0.0            |
| mercy     | 0.5          | 0.0            | 0.7         | 0.9    | 0.9     | 0.3            |
| worser    | 1.2          | 0.0            | 0.6         | 0.6    | 0.6     | 0.0            |



# Vector Space Model

• Recall our Shakespeare Example:

|           | $ec{V}(d_1)$ | $\vec{V}(d_2)$ |             |        |         | $\vec{V}(d_6)$ |
|-----------|--------------|----------------|-------------|--------|---------|----------------|
|           | Antony and   | Julius         | The Tempest | Hamlet | Othello | Macbeth        |
|           | Cleopatra    | Caesar         |             |        |         |                |
| Antony    | 13.1         | 11.4           | 0.0         | 0.0    | 0.0     | 0.0            |
| Brutus    | 3.0          | 8.3            | 0.0         | 1.0    | 0.0     | 0.0            |
| Caesar    | 2.3          | 2.3            | 0.0         | 0.5    | 0.3     | 0.3            |
| Calpurnia | 0.0          | 11.2           | 0.0         | 0.0    | 0.0     | 0.0            |
| Cleopatra | 17.7         | 0.0            | 0.0         | 0.0    | 0.0     | 0.0            |
| mercy     | 0.5          | 0.0            | 0.7         | 0.9    | 0.9     | 0.3            |
| worser    | 1.2          | 0.0            | 0.6         | 0.6    | 0.6     | 0.0            |

 $\vec{V}$ 

 $(d_6)_7$ 

