Matrix Decomposition and Latent Semantic Indexing (LSI) Introduction to Information Retrieval INF 141 Donald J. Patterson

Last Lecture

5

6

7

8

Efficient Cosine Ranking

- Find the k docs in the corpus "nearest" to the query
 - the k largest query-doc cosines

 $\operatorname{COSINESCORE}(q)$

- 1 INITIALIZE($Scores[d \in D]$)
- 2 INITIALIZE($Magnitude[d \in D]$)
- 3 for each $term(t \in q)$

```
4 do p \leftarrow \text{FetchPostingsList}(t)
```

```
df_t \leftarrow \text{GetCorpusWideStats}(p)
```

```
\alpha_{t,q} \leftarrow \text{WeightInQuery}(t,q,df_t)
```

```
for each \{d, tf_{t,d}\} \in p
```

```
do Scores[d] + = \alpha_{t,q} \cdot WEIGHTINDOCUMENT(t, q, df_t)
```

9 for $d \in Scores$

- 10 **do** NORMALIZE(Scores[d], Magnitude[d])
- 11 return top $K \in Scores$

Latent Semantic Indexing

Outline

- Introduction
- Linear Algebra Refresher

Star Cluster NGC 290 - ESA & NASA

Star Cluster NGC 290 - ESA & NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
 - projecting can be defined mathematically
- When we see two stars that are close..
 - They may not be close in space
- When we see two stars that appear far...

They may not be far in 3-D space

Star Cluster NGC 290 - ESA & NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
 - projecting can be defined mathematically
- When we see two stars that are close..
 - They may not be close in space
- When we see two stars that appear far...

They may not be far in 3-D space

Star Cluster NGC 290 - ESA & NASA

- When we see two stars that are close in a photo
 - They really are close for some applications
 - For example pointing a big telescope at them
 - Large shared telescopes order their views according to

how "close" they are.

Overhead projector example

Overhead projector example

- Depending on where we put the light (and the wall) we can make things in three dimensions appear close or far away in two dimensions.
- Even though the "real" position of the 3-d objects never moved.

Mathematically speaking

• This is taking a 3-D point and projecting it into 2-D

• The arrow in this picture acts like the overhead projector

Mathematically speaking

- We can project from any number of dimensions into any other number of dimensions.
- Increasing dimensions adds redundant information
 - But sometimes useful
 - Support Vector Machines (kernel methods) do this effectively
- Latent Semantic Indexing always reduces the number of dimensions

Mathematically speaking

Mathematically speaking

Mathematically speaking

Mathematically speaking

Mathematically speaking

• Latent Semantic Indexing can project on an arbitrary axis, not just a principal axis

Mathematically speaking

- Our documents were just points in an N-dimensional term space
- We can project them also

Mathematically speaking

• Latent Semantic Indexing makes the claim that these new axes represent semantics - deeper meaning than just a term

Mathematically speaking

- A term vector that is projected on new vectors may uncover deeper meanings
 - For example
 - Transforming the 3 axes of a term matrix from "ball"
 "bat" and "cave" to
 - An axis that merges "ball" and "bat"
 - An axis that merges "bat" and "cave"
 - Should be able to separate differences in meaning of

the term "bat"

Bonus: less dimensions is faster

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones
 on the main diagonal

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries M=3
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones
 on the main diagonal

N=5 $\begin{bmatrix}
1 2 3 4 5 \\
0 2 3 2 1 \\
1 0 0 1 1
\end{bmatrix}$ C

Linear Algebra Refresher

Let C be an M by N matrix with real-valued entries M=3

N=5

12345 02321

С

123 023

- for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones
 on the main diagonal

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $_{M=3}$
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix

The identity matrix is a diagonal matrix with ones
 on the main diagonal

Linear Algebra Refresher

on the main diagonal

- Let C be an M by N matrix with real-valued entries $_{M=3}$
 - for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones

010000

001000

000100

000010

000001

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - |f
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

 $U \quad \Sigma \quad V^T$

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

 $U \Sigma V^T$ $C = U\Sigma V^T$

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

 $U \Sigma V^{T}$ $C = U\Sigma V^{T}$ C is (M by N)

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If C is (.
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

 $U \Sigma V^{T}$ $C = U\Sigma V^{T}$ C is (M by N)U is (M by M)

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If C is (M by
 - then $U ext{ is } (M ext{ by } M)$
 - and

 $U \quad \Sigma \quad V^{T}$ $C = U\Sigma V^{T}$ C is (M by N)U is (M by M) $\Sigma is (M by N)$

- and
- also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - If C is (M by N)

 $U \quad \Sigma \quad V^T$

 $C = U\Sigma V^T$

- then $U ext{ is } (M ext{ by } M)$
- and $\Sigma is (M by N)$
- and $V^T is (N by N)$
- also Sigma is almost a diagonal matrix

- Singular Value Decomposition
 - Is a technique that splits a matrix into three components with these properties.
 - They also have some other properties which are relevant to latent semantic indexing

Matrix Decomposition

- Singular Value Decomposition
 - Is a technique that splits a matrix into three

components with these properties.

- Singular Value Decomposition
 - SVD enables lossy compression of your term-document matrix
 - reduces the dimensionality or the rank
 - you can arbitrarily reduce the dimensionality by putting zeros in the bottom right of sigma
 - this is a mathematically optimal way of reducing dimensions

Matrix Decomposition

- Singular Value Decomposition
 - If the old dimensions were based on terms
 - after reducing the rank of the matrix the dimensionality is based on concepts or semantics
 - a concept is a linear combination of terms

 $SVD_{dimension_1} = a * td_{dim_1} + b * td_{dim_2} + c * td_{dim_3} + d * td_{dim_4}$

 $SVD_{dimension_2} = a' * td_{dim_1} + b' * td_{dim_2} + c' * td_{dim_3} + d' * td_{dim_4}$

 $SVD_{dimension_3} = a'' * td_{dim_1} + b'' * td_{dim_2} + c'' * td_{dim_3} + d'' * td_{dim_4}$

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_1} = a * td_{dim_1} + b * td_{dim_2} + c * td_{dim_3} + d * td_{dim_4}$$

 $SVD_{dimension_2} = a' * td_{dim_1} + b' * td_{dim_2} + c' * td_{dim_3} + d' * td_{dim_4}$

 $SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$

• 4 dimensions to 3 dimensions

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_1} = a * td_{dim_1} + b * td_{dim_2} + c * td_{dim_3} + d * td_{dim_4}$$

$$SVD_{dimension_2} = a' * td_{dim_1} + b' * td_{dim_2} + c' * td_{dim_3} + d' * td_{dim_4}$$

 $SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$

• 4 dimensions to 3 dimensions

$$\begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

Matrix Decomposition

Singular Value Decomposition

$$SVD_{dimension_1} = a * td_{dim_1} + b * td_{dim_2} + c * td_{dim_3} + d * td_{dim_4}$$

 $SVD_{dimension_2} = a' * td_{dim_1} + b' * td_{dim_2} + c' * td_{dim_3} + d' * td_{dim_4}$

 $SVD_{dimension_{3}} = a'' * td_{dim_{1}} + b'' * td_{dim_{2}} + c'' * td_{dim_{3}} + d'' * td_{dim_{4}}$

Matrix Decomposition

Singular Value Decomposition

 $SVD_{dimension_1} = a * td_{dim_1} + b * td_{dim_2} + c * td_{dim_3} + d * td_{dim_4}$

 $SVD_{dimension_2} = a' * td_{dim_1} + b' * td_{dim_2} + c' * td_{dim_3} + d' * td_{dim_4}$

 $SVD_{dimension_3} = a'' * td_{dim_1} + b'' * td_{dim_2} + c'' * td_{dim_3} + d'' * td_{dim_4}$

 $SVD_{ConceptSpace} = M * query_{TermSpace}$

Matrix Decomposition

Singular Value Decomposition

 $SVD_{ConceptSpace} = M * query_{TermSpace}$

Matrix Decomposition

Singular Value Decomposition

 $SVD_{ConceptSpace} = M * query_{TermSpace}$

$$M = \Sigma_k^{-1} U_k^T$$

Matrix Decomposition

Singular Value Decomposition

 $SVD_{ConceptSpace} = M * query_{TermSpace}$

$$M = \Sigma_k^{-1} U_k^T$$

 $query_{ConceptSpace} = \Sigma_k^{-1} U_k^T query_{TermSpace}$

Matrix Decomposition

- Singular Value Decomposition
 - SVD is an algorithm that gives us

 $\Sigma \ U \ V^T$

- With these quantities we can reduce dimensionality
- With reduced dimensionality
 - synonyms are mapped onto the same location
 - "bat" "chiroptera"
 - polysemies are mapped onto different locations
 - "bat" (baseball) vs. "bat" (small furry mammal)

- Computing SVD takes a significant amount of CPU
- It is possible to add documents to a corpus without recalculating SVD
 - The result becomes an approximation
 - To get mathematical guarantees the whole SVD needs to be computed from scratch
- LSI doesn't support negation queries
- LSI doesn't support boolean queries

Elsen F

- "I am not crazy"
 - Netflix

- "I am not crazy"
 - Netflix

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

Matrix Decomposition

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

The math is hard but it's beautiful and powerful

Matrix Decomposition

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

The math is hard but it's beautiful and powerful

La matemáticas es dura pero es hermosa y de gran alcance

Matrix Decomposition

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

The math is hard but it's beautiful and powerful La matemáticas es dura pero es hermosa y de gran alcance Jene mathematisch ist hart, aber ist und an langer Reichweite schön

- "I am not crazy"
 - Netflix
 - Machine translations
 - Just like "bat" and "chiroptera" map the same
 - "bat" and "murciélago" can map to the same thing

```
The math is hard but it's beautiful and powerful
La matemáticas es dura pero es hermosa y de gran
alcance
Jene mathematisch ist hart, aber ist und an
langer Reichweite schön
That one mathematically is hard, but is beautiful and at long
range
```


