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Efficient Cosine Ranking

Last Lecture

• Find the k docs in the corpus “nearest” to the query

• the k largest query-doc cosines
CosineScore(q)

1 Initialize(Scores[d ∈ D])
2 Initialize(Magnitude[d ∈ D])
3 for each term(t ∈ q)
4 do p← FetchPostingsList(t)
5 dft ← GetCorpusWideStats(p)
6 αt,q ←WeightInQuery(t, q, dft)
7 for each {d, tft,d} ∈ p
8 do Scores[d] + = αt,q · WeightInDocument(t, q, dft)
9 for d ∈ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ∈ Scores



Outline

Latent Semantic Indexing

• Introduction

• Linear Algebra Refresher
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Latent Semantic Indexing - Introduction

• A picture of the sky is two dimensional

• The stars are not in two dimensions

• When we take a photo of stars we are projecting them 

into 2-D

• projecting can be defined mathematically

• When we see two stars that are close..

• They may not be close in space

• When we see two stars that appear far...

• They may not be far in 3-D space
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Star Cluster NGC 290 - ESA & NASA

Latent Semantic Indexing - Introduction

• When we see two stars that are close in a photo

• They really are close for some applications

• For example pointing a big telescope at them

• Large shared telescopes order their views according to 

how “close” they are.  
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Overhead projector example

Latent Semantic Indexing - Introduction

• Depending on where we put the light (and the wall) we can 

make things in three dimensions appear close or far away in 

two dimensions.

• Even though the “real” position of the 3-d objects never 

moved.



Mathematically speaking

Latent Semantic Indexing - Introduction

• This is taking a 3-D point and projecting it into 2-D

• The arrow in this picture acts like the overhead projector
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Mathematically speaking

Latent Semantic Indexing - Introduction

• We can project from any number of dimensions into any 

other number of dimensions.

• Increasing dimensions adds redundant information

• But sometimes useful

• Support Vector Machines (kernel methods) do this 

effectively

• Latent Semantic Indexing always reduces the number of 

dimensions
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Mathematically speaking

Latent Semantic Indexing - Introduction

• Latent Semantic Indexing can project on an arbitrary axis, not 

just a principal axis



Mathematically speaking

Latent Semantic Indexing - Introduction

• Our documents were just points in an N-dimensional term 

space

• We can project them also
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Latent Semantic Indexing - Introduction

• Latent Semantic Indexing makes the claim that these new 

axes represent semantics - deeper meaning than just a term
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Mathematically speaking

Latent Semantic Indexing - Introduction

• A term vector that is projected on new vectors may uncover 

deeper meanings

• For example

• Transforming the 3 axes of a term matrix from “ball” 

“bat” and “cave” to

• An axis that merges “ball” and “bat”

• An axis that merges “bat” and “cave”

• Should be able to separate differences in meaning of 

the term “bat”

• Bonus: less dimensions is faster



Linear Algebra Refresher

Latent Semantic Indexing - Linear Algebra Refresher

• Let C be an M by N matrix with real-valued entries

• for example our term document matrix

• A matrix with the same number of rows and 

columns is called a square matrix

• An M by M matrix with elements only on the 

diagonal is called a diagonal matrix

• The identity matrix is a diagonal matrix with ones 

on the main diagonal
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Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• Is a technique that splits a matrix into three 

components with these properties.

• They also have some other properties which 

are relevant to latent semantic indexing
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Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• SVD enables lossy compression of your term-document matrix

• reduces the dimensionality or the rank

• you can arbitrarily reduce the dimensionality by putting 

zeros in the bottom right of sigma

• this is a mathematically optimal way of reducing dimensions



Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• If the old dimensions were based on terms 

• after reducing the rank of the matrix the dimensionality 

is based on concepts or semantics

• a concept is a linear combination of terms

SV Ddimension1 = a ∗ tddim1 + b ∗ tddim2 + c ∗ tddim3 + d ∗ tddim4

SV Ddimension2 = a′ ∗ tddim1 + b′ ∗ tddim2 + c′ ∗ tddim3 + d′ ∗ tddim4

SV Ddimension3 = a′′ ∗ tddim1 + b′′ ∗ tddim2 + c′′ ∗ tddim3 + d′′ ∗ tddim4
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• Singular Value Decomposition

• SVD is an algorithm that gives us 

• With these quantities we can reduce dimensionality

• With reduced dimensionality

• synonyms are mapped onto the same location

• “bat” “chiroptera”

• polysemies are mapped onto different locations

• “bat” (baseball) vs. “bat” (small furry mammal) 

Σ U V T



Latent Semantic Indexing - Linear Algebra Refresher

• Computing SVD takes a significant amount of CPU

• It is possible to add documents to a corpus without 

recalculating SVD

• The result becomes an approximation

• To get mathematical guarantees the whole SVD needs to 

be computed from scratch

• LSI doesn’t support negation queries

• LSI doesn’t support boolean queries
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