Matrix Decomposition and Latent Semantic Indexing (LSI) Introduction to Information Retrieval INF 141
 Donald J. Patterson

Last Lecture

Efficient Cosine Ranking

- Find the k docs in the corpus "nearest" to the query
- the k largest query-doc cosines

CosineScore (q)
1 Initialize $(S \operatorname{cores}[d \in D])$
$2 \operatorname{Initialize}(M a g n i t u d e[d \in D])$
3 for each $\operatorname{term}(t \in q)$
$4 \quad$ do $p \leftarrow$ FetchPostingsList (t)
$d f_{t} \leftarrow \operatorname{GetCorpusWideStats}(p)$
$\alpha_{t, q} \leftarrow \operatorname{WeightInQuery}\left(t, q, d f_{t}\right)$
for each $\left\{d, t f_{t, d}\right\} \in p$
do $\operatorname{Scores}[d]+=\alpha_{t, q} \cdot \operatorname{WeightInDocument}\left(t, q, d f_{t}\right)$
for $d \in S$ cores
do Normalize(Scores $[d]$, Magnitude $[d]$)
return top $K \in S$ cores

Latent Semantic Indexing

Outline

- Introduction
- Linear Algebra Refresher

Latent Semantic Indexing - Introduction

Star Cluster NGC 290 - ESA \& NASA

Latent Semantic Indexing - Introduction

Star Cluster NGC 290 - ESA \& NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
- projecting can be defined mathematically
- When we see two stars that are close..
- They may not be close in space
- When we see two stars that appear far...
- They may not be far in 3-D space

Latent Semantic Indexing - Introduction

Star Cluster NGC 290 - ESA \& NASA

- A picture of the sky is two dimensional
- The stars are not in two dimensions
- When we take a photo of stars we are projecting them into 2-D
- projecting can be defined mathematically
- When we see two stars that are close..
- They may not be close in space
- When we see two stars that appear far...

- They may not be far in 3-D space

Latent Semantic Indexing - Introduction

Star Cluster NGC 290 - ESA \& NASA

- When we see two stars that are close in a photo
- They really are close for some applications
- For example pointing a big telescope at them
- Large shared telescopes order their views according to how "close" they are.

Latent Semantic Indexing - Introduction
Overhead projector example

Latent Semantic Indexing - Introduction

Overhead projector example

- Depending on where we put the light (and the wall) we can make things in three dimensions appear close or far away in two dimensions.
- Even though the "real" position of the 3-d objects never moved.

Latent Semantic Indexing - Introduction

Mathematically speaking

- This is taking a 3-D point and projecting it into 2-D

- The arrow in this picture acts like the overhead projector

Latent Semantic Indexing - Introduction

Mathematically speaking

- We can project from any number of dimensions into any other number of dimensions.
- Increasing dimensions adds redundant information
- But sometimes useful
- Support Vector Machines (kernel methods) do this effectively
- Latent Semantic Indexing always reduces the number of dimensions

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing always reduces the number of dimensions

(x, y) $(10,10)$	(x) (10)		
$\left[\begin{array}{l}10 \\ 10\end{array}\right]$			$\left[\begin{array}{l}10 \\ \end{array}\right.$
:---			

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing always reduces the number of dimensions
(x, y)

$(10,10)$$\quad$| (x) |
| :--- |
| (10) |

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing always reduces the number of dimensions
(x, y)

$(10,10)$$\quad$| (x) |
| :--- |
| (10) |

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing always reduces the number of dimensions
(x, y)

$(10,10)$$\square$| (x) |
| :---: |
| (10) |

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing can project on an arbitrary axis, not just a principal axis

Latent Semantic Indexing - Introduction

Mathematically speaking

- Our documents were just points in an N-dimensional term space
- We can project them also

Brutus ${ }^{\wedge}$

Latent Semantic Indexing - Introduction

Mathematically speaking

- Latent Semantic Indexing makes the claim that these new axes represent semantics - deeper meaning than just a term

$$
\text { Brutus } \uparrow
$$

Latent Semantic Indexing - Introduction

Mathematically speaking

- A term vector that is projected on new vectors may uncover deeper meanings
- For example
- Transforming the 3 axes of a term matrix from "ball"
"bat" and "cave" to
- An axis that merges "ball" and "bat"
- An axis that merges "bat" and "cave"
- Should be able to separate differences in meaning of the term "bat"

Latent Semantic Indexing - Linear Algebra Refresher

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries
- for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones on the main diagonal

Latent Semantic Indexing - Linear Algebra Refresher

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $\mathrm{m}=3$
- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones on the main diagonal

Latent Semantic Indexing - Linear Algebra Refresher

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $M=3\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 2\end{array}\right]$
- for example our term document matrix
- A matrix with the same number of rows and columns is called a square matrix

C

- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones on the main diagonal

Latent Semantic Indexing - Linear Algebra Refresher

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $\quad \mathrm{m}=3$
$\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 3 & 2 & 1 \\ 1 & 0 & 0 & 1 & 1\end{array}\right]$

C

- A matrix with the same number of rows and columns is called a square matrix
- An M by M matrix with elements only on the diagonal is called a diagonal matrix
- The identity matrix is a diagonal matrix with ones on the main diagonal

Latent Semantic Indexing - Linear Algebra Refresher

Linear Algebra Refresher

- Let C be an M by N matrix with real-valued entries $\quad \mathrm{m}=3$

C

- The identity matrix is a diagonal matrix with ones on the main diagonal

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices
- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
U \quad \Sigma \quad V^{T}
$$

- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
U \quad \Sigma \quad V^{T}
$$

- Such that

$$
C=U \Sigma V^{T}
$$

- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
\begin{aligned}
& U \sum \Sigma V^{T} \\
& C=U \Sigma V^{T} \\
& C \text { is }(M \text { by } N)
\end{aligned}
$$

- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
\begin{aligned}
& U \quad \Sigma V^{T} \\
& C=U \Sigma V^{T} \\
& C \text { is }(M \text { by } N) \\
& U \text { is }(M \text { by } M)
\end{aligned}
$$

- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
\begin{aligned}
& U \quad \Sigma V^{T} \\
& C=U \Sigma V^{T} \\
& C i s(M b y N) \\
& U \text { is }(M \text { by } M) \\
& \Sigma i s(M b y N)
\end{aligned}
$$

- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Splits a matrix into three matrices

$$
\begin{gathered}
U \sum V^{T} \\
C=U \Sigma V^{T} \\
C i s(M \text { by } N) \\
U \text { is }(M \text { by } M) \\
\Sigma i s(M \text { by } N) \\
V^{T} i s(N b y N)
\end{gathered}
$$

- Such that
- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Is a technique that splits a matrix into three components with these properties.
- They also have some other properties which are relevant to latent semantic indexing

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- Is a technique that splits a matrix into three components with these properties.

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- SVD enables lossy compression of your term-document matrix
- reduces the dimensionality or the rank
- you can arbitrarily reduce the dimensionality by putting zeros in the bottom right of sigma
- this is a mathematically optimal way of reducing dimensions

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- If the old dimensions were based on terms
- after reducing the rank of the matrix the dimensionality is based on concepts or semantics
- a concept is a linear combination of terms

$$
S V D_{\text {dimension }_{1}}=a * t d_{\text {dim }_{1}}+b * t d_{\text {dim }_{2}}+c * t d_{\text {dim }_{3}}+d * t d_{\text {dim }_{4}}
$$

$$
\text { SVD }_{\text {dimension }_{2}}=a^{\prime} * t d_{\text {dim }_{1}}+b^{\prime} * t d_{\text {dim }_{2}}+c^{\prime} * t d_{\text {dim }_{3}}+d^{\prime} * t d_{\text {dim }_{4}}
$$

$S V D_{\text {dimension }_{3}}=a^{\prime \prime} * t d_{d i m_{1}}+b^{\prime \prime} * t d_{\text {dim }_{2}}+c^{\prime \prime} * t d_{d i m_{3}}+d^{\prime \prime} * t d_{d i m_{4}}$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$$
\begin{aligned}
& \text { SV }_{\text {dimension }_{1}}=a * t d_{d i m_{1}}+b * t d_{d i m_{2}}+c * t d_{d i m_{3}}+d * t d_{d i m_{4}} \\
& \text { SV }_{\text {dimension }_{2}}=a^{\prime} * t d_{d i m_{1}}+b^{\prime} * t d_{d i m_{2}}+c^{\prime} * t d_{d i m_{3}}+d^{\prime} * t d_{{d i m_{4}}} \\
& \text { SV }_{\text {dimension }_{3}}=a^{\prime \prime} * d_{d i m_{1}}+b^{\prime \prime} * t d_{\text {dim }_{2}}+c^{\prime \prime} * t d_{\text {dim }_{3}}+d^{\prime \prime} * t d_{d i m_{4}}
\end{aligned}
$$

- 4 dimensions to 3 dimensions

$$
\left|\begin{array}{cccc}
a & b & c & d \\
a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime} & d^{\prime \prime}
\end{array}\right|
$$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$$
\begin{aligned}
& \text { SV }_{\text {dimension }_{1}}=a * t d_{d i m_{1}}+b * t d_{d i m_{2}}+c * t d_{d i m_{3}}+d * t d_{d i m_{4}} \\
& \text { SV }_{\text {dimension }_{2}}=a^{\prime} * t d_{d i m_{1}}+b^{\prime} * t d_{\text {dim }_{2}}+c^{\prime} * t d_{d i m_{3}}+d^{\prime} * t d_{{d i m_{4}}} \\
& \text { SV }_{\text {dimension }_{3}}=a^{\prime \prime} * t d_{\text {dim }_{1}}+b^{\prime \prime} * t d_{\text {dim }_{2}}+c^{\prime \prime} * t d_{\text {dim }_{3}}+d^{\prime \prime} * t d_{d i m_{4}}
\end{aligned}
$$

- 4 dimensions to 3 dimensions

$$
\left|\begin{array}{cccc}
a & b & c & d \\
a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime} & d^{\prime \prime}
\end{array}\right| *\left|\begin{array}{l}
t d_{\operatorname{dim}_{1}} \\
t d_{\operatorname{dim}_{2}} \\
t d_{\operatorname{dim}_{3}} \\
t d_{\operatorname{dim}_{4}}
\end{array}\right|
$$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$$
\begin{aligned}
& \text { SV }_{\text {dimension }_{1}}=a * t d_{d i m_{1}}+b * t d_{d i m_{2}}+c * t d_{d i m_{3}}+d * t d_{d i m_{4}} \\
& \text { SV }_{\text {dimension }_{2}}=a^{\prime} * t d_{d i m_{1}}+b^{\prime} * t d_{d i m_{2}}+c^{\prime} * t d_{d i m_{3}}+d^{\prime} * t d_{d i m_{4}} \\
& \text { SV }_{\text {dimension }_{3}}=a^{\prime \prime} * d_{d i m_{1}}+b^{\prime \prime} * t d_{\text {dim }_{2}}+c^{\prime \prime} * t d_{\text {dim }_{3}}+d^{\prime \prime} * t d_{d i m_{4}}
\end{aligned}
$$

$\left|\begin{array}{l}S V D_{\operatorname{dim}_{1}} \\ S V D_{\operatorname{dim}_{2}} \\ S V D_{d i m_{3}}\end{array}\right|=\left|\begin{array}{cccc}a & b & c & d \\ a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime} & d^{\prime \prime}\end{array}\right| *\left|\begin{array}{l}t d_{d i m_{1}} \\ t d_{\operatorname{dim}_{2}} \\ t d_{\operatorname{dim}_{3}} \\ t d_{d i m_{4}}\end{array}\right|$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$$
\begin{aligned}
& S_{\text {dimension }}^{1}
\end{aligned}=a * t d_{d i m_{1}}+b * t d_{\text {dim }_{2}}+c * t d_{d i m_{3}}+d * t d_{d i m_{4}} .
$$

\(\left.\left|$$
\begin{array}{c}S V D_{\operatorname{dim}_{1}} \\
S V D_{\operatorname{dim}_{2}} \\
S V D_{d i m_{3}}\end{array}
$$\right|=\left|\begin{array}{cccc}a \& b \& c \& d

a^{\prime} \& b^{\prime} \& c^{\prime} \& d^{\prime}

a^{\prime \prime} \& b^{\prime \prime} \& c^{\prime \prime} \& d^{\prime \prime}\end{array}\right| * \right\rvert\,\)| $t d_{d i m_{1}}$ |
| :--- |
| $t d_{\operatorname{dim}_{2}}$ |
| $t d_{\operatorname{dim}_{3}}$ |
| $t d_{d i m_{4}}$ |

$S V D_{\text {ConceptSpace }}=M *$ query $_{\text {TermSpace }}$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$S V D_{\text {ConceptSpace }}=M *$ query $_{\text {TermSpace }}$
$C=U \quad \Sigma \quad V^{T}$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition

$$
\left.\begin{gathered}
S V D_{\operatorname{dim}_{1}} \\
S V D_{\operatorname{dim}_{2}} \\
S V D_{\operatorname{dim}_{3}}
\end{gathered}\left|=\left|\begin{array}{cccc}
a & b & c & d \\
a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime} & d^{\prime \prime}
\end{array}\right| *\right| \begin{aligned}
& t d_{\operatorname{dim}_{1}} \\
& t d_{\operatorname{dim}_{2}} \\
& t d_{\operatorname{dim}_{3}} \\
& t d_{\operatorname{dim}_{4}}
\end{aligned} \right\rvert\,
$$

$S V D_{\text {ConceptSpace }}=M *$ query $_{\text {TermSpace }}$

$$
M=\Sigma_{k}^{-1} U_{k}^{T}
$$

$$
C=U \quad \Sigma \quad \begin{array}{lll}
& \quad & \quad V^{T}
\end{array}
$$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
$\left|\begin{array}{l}S V D_{\operatorname{dim}_{1}} \\ S V D_{\operatorname{dim}_{2}} \\ S V D_{\text {dim }_{3}}\end{array}\right|=\left|\begin{array}{cccc}a & b & c & d \\ a^{\prime} & b^{\prime} & c^{\prime} & d^{\prime} \\ a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime} & d^{\prime \prime}\end{array}\right| *\left|\begin{array}{l}t d_{\operatorname{dim}_{1}} \\ t d_{\operatorname{dim}_{2}} \\ t d_{\operatorname{dim}_{3}} \\ t d_{\text {dim }_{4}}\end{array}\right|$
$S V D_{\text {ConceptSpace }}=M *$ query $_{\text {TermSpace }}$

$$
M=\Sigma_{k}^{-1} U_{k}^{T}
$$

query $_{\text {ConceptSpace }}=\Sigma_{k}^{-1} U_{k}^{T}$ query $_{\text {TermSpace }}$

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- Singular Value Decomposition
- SVD is an algorithm that gives us $\Sigma U V^{T}$
- With these quantities we can reduce dimensionality
- With reduced dimensionality
- synonyms are mapped onto the same location
- "bat" "chiroptera"
- polysemies are mapped onto different locations
- "bat" (baseball) vs. "bat" (small furry mammal)

Latent Semantic Indexing - Linear Algebra Refresher

- Computing SVD takes a significant amount of CPU
- It is possible to add documents to a corpus without recalculating SVD
- The result becomes an approximation
- To get mathematical guarantees the whole SVD needs to be computed from scratch
- LSI doesn't support negation queries
- LSI doesn't support boolean queries

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition
 DETFIXX

- "I am not crazy"
- Netflix

Netflix Prize

Home	Rules	Leaderboard	Register	Update	Submit	Download

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix
- Machine translations
- Just like "bat" and "chiroptera" map the same
- "bat" and "murciélago" can map to the same thing

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix
- Machine translations
- Just like "bat" and "chiroptera" map the same
- "bat" and "murciélago" can map to the same thing

The math is hard but it's beautiful and powerful

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix
- Machine translations
- Just like "bat" and "chiroptera" map the same
- "bat" and "murciélago" can map to the same thing

```
The math is hard but it's beautiful and powerful
La matemáticas es dura pero es hermosa y de gran
alcance
```


Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix
- Machine translations
- Just like "bat" and "chiroptera" map the same
- "bat" and "murciélago" can map to the same thing

```
The math is hard but it's beautiful and powerful
        La matemáticas es dura pero es hermosa y de gran
        alcance
```

```
Jene mathematisch ist hart, aber ist und an
langer Reichweite schön
```


Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

- "I am not crazy"
- Netflix
- Machine translations
- Just like "bat" and "chiroptera" map the same
- "bat" and "murciélago" can map to the same thing

```
The math is hard but it's beautiful and powerful
        La matemáticas es dura pero es hermosa y de gran
        alcance
```

Jene mathematisch ist hart, aber ist und an
langer Reichweite schön

That one mathematically is hard, but is beautiful and at long range
next...

LUC I

