
Design Patterns for Safe Reective Middleware

Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian

Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425 USA

fseguti,nalinig@ics.uci.edu

Abstract

Flexible, scalable and customizable middleware can be used as en-
abling technology for next generation systems, where a wide range of ser-
vices and activities must execute concurrently, non-disruptively and share
resources. In order to avoid resource conicts, deadlocks, inconsistencies
and incorrect execution semantics, the underlying resource management
system (middleware) must ensure that the concurrent system activities
execute and compose in the correct manner. However, characterizing the
semantics of shared resources and specifying what correctness of the over-
all system means is a di�cult task. Patterns have proven to be useful to
build exible and modular frameworks by capturing the common struc-
ture and collaboration among their participants. Hence, they can be used
to deal with semantical issues that guarantee correct composition of sys-
tem resource activities in DRE systems, where issues of correctness and
composition can be quite subtle, and complex.

1 Introduction

Middleware is the fundamental infrastructure that enables distributed comput-
ing. Flexible middleware frameworks incorporate the notion of reection in
order to provide the desired level of con�gurability and openness in a controlled
manner. While such distributed middleware enables the modular connection
of software components to manage the resources of an open distributed sys-
tem, it must constraint the global behavior of the distributed system to ensure
safety while providing for dynamic recon�guration [9]. In DRE (Distributed
Real-time and Embedded) systems, issues of correctness and composition can
be quite subtle and complex. Interactions within and across components must
be considered, the semantics of shared, distributed resources must be cleared
spelled out and new notions of correctness of the overall system need to be
developed.

On the other side, patterns and languages patterns have proven to be useful
to build exible and e�cient software. The basic concept of a pattern is to cap-
ture the static and dynamic structure and collaboration among key participants

1



within a framework. Hence, patterns can be viewed as abstract descriptions
of frameworks that facilitate widespread reuse of software architecture. When
related patterns are woven together, they form a language that provides a pro-
cess for the orderly resolution of software development problems[3]. In general,
pattern languages help to alleviate the continual rediscovery and reinvention of
software concepts and components by conveying a family of related solutions to
standard software development problems [2]. Recently, pattern languages have
been applied to develop dynamically con�gurable ORB middleware [4].

In this paper, we describe how we developed a framework to reason about
composition of middleware services, based on the actor model of object dis-
tributed computation [6], and how we use design patterns to provide safe com-
position of middleware services.

2 The Two Level Meta Architectural Model

Since the actor model of computation [6] incorporates the notion of encapsu-
lation and interaction only via message passing, it o�ers a clear, exible and
simple semantic approach to describe DRE systems based on incoming com-
munications. The system is modeled as a group of self contained and indepen-
dent autonomous objects, called actors, which communicate via asynchronous
(bu�ered) message passing. On receiving a communication, an actor processes
the message in a manner determined by its current behavior. As a result, the ac-
tor may: (1) Create new actors, (2) Change its behavior and (3) Send messages
to itself or to other (existing) actors. Since mail addresses may be communi-
cated in messages the con�guration of the communication is dynamic and the
activation order (one message activates another if the latter is sent during the
processing of the former) determines communication patterns.

The two level actor machine (TLAM) model re�nes the actor model to spec-
ify, compose and reason about resource management services in open distributed
systems[9]. In the TLAM model, a system is composed of two kinds of actors,
base actors and meta actors, distributed over a network of processing nodes.
Base actors carry out application level computation, while meta actors are part
of the run-time system, which manages system resources and controls the run-
time behavior of the base level. Meta actors communicate with each other via
message passing as do base actors, and they may also examine and modify the
state of the base actors located on the same node. Base level actors and mes-
sages have associated run-time annotations that can be set and read by meta
actors. The annotations are invisible to base level computation. Actions which
result in a change of base level state, are called events and meta actors may
react to them if they occur on their node.

A TLAM con�guration has a set of base and meta level actors and a set of
undelivered messages. The actors are distributed over the TLAM nodes. Each
actor has a unique name (actor identi�er) and the con�guration associates a
current state to each actor name. The undelivered messages are distributed
over the network (some are traveling along communication links and others are

2



Figure 1: Classi�cation of core services

held in node bu�ers).
To ensure non-interference and manage the complexity of reasoning about

components of the DRE system, we identi�ed key system services where non-
trivial interactions between the application and system occur, i.e. base-meta
interactions. We refer to these key services as core services. Core services are
then used in specifying and implementing more complex activities as purely
meta-level interactions. The development of suitable non-interference require-
ments allows us to reason about composition of multiple system services; these
services have constraints that must be obeyed to maintain composability. We
use commonly observed patterns in distributed system services to extract im-
plementable abstractions and identify three meta-level core activities (See Fig
1):

� Remote Creation: - Recreation of services/data at a remote site. Re-
mote creation can be used as the basis for designing algorithms for activ-
ities such as migration, replication and load balancing.

� Distributed Snapshot: Capturing information at multiple nodes/sites
used as a basis for distributed garbage collection

� Directory Services: Interactions with a global repository. Directory
services can be used to provide access control and implement group com-
munication protocols.

3



3 Applying Design Patterns to Ensure Safe Com-

position

In order to develop a pattern language suitable to ensure safe composition of
core services, we extend the Active Object pattern [10] by allowing to queue other
active objects (i.e. actors), which may actually execute the method following
the command pattern [5]. Thus, a given actor can handle many request without
actually knowing what those requests do. Then we de�ne the following patterns
to describe the core services:

� Remote Creation Factory (RCF): This pattern provides a single com-
ponent that creates actors in a distributed fashion (i.e. a speci�c node
other than the node from which the creation is being initiated). By en-
capsulating the process of actor creation (local or remote) in the RCF,
we can state requirements that ensure safe and correct composition of
other resource management activities that use actor creation as a basis.
For example, the RCF may further re�ned to encapsulate and consoli-
date replication, migration and load balancing mechanism that can be
recon�gured dynamically through the use of the Strategy pattern [5]. By
default, there is no acknowledgement from the RCF, but if the requester
needs to know tha the request has been met, or the names of some of the
newly created actors, then the addresses of the newly created actors can
be returned in a message sent by the recently created actors.

� Abstract Distributed Snapshot (ADS): This pattern allows us to
generalize the snapshot mechanisms used to capture the global state of
the system, such as actor information, number of messages in transit or
being processed, task queue sizes and reachability, in a distributed fashion.
Since reachability characterizes the potential for communication of one
actor with another, it forms the basis for resource management activities
such as distributed garbage collection and checkpointing and helps to make
run-time decisions that lead to e�cient and safe management of a DRE
system. As state information is accessible explicitly only in nodes, the
ADS pattern ensures that node state information in channels are recorded
at some node in the system without any interference at the application or
system level, so application level computation and system services proceed
concurrently with the snapshot in progress thereby preserving application
and system semantics.

� Directory: This pattern allow us to generalize the mechanisms for iden-
tifying and locating actors as coordination and interaction patterns that
can be used to de�ne exible and customizable naming schemes and secu-
rity mechanisms. It also may be used to provide resource discovery and
implement group communication protocols.

We use these patterns to provide a library of core services that allows a
wide variety of resource management mechanism and policies to be composed,

4



attached and detached dynamically without requiring that the representation
of one mechanism or policy knows about the others.

For Example, a remote creation request is given by a triple (�,ad,�). This is
interpreted as a request to create a base level fragment consisting of the actors
created and messages sent when ad is executed on node, �. The fragment is
independent of the node and con�guration up to choice of new actor addresses.
The actor � is speci�ed as the creator/sender of actors and messages in the newly
created fragment. Assuming that every node in the system has an instance of a
RCF and a Node Manager, which takes care of inter-node communication, the
remote creation is done in two phases:

1. Handshake: The local RCF requests its node manager (caller) to negotiate
the remote creation request. Then, both node managers (caller and callee)
check security and resource availability.

2. Local Creation: Once the handshake has been successfully accomplished,
the remote RCF locally creates the actor (or actors) requested.

Besides to allows us to consolidate actor creation (locally or remotly), the
RCF pattern give us the exibility to create a set of actors within the same
request and it opens the possibility to change dynamically between di�erent
compiler transformations to enhance the performance of remote creation in a
per node basis. By encapsulating the interactions between the base and meta
level actors within the RCF, services using it are assured of correct base-meta
interactions without interference from other system activities. e.g. the mi-
gration service allows for actor relocation for easier access, availability and load
balancing. Since relocation can be seen as a state transfer, which is a specializa-
tion of a remote creation, we built the migration service using the RCF pattern
as follows: A migration request is interpreted as a request to move the compu-
tation carried out by a local actor � to the node �. In order to state explicitly
the invariants that need to be maintained, we classify the migration process into
3 phases

1. Initialization: It determines a safe point in which the actor computation
should be suspended, it speci�es the current actor state and creates a
surrogate actor, which will receive the new actor address.

2. Remote Creation: Using the RCF, a remote creation request is issued to
the node � with the actor state as a parameter. Then the RCF will create
the actor and substitute the initial state with the current actor state. Here
we use the Decorator pattern [5] to extend the responsibilities if the RCF
and be able to send the state of the actor as a parameter in the remote
creation request.

3. Rerouting: It establishes transparent access to the migrated actor by pro-
viding a special actor (forwarder) that redirects all the incoming messages
from the previous to the current actor location.

5



4 Concluding Remarks

In this paper, we described a meta-architectural framework that help us to gain
understanding of the semantic issues involved in the composition and customiza-
tion of middleware services, and how a pattern language can provide safe com-
position of these services by constraining their collaboration and provide a new
layer of abstraction that allow services to recon�gure themselves in a dynamic
fashion. In general, the dynamic nature of DRE applications under varying
network conditions and request tra�c imply that the underlying middleware
framework must be dynamic and customizable. We believe that composable
and safe middleware frameworks that implement cleanly de�ned meta architec-
tures enable customization of applications and system services; this will provide
a foundation for the evolution of large scale distributed computing.

References

[1] Chandy K.M. and Lamport L. Distributed Snapshots: Determining Global
States of a Distributed System. In ACM Transactions on Computer Sys-
tems, 1985.

[2] Douglas C. Schmidt. Experience Using Design Patterns to Develop
Reusable Object-Oriented Communication Software. Communications of
the ACM, 38, 1995.

[3] Douglas C. Schmidt. Applying Patterns and Frameworks to Develop
Object-Oriented Communication Software. Handbook of Programming Lan-
guages, 1, 1997.

[4] Douglas C. Schmidt and Chris Cleeland. Applying a Pattern Language
to Develop Extensible ORB Middleware. IEEE Communication Magazine,
37(4), 1999.

[5] Erich Gamma, Richard Helm, Ralp Johnson and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[6] Gul Agha. Actors: A model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[7] Nalini Venkatasubramanian. An Adaptive Resource Management Architec-
ture for Global Distributed Computing. PhD thesis, University of Illinois at
Urbana-Champaign, 1998. Department of Computer Science.

[8] Nalini Venkatasubramanian and Carolyn Talcott. Integration of Resource
Management Activities in Distributed Systems. Technical Report Com-
puter Science Department, Stanford University, 1995.

6



[9] Nalini Venkatasubramanian, Mayur Deshpande, Shivjit Mohapatra, Sebas-
tian Gutierrez-Nolasco and Jehan Wickramasuriya. Design and Implemen-
tation of a Composable Reective Middleware Framework. In International
Conference on Distributed Computer Systems (ICDCS-21), 2001.

[10] R.G. Lavender and Douglas C. Schmidt. Active Object: an Object Be-
havioral Pattern for Concurrent Programming. In Pattern Languages of
Program Design, 1996.

7


