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Abstract. In this paper, we address the problem of data placement in a grid based
multimedia environment, where the resource providers, i.e. servers, are
intermittently available. The goal is to optimize the system performance by
admitting maximum number of users into the system while ensuring user Quality of
Service (QoS). We define and formulate various placement strategies that determine
the degree of replication necessary for video objects by using a cost-based
optimization procedure based on predictions of expected requests under various
time-map scenarios and QoS demands. We also devise methods for dereplication of
videos based on changes in popularity and server usage patterns. Our performance
results indicate the benefits obtained the judicious use of dynamic placement
strategies.

1 Introduction

Global grid infrastructures [1, 11] enable the use of idle computing and communication
resources distributed in a wide-area environment.  Multimedia applications are resource
intensive and can effectively exploit idle resources available on a grid. Many multimedia
applications, e.g. streaming media, must ensure continuous access to information sources
to maintain Quality-of-Service requirements. However, systems on a computational grid
are not continuously available. Our objective is to ensure application QoS and effective
resource utilization in “ intermittently available”  environments. We define “ intermittently
available”  systems as those in which servers and service providers may not be available
all the time. Effective load management in such an intermittently available environment
requires: (1) Resource discovery and scheduling mechanisms that ensure the continuity of
data to the user [9]; (2) Data placement mechanisms to ensure data availability. In this
paper, we focus on the second problem.

Generally, a placement policy for a multimedia (MM) system will address: (1) how
many replicas are needed for each MM object; (2) which servers the replicas should be
created on; (3) when to replicate. Placement decisions directly affect requests acceptance
ratios for different MM objects. A bad placement policy will deteriorate the system
performance, since it causes unused replicas to occupy premium storage resources. An



ideal placement policy must be capable of adjusting the mapping of replicas on the servers
according to the run-time request pattern. Previous work has addressed issues in data
placement for servers that are continuously available [4]. In this paper, we propose
placement strategies that consider the intermittent availability of servers in addition to the
request patterns and resource limitations. Basically, we determine the degree of
replication of an object by using a cost-based optimization procedure based on predictions
of expected requests for that object.  To enforce the replication decisions, the placement
and dereplication strategies proposed take into consideration the time maps of server
availability in addition to object popularity and server utilization.

We illustrate the system architecture in Section 2. Section 3 proposes a family of
placement strategies for intermittently available environment. Section 4 introduces the
time-aware predictive placement algorithm for dynamic object placement. We evaluate
the performance of the proposed approaches in Section 5 and conclude in Section 6.

2 System Architecture

The envisioned system consists of clients and multimedia servers distributed across a wide
area network (see Fig 1). The resources provided by the distributed servers include high
capacity storage devices to store the multimedia data, processor, buffer memory, and NIC
(network interface card) resources for real-time multimedia retrieval and transmission.
Server availability is specified using a server time-map that indicates specific times when
a server is available. The availability of resources on servers can vary dynamically due to
request arrivals and completions; the stored data on a server also changes dynamically due

Fig. 1. System Architecture



to replication and dereplication of MM objects. To accommodate a large number of video
objects, the environment includes tertiary storage. The key component of this architecture
is a brokerage service. Specifically, the broker: determines an initial placement of video
objects on servers; discovers the appropriate set of resources to handle an incoming
request; coordinates resource reservation and schedules these requests on the selected
resources; and initiates replication and dereplication of multimedia objects to cater to
changes in request pattern and load conditions. Information required for effective data
placement and resource provisioning include server resource availabilities, server time
maps, replica maps, network conditions etc. This information is held in a directory service
(DS) that is accessed and updated suitably by the broker.

Client requests for MM objects are routed to the broker that determines whether or not
to accept the request based on current system conditions and request characteristics.   
Using state information in the DS, the broker determines a candidate server or a set of
servers that can satisfy the request. Once a solution for the incoming request (i.e.
scheduled servers and times) has been determined, the broker will update the directory
service to reflect the allocated schedule. The goal is to improve the overall system
performance and increase the number of accepted requests.

3 Placement Strategies

Given the time map and server resource configurations, an effective placement strategy
will determine the optimal mapping of replicas to servers, so that the overall system
performance is improved and accepted requests will be guaranteed QoS. Specifically, a
placement policy for a MM system will provide decisions on which objects to replicate,
how many replicas are required, where and when to replicate. Placement decisions can be
made statically (in advance) or dynamically changed at runtime.   We propose and
compare a family of static and dynamic placement policies that can be used in
intermittently available environments. Specifically, we devise and evaluate a Time-aware
Predictive Placement (TAPP) algorithm for dynamic placement in a multimedia grid.

Static Placement Strategies: are determined at system initialization time; this
placement is not altered during the course of request execution.  Static placement policies
may be popularity based where information on request popularity is taken into account
when determining the replication degree of a MM object. We propose deterministic and
non-deterministic policies to place the replicas on servers.  Three static placement policies
have been studied in this paper: (1) SP1: Cluster-based static placement – We cluster the
servers into groups so that the total available service time of each group covers the entire
day. Each video object is associated with exactly one group, so that every server in the
group has a replica of this video object. (2) SP2: Popularity-enhanced deterministic
placement – Here, we classify video objects into two groups – very-popular and less-
popular. A replica of a very-popular video object is placed on every server, assuming
resource availability. Less-popular video objects are evenly placed in the remaining



storage space. (3) SP3: Popularity-based random placement – Here, we choose the
number of replicas for a video object based on its popularity, however, these replicas are
randomly distributed among the feasible servers, i.e those that have available disk storage.

Dynamic Placement Strategies consider the available disk storage, the current load on
the servers, and the changing request patterns for access to video objects so as to
dynamically reconfigure the number of replicas for each video object and their placement.
We model the request R from a client as: R: < VID R , ST R , ET R , QoS R >, where VID R
corresponds to the requested video ID; ST R is the request start time; ET R is the end time
by which the request should be finished; QoSR represents the resources required by the
request, such as: the required disk bandwidth (R DBW), required memory resource (R MEM),
required CPU (R CPU ) , and the required network transfer bandwidth (RNBW); and  the
duration for which these resources are required (Dv). In order to deal with the capacity of
each server over time in a unified way and represent how much a request will affect the
server during the requested period of time, we define a Load Factor. Initially, we define a
Load Factor (R, S, t) for a request r on server s at a particular time unit t, as:

Load Factor (R, S, t) = Max [ CPU a , MEM a , NBW a , DBW a ]
CPU a = R CPU / SAvailCPU(t), MEM a = R MEM / SAvailMEM(t),

NBW a  = R NBW / SAvailNBW(t), DBW a  = R DBW / SAvailDBW(t).

(1)

Thus, the Load Factor of a server S at time t, LF(R, S, t), is determined by the bottleneck
resource at time t. However, the duration of the requested period from ST R to ET R may
cover multiple time units; we therefore use the average Load Factor over all time units
(between ST R and ET R) during which the server is available. For example, if the
granularity of the time units in a day is 24 (24 hours/day), and ST R is 5am and ET R is
10am, we consider

LF (S) = Average (LF5, LF6, LF7, LF8, LF9, LF10). (2)

Dynamic placement strategies can be initiated on-demand to satisfy an individual
request, or issued in advance based on predicted request arrivals. The efficacy of the on-
demand technique depends on (a) the startup latency, i.e. how long a user will wait for a
request to start and (b) the available tertiary storage bandwidth for replication.  With low
startup latencies, large amounts of server bandwidth and tertiary storage bandwidth are
required to create replicas; hence the on-demand strategy may not always be feasible. In
the following section, we propose a time-aware predictive placement approach that
integrates server time-map information with request access histories to design a data
placement mechanism for intermittently available environments.

4 The Time-Aware Predictive Placement (TAPP) Algorithm

The generalized Time-Aware Predictive Placement (TAPP) algorithm (Figure 2) has three
main steps - Popularity-Estimation, Candidate-server-selection, Pseudo-Replication. An
additional Pseudo-Dereplication phase may be added if sufficient storage space is not



available1. We assume that the TAPP algorithm executes periodically with a predefined
prediction-period.

Time-Aware Predictive Dynamic Placement Algorithm:
1 Obtain a snapshot of replica-maps and server state informaiton

/* (2) to (5) below execute on the snapshot information and do not modify the actual data.*/
2 Initialize

/*set candidate_servers, add_replicas, del_replicas, replication_set, dereplication_set  = null */
3 Popularity-Estimation /* update add_replicas and del_replicas */
4 candidate_servers = Candidate-Server-Selection( )
5 if (storage-biased and candidate_servers == null) then

dereplication_set += Pseudo-Dereplication (system_wide) /* update  candidate_servers*/
6 while ( candidate_servers != null and add_replicas!= null) do

replication_set = Pseudo-Replication()
if (replication_set != null) then

for each combination (Vi , Sj) in replication_set do
if (Sj does not have enough storage for a replica of V, ) then

dereplication_set += Pseudo-Dereplication (server_specific)
/* update replication_set, add_replicas and candidate_servers appropriately*/

7 if ( replication_set != null and dereplication_set != null) then
do dereplication of video objects from appropriate real servers
do replication of video objects on appropriate real servers

Fig. 2. Time-aware Predictive Placement Algorithm (TAPP)

Popularity-Estimation decides which video objects need more replicas based on a
rejection-popularity (RP) factor defined for each video object Vi. Let #rejection(i)  be the
number of  rejections of Vi in the last time period, #rejections be the total number of
rejections for all videos within last time period, and #requests(i) be the number of requests
for Vi in the last time period.  Then RP(i) is defined as:

.)(#
#

)(#)( irequests
rejections

irejectionsiRP ∗= (3)

Hence, the larger the RP is, the more problematic this video object is; which implies the
necessity to add replicas. Furthermore, we group videos with rejection ratio > 5% into
add_replicas list maintained in decreasing order of the RP. We also group videos with
rejection ratio < 0.5% into a list del_replicas, maintained in ascending order of the RP.

Candidate-Server-Selection determines which servers will be considered for the
creation of new replicas. It may be implemented using two approaches. A Bandwidth –
biased approach chooses candidate servers using the current load and service time
availability as primary criteria and ignores information about storage availability on
servers. The Storage – biased approach uses the storage availability as a primary criterion

1 Replication and dereplication decisions are not executed until a final mapping has been achieved –
hence the names pseudo replication and pseudo dereplication.



in choosing candidate servers for new replicas. If there are no servers with sufficient disk
storage, we choose servers that have replicas on the del_replicas list and attempt to
dereplicate the less problematic replicas using the Pseudo-Dereplication process
described later.

Table 1. Placement Cost Matrix (PCM)

Pseudo-Replication: Using the set of servers from Step 2 (candidate server selection)
and the add_replicas list obtained from Step 1 (Popularity-Estimation) we build a
placement cost matrix, PCM (Table 1) in order to derive a mapping of video objects to
data servers.  The matrix represents the relative costs of servicing subscriber requests from
each of the data servers. The columns represent data servers and rows represent video
objects.

If server Sj already has a replica for video Vi, then the placement matrix entry is set as
null, that is, this combination will not be considered for replication. Othewise, 1/ LF(Ri,
Sj) represents the average number of requests similar to Ri that data server Sj can service
per time-unit. To account for the intermittent availability of servers, we introduce a factor
Tj to represent the duration of time for which server j is available in the next prediction-
period. Then, the value (1/LF(Ri, Sj) * Tj) represents the average number of concurrently
executing requests for video i that a server j can accept during the next prediction-period.
Ni represents the number of rejections in the last period. We therefore set

)*),(/1(,(),( jjiiji TSRLFNMinSVPCM = that represents the benefit that can accrue from
allocating Vi to Sj..

After calculating the entries in the placement matrix, we choose the maximum value
Max(PCM(Vi, Sj)). This gives us the object-server combination that is expected to
improve request acceptance in the next prediction-period.  We shrink the matrix by either
deleting a column (if Ni >= 1/LF(Ri, Sj)*Tj) correspondingly decreasing the value of Ni by
1/LF(Ri, Sj)*tj;  or deleting a row (if Ni <= 1/LF(Ri, Sj)*Tj) appropriately decreasing the
available network bandwidth of Sj.  We then repeat the pseudo-replication process until
there are no more columns or rows left.  At the end of the Pseudo-Replication, we have an
ordered list of replication decisions that the broker can initiate.

Pseudo-Dereplication marks video objects in the del_replicas list (obtained during
Popularity Estimation) as dereplicatable if they are not currently in use and/or have not
been reserved for future use. Dereplication decisions can be made on a system wide basis
or on a specific server. System_wide dereplication may be invoked prior to Pseudo-
Replication. The goal is to dereplicate the least popular replica from lightly loaded servers

S1 S2 S3

V1 Min (N1 ,1/LF(R1, S1)*T1) Min (N1 ,1/LF(R1, S2)*T2) Min (N1 ,1/LF(R1, S3)*T3)
. … … …

Vn Min (Nn ,1/LF(Rn, S1)*T1) Min (Nn ,1/LF(Rn, S2)*T2) Min (Nn ,1/LF(Rn, S3)*T3)

Max(PCM(Vn , S1)) Max(PCM(Vn , S2)) Max(PCM(Vn , S3))



with more service time available.  For each video Vk in del_replicas, we order the servers
that have a copy of Vk in ascending order of their load-factors. We then pick the most
beneficial replica for dereplication. The number of replicas that are selected for
dereplication can be tailored to meet the storage needs of popular objects. Server_specific
dereplication may be issued to ensure replication decisions made by the Pseudo-
Replication process. In order to provide enough space for a new replica on a specific
server, we may need to dereplicate appropriate number of videos from the del_replicas list
that are not in use or have not been reserved for future use on that server.

5 Performance Evaluations

In this section, we evaluate the performance of the proposed placement strategies under
various time-maps scenarios and server resource configurations.

Simulation Environment: We characterize incoming multimedia requests using a
Zipfian distribution [6,13,14], with the request arrivals per day for each video Vi given:

Pr. (Vi is requested) =
i

KM , where
1

1
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−

=









= ∑

M

i
M i

K . (4)

We compute the probability of request arrival in an hour j to
be: )/( 1 φ−= jcp j

for 241 ≤≤ j , where Φ is the degree of skew and assumed to be 0.8 and

))/1(/(1 1 φ−∑= jc , 241 ≤≤ j . Hence, the number of requests that arrive in each hour
for each video Vj are computed.

The basic video server configuration used in this simulation includes 20 data servers
each with 100 GB storage and 100Mbps network transfer bandwidth. For simplicity, the
CPU and memory resources of the data servers are assumed not to be bottlenecks; besides
the 100Mbps network bandwidth available for video streaming, a fraction of server
bandwidth is reserved for replications into the server.  In the following simulations, we set
the duration of each video to be three hours; each video replica requires 2 GB disk
storage, and 2 Mbps for network transmission bandwidth. In fact, these parameters will be
changed for different purposes during the simulation.

In such an intermittently available system, specifically for each server, we use the
service time map to keep the information of when the servers will be available during the
span of a day. We study three approaches to model the time map of each server: (1) T1:
Uniform availability – All the servers are available for an equal amount of time; and the
servers are divided into groups, so that within each group, the time distribution covers the
entire 24-hour day. (2) T2: Random availability – How long and when the servers are
available are all randomly determined. (3) T3: Total availability – All the servers are
available all the time.  In the remainder of this paper, we will use T1, T2 and T3 to
identify the three time map strategies.



Performance Results: Given the time map information and resource configuration of the
video server system, we study the system performance by applying the scheduling polices
for discovering intermittently available resources (DIAR) described in [9] and use the
number of rejections (i.e. success of the admission control process) as the main metric of
evaluation. In order to focus on the placement problem, we present our simulation results
by using a scheduling policy where requests are initiated immediately (albeit startup
latency) and continuously serviced without interruption by (possibly) multiple servers.

Overall performance of static placement under different time map patterns:
Intuitively, when servers are always available (T3), the multiple server cases should
always have a better acceptance rate, as in Fig 3.  This is because, in general, the single
server case is a constrained version of the multiple server case and therefore has fewer
options for resource selection.   With time-maps T2 and T1, we observe that the number
of rejections of policy SP3 is much smaller than SP2 or SP1. Although both SP2 and SP3
take request popularity into account, SP3 is better than SP2, because the random
distribution enlarges the possibility for a replica to be created on more servers with
different time maps. Although SP1 (cluster-based placement) does not take the request
popularity into account, it works well in conjunction with the T1 time-map since the
clustering technique meshes well with the T1 time-map.

Peformance of different
static placement strategies
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Fig. 3. Performance of different static placement strategies. The caption of “ SPx-Ty”  implies the
SPx static placement and Ty time map model used.

Comparing dynamic placement strategies with static approaches: In order to avoid
the influence of randomness, we choose the SP1 and T1 configurations. From Fig 4a, we
observe that all the dynamic placement policies outperform SP1 with less number of
rejections.  The bandwidth biased TAPP seems to perform similar to the storage biased
variant. However, comparing with Fig 4b, we observed that with more network
bandwidth, the bandwidth-biased TAPP performs marginally better than storage-biased.
We attribute this to the fact that when bandwidth is sufficient, the impact of effective
storage utilization is less, since more effective load balance is achieved. 
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We also observe that more storage provides greater possibility of replicating popular
videos yielding better acceptance ratios. However, our experiments indicate that beyond a
point, merely increasing storage is insufficient to improve performance significantly. 
Other factors such as network bandwidth and server time-maps are bottlenecks to
performance at high storage levels. We studied several factors that may influence the
system performance such as time-map continuity, the number of data servers, etc.  The
TAPP policy exhibited low sensitivity to variations in time-map continuity; we believe
that this policy is well suited to grid environments where systems exhibit randomized
availability patterns. Furthermore, dynamic placement exhibits better performance with
larger numbers of servers (as Fig 5) indicating the enhanced benefits that can be obtained
as the size of the grid increases. We conclude that  effective data placement can
significantly improve system performance.  Furthermore, dynamic placement is
particularly effective when network bandwidth is limited.

Impact of number of data servers
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Fig. 5. The impact of number of data servers for TAPP (bandwidth-biased)

6.  Related work and Future Research Directions

Data placement has been studied extensively in the context of distributed systems. [2]
proposes a dissemination tree for replica placement algorithms which reduces the number
of replicas deployed. Static data management policies for general purpose applications

Fig. 4a. Placement strategies under limited
network bandwidth resources.

Fig. 4b. Placement strategies under large
network bandwidth resource.



(WWW) under resource constraints have been developed [12,3]. Research in data
placement for multimedia servers addresses techniques to replicate frequently accessed
videos to provide high data bandwidth and fault tolerance [10,7]; such algorithms are
closely tied to the architectural configuration of the server. Dynamic segment replication
[5] strategies have been proposed for cluster based video servers to replicate segments of
files in order to be responsive to quick video load requests. Our prior work on dynamic
placement policies for video servers based on predictions of future requests does not
consider the intermittently availability of servers. In this paper, we have proposed and
evaluated a family of data placement strategies to enable QoS-based services in a grid-
based environment. We intend to conduct further performance studies with heterogeneous
servers and combinations of request patterns.  We also plan to explore effective
middleware support in situations where server availability is not known ahead of time.
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