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Abstract

The rising popularity of mobile applications and devices
has brought about an enhanced interest in infrastructure
support for mobile computing. Our work focuses on the
development of a mobile grid infrastructure called MAP-
Grid (Mobile Applications on Grids), where grid resources
are exploited as proxies to enable advanced mobile appli-
cations. However, intermittent availability of grid resources
presents challenges for data-intensive mobile applications.
In this paper, we propose novel methodologies for placing
mobile data on grid proxies. We introduce a notion of two-
tier architecture for MAPGrid, where the upper tier cap-
tures grid related features and the lower tier represents fea-
tures associated with mobile environments. We further de-
velop an intelligent mobile data placement mechanism that
effectively balances tradeoffs between replication cost and
data access cost by leveraging knowledge of grid availabil-
ity and mobile data request patterns. Through extensive ex-
perimentation, we illustrate the superiority of the proposed
techniques over several popular data placement strategies.

1 Introduction

The next generation of mobile applications such as mo-
bile multimedia and gaming are data and resource intensive
and must execute on devices that are limited in resources
(memory, storage, battery power). A recent trend is to uti-
lize resources in the path of service, i.e. network proxies, to
provide localized computation and storage to enable distrib-
uted and ubiquitous service availability [20, 24]. Research
efforts have demonstrated that the Grid infrastructure pro-
vides an ideal setting to enable proxy-based mobile applica-
tions [14,16,19]. In a mobile grid environment, grid proxies
connect to mobile hosts via wireless access points such as
wireless routers and base stations. Placing data requested

by mobile users on nearby grid proxies can significantly
reduce the load and thus prevent bottlenecks on the origi-
nal data servers that maintain data objects and handle ser-
vice requests. Besides, mobile users will experience shorter
data access delays and thus better Quality-of-Service (QoS).
Proxy-based techniques can also be applied on grid ma-
chines to overcome innate constraints of mobile devices,
e.g., offloading tasks and QoS adaptations [20] can alleviate
energy tensity when running computational-intensive appli-
cations.

In mobile grid environments, data placement decisions
that made prior to the service request can affect resource
discovery decisions at the time of service; this in turn in-
fluences the runtime system performance substantially. The
overarching goal of this article is to address the issues of
data placement on grid proxies for mobile applications.
Many challenges arise due to the dynamic and heteroge-
neous nature of mobile grid environments. Firstly, the fact
that mobile users can move freely and unpredictably in a
wireless network may result in varying network connec-
tivity. A grid proxy that is optimal for mobile users at a
time may not be optimal throughout the service duration.
In order to reduce network bandwidth consumption and to
improve end-to-end QoS performance, a single mobile re-
quest may be serviced by multiple grid proxies during its
whole service period. Leveraging user mobility patterns for
devising efficient data allocation schemes has been demon-
strated by [21], where mining techniques are applied on in-
dividual user’s moving patterns. However, new challenges
emerge from intermittent availability of heterogeneous grid
proxies. Essentially, long term placement problems can not
be directly solved by short-term caching techniques, e.g.,
[4, 10]. Resource allocation also needs to take into account
varying resource capacities at a proxy for overall resource
utilization (e.g. storage and network resources) improve-
ment. Existing methods such as [23] and [13] store repli-
cas on mobile hosts in wireless networks. These methods
can be applied to the situation where resources of mobile
devices are harnessed and low-power devices are integrated



into a grid [22]. In this paper, we focus on how to place data
on fixed grid proxies. Our assumptions on the availability
of the resource providers (fixed grid machines) and the con-
nectivity between mobile users and the resource providers
are different from the ones in the aforementioned methods
(where mobile devices are actually the resource providers).
Therefore, their approaches will not have optimal perfor-
mance in our scenario.

A number of data placement heuristics have been pro-
posed for proxy-based content distribution networks [9,17,
18], and we also developed data placement strategies [15] in
the context of intermittently available of grid environment.
However, these schemes neglect the mobility of users and
services in their decision making and thus they may incur
unnecessary replication operations and increase replication
cost. In order to provide user better QoS services (lower
data access cost) with lower system cost (lower data repli-
cation cost), both user mobility and intermittent availability
information of heterogeneous grid proxies should be taken
into consideration when making data placement decisions
for mobile applications.

In the remainder of the paper, we concentrate on tack-
ling the above unique challenges of mobile data placement
on intermittently available grid proxies in such mobile grid
environments. More specifically, in Section 2, we will in-
troduce a two-tier architecture, MAPGrid, for maintaining
both the intermittent availability information of grid proxies
and the data request patterns of mobile users. In Section 3,
we propose an intelligent MAPGrid-based data placement
technique that can effectively balance the data replication
cost and the data access cost. We evaluate our approach in
Section 4, and conclude in Section 5.

2 The Two Tier Architecture of MAPGrid

The performance of applications in the mobile grid in-
frastructure is influenced by proxy related factors, e.g. ca-
pacity of grid proxies and user related factors , e.g. data
request patterns. Data placement decisions, in particular,
are affected by the (a) the intermittent availability of the
grid resources and (b) e.g. user mobility patterns(i.e. mo-
bility of requested data). Fig. 1 (A) shows a two tiered ar-
chitecture that facilitates the separation of these two con-
cerns. The upper tier (Grid Proxy Tier) contains informa-
tion about intermittent proxy availability and the lower tier
(Mobile Data Tier) captures data request patterns of mo-
bile users. This architecture enables efficient collections
of proxy-related and user-related parameters independently.
We fuse the spatio-temporal information into a comprehen-
sive interval tree based representation (as shown in Fig. 1
(B) ), which is subsequently used to make data placement
decisions.

Interval tree [5] based representations have recently
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Figure 1. The two-tier MAPGrid architecture

gained popularity [8, 11]. A distinguishing aspect of the
MAPGrid architecture is that the generation and mainte-
nance of the interval tree is driven by the grid proxy fea-
tures such as the availability and capacity of grid resources
(Fig. 2 (A)). For efficient data representation, information
about grid proxy availability and resources are stored from
the top of the tree (Fig. 2 (B)) and the initial basic time inter-
vals are defined by the grid availability according to the al-
gorithm described by [1]. Information of Mobile Data Tier
is initially collected at the bottom level of the tree for finer
granularity, but it may be rearranged and be stored at higher
level of the tree when data placement algorithm is executed.
(We will present how to restore mobile data information in
section 3.) Note that the generation of the interval tree is
also based on two user/application defined parameters (i)
a period that determines how often the trees are regener-
ated (i.e. reflecting the frequency of making data placement
decisions) and the (ii) height of the interval tree. Each in-
terval node contains two items. One is a grid proxy list
(PList) including the grid proxies that are available for this
interval. The other one is a Data Access Table of Mobile
Users (MDT) which is a matrix shown by Fig. 2 (B). Be-
cause spatial information does not change frequently over
time, we use an individual ID number to identify the spatial
area of a wireless coverage. More specifically, the MDT
contains information about the number of requests to data
objects by each user at different wireless regions. Accord-
ing to information contained in the lower tier, correlations
among a user’s data request patterns over wireless regions
and resource requirements of different wireless regions can
be evaluated.

3 Mobile Data Placement on Intermittently
Available Proxies

In this section, we will present how to leverage the MAP-
Grid to address data placement problems in such a mobile
grid environment, and the problem we address is described
as follows. Given knowledge of intermittent availability of
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Figure 2. MAPGrid Data Representation: an
interval tree-like data structure for capturing
grid availability and data request patterns of
mobile users

grid proxies, and users’ historical mobility information, we
aim at optimizing the network performance and the overall
system resource utilization over time by: (1) determining
the number of replicas for each user’s requested data, (2)
choosing when to replicate them and (3) selecting grid prox-
ies for each replication, so that the total replication and data
access cost will be reduced. The major contribution of this
paper lies in how we tackle the issue of finding intermittent
available grid resources to meet mobile users’ data needs by
applying spatio-temporal locality so as to balance the trade-
off between replication cost and data access cost. We now
develop a mobile data placement algorithm that determines
the mapping between objects and proxies.

The high level procedure of the grid-based mobile data
placement algorithm is as follows: from the first level of the
tree until the leaf level, for each interval node, if there are
proxies available for that period (i.e. the PList is not null),
we attempt to create replicas of data objects requested in
that period. To do this efficiently, we need to determine the
interval-tree level at which the replication must occur. This
level dictates the time at which replication must occur and
the duration for which the replica will reside on the proxy.
Note that the replica and proxy mapping at higher level of
the tree indicates that replicas are created earlier and kept
for a longer duration. Hence the choice of data objects to be
replicated at higher levels must be done carefully. We ap-
ply statistical analysis techniques to select appropriate data
objects for interval nodes. In particular, we define the no-
tion of “regularity” of mobile data request patterns for an
object in an interval tree node. If the regularity is high, the
data object is chosen for replication. Otherwise, the data
object will be considered for replication at lower levels of
the interval tree. This selection will continue until either all
predicted requests for this data object can be serviced by as-

signed proxies or available proxy resources for this period
have been exhausted.

3.1 Analyzing Variance of Data Request
Patterns

We now explain how to evaluate ‘regularity” of data re-
quest patterns of mobile users by utilizing statistical tech-
niques. Let τf be an interval node in the TARGET tree that
spans a number of elementary intervals at the leaf level, as
shown in Fig. 3. Each child interval node τfk

may contain

data request patterns
−−−−−−−→
MDTo(fk) to data object o of a mo-

bile user, where 1 ≤ k ≤ C and C is the number of Chil-
dren of node τf . We compare them to recognize the regular-
ity among data request patterns of the same mobile user. If
they are similar, we can consider selecting grid proxies for
the mobile user i at the node τf within its PList, instead of
choosing grid proxies at each child node τfk

(1 ≤ k ≤ C).
More specifically, the null hypothesis at stake is that data ac-
cess patterns among all interval nodes are similar. We can
use standard statistical techniques to test the hypothesis. For
simplicity, we apply two-way ANOVA with F test [2] for
illustration purpose. We can also use non-parametric alter-
natives to the above techniques, if the data is not normally
distributed in practice.
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In this study, we let MDTo,n,fk
be the number of ac-

cesses to one data object o from a specific wireless region
wn during one time period τfk

, then MDTo,n,fk
is regarded

as a dependent variable. While time interval fk and wireless
region n are regarded as independent variables. We use two-
way ANOVA with F test to determine whether all rows of
the data matrix shown in Fig. 4 have similar data access pat-
terns. The F test will generate a F test statistic which follows
the F distribution with (C-1) numerator and (W −1)(C−1)
denominator degrees of freedom. Given the F test statistic,
a P-value ranging from 0 to 1 is also calculated. A small
P-value indicates that real differences exist between at least
some of the data access patterns across time intervals. If the
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Figure 4. The data matrix

resulted P value is equal to or less than .05, we interpret that
the data access patterns across time intervals are statistically
different and thus do not select proxy available for this time
period to replicate the data object. The F test statistic is
calculated as follows: MSE is the mean square error from
wireless region, and MSI is the mean square from time in-
terval. MDTo,n,fk

is the number of requests for data object
o from wireless region n during time interval fk. MDT bar
o, n. is the average number of requests for data object o of
wireless region n, and similarly MDT bar o.fk is the aver-
age of time interval fk. MDT bar o.. is the grand mean of
all values.

Fo,f = MSIo,f

MSEo,f

MSEo,f =

W∑
n=1

C∑
k=1

(MDTo,n,fk
−MDT o,n.−MDT o.fk

−MDTo..)
2

(W−1)(C−1)

MSIo,f =
W

C∑
k=1

(MDT o.fk
−MDT o..)

2

(C−1)

(1)

3.2 Balancing Tradeoffs Between Replica-
tion Cost and Data Access Cost

The above data placement strategies are designed to bal-
ance tradeoffs between data replication cost and data ac-
cess cost. The following lemma shows that the proposed
approach maintains low data access cost without increasing
data replication cost.

Lemma 1 If
−−−−−−−→
MDT (τk) (1 ≤ k ≤ C and C is the num-

ber of children) are merged as
−−−−−−−→
MDT (τf ) into the parent

node, as long as there is at least one proxy available for se-

lection, data placement decision based on
−−−−−−−→
MDT (τf ) will

not increase the replication cost and will not decrease the
data retrieval cost compared to that decisions made by us-

ing each MDT elements of
−−−−−−−→
MDT (τk) (1 ≤ k ≤ C). This

is true when data placement is preformed from higher level
to lower level.

Proof 1 If pk == pf ( 1 ≤ k ≤ C), replication cost and
data access cost remain identical. If pk−1 �= pk ( 2 ≤
k ≤ C), as replication cost depends on the total size of
the objects and one-time cost for replicating the data onto
proxies, replication cost onto pf will not be increased, as
the total size of the data object is not changed; in fact, the
one-time cost for replicating the data is reduced. However,
the data access cost will not be decreased,

−−−−−−−→
MDT (τf ) · −−−−−−→ACpf

(τf ) ⇒
∑

1�k�C

−−−−−−−→
MDT (τk) · −−−−−−→ACpf

(τf )

⇒
∑

1�k�C

(
−−−−−−−→
MDT (τk) · −−−−−−→ACpf

(τk))

�
∑

1�k�C

(
−−−−−−−→
MDT (τk) · −−−−−−→ACpk

(τk))

otherwise, pk ( 1 ≤ k ≤ C) will be replaced by pf , then
pk−1 == pk ( 2 ≤ k ≤ C) , which is in direct contradiction
to the assumption pk−1 �= pk .

4 Performance Evaluation

In this section, we present and analyze our simulation
results. In the simulation study, we model a cellular network
system with 100 cells, 25 evenly distributed proxies and one
data server that keeps the original copies of all data objects.
Kondo et al. have studied resource availability in enterprise
desktop grids [7]. In our simulation, For simplicity, without
losing generality, we model proxy availability using service
TimeMap [15], which provides information on when a grid
proxy will be available during a day. Given space limitation,
we show results of Uniform TimeMap model.

Mobility of individual user is characterized by applying
the incremental mobility model [12], where mobile users
can move at walking or driving speed in a closed cover-
age area. We model each user’s data requests following the
zipfian [17] distribution and popularity-unpopularity (Pop-
UnPop) data object distributions (where data objects are
classified into two groups) [6]. These two request pat-
terns determine the number of requests that will be issued
to different data objects by users. The duration of each
data request varies from 30 minutes to 4 hours. We as-
sume that the disk space required for replicating each data
object is proportional to the service duration. The basic
configurations include that each proxy has 100 GB storage
and 100Mbps network bandwidth and that each data access
from the mobile user will consume network transmission
bandwidth ranging from 500 kbps to 1.3 Mbps.



We use the following metrics to evaluate the system per-
formance. (1) We measure the distance from the selected
proxy to the access point of a mobile host (the number of
network hops) as the data access cost. Also because the
access cost at any instance within the whole service pe-
riod may change due to users’ movement, for each user,
we calculate his average access cost over his whole service
duration. Note that the data access cost from the original
server to a mobile user is defined to be higher than the max-
imum access cost among all proxies to the mobile user [3].
(2) Data replication cost is affected by lots of factors, e.g.
data consistency, network and CPU utilizations. These are
all counted when a data replication operation is performed.
Thus without losing generality, we take the number of repli-
cation operations as the replication cost. (3) We also calcu-
late the percentage of load that is saved from the original
data server by servicing them on proxies.

We have performed a set of experiments to evaluate
our proposed solutions under various configurations of the
simulated system. Given space constraints, we will show
the basic performance of our proposed mobile data place-
ment (MDP), which compared with that of three selected
data placement strategies, i.e. popularity-based greedy
data placement (Greedy), popularity-based random data
placement (Random) and caching on-demand technique
(Caching). Our other results draw the same conclusions.

As shown in [17], popularity-based greedy data place-
ment has been regarded as an efficient solution. The greedy
policy was implemented as follows: at the end of each pe-
riod, we first rank all users’ accesses based on their popu-
larity (given total number of accesses in a history window),
then decide the number of replicas for each user’s data by
considering the system capacity. We greedily select a more
powerful proxy (with more available network bandwidth)
to allocate replicas for popular objects that are predicted to
have more accesses in the next period of time with less stor-
age requirement. The Random policy is also based on data
popularity but it is different from the Greedy policy in that
selecting a proxy for a replica is random. The third bench-
mark policy, an on-demand caching strategy, proceeds as
follows: when a mobile user issues a request, the system
will try to find a nearby cached replica. If there is no replica
available on proxies, and the nearest proxy has resources to
store a replica and to serve this request, a data replica will be
placed on the selected proxy. Subsequent request can also
reuse the replicated data. If there is no available proxy with
sufficient resources to provide data services, the system will
try to make a LFU cache replacement; if all replicated ob-
jects are in use that they can not be replaced, the mobile
request will be connected to the original server. During
service time, if mobility information is provided by users,
the system can pre-schedule service connection along user’s
trajectory, otherwise, it will perform dynamic re-allocation

according to users’ current location.
Fig. 5 shows how these policies perform. To make a

fair comparison, we evaluate CDF (Cumulative Distribution
Function) of user data access cost over time by restricting
replication cost of these four policies. Specifically, the to-
tal numbers of replicas made by different policies are kept
same when these policies are executed with same system
configuration, i.e. the same system load and data request
patterns. For example, there are 212 replicas created for zipf
data objects in Fig. 5 (1,3) and 100 replicas generated for
Pop-Unpop data objects in Fig. 5 (2,4). According to Fig. 5
(1) and (2), the MDP results are shown to have lower data
access cost than the other three policies under different con-
ditions for the majority of requests. Besides, the other three
policies (especially the caching policy) are more sensitive
to data request patterns and system workload. As shown in
Fig. 5 (3) and (4), our proposed MDP also prevails in saving
more load from the original server than other policies.

5 Concluding Remarks

In this paper, we address the issue of placing data re-
quested by mobile users on intermittently available grid
proxies. We designed an intelligent data placement strat-
egy to address tradeoffs between data replication cost and
data access cost. We first introduced a two-tiered architec-
ture, MAPGrid that separates concerns of intermittent avail-
ability of grid proxies and user mobility, we then developed
an efficient data representation to collect information of the
tiered architecture efficiently. Subsequently, we presented
how to leverage the MAPGrid architecture in making intel-
ligent proxy data placement decisions. More specifically,
we apply statistical technique, e.g. a Two-Way ANOVA
to analysis regularity of information captured by the MAP-
Grid. Our simulation results show that the proposed ap-
proach achieves better performance than several popular
data placement strategies. We currently focusing on incor-
porating and evaluating proposed algorithms in MAPGrid
middleware system that is under development at UCI.
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