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I. INTRODUCTION

Digital cameras and multimedia capture devices are becom-

ing increasingly popular to take pictures. Annotating these

pictures is important to support their browsing and retrieval.

Fully automatic image annotation techniques typically rely

entirely on visual properties of the image. The state of

the art image annotation systems of this kind work well

in detecting generic object classes: car, horse, motorcycle,

airplane, etc. However, certain characteristics of the image

are hard to capture using strictly the visual properties. These

include location (Paris, California, San Francisco, etc), event

(birthday, wedding, graduation ceremony, etc), people (John,

Jane, brother, etc) and abstract qualities referring to objects

in the image (beautiful, funny, sweet, etc) among others. The

more conventional method of annotation that relies completely

on human input has several limitations as well. Typing tags

using the keypads of such devices can be cumbersome and

error-prone. Secondly, delay in tagging may result in a loss

of context in which the picture was taken (e.g., user may not

remember the names of the people/structures in the image).

This presents an opportunity for using speech as a modality

to annotate images and/or other multimedia content. Most

camera devices have a built-in microphone. In principle,

some of the challenges associated with both, fully automatic

annotation as well as manual tagging can be alleviated if

the user were to use speech as a medium of annotation.

Ideally, the user would take a picture and speak the desired

tags into the device’s microphone. A speech recognizer would

transcribe the audio signal into text. The speech to text

transcription can happen either on the device itself or be

done on a remote machine. The transcribed text can be used

as tags for the image, exactly as the user intended. One of

the biggest bottlenecks facing such systems is the accuracy

of the underlying speech recognizer. Even speaker dependent

recognition systems can make mistakes in noisy environments.

If the recognizer’s output is considered as is for annotation,

then poor recognition will lead to poor quality tags. Our work

tries to address this issue by incorporating outside semantic

knowledge to improve interpretation of the recognizer’s output,

as opposed to blindly believing what the recognizer suggests.

To improve interpretation of speech output, we exploit the fact

that most speech recognizers provide alternate hypotheses for

each utterance. The main contribution of this paper is our
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approach for annotating images using speech as the input

modality. The approach employs a probabilistic model for

computing the joint probability of a given combination of

tags using a Maximum Entropy solution. The extensive em-

pirical evaluation demonstrates the advantage of the proposed

solution, that leads to a significant improvement of quality of

speech annotation.

II. PROBLEM DEFINITION

We consider a setting wherein the user intends to annotate

an image with a sequence G = (g1, g2, . . . , gK) of K “ground

truth” tags. Each tag gi can be either a single word or a short

phrase of multiple words, such as Niagara Falls, Golden Gate

Bridge, and so on. Since a tag is typically a single word, we

will use ‘tag’ and ‘word’ interchangeably.

A. N-Best Lists

To accomplish the annotation task, the user speaks out each

of the words gi for i = 1, 2, . . . ,K. These K words are

then processed by a speech recognizer. We assume that the

recognizer is trained to recognize a delimiter between each

of these K utterances. The recognizer’s task is to correctly

recognize these words so that they can then be assigned as tags

to the image. However, noisy environments and unrestricted

vocabularies can increase the recognizer’s uncertainty in its

hypotheses. The recognizer might propose several alternatives

for each utterance of a word. Thus, the output of the recognizer

is a sequence L = (L1, L2, . . . , LK) of K N -best lists for the

K utterances.

Each N -best list Li = (wi1, wi2, . . . , wiN ) consists of N

words that correspond to the recognizer’s alternatives for word

gi. Observe that list Li might not contain the ground truth word

gi. The words in a N -best lists Li are typically output in a

ranked order. Thus, when the recognizer has to commit to a

single word for each utterance, it would set N = 1 and output

(w11, w21, . . . , wK1) as its answer. While wi1 has the highest

chance of being the correct word, in practice it may be the

incorrect option. This presents the need for an approach that

can smartly disambiguate between the alternatives.

B. Answer Quality

We noted earlier that each Li may or may not contain the

ground truth. Let us define a sequence as a K-dimensional

vector W = (w1, w2, . . . , wK), where each wi is either an

element from list Li or is equal to null, where wi = null

encodes the fact that the algorithm believes that the list Li does



L1 L2 L3 L4 L5

w11=pain w21=prose w31=garden w41=flower w51=sad
w12=Jane w22=nose w32=harden w42=power w52=wad
w13=lane w23=rose w33=jordan w43=shower w53=bad
w14=game w24=crows w34=pardon w44=tower w54=dad

TABLE I

SAMPLE N -BEST LISTS L = (L1, L2, L3, L4, L5).

not contain gi. Now we can define the quality of a sequence

A = (w1, w2, . . . , wK) by adapting the standard IR metrics

of precision, recall, and F-measure [1]. Namely, if |A| = 0
then Precision(A) = Recall(A) = 0. If |A| > 0 then

Precision(A) = |A∩G|
|A| and Recall(A) = |A∩G|

|G| = |A∩G|
K

,

where |A ∩ G| is the number of wi such that wi = gi. The

F-measure is computed as the harmonic mean of the precision

and recall. Thus, our goal can be viewed as that of designing

an algorithm that produces high quality answer for any given

L.

Having defined the quality of an answer, we can make

several observations. First, for a given L the best answer

sequence is the sequence A = (w1, w2, . . . , wK) such that

wi = gi if gi ∈ Li and wi = null if gi 6∈ Li. Another

related observation is that there is a theoretic upper bound

on the achievable quality of any sequence A for a given L.

Specifically, assume that only M out of K N -best lists contain

the ground truth tags, where M ≤ K. Then the maximum

reachable value of |A∩G| is M . Thus, if M = 0 then for any

answer A it follows that Precision(A) = Recall(A) = 0. If

M > 0 then the maximum reachable precision is M
M

= 1 and

maximum recall is M
K

which is less than 1 when M < K.

C. Overall Algorithm

We will consider the set WL = {W} of all NK possible

answer sequences given L. On each such sequence W ∈ WL

a score S(W ) will be assigned based on the joint distribution

of the tags in W . The algorithm chooses a sequence W ∗ as its

final answer by selecting among all W ∈ WL a sequence with

the maximum overall score W ∗ = argmaxW∈WL
S(W ) and

then applying a null detection procedure to W ∗ to compute

the final answer.

D. Notational Example

As an example, suppose that the user takes a picture

of her friends Jane in a garden full of roses, and pro-

vides the utterances with K = 5 words: G = (g1 =
Jane, g2 = rose, g3 = garden, g4 = flower, g5 = red).
Then, the corresponding set of five N-best lists for N = 4
could be as illustrated in Table I. If the recognizer has to

commit to a single word per utterance, its output would

be (pain, prose, garden, flower, sad). That is, only ‘garden’

and ‘flower’ would be chosen correctly. This motivates the

need for an approach that can disambiguate between the

different alternatives in the list. Theoretically, the best pos-

sible answer would be (Jane, rose, garden, flower,null).
The last word is null since list L5 does not contain

the ground truth tag g5 = red. Therefore the maximum

achievable precision is 1 and recall is 4
5 . Suppose some

approach is applied to this case, and its answer is A =
(Jane, rose, garden, power,null), that is, it picked ‘power’

instead of ‘flower’ and thus only ‘Jane’, ‘rose’, and ‘garden’

tags are correct. Then Precision(A) = 3
4 and Recall(A) =

3
5 .

III. USING SEMANTICS FOR DENSITY ESTIMATION

Here we show how we compute the score of a se-

quence W = (w1, w2, . . . , wK) as the joint probability

P (w1, w2, . . . , wK) for an image to be annotated with tags

w1, w2, . . . , wK using the approach of Maximum Entropy

(ME). This probability is inferred based on how a collection

of images has been annotated in the past. The ME approach

reduces the problem of computing P (w1, w2, . . . , wK) to a

constrained optimization problem. It allows us to compute

joint probability P (w1, w2, . . . , wK) based on only the values

of known correlations in data. The approach hinges on the

information theoretic notion of entropy [6]. For a probability

distribution P = (p1, p2, . . . , pn), where
∑

pi = 1, the

entropy H(P ) is computed as H(P ) = −
∑n

i=1 pi log pi and

measures the uncertainty associated with P . Entropy H(P )
reaches its minimal value of zero in the most certain case

where pi = 1 for some i and pj = 0 for all j 6= i. It reaches

its maximal value in the most uncertain uniform case where

pi = 1
n

for i = 1, 2, . . . , n. We will use a support-based

method to decide whether the probability can be estimated

directly from data. Specifically, if K = 1, or if K ≥ 2 and

n(w1, w2, . . . , wK) ≥ k, where k is a positive integer value

of support, then there is sufficient support to estimate the

joint probability directly from data and P (w1, w2, . . . , wK)
is computed using a frequency based maximum likelihood

estimate along with Lidstone’s estimation that assumes a

uniform prior on unseen sequences [2]–[4]. In particular,

a support-based estimate would be P (w1, w2, . . . , wK) =
n(w1,w2,...,wK)+λ

NI+λ|V | . We will refer to such P (w1, w2, . . . , wK)

as known probabilities. Cases of P (w1, w2, . . . , wK) where

K ≥ 2 but n(w1, w2, . . . , wK) < k do not have sufficient

support. They will be handled by the ME approach. We will

refer to them as unknown probabilities.

To compute P (w1, w2, . . . , wK) the ME approach considers

the power set S of set {w1, w2, . . . , wK}, that is, the set of

all its subsets. For instance, the power set of {w1, w2, w3} is

{{}, {w1}, {w2}, {w1, w2}, {w2, w3}, {w1, w2, w3}}. We can

observe that for some of the subsets S ∈ S the probability

P (S) will be known and for some it will be unknown. Let

T be the truth set, i.e., the set of subsets for which P (S) is

known: T = {S ∈ S : P (S) is known}. The values of P (S),
where S ∈ T , will be used to define the constraints for the

constrained optimization problem.

To compute P (w1, w2, . . . , wK) the algorithm considers

atomic annotation descriptions, which are tuples of length K,

where the i-th element can be only either wi or wi. Here wi

means tag wi is present in annotations and wi means wi is

absent from them. For instance, description (w1, w2, w3) refers
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Fig. 1. Probability Space.

to all image annotations where tags w1 and w2 are present and

w3 is absent. Each such description can be encoded with a help

of a bit string b, where 1 corresponds to wi and 0 to wi. For

instance (w1, w2, w3) can be encoded as b = 110. Let AS be

the atom set for S, defined as the set of all possible bit strings

of size K such that for each b ∈ AS it holds that if wi ∈ S

then b[i] = 1, for i = 1, 2, . . . ,K. For instance for K = 3 and

S = {w1, w2} set AS = {110, 111}, whereas for K = 3 and

S = {w2} set AS = {010, 011, 110, 111}.

Let xb denote the probability to observe an image annotated

with the tags that correspond to bit string b of length K.

Figure 1 illustrates the probability space with respect to all

xb for the case where K = 3. Then in the context of ME

approach our goal of determining P (w1, w2, . . . , wK) reduces

to solving the following constrained optimization problem:























Maximize Z = −
∑

b∈B xb log xb

subject to
∑

b∈AS
xb = P (S) for all S ∈ T

and

xb ≥ 0 for all b

(1)

Solving it will give us the desired P (w1, w2, . . . , wK)
which corresponds to x11···1. The constrained optimization

problem can be solved efficiently by the method of Lagrange

multipliers to obtain a system of optimality equations. Since

the entropy function is concave, the optimization problem has

a unique solution [5]. We employ the variant of the iterative

scaling algorithm used by [4] to solve the resulting system.

A. Correlations

In this section we define the notion of the correlation

c(wi, wj) between any pair of words wi and wj . This will

allow us to create a method for detecting null cases. Let

the correlation c(wi, wj) between two words wi and wj be

defined as the Jaccard similarity:

c(wi, wj) =

{

n(wi,wj)
n(wi)+n(wj)−n(wi,wj)

if n(wi, wj) > 0;

0 if n(wi, wj) = 0.
(2)

Here, n(wi, wj), n(wi), and n(wj) are the number of

images whose annotation include, respectively, both the tags

wi and wj , tag wi, and tag wj . The value c(wi, wj) is always

in [0, 1] interval.

We can extend the notion of direct correlations to that of

indirect correlations. Observe that even when two words may

never have co-occurred together in any image, they could still

be correlated to each other through other words. For instance,

the words beach and ocean may be indirectly correlated

through the word sand.

Suppose we start with a base correlation graph G = (V,E)
whose nodes are tags in the vocabulary V . An edge is created

per each pair of nodes wi and wj and labelled with the value of

c(wi, wj). The base correlation matrix B = B1 of G is a V ×V

matrix with elements Bij = c(wi, wj). Let P 2
ij be the set of all

paths of length two in graph G from wi to wj . Then the indirect

correlation c2(wi, wj) of length two for wi and wj is defined

as the sum of contribution of each path (x0x1x2) ∈ P 2
ij , where

the contribution of each path is computed as the product of

base similarities on its edges:

c2(wi, wj) =
∑

(x0x1x2)∈P 2

ij

2
∏

i=1

c(xi−1, xi). (3)

It can be shown that the corresponding similarity matrix B2

can be computed as B2 = B2. The idea can be extended

further by considering ck(wi, wj) and demonstrating that

Bk = Bk. A similarity matrix A, that takes into account

indirect similarities for k = 1, 2, . . . ,m can be computed in a

manner similar to that of diffusion kernels [7]. For instance, in

the spirit of exponential diffusion kernels, A can be computed

as A =
∑m

k=0
1
k!λ

kBk, or, as A =
∑m

k=0 λkBk. A and Bk

for k = 1, 2, . . . ,m are performed off line before processing

of image annotations starts. Therefore very fast computation

of A is not critical.

B. Detecting Nulls

This section discusses how A can be utilized for detecting

null candidates. That is, detecting the situation that a given

N-best list Li is unlikely to contain the ground truth tag gi.

First, we extend the notion of a base correlation graph G to

that of indirect correlation graph Gind. Like in G, the nodes

of Gind are the tags wi ∈ V , but each edge (wi, wj) is now

labelled with the value of Aij .

Let W ∗ = (w1, w2, . . . , wK) be the sequence with the

highest score among all the possible NK sequences for a given

sequence of N-best lists L. If list Li ∈ L does not contain the

ground truth tag gi, then wi 6= gi. We can observe that when

such situations occur, it is likely that wi will not be strongly

correlated with the rest of the tags in W ∗. We can now design

the null detection procedure. It takes W ∗ = (w1, w2, . . . , wK)
as input and analyzes each wi ∈ W ∗. If A(wi, wj) < τ for

j = 1, 2, . . . ,K, j 6= i, and a threshold value τ , then wi is

considered to be isolated in Gind, in terms of correlations,

from the rest of the tags. Such isolated tags are substituted

with null values.

IV. EXPERIMENTS

Dataset:. Our set of images was obtained by crawling a

popular image hosting website, namely Flickr. We start off



by downloading 60000 Flickr images with their ground truth

annotations. We randomly set aside 20% of the data for testing

(will be called Dtest) and 80% for training (Dtrain). We will

use portions of Dtest for testing. The size of the vocabulary

is |V | = 18285.

We randomly picked 102 images from Dtest and annotated

them (generating the N-best lists) using a popular commercial

off-the-shelf recognizer Dragon v.8. We will call this annotated

set D̄test. The annotations were performed in a Low noise

level. Low noise level corresponds to a quiet university lab

environment. All non-English words were removed before

using Dragon to create these N best lists.

Approaches. We will compare the results of three ap-

proaches:

• Baseline is the output of the recognizer (Dragon v.8).

• ME is the output of the proposed approach.

• Upper Bound is the theoretic upper bound achievable,

see Section II. It depends on how many N-best lists

contain the ground truth tag.
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Fig. 2. F-measure vs. Noise.

Experiment 1. (Quality for Various Noise Levels.) We

randomly picked 20 images from D̄test and re-annotated them

(i.e. created N best lists for ground truth tags) using Dragon

in two additional noise levels: Medium and High. Medium

and High levels were produced by introducing white Gaussian

noise through a speaker.1 Figure 2 shows the F-measure of the

three approaches for the Low, Medium, and High noise levels

on these 20 images. Since we had created D̄test in a Low

noise level on 102 images, for a fair comparison, the points

corresponding to Low noise levels in the plots are averages

over these 20 images, as opposed to the full 102 images. As

anticipated, higher noise levels negatively affect performance

of all three approaches. The performance of ME dominates

Baseline performance for all the different noise levels.

When we considered images that are annotated with exactly

K tags, we found the performance of ME is consistent across

different values of K. For instance, for Low noise level and

for K = 2, 3, . . ., the F-measure of ME was consistently within

12% of F-measure for the Upper Bound. In addition, it was

1To give a sense of the level of noise, High was a little louder than the
typical volume of TV in a living room.

constantly better than the F-measure of Baseline by at least

15% for all K.

In the subsequent discussion we will refer to D̄test data

with the Low level of noise as just D̄test.
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Experiment 2. (Quality vs Size of N-Best Lists.) Figure 3

illustrate the F-measure as a function of the size of N -best

list N on D̄test data. For a given N , the N-best lists are

generated by taking the original N-best lists from D̄test data

and keeping at most N first elements in them. Increasing

N presents a tradeoff. As N increases, the greater is the

chance that the ground truth element would appear in the

list. At the same time, ME algorithm is faced with more

uncertainty as there are more options to disambiguate between.

The results demonstrate that the potential benefit from the

former outweighs the potential loss due to the latter, as F-

measure increases with N .

V. CONCLUSION:

In this paper, we have postulated the problem of using

discrete speech utterances to annotate an image as that of

disambiguation across multiple N -best lists. Our solution is

based on the Maximum Entropy approach and uses correla-

tions between tags in an existing corpus of images to set up

the constrains of the corresponding constrained optimization

problem. Our experiments suggest that the proposed approach

gives a significant improvement in quality as compared to an

approach that considers the best answer suggested by a popular

off-the-shelf recognizer.
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